# ref https://huggingface.co/spaces/editing-images/ledits/blob/main/inversion_utils.py import torch import os from tqdm import tqdm from toolkit import train_tools from toolkit.prompt_utils import PromptEmbeds from toolkit.stable_diffusion_model import StableDiffusion def mu_tilde(model, xt, x0, timestep): "mu_tilde(x_t, x_0) DDPM paper eq. 7" prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps alpha_prod_t_prev = model.scheduler.alphas_cumprod[ prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod alpha_t = model.scheduler.alphas[timestep] beta_t = 1 - alpha_t alpha_bar = model.scheduler.alphas_cumprod[timestep] return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1 - alpha_bar)) * x0 + ( (alpha_t ** 0.5 * (1 - alpha_prod_t_prev)) / (1 - alpha_bar)) * xt def sample_xts_from_x0(sd: StableDiffusion, sample: torch.Tensor, num_inference_steps=50): """ Samples from P(x_1:T|x_0) """ # torch.manual_seed(43256465436) alpha_bar = sd.noise_scheduler.alphas_cumprod sqrt_one_minus_alpha_bar = (1 - alpha_bar) ** 0.5 alphas = sd.noise_scheduler.alphas betas = 1 - alphas # variance_noise_shape = ( # num_inference_steps, # sd.unet.in_channels, # sd.unet.sample_size, # sd.unet.sample_size) variance_noise_shape = list(sample.shape) variance_noise_shape[0] = num_inference_steps timesteps = sd.noise_scheduler.timesteps.to(sd.device) t_to_idx = {int(v): k for k, v in enumerate(timesteps)} xts = torch.zeros(variance_noise_shape).to(sample.device, dtype=torch.float16) for t in reversed(timesteps): idx = t_to_idx[int(t)] xts[idx] = sample * (alpha_bar[t] ** 0.5) + torch.randn_like(sample, dtype=torch.float16) * sqrt_one_minus_alpha_bar[t] xts = torch.cat([xts, sample], dim=0) return xts def encode_text(model, prompts): text_input = model.tokenizer( prompts, padding="max_length", max_length=model.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) with torch.no_grad(): text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0] return text_encoding def forward_step(sd: StableDiffusion, model_output, timestep, sample): next_timestep = min( sd.noise_scheduler.config['num_train_timesteps'] - 2, timestep + sd.noise_scheduler.config['num_train_timesteps'] // sd.noise_scheduler.num_inference_steps ) # 2. compute alphas, betas alpha_prod_t = sd.noise_scheduler.alphas_cumprod[timestep] # alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) # 5. TODO: simple noising implementation next_sample = sd.noise_scheduler.add_noise( pred_original_sample, model_output, torch.LongTensor([next_timestep])) return next_sample def get_variance(sd: StableDiffusion, timestep): # , prev_timestep): prev_timestep = timestep - sd.noise_scheduler.config['num_train_timesteps'] // sd.noise_scheduler.num_inference_steps alpha_prod_t = sd.noise_scheduler.alphas_cumprod[timestep] alpha_prod_t_prev = sd.noise_scheduler.alphas_cumprod[ prev_timestep] if prev_timestep >= 0 else sd.noise_scheduler.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance def get_time_ids_from_latents(sd: StableDiffusion, latents: torch.Tensor): VAE_SCALE_FACTOR = 2 ** (len(sd.vae.config['block_out_channels']) - 1) if sd.is_xl: bs, ch, h, w = list(latents.shape) height = h * VAE_SCALE_FACTOR width = w * VAE_SCALE_FACTOR dtype = latents.dtype # just do it without any cropping nonsense target_size = (height, width) original_size = (height, width) crops_coords_top_left = (0, 0) add_time_ids = list(original_size + crops_coords_top_left + target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.to(latents.device, dtype=dtype) batch_time_ids = torch.cat( [add_time_ids for _ in range(bs)] ) return batch_time_ids else: return None def inversion_forward_process( sd: StableDiffusion, sample: torch.Tensor, conditional_embeddings: PromptEmbeds, unconditional_embeddings: PromptEmbeds, etas=None, prog_bar=False, cfg_scale=3.5, num_inference_steps=50, eps=None ): current_num_timesteps = len(sd.noise_scheduler.timesteps) sd.noise_scheduler.set_timesteps(num_inference_steps, device=sd.device) timesteps = sd.noise_scheduler.timesteps.to(sd.device) # variance_noise_shape = ( # num_inference_steps, # sd.unet.in_channels, # sd.unet.sample_size, # sd.unet.sample_size # ) variance_noise_shape = list(sample.shape) variance_noise_shape[0] = num_inference_steps if etas is None or (type(etas) in [int, float] and etas == 0): eta_is_zero = True zs = None else: eta_is_zero = False if type(etas) in [int, float]: etas = [etas] * sd.noise_scheduler.num_inference_steps xts = sample_xts_from_x0(sd, sample, num_inference_steps=num_inference_steps) alpha_bar = sd.noise_scheduler.alphas_cumprod zs = torch.zeros(size=variance_noise_shape, device=sd.device, dtype=torch.float16) t_to_idx = {int(v): k for k, v in enumerate(timesteps)} noisy_sample = sample op = tqdm(reversed(timesteps), desc="Inverting...") if prog_bar else reversed(timesteps) for timestep in op: idx = t_to_idx[int(timestep)] # 1. predict noise residual if not eta_is_zero: noisy_sample = xts[idx][None] added_cond_kwargs = {} with torch.no_grad(): text_embeddings = train_tools.concat_prompt_embeddings( unconditional_embeddings, # negative embedding conditional_embeddings, # positive embedding 1, # batch size ) if sd.is_xl: add_time_ids = get_time_ids_from_latents(sd, noisy_sample) # add extra for cfg add_time_ids = torch.cat( [add_time_ids] * 2, dim=0 ) added_cond_kwargs = { "text_embeds": text_embeddings.pooled_embeds, "time_ids": add_time_ids, } # double up for cfg latent_model_input = torch.cat( [noisy_sample] * 2, dim=0 ) noise_pred = sd.unet( latent_model_input, timestep, encoder_hidden_states=text_embeddings.text_embeds, added_cond_kwargs=added_cond_kwargs, ).sample noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) # out = sd.unet.forward(noisy_sample, timestep=timestep, encoder_hidden_states=uncond_embedding) # cond_out = sd.unet.forward(noisy_sample, timestep=timestep, encoder_hidden_states=text_embeddings) noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_text - noise_pred_uncond) if eta_is_zero: # 2. compute more noisy image and set x_t -> x_t+1 noisy_sample = forward_step(sd, noise_pred, timestep, noisy_sample) xts = None else: xtm1 = xts[idx + 1][None] # pred of x0 pred_original_sample = (noisy_sample - (1 - alpha_bar[timestep]) ** 0.5 * noise_pred) / alpha_bar[ timestep] ** 0.5 # direction to xt prev_timestep = timestep - sd.noise_scheduler.config[ 'num_train_timesteps'] // sd.noise_scheduler.num_inference_steps alpha_prod_t_prev = sd.noise_scheduler.alphas_cumprod[ prev_timestep] if prev_timestep >= 0 else sd.noise_scheduler.final_alpha_cumprod variance = get_variance(sd, timestep) pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5) zs[idx] = z # correction to avoid error accumulation xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z xts[idx + 1] = xtm1 if not zs is None: zs[-1] = torch.zeros_like(zs[-1]) # restore timesteps sd.noise_scheduler.set_timesteps(current_num_timesteps, device=sd.device) return noisy_sample, zs, xts # # def inversion_forward_process( # model, # sample, # etas=None, # prog_bar=False, # prompt="", # cfg_scale=3.5, # num_inference_steps=50, eps=None # ): # if not prompt == "": # text_embeddings = encode_text(model, prompt) # uncond_embedding = encode_text(model, "") # timesteps = model.scheduler.timesteps.to(model.device) # variance_noise_shape = ( # num_inference_steps, # model.unet.in_channels, # model.unet.sample_size, # model.unet.sample_size) # if etas is None or (type(etas) in [int, float] and etas == 0): # eta_is_zero = True # zs = None # else: # eta_is_zero = False # if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps # xts = sample_xts_from_x0(model, sample, num_inference_steps=num_inference_steps) # alpha_bar = model.scheduler.alphas_cumprod # zs = torch.zeros(size=variance_noise_shape, device=model.device, dtype=torch.float16) # # t_to_idx = {int(v): k for k, v in enumerate(timesteps)} # noisy_sample = sample # op = tqdm(reversed(timesteps), desc="Inverting...") if prog_bar else reversed(timesteps) # # for t in op: # idx = t_to_idx[int(t)] # # 1. predict noise residual # if not eta_is_zero: # noisy_sample = xts[idx][None] # # with torch.no_grad(): # out = model.unet.forward(noisy_sample, timestep=t, encoder_hidden_states=uncond_embedding) # if not prompt == "": # cond_out = model.unet.forward(noisy_sample, timestep=t, encoder_hidden_states=text_embeddings) # # if not prompt == "": # ## classifier free guidance # noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample) # else: # noise_pred = out.sample # # if eta_is_zero: # # 2. compute more noisy image and set x_t -> x_t+1 # noisy_sample = forward_step(model, noise_pred, t, noisy_sample) # # else: # xtm1 = xts[idx + 1][None] # # pred of x0 # pred_original_sample = (noisy_sample - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5 # # # direction to xt # prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps # alpha_prod_t_prev = model.scheduler.alphas_cumprod[ # prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod # # variance = get_variance(model, t) # pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred # # mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction # # z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5) # zs[idx] = z # # # correction to avoid error accumulation # xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z # xts[idx + 1] = xtm1 # # if not zs is None: # zs[-1] = torch.zeros_like(zs[-1]) # # return noisy_sample, zs, xts def reverse_step(model, model_output, timestep, sample, eta=0, variance_noise=None): # 1. get previous step value (=t-1) prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps # 2. compute alphas, betas alpha_prod_t = model.scheduler.alphas_cumprod[timestep] alpha_prod_t_prev = model.scheduler.alphas_cumprod[ prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) # variance = self.scheduler._get_variance(timestep, prev_timestep) variance = get_variance(model, timestep) # , prev_timestep) std_dev_t = eta * variance ** (0.5) # Take care of asymetric reverse process (asyrp) model_output_direction = model_output # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction # 8. Add noice if eta > 0 if eta > 0: if variance_noise is None: variance_noise = torch.randn(model_output.shape, device=model.device, dtype=torch.float16) sigma_z = eta * variance ** (0.5) * variance_noise prev_sample = prev_sample + sigma_z return prev_sample def inversion_reverse_process( model, xT, etas=0, prompts="", cfg_scales=None, prog_bar=False, zs=None, controller=None, asyrp=False): batch_size = len(prompts) cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1, 1, 1, 1).to(model.device, dtype=torch.float16) text_embeddings = encode_text(model, prompts) uncond_embedding = encode_text(model, [""] * batch_size) if etas is None: etas = 0 if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps assert len(etas) == model.scheduler.num_inference_steps timesteps = model.scheduler.timesteps.to(model.device) xt = xT.expand(batch_size, -1, -1, -1) op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:] t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])} for t in op: idx = t_to_idx[int(t)] ## Unconditional embedding with torch.no_grad(): uncond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states=uncond_embedding) ## Conditional embedding if prompts: with torch.no_grad(): cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states=text_embeddings) z = zs[idx] if not zs is None else None z = z.expand(batch_size, -1, -1, -1) if prompts: ## classifier free guidance noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample) else: noise_pred = uncond_out.sample # 2. compute less noisy image and set x_t -> x_t-1 xt = reverse_step(model, noise_pred, t, xt, eta=etas[idx], variance_noise=z) if controller is not None: xt = controller.step_callback(xt) return xt, zs