from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint from collections import OrderedDict from jobs import BaseJob from toolkit.train_tools import get_torch_dtype process_dict = { 'locon': 'ExtractLoconProcess', 'lora': 'ExtractLoraProcess', } class ExtractJob(BaseJob): def __init__(self, config: OrderedDict): super().__init__(config) self.base_model_path = self.get_conf('base_model', required=True) self.model_base = None self.model_base_text_encoder = None self.model_base_vae = None self.model_base_unet = None self.extract_model_path = self.get_conf('extract_model', required=True) self.model_extract = None self.model_extract_text_encoder = None self.model_extract_vae = None self.model_extract_unet = None self.extract_unet = self.get_conf('extract_unet', True) self.extract_text_encoder = self.get_conf('extract_text_encoder', True) self.dtype = self.get_conf('dtype', 'fp16') self.torch_dtype = get_torch_dtype(self.dtype) self.output_folder = self.get_conf('output_folder', required=True) self.is_v2 = self.get_conf('is_v2', False) self.device = self.get_conf('device', 'cpu') # loads the processes from the config self.load_processes(process_dict) def run(self): super().run() # load models print(f"Loading models for extraction") print(f" - Loading base model: {self.base_model_path}") # (text_model, vae, unet) self.model_base = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path) self.model_base_text_encoder = self.model_base[0] self.model_base_vae = self.model_base[1] self.model_base_unet = self.model_base[2] print(f" - Loading extract model: {self.extract_model_path}") self.model_extract = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.extract_model_path) self.model_extract_text_encoder = self.model_extract[0] self.model_extract_vae = self.model_extract[1] self.model_extract_unet = self.model_extract[2] print("") print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}") for process in self.process: process.run()