import gc import os from collections import OrderedDict from typing import ForwardRef, List, Optional, Union import torch from safetensors.torch import save_file, load_file from jobs.process.BaseProcess import BaseProcess from toolkit.config_modules import ModelConfig, GenerateImageConfig from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors, add_model_hash_to_meta, \ add_base_model_info_to_meta from toolkit.stable_diffusion_model import StableDiffusion from toolkit.train_tools import get_torch_dtype import random class GenerateConfig: def __init__(self, **kwargs): self.prompts: List[str] self.sampler = kwargs.get('sampler', 'ddpm') self.width = kwargs.get('width', 512) self.height = kwargs.get('height', 512) self.size_list: Union[List[int], None] = kwargs.get('size_list', None) self.neg = kwargs.get('neg', '') self.seed = kwargs.get('seed', -1) self.guidance_scale = kwargs.get('guidance_scale', 7) self.sample_steps = kwargs.get('sample_steps', 20) self.prompt_2 = kwargs.get('prompt_2', None) self.neg_2 = kwargs.get('neg_2', None) self.prompts = kwargs.get('prompts', None) self.guidance_rescale = kwargs.get('guidance_rescale', 0.0) self.compile = kwargs.get('compile', False) self.ext = kwargs.get('ext', 'png') self.prompt_file = kwargs.get('prompt_file', False) self.prompts_in_file = self.prompts if self.prompts is None: raise ValueError("Prompts must be set") if isinstance(self.prompts, str): if os.path.exists(self.prompts): with open(self.prompts, 'r', encoding='utf-8') as f: self.prompts_in_file = f.read().splitlines() self.prompts_in_file = [p.strip() for p in self.prompts_in_file if len(p.strip()) > 0] else: raise ValueError("Prompts file does not exist, put in list if you want to use a list of prompts") self.random_prompts = kwargs.get('random_prompts', False) self.max_random_per_prompt = kwargs.get('max_random_per_prompt', 1) self.max_images = kwargs.get('max_images', 10000) if self.random_prompts: self.prompts = [] for i in range(self.max_images): num_prompts = random.randint(1, self.max_random_per_prompt) prompt_list = [random.choice(self.prompts_in_file) for _ in range(num_prompts)] self.prompts.append(", ".join(prompt_list)) else: self.prompts = self.prompts_in_file if kwargs.get('shuffle', False): # shuffle the prompts random.shuffle(self.prompts) class GenerateProcess(BaseProcess): process_id: int config: OrderedDict progress_bar: ForwardRef('tqdm') = None sd: StableDiffusion def __init__( self, process_id: int, job, config: OrderedDict ): super().__init__(process_id, job, config) self.output_folder = self.get_conf('output_folder', required=True) self.model_config = ModelConfig(**self.get_conf('model', required=True)) self.device = self.get_conf('device', self.job.device) self.generate_config = GenerateConfig(**self.get_conf('generate', required=True)) self.torch_dtype = get_torch_dtype(self.get_conf('dtype', 'float16')) self.progress_bar = None self.sd = StableDiffusion( device=self.device, model_config=self.model_config, dtype=self.model_config.dtype, ) print(f"Using device {self.device}") def clean_prompt(self, prompt: str): # remove any non alpha numeric characters or ,'" from prompt return ''.join(e for e in prompt if e.isalnum() or e in ", '\"") def run(self): with torch.no_grad(): super().run() print("Loading model...") self.sd.load_model() self.sd.pipeline.to(self.device, self.torch_dtype) print("Compiling model...") # self.sd.unet = torch.compile(self.sd.unet, mode="reduce-overhead", fullgraph=True) if self.generate_config.compile: self.sd.unet = torch.compile(self.sd.unet, mode="reduce-overhead") print(f"Generating {len(self.generate_config.prompts)} images") # build prompt image configs prompt_image_configs = [] for prompt in self.generate_config.prompts: width = self.generate_config.width height = self.generate_config.height prompt = self.clean_prompt(prompt) if self.generate_config.size_list is not None: # randomly select a size width, height = random.choice(self.generate_config.size_list) prompt_image_configs.append(GenerateImageConfig( prompt=prompt, prompt_2=self.generate_config.prompt_2, width=width, height=height, num_inference_steps=self.generate_config.sample_steps, guidance_scale=self.generate_config.guidance_scale, negative_prompt=self.generate_config.neg, negative_prompt_2=self.generate_config.neg_2, seed=self.generate_config.seed, guidance_rescale=self.generate_config.guidance_rescale, output_ext=self.generate_config.ext, output_folder=self.output_folder, add_prompt_file=self.generate_config.prompt_file )) # generate images self.sd.generate_images(prompt_image_configs, sampler=self.generate_config.sampler) print("Done generating images") # cleanup del self.sd gc.collect() torch.cuda.empty_cache()