import argparse from collections import OrderedDict import torch from toolkit.config_modules import ModelConfig from toolkit.stable_diffusion_model import StableDiffusion parser = argparse.ArgumentParser() parser.add_argument( 'input_path', type=str, help='Path to original sdxl model' ) parser.add_argument( 'output_path', type=str, help='output path' ) parser.add_argument('--sdxl', action='store_true', help='is sdxl model') parser.add_argument('--refiner', action='store_true', help='is refiner model') parser.add_argument('--ssd', action='store_true', help='is ssd model') parser.add_argument('--sd2', action='store_true', help='is sd 2 model') args = parser.parse_args() device = torch.device('cpu') dtype = torch.float32 print(f"Loading model from {args.input_path}") if args.sdxl: adapter_id = "latent-consistency/lcm-lora-sdxl" if args.refiner: adapter_id = "latent-consistency/lcm-lora-sdxl" elif args.ssd: adapter_id = "latent-consistency/lcm-lora-ssd-1b" else: adapter_id = "latent-consistency/lcm-lora-sdv1-5" diffusers_model_config = ModelConfig( name_or_path=args.input_path, is_xl=args.sdxl, is_v2=args.sd2, is_ssd=args.ssd, dtype=dtype, ) diffusers_sd = StableDiffusion( model_config=diffusers_model_config, device=device, dtype=dtype, ) diffusers_sd.load_model() print(f"Loaded model from {args.input_path}") diffusers_sd.pipeline.load_lora_weights(adapter_id) diffusers_sd.pipeline.fuse_lora() meta = OrderedDict() diffusers_sd.save(args.output_path, meta=meta) print(f"Saved to {args.output_path}")