File size: 16,327 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import sys

import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING

from diffusers import Transformer2DModel
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion
    from toolkit.custom_adapter import CustomAdapter

class AttnProcessor2_0(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """

    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

class SingleValueAdapterAttnProcessor(nn.Module):
    r"""
    Attention processor for Custom TE for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
        adapter
    """

    def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
                 adapter_hidden_size=None, has_bias=False, **kwargs):
        super().__init__()

        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

        self.adapter_ref: weakref.ref = weakref.ref(adapter)

        self.hidden_size = hidden_size
        self.adapter_hidden_size = adapter_hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.scale = scale

        self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
        self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)

    @property
    def is_active(self):
        return self.adapter_ref().is_active
        # return False

    @property
    def unconditional_embeds(self):
        return self.adapter_ref().adapter_ref().unconditional_embeds

    @property
    def conditional_embeds(self):
        return self.adapter_ref().adapter_ref().conditional_embeds

    def __call__(
            self,
            attn,
            hidden_states,
            encoder_hidden_states=None,
            attention_mask=None,
            temb=None,
    ):
        is_active = self.adapter_ref().is_active
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        # will be none if disabled
        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # only use one TE or the other. If our adapter is active only use ours
        if self.is_active and self.conditional_embeds is not None:

            adapter_hidden_states = self.conditional_embeds
            if adapter_hidden_states.shape[0] < batch_size:
                # doing cfg
                adapter_hidden_states = torch.cat([
                    self.unconditional_embeds,
                    adapter_hidden_states
                ], dim=0)
                # needs to be shape (batch, 1, 1)
            if len(adapter_hidden_states.shape) == 2:
                adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
            # conditional_batch_size = adapter_hidden_states.shape[0]
            # conditional_query = query

            # for ip-adapter
            vd_key = self.to_k_adapter(adapter_hidden_states)
            vd_value = self.to_v_adapter(adapter_hidden_states)

            vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            vd_hidden_states = F.scaled_dot_product_attention(
                query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
            )

            vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            vd_hidden_states = vd_hidden_states.to(query.dtype)

            hidden_states = hidden_states + self.scale * vd_hidden_states


        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class SingleValueAdapter(torch.nn.Module):
    def __init__(
            self,
            adapter: 'CustomAdapter',
            sd: 'StableDiffusion',
            num_values: int = 1,
    ):
        super(SingleValueAdapter, self).__init__()
        is_pixart = sd.is_pixart
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref: weakref.ref = weakref.ref(sd)
        self.token_size = num_values

        # init adapter modules
        attn_procs = {}
        unet_sd = sd.unet.state_dict()

        attn_processor_keys = []
        if is_pixart:
            transformer: Transformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():

                attn_processor_keys.append(f"transformer_blocks.{i}.attn1")

                # cross attention
                attn_processor_keys.append(f"transformer_blocks.{i}.attn2")

        else:
            attn_processor_keys = list(sd.unet.attn_processors.keys())

        for name in attn_processor_keys:
            cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
            if name.startswith("mid_block"):
                hidden_size = sd.unet.config['block_out_channels'][-1]
            elif name.startswith("up_blocks"):
                block_id = int(name[len("up_blocks.")])
                hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
            elif name.startswith("down_blocks"):
                block_id = int(name[len("down_blocks.")])
                hidden_size = sd.unet.config['block_out_channels'][block_id]
            elif name.startswith("transformer"):
                hidden_size = sd.unet.config['cross_attention_dim']
            else:
                # they didnt have this, but would lead to undefined below
                raise ValueError(f"unknown attn processor name: {name}")
            if cross_attention_dim is None:
                attn_procs[name] = AttnProcessor2_0()
            else:
                layer_name = name.split(".processor")[0]
                to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
                to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
                # if is_pixart:
                #     to_k_bias = unet_sd[layer_name + ".to_k.bias"]
                #     to_v_bias = unet_sd[layer_name + ".to_v.bias"]
                # else:
                #     to_k_bias = None
                #     to_v_bias = None

                # add zero padding to the adapter
                if to_k_adapter.shape[1] < self.token_size:
                    to_k_adapter = torch.cat([
                        to_k_adapter,
                        torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
                            to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
                    ],
                        dim=1
                    )
                    to_v_adapter = torch.cat([
                        to_v_adapter,
                        torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
                            to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
                    ],
                        dim=1
                    )
                    # if is_pixart:
                    #     to_k_bias = torch.cat([
                    #         to_k_bias,
                    #         torch.zeros(self.token_size - to_k_adapter.shape[1]).to(
                    #             to_k_adapter.device, dtype=to_k_adapter.dtype)
                    #     ],
                    #         dim=0
                    #     )
                    #     to_v_bias = torch.cat([
                    #         to_v_bias,
                    #         torch.zeros(self.token_size - to_v_adapter.shape[1]).to(
                    #             to_k_adapter.device, dtype=to_k_adapter.dtype)
                    #     ],
                    #         dim=0
                    #     )
                elif to_k_adapter.shape[1] > self.token_size:
                    to_k_adapter = to_k_adapter[:, :self.token_size]
                    to_v_adapter = to_v_adapter[:, :self.token_size]
                    # if is_pixart:
                    #     to_k_bias = to_k_bias[:self.token_size]
                    #     to_v_bias = to_v_bias[:self.token_size]
                else:
                    to_k_adapter = to_k_adapter
                    to_v_adapter = to_v_adapter
                    # if is_pixart:
                    #     to_k_bias = to_k_bias
                    #     to_v_bias = to_v_bias

                weights = {
                    "to_k_adapter.weight": to_k_adapter * 0.01,
                    "to_v_adapter.weight": to_v_adapter * 0.01,
                }
                # if is_pixart:
                #     weights["to_k_adapter.bias"] = to_k_bias
                #     weights["to_v_adapter.bias"] = to_v_bias

                attn_procs[name] = SingleValueAdapterAttnProcessor(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=1.0,
                    adapter=self,
                    adapter_hidden_size=self.token_size,
                    has_bias=False,
                )
                attn_procs[name].load_state_dict(weights)
        if self.sd_ref().is_pixart:
            # we have to set them ourselves
            transformer: Transformer2DModel = sd.unet
            for i, module in transformer.transformer_blocks.named_children():
                module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
                module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
            self.adapter_modules = torch.nn.ModuleList([
                transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
            ] + [
                transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
            ])
        else:
            sd.unet.set_attn_processor(attn_procs)
            self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())

    # make a getter to see if is active
    @property
    def is_active(self):
        return self.adapter_ref().is_active

    def forward(self, input):
        return input