import os import uuid import shutil import json import yaml import torch from PIL import Image from slugify import slugify from transformers import AutoProcessor, AutoModelForCausalLM import pinggy as pg # Ensure the current working directory is in sys.path import sys sys.path.insert(0, os.getcwd()) sys.path.insert(0, "ai-toolkit") from toolkit.job import get_job from huggingface_hub import whoami MAX_IMAGES = 150 def load_captioning(uploaded_files, concept_sentence): uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')] txt_files = [file for file in uploaded_files if file.endswith('.txt')] txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files} updates = [] if len(uploaded_images) <= 1: raise pg.Error("Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)") elif len(uploaded_images) > MAX_IMAGES: raise pg.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training") updates.append(pg.Update(visible=True)) for i in range(1, MAX_IMAGES + 1): visible = i <= len(uploaded_images) updates.append(pg.Update(visible=visible)) image_value = uploaded_images[i - 1] if visible else None updates.append(pg.Update(value=image_value, visible=visible)) corresponding_caption = False if image_value: base_name = os.path.splitext(os.path.basename(image_value))[0] if base_name in txt_files_dict: with open(txt_files_dict[base_name], 'r') as file: corresponding_caption = file.read() text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None updates.append(pg.Update(value=text_value, visible=visible)) updates.append(pg.Update(visible=True)) updates.append(pg.Update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}')) updates.append(pg.Update(placeholder=f"A mountainous landscape in the style of {concept_sentence}")) updates.append(pg.Update(placeholder=f"A {concept_sentence} in a mall")) updates.append(pg.Update(visible=True)) return updates def hide_captioning(): return pg.Update(visible=False), pg.Update(visible=False), pg.Update(visible=False) def create_dataset(images, *captions): destination_folder = f"datasets/{uuid.uuid4()}" os.makedirs(destination_folder, exist_ok=True) jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl") with open(jsonl_file_path, "a") as jsonl_file: for index, image in enumerate(images): new_image_path = shutil.copy(image, destination_folder) original_caption = captions[index] file_name = os.path.basename(new_image_path) data = {"file_name": file_name, "prompt": original_caption} jsonl_file.write(json.dumps(data) + "\n") return destination_folder def run_captioning(images, concept_sentence, *captions): device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 model = AutoModelForCausalLM.from_pretrained( "multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True ).to(device) processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True) captions = list(captions) for i, image_path in enumerate(images): if isinstance(image_path, str): image = Image.open(image_path).convert("RGB") prompt = "" inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3 ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation( generated_text, task=prompt, image_size=(image.width, image.height) ) caption_text = parsed_answer[""].replace("The image shows ", "") if concept_sentence: caption_text = f"{caption_text} [trigger]" captions[i] = caption_text yield captions model.to("cpu") del model del processor def recursive_update(d, u): for k, v in u.items(): if isinstance(v, dict) and v: d[k] = recursive_update(d.get(k, {}), v) else: d[k] = v return d def start_training( lora_name, concept_sentence, steps, lr, rank, model_to_train, low_vram, dataset_folder, sample_1, sample_2, sample_3, use_more_advanced_options, more_advanced_options, ): push_to_hub = True if not lora_name: raise pg.Error("You forgot to insert your LoRA name! This name has to be unique.") try: if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]: pg.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.") else: push_to_hub = False pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face") except: push_to_hub = False pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face") slugged_lora_name = slugify(lora_name) with open("config/examples/train_lora_flux_24gb.yaml", "r") as f: config = yaml.safe_load(f) config["config"]["name"] = slugged_lora_name config["config"]["process"][0]["model"]["low_vram"] = low_vram config["config"]["process"][0]["train"]["skip_first_sample"] = True config["config"]["process"][0]["train"]["steps"] = int(steps) config["config"]["process"][0]["train"]["lr"] = float(lr) config["config"]["process"][0]["network"]["linear"] = int(rank) config["config"]["process"][0]["network"]["linear_alpha"] = int(rank) config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub if push_to_hub: try: username = whoami()["name"] except: raise pg.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?") config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}" config["config"]["process"][0]["save"]["hf_private"] = True if concept_sentence: config["config"]["process"][0]["trigger_word"] = concept_sentence if sample_1 or sample_2 or sample_3: config["config"]["process"][0]["train"]["disable_sampling"] = False config["config"]["process"][0]["sample"]["sample_every"] = steps config["config"]["process"][0]["sample"]["sample_steps"] = 28 config["config"]["process"][0]["sample"]["prompts"] = [] if sample_1: config["config"]["process"][0]["sample"]["prompts"].append(sample_1) if sample_2: config["config"]["process"][0]["sample"]["prompts"].append(sample_2) if sample_3: config["config"]["process"][0]["sample"]["prompts"].append(sample_3) else: config["config"]["process"][0]["train"]["disable_sampling"] = True if model_to_train == "schnell": config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell" config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter" config["config"]["process"][0]["sample"]["sample_steps"] = 4 if use_more_advanced_options: more_advanced_options_dict = yaml.safe_load(more_advanced_options) config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict) random_config_name = str(uuid.uuid4()) os.makedirs("tmp", exist_ok=True) config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml" with open(config_path, "w") as f: yaml.dump(config, f) job = get_job(config_path) job.run() job.cleanup() return f"Training completed successfully. Model saved as {slugged_lora_name}" config_yaml = ''' device: cuda:0 model: is_flux: true quantize: true network: linear: 16 linear_alpha: 16 type: lora sample: guidance_scale: 3.5 height: 1024 neg: '' sample_every: 1000 sample_steps: 28 sampler: flowmatch seed: 42 walk_seed: true width: 1024 save: dtype: float16 hf_private: true max_step_saves_to_keep: 4 push_to_hub: true save_every: 10000 train: batch_size: 1 dtype: bf16 ema_config: ema_decay: 0.99 use_ema: true gradient_accumulation_steps: 1 gradient_checkpointing: true noise_scheduler: flowmatch optimizer: adamw8bit train_text_encoder: false train_unet: true ''' def main(): with pg.App() as app: app.add_page(title="LoRA Ease for FLUX", description="Train a high quality FLUX LoRA in a breeze") app.add_textbox( id="lora_name", label="The name of your LoRA", placeholder="e.g.: Persian Miniature Painting style, Cat Toy", ) app.add_textbox( id="concept_sentence", label="Trigger word/sentence", placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'", ) image_upload = app.add_file_upload( id="images", label="Upload your images", file_types=["image", ".txt"], multiple=True, ) captioning_area = app.add_container(id="captioning_area", visible=False) captioning_area.add_text("Custom captioning") do_captioning = app.add_button("Add AI captions with Florence-2", id="do_captioning") for i in range(1, MAX_IMAGES + 1): with captioning_area.add_row(id=f"captioning_row_{i}", visible=False) as row: row.add_image(id=f"image_{i}", width=111, height=111, visible=False) row.add_textbox(id=f"caption_{i}", label=f"Caption {i}") app.add_accordion(title="Advanced options", open=False) app.add_number(id="steps", label="Steps", value=1000, min=1, max=10000) app.add_number(id="lr", label="Learning Rate", value=4e-4, min=1e-6, max=1e-3) app.add_number(id="rank", label="LoRA Rank", value=16, min=4, max=128) app.add_radio(id="model_to_train", options=["dev", "schnell"], value="dev", label="Model to train") app.add_checkbox(id="low_vram", label="Low VRAM", value=True) with app.add_accordion(title="Even more advanced options", open=False): app.add_checkbox(id="use_more_advanced_options", label="Use more advanced options", value=False) app.add_code(id="more_advanced_options", value=config_yaml, language="yaml") app.add_accordion(title="Sample prompts (optional)", visible=False) app.add_textbox(id="sample_1", label="Test prompt 1") app.add_textbox(id="sample_2", label="Test prompt 2") app.add_textbox(id="sample_3", label="Test prompt 3") start = app.add_button("Start training", id="start", visible=False) progress_area = app.add_text("") app.on_upload(id="images", fn=load_captioning, inputs=["images", "concept_sentence"], outputs=["captioning_area", "sample", "start"]) app.on_click(id="do_captioning", fn=run_captioning, inputs=["images", "concept_sentence"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=[f"caption_{i}" for i in range(1, MAX_IMAGES + 1)]) app.on_click(id="start", fn=create_dataset, inputs=["images"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=["dataset_folder"]) app.on_click(id="start", fn=start_training, inputs=[ "lora_name", "concept_sentence", "steps", "lr", "rank", "model_to_train", "low_vram", "dataset_folder", "sample_1", "sample_2", "sample_3", "use_more_advanced_options", "more_advanced_options" ], outputs=["progress_area"]) app.run() if __name__ == "__main__": main()