import argparse from collections import OrderedDict import sys import os ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(ROOT_DIR) import torch from toolkit.config_modules import ModelConfig from toolkit.stable_diffusion_model import StableDiffusion parser = argparse.ArgumentParser() parser.add_argument( 'input_path', type=str, help='Path to original sdxl model' ) parser.add_argument( 'output_path', type=str, help='output path' ) parser.add_argument('--sdxl', action='store_true', help='is sdxl model') parser.add_argument('--refiner', action='store_true', help='is refiner model') parser.add_argument('--ssd', action='store_true', help='is ssd model') parser.add_argument('--sd2', action='store_true', help='is sd 2 model') args = parser.parse_args() device = torch.device('cpu') dtype = torch.float32 print(f"Loading model from {args.input_path}") diffusers_model_config = ModelConfig( name_or_path=args.input_path, is_xl=args.sdxl, is_v2=args.sd2, is_ssd=args.ssd, dtype=dtype, ) diffusers_sd = StableDiffusion( model_config=diffusers_model_config, device=device, dtype=dtype, ) diffusers_sd.load_model() print(f"Loaded model from {args.input_path}") diffusers_sd.pipeline.fuse_lora() meta = OrderedDict() diffusers_sd.save(args.output_path, meta=meta) print(f"Saved to {args.output_path}")