import json from collections import OrderedDict import os import torch from safetensors import safe_open from safetensors.torch import save_file device = torch.device('cpu') # [diffusers] -> kohya embedding_mapping = { 'text_encoders_0': 'clip_l', 'text_encoders_1': 'clip_g' } PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) KEYMAP_ROOT = os.path.join(PROJECT_ROOT, 'toolkit', 'keymaps') sdxl_keymap_path = os.path.join(KEYMAP_ROOT, 'stable_diffusion_locon_sdxl.json') # load keymap with open(sdxl_keymap_path, 'r') as f: ldm_diffusers_keymap = json.load(f)['ldm_diffusers_keymap'] # invert the item / key pairs diffusers_ldm_keymap = {v: k for k, v in ldm_diffusers_keymap.items()} def get_ldm_key(diffuser_key): diffuser_key = f"lora_unet_{diffuser_key.replace('.', '_')}" diffuser_key = diffuser_key.replace('_lora_down_weight', '.lora_down.weight') diffuser_key = diffuser_key.replace('_lora_up_weight', '.lora_up.weight') diffuser_key = diffuser_key.replace('_alpha', '.alpha') diffuser_key = diffuser_key.replace('_processor_to_', '_to_') diffuser_key = diffuser_key.replace('_to_out.', '_to_out_0.') if diffuser_key in diffusers_ldm_keymap: return diffusers_ldm_keymap[diffuser_key] else: raise KeyError(f"Key {diffuser_key} not found in keymap") def convert_cog(lora_path, embedding_path): embedding_state_dict = OrderedDict() lora_state_dict = OrderedDict() # # normal dict # normal_dict = OrderedDict() # example_path = "/mnt/Models/stable-diffusion/models/LoRA/sdxl/LogoRedmond_LogoRedAF.safetensors" # with safe_open(example_path, framework="pt", device='cpu') as f: # keys = list(f.keys()) # for key in keys: # normal_dict[key] = f.get_tensor(key) with safe_open(embedding_path, framework="pt", device='cpu') as f: keys = list(f.keys()) for key in keys: new_key = embedding_mapping[key] embedding_state_dict[new_key] = f.get_tensor(key) with safe_open(lora_path, framework="pt", device='cpu') as f: keys = list(f.keys()) lora_rank = None # get the lora dim first. Check first 3 linear layers just to be safe for key in keys: new_key = get_ldm_key(key) tensor = f.get_tensor(key) num_checked = 0 if len(tensor.shape) == 2: this_dim = min(tensor.shape) if lora_rank is None: lora_rank = this_dim elif lora_rank != this_dim: raise ValueError(f"lora rank is not consistent, got {tensor.shape}") else: num_checked += 1 if num_checked >= 3: break for key in keys: new_key = get_ldm_key(key) tensor = f.get_tensor(key) if new_key.endswith('.lora_down.weight'): alpha_key = new_key.replace('.lora_down.weight', '.alpha') # diffusers does not have alpha, they usa an alpha multiplier of 1 which is a tensor weight of the dims # assume first smallest dim is the lora rank if shape is 2 lora_state_dict[alpha_key] = torch.ones(1).to(tensor.device, tensor.dtype) * lora_rank lora_state_dict[new_key] = tensor return lora_state_dict, embedding_state_dict if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( 'lora_path', type=str, help='Path to lora file' ) parser.add_argument( 'embedding_path', type=str, help='Path to embedding file' ) parser.add_argument( '--lora_output', type=str, default="lora_output", ) parser.add_argument( '--embedding_output', type=str, default="embedding_output", ) args = parser.parse_args() lora_state_dict, embedding_state_dict = convert_cog(args.lora_path, args.embedding_path) # save them save_file(lora_state_dict, args.lora_output) save_file(embedding_state_dict, args.embedding_output) print(f"Saved lora to {args.lora_output}") print(f"Saved embedding to {args.embedding_output}")