import collections import functools import logging import os import pathlib import re import warnings try: import rich.traceback rich.traceback.install() except ImportError: pass os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' logging.getLogger().setLevel('ERROR') warnings.filterwarnings('ignore', '.*box bound precision lowered.*') import numpy as np import ruamel.yaml as yaml from dreamerv2 import agent from dreamerv2 import common def make_env(mode, config, logdir): suite, task = config.task.split('_', 1) if suite == 'dmc': env = common.DMC( task, config.action_repeat, config.render_size, config.dmc_camera) env = common.NormalizeAction(env) elif suite == 'dmcmt': env = common.DMCMultitask( task, config.action_repeat, config.render_size, config.dmc_camera) env = common.NormalizeAction(env) elif suite == 'atari': env = common.Atari( task, config.action_repeat, config.render_size, config.atari_grayscale) env = common.OneHotAction(env) elif suite == 'crafter': assert config.action_repeat == 1 outdir = logdir / 'crafter' if mode == 'train' else None reward = bool(['noreward', 'reward'].index(task)) or mode == 'eval' env = common.Crafter(outdir, reward) env = common.OneHotAction(env) else: raise NotImplementedError(suite) env = common.TimeLimit(env, config.time_limit) return env def main(): config_path = pathlib.Path('offlinedv2/dreamerv2') / 'configs.yaml' configs = yaml.safe_load(config_path.read_text()) parsed, remaining = common.Flags(configs=['defaults']).parse(known_only=True) config = common.Config(configs['defaults']) for name in parsed.configs: config = config.update(configs[name]) config = common.Flags(config).parse(remaining) logdir = pathlib.Path(config.logdir).expanduser() logdir.mkdir(parents=True, exist_ok=True) config.save(logdir / 'config.yaml') print(config, '\n') print('Logdir', logdir) import tensorflow as tf tf.config.experimental_run_functions_eagerly(not config.jit) message = 'No GPU found. To actually train on CPU remove this assert.' assert tf.config.experimental.list_physical_devices('GPU'), message for gpu in tf.config.experimental.list_physical_devices('GPU'): tf.config.experimental.set_memory_growth(gpu, True) assert config.precision in (16, 32), config.precision if config.precision == 16: from tensorflow.keras.mixed_precision import experimental as prec prec.set_policy(prec.Policy('mixed_float16')) print('Offline Datadir', config.offline_dir) train_replay = common.OfflineReplay(list(config.offline_dir), split_val=config.offline_split_val, **config.replay) eval_replay = common.Replay( logdir / 'eval_episodes', capacity=config.replay.capacity // 10, minlen=config.dataset.length, maxlen=config.dataset.length, disable_save=True, ) step = common.Counter(0) outputs = [ common.TerminalOutput(), common.JSONLOutput(logdir), common.TensorBoardOutput(logdir), ] logger = common.Logger(step, outputs) metrics = collections.defaultdict(list) should_video_eval = common.Every(config.eval_every) def per_episode(ep, mode): length = len(ep['reward']) - 1 score = float(ep['reward'].astype(np.float64).sum()) print(f'{mode.title()} episode has {length} steps and return {score:.1f}.') logger.scalar(f'{mode}_return', score) logger.scalar(f'{mode}_length', length) for key, value in ep.items(): if re.match(config.log_keys_sum, key): logger.scalar(f'sum_{mode}_{key}', ep[key].sum()) if re.match(config.log_keys_mean, key): logger.scalar(f'mean_{mode}_{key}', ep[key].mean()) if re.match(config.log_keys_max, key): logger.scalar(f'max_{mode}_{key}', ep[key].max(0).mean()) # if should_video_eval(step): # for key in config.log_keys_video: # logger.video(f'{mode}_policy_{key}', ep[key]) replay = dict(train=train_replay, eval=eval_replay)[mode] logger.add(replay.stats, prefix=mode) logger.write() print('Create envs.') num_eval_envs = min(config.envs, config.eval_eps) if config.envs_parallel == 'none': eval_envs = [make_env('eval', config, logdir) for _ in range(num_eval_envs)] else: make_async_env = lambda mode: common.Async( functools.partial(make_env, mode, config, logdir), config.envs_parallel) eval_envs = [make_async_env('eval') for _ in range(num_eval_envs)] act_space = eval_envs[0].act_space obs_space = eval_envs[0].obs_space eval_driver = common.Driver(eval_envs) eval_driver.on_episode(lambda ep: per_episode(ep, mode='eval')) eval_driver.on_episode(eval_replay.add_episode) print(f'Precollecting eval steps.') random_agent = common.RandomAgent(act_space) eval_driver(random_agent, episodes=1) eval_driver.reset() print('Create agent.') train_dataset = iter(train_replay.dataset(**config.offline_model_dataset)) if config.offline_split_val: val_dataset = iter(train_replay.dataset(validation=True, **config.offline_model_dataset)) agnt = agent.Agent(config, obs_space, act_space, step) agnt.train(next(train_dataset)) eval_policy = lambda *args: agnt.policy(*args, mode='eval') if config.offline_model_loaddir != 'none': print('Loading model', config.offline_model_loaddir) agnt.wm.load(config.offline_model_loaddir) else: print('Start model training.') model_step = common.Counter(0) model_logger = common.Logger(model_step, outputs) while model_step < config.offline_model_train_steps: if config.offline_split_val: # Compute model validation loss as average over chunks of data val_losses = [] for _ in range(10): val_loss, _, _, val_mets = agnt.wm.loss(next(val_dataset)) val_losses.append(val_loss) model_logger.scalar(f'validation_model_loss', np.array(val_losses, np.float64).mean()) for it in range(100): model_step.increment() mets = agnt.model_train(next(train_dataset)) for key, value in mets.items(): metrics[key].append(value) for name, values in metrics.items(): model_logger.scalar(name, np.array(values, np.float64).mean()) metrics[name].clear() model_logger.write() if model_step % config.offline_model_save_every == 0: print('Saving model') agnt.wm.save(logdir / f'model_{model_step.value}.pkl') agnt.wm.save(logdir / f'final_model.pkl') # Begin training metrics = collections.defaultdict(list) train_dataset = iter(train_replay.dataset(**config.offline_train_dataset)) eval_dataset = iter(eval_replay.dataset(**config.offline_train_dataset)) while step < config.steps: logger.write() print('Start evaluation.') if should_video_eval(step): logger.add(agnt.report(next(eval_dataset)), prefix='eval') eval_driver(eval_policy, episodes=config.eval_eps) print('Start training.') for it in range(200): step.increment() mets = agnt.agent_train(next(train_dataset)) for key, value in mets.items(): metrics[key].append(value) for name, values in metrics.items(): logger.scalar(name, np.array(values, np.float64).mean()) metrics[name].clear() logger.write(fps=True) agnt.save(logdir / 'variables.pkl') for env in eval_envs: try: env.close() except Exception: pass if __name__ == '__main__': main()