import atexit import os import sys import threading import traceback import cloudpickle import gym import numpy as np class GymWrapper: def __init__(self, env, obs_key='image', act_key='action'): self._env = env self._obs_is_dict = hasattr(self._env.observation_space, 'spaces') self._act_is_dict = hasattr(self._env.action_space, 'spaces') self._obs_key = obs_key self._act_key = act_key def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) try: return getattr(self._env, name) except AttributeError: raise ValueError(name) @property def obs_space(self): if self._obs_is_dict: spaces = self._env.observation_space.spaces.copy() else: spaces = {self._obs_key: self._env.observation_space} return { **spaces, 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), } @property def act_space(self): if self._act_is_dict: return self._env.action_space.spaces.copy() else: return {self._act_key: self._env.action_space} def step(self, action): if not self._act_is_dict: action = action[self._act_key] obs, reward, done, info = self._env.step(action) if not self._obs_is_dict: obs = {self._obs_key: obs} obs['reward'] = float(reward) obs['is_first'] = False obs['is_last'] = done obs['is_terminal'] = info.get('is_terminal', done) return obs def reset(self): obs = self._env.reset() if not self._obs_is_dict: obs = {self._obs_key: obs} obs['reward'] = 0.0 obs['is_first'] = True obs['is_last'] = False obs['is_terminal'] = False return obs class DMC: def __init__(self, name, action_repeat=1, size=(64, 64), camera=None, **kwargs): os.environ['MUJOCO_GL'] = 'egl' domain, task = name.split('_', 1) if domain == 'cup': # Only domain with multiple words. domain = 'ball_in_cup' if domain == 'manip': from dm_control import manipulation self._env = manipulation.load(task + '_vision') elif domain == 'locom': from dm_control.locomotion.examples import basic_rodent_2020 self._env = getattr(basic_rodent_2020, task)() else: from dm_control import suite self._env = suite.load(domain, task, **kwargs) self._action_repeat = action_repeat self._size = size if camera in (-1, None): camera = dict( quadruped_walk=2, quadruped_run=2, quadruped_escape=2, quadruped_fetch=2, locom_rodent_maze_forage=1, locom_rodent_two_touch=1, ).get(name, 0) self._camera = camera self._ignored_keys = ['orientations', 'height', 'velocity', 'pixels'] for key, value in self._env.observation_spec().items(): if value.shape == (0,): print(f"Ignoring empty observation key '{key}'.") self._ignored_keys.append(key) @property def obs_space(self): spaces = { 'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8), 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), } for key, value in self._env.observation_spec().items(): if key in self._ignored_keys: continue if value.dtype == np.float64: spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32) elif value.dtype == np.uint8: spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8) else: raise NotImplementedError(value.dtype) return spaces @property def act_space(self): spec = self._env.action_spec() action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32) return {'action': action} def step(self, action): assert np.isfinite(action['action']).all(), action['action'] reward = 0.0 for _ in range(self._action_repeat): time_step = self._env.step(action['action']) reward += time_step.reward or 0.0 if time_step.last(): break assert time_step.discount in (0, 1) obs = { 'reward': reward, 'is_first': False, 'is_last': time_step.last(), 'is_terminal': time_step.discount == 0, 'image': self._env.physics.render(*self._size, camera_id=self._camera), } obs.update({ k: v for k, v in dict(time_step.observation).items() if k not in self._ignored_keys}) return obs def reset(self): time_step = self._env.reset() obs = { 'reward': 0.0, 'is_first': True, 'is_last': False, 'is_terminal': False, 'image': self._env.physics.render(*self._size, camera_id=self._camera), } obs.update({ k: v for k, v in dict(time_step.observation).items() if k not in self._ignored_keys}) return obs class Atari: LOCK = threading.Lock() def __init__( self, name, action_repeat=4, size=(84, 84), grayscale=True, noops=30, life_done=False, sticky=True, all_actions=False): assert size[0] == size[1] import gym.wrappers import gym.envs.atari if name == 'james_bond': name = 'jamesbond' with self.LOCK: env = gym.envs.atari.AtariEnv( game=name, obs_type='image', frameskip=1, repeat_action_probability=0.25 if sticky else 0.0, full_action_space=all_actions) # Avoid unnecessary rendering in inner env. env._get_obs = lambda: None # Tell wrapper that the inner env has no action repeat. env.spec = gym.envs.registration.EnvSpec('NoFrameskip-v0') self._env = gym.wrappers.AtariPreprocessing( env, noops, action_repeat, size[0], life_done, grayscale) self._size = size self._grayscale = grayscale @property def obs_space(self): shape = self._size + (1 if self._grayscale else 3,) return { 'image': gym.spaces.Box(0, 255, shape, np.uint8), 'ram': gym.spaces.Box(0, 255, (128,), np.uint8), 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), } @property def act_space(self): return {'action': self._env.action_space} def step(self, action): image, reward, done, info = self._env.step(action['action']) if self._grayscale: image = image[..., None] return { 'image': image, 'ram': self._env.env._get_ram(), 'reward': reward, 'is_first': False, 'is_last': done, 'is_terminal': done, } def reset(self): with self.LOCK: image = self._env.reset() if self._grayscale: image = image[..., None] return { 'image': image, 'ram': self._env.env._get_ram(), 'reward': 0.0, 'is_first': True, 'is_last': False, 'is_terminal': False, } def close(self): return self._env.close() class Crafter: def __init__(self, outdir=None, reward=True, seed=None): import crafter self._env = crafter.Env(reward=reward, seed=seed) self._env = crafter.Recorder( self._env, outdir, save_stats=True, save_video=False, save_episode=False, ) self._achievements = crafter.constants.achievements.copy() @property def obs_space(self): spaces = { 'image': self._env.observation_space, 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), 'log_reward': gym.spaces.Box(-np.inf, np.inf, (), np.float32), } spaces.update({ f'log_achievement_{k}': gym.spaces.Box(0, 2 ** 31 - 1, (), np.int32) for k in self._achievements}) return spaces @property def act_space(self): return {'action': self._env.action_space} def step(self, action): image, reward, done, info = self._env.step(action['action']) obs = { 'image': image, 'reward': reward, 'is_first': False, 'is_last': done, 'is_terminal': info['discount'] == 0, 'log_reward': info['reward'], } obs.update({ f'log_achievement_{k}': v for k, v in info['achievements'].items()}) return obs def reset(self): obs = { 'image': self._env.reset(), 'reward': 0.0, 'is_first': True, 'is_last': False, 'is_terminal': False, 'log_reward': 0.0, } obs.update({ f'log_achievement_{k}': 0 for k in self._achievements}) return obs class Dummy: def __init__(self): pass @property def obs_space(self): return { 'image': gym.spaces.Box(0, 255, (64, 64, 3), dtype=np.uint8), 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), } @property def act_space(self): return {'action': gym.spaces.Box(-1, 1, (6,), dtype=np.float32)} def step(self, action): return { 'image': np.zeros((64, 64, 3)), 'reward': 0.0, 'is_first': False, 'is_last': False, 'is_terminal': False, } def reset(self): return { 'image': np.zeros((64, 64, 3)), 'reward': 0.0, 'is_first': True, 'is_last': False, 'is_terminal': False, } class TimeLimit: def __init__(self, env, duration): self._env = env self._duration = duration self._step = None def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) try: return getattr(self._env, name) except AttributeError: raise ValueError(name) def step(self, action): assert self._step is not None, 'Must reset environment.' obs = self._env.step(action) self._step += 1 if self._duration and self._step >= self._duration: obs['is_last'] = True self._step = None return obs def reset(self): self._step = 0 return self._env.reset() class NormalizeAction: def __init__(self, env, key='action'): self._env = env self._key = key space = env.act_space[key] self._mask = np.isfinite(space.low) & np.isfinite(space.high) self._low = np.where(self._mask, space.low, -1) self._high = np.where(self._mask, space.high, 1) def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) try: return getattr(self._env, name) except AttributeError: raise ValueError(name) @property def act_space(self): low = np.where(self._mask, -np.ones_like(self._low), self._low) high = np.where(self._mask, np.ones_like(self._low), self._high) space = gym.spaces.Box(low, high, dtype=np.float32) return {**self._env.act_space, self._key: space} def step(self, action): orig = (action[self._key] + 1) / 2 * (self._high - self._low) + self._low orig = np.where(self._mask, orig, action[self._key]) return self._env.step({**action, self._key: orig}) class OneHotAction: def __init__(self, env, key='action'): assert hasattr(env.act_space[key], 'n') self._env = env self._key = key self._random = np.random.RandomState() def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) try: return getattr(self._env, name) except AttributeError: raise ValueError(name) @property def act_space(self): shape = (self._env.act_space[self._key].n,) space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32) space.sample = self._sample_action space.n = shape[0] return {**self._env.act_space, self._key: space} def step(self, action): index = np.argmax(action[self._key]).astype(int) reference = np.zeros_like(action[self._key]) reference[index] = 1 if not np.allclose(reference, action[self._key]): raise ValueError(f'Invalid one-hot action:\n{action}') return self._env.step({**action, self._key: index}) def reset(self): return self._env.reset() def _sample_action(self): actions = self._env.act_space.n index = self._random.randint(0, actions) reference = np.zeros(actions, dtype=np.float32) reference[index] = 1.0 return reference class ResizeImage: def __init__(self, env, size=(64, 64)): self._env = env self._size = size self._keys = [ k for k, v in env.obs_space.items() if len(v.shape) > 1 and v.shape[:2] != size] print(f'Resizing keys {",".join(self._keys)} to {self._size}.') if self._keys: from PIL import Image self._Image = Image def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) try: return getattr(self._env, name) except AttributeError: raise ValueError(name) @property def obs_space(self): spaces = self._env.obs_space for key in self._keys: shape = self._size + spaces[key].shape[2:] spaces[key] = gym.spaces.Box(0, 255, shape, np.uint8) return spaces def step(self, action): obs = self._env.step(action) for key in self._keys: obs[key] = self._resize(obs[key]) return obs def reset(self): obs = self._env.reset() for key in self._keys: obs[key] = self._resize(obs[key]) return obs def _resize(self, image): image = self._Image.fromarray(image) image = image.resize(self._size, self._Image.NEAREST) image = np.array(image) return image class RenderImage: def __init__(self, env, key='image'): self._env = env self._key = key self._shape = self._env.render().shape def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) try: return getattr(self._env, name) except AttributeError: raise ValueError(name) @property def obs_space(self): spaces = self._env.obs_space spaces[self._key] = gym.spaces.Box(0, 255, self._shape, np.uint8) return spaces def step(self, action): obs = self._env.step(action) obs[self._key] = self._env.render('rgb_array') return obs def reset(self): obs = self._env.reset() obs[self._key] = self._env.render('rgb_array') return obs class Async: # Message types for communication via the pipe. _ACCESS = 1 _CALL = 2 _RESULT = 3 _CLOSE = 4 _EXCEPTION = 5 def __init__(self, constructor, strategy='thread'): self._pickled_ctor = cloudpickle.dumps(constructor) if strategy == 'process': import multiprocessing as mp context = mp.get_context('spawn') elif strategy == 'thread': import multiprocessing.dummy as context else: raise NotImplementedError(strategy) self._strategy = strategy self._conn, conn = context.Pipe() self._process = context.Process(target=self._worker, args=(conn,)) atexit.register(self.close) self._process.start() self._receive() # Ready. self._obs_space = None self._act_space = None def access(self, name): self._conn.send((self._ACCESS, name)) return self._receive def call(self, name, *args, **kwargs): payload = name, args, kwargs self._conn.send((self._CALL, payload)) return self._receive def close(self): try: self._conn.send((self._CLOSE, None)) self._conn.close() except IOError: pass # The connection was already closed. self._process.join(5) @property def obs_space(self): if not self._obs_space: self._obs_space = self.access('obs_space')() return self._obs_space @property def act_space(self): if not self._act_space: self._act_space = self.access('act_space')() return self._act_space def step(self, action, blocking=False): promise = self.call('step', action) if blocking: return promise() else: return promise def reset(self, blocking=False): promise = self.call('reset') if blocking: return promise() else: return promise def _receive(self): try: message, payload = self._conn.recv() except (OSError, EOFError): raise RuntimeError('Lost connection to environment worker.') # Re-raise exceptions in the main process. if message == self._EXCEPTION: stacktrace = payload raise Exception(stacktrace) if message == self._RESULT: return payload raise KeyError('Received message of unexpected type {}'.format(message)) def _worker(self, conn): try: ctor = cloudpickle.loads(self._pickled_ctor) env = ctor() conn.send((self._RESULT, None)) # Ready. while True: try: # Only block for short times to have keyboard exceptions be raised. if not conn.poll(0.1): continue message, payload = conn.recv() except (EOFError, KeyboardInterrupt): break if message == self._ACCESS: name = payload result = getattr(env, name) conn.send((self._RESULT, result)) continue if message == self._CALL: name, args, kwargs = payload result = getattr(env, name)(*args, **kwargs) conn.send((self._RESULT, result)) continue if message == self._CLOSE: break raise KeyError('Received message of unknown type {}'.format(message)) except Exception: stacktrace = ''.join(traceback.format_exception(*sys.exc_info())) print('Error in environment process: {}'.format(stacktrace)) conn.send((self._EXCEPTION, stacktrace)) finally: try: conn.close() except IOError: pass # The connection was already closed. class DMCMultitask: def __init__(self, name, action_repeat=1, size=(64, 64), camera=None): os.environ['MUJOCO_GL'] = 'egl' domain, task, xml = name.split('_', 2) import envs.fb_mtenv_dmc as fb_mtenv_dmc self._env = fb_mtenv_dmc.load( domain_name=domain, task_name=task, task_kwargs={'xml_file_id': xml}, ) self._action_repeat = action_repeat self._size = size if camera in (-1, None): camera = dict( quadruped_walk=2, quadruped_run=2, quadruped_escape=2, quadruped_fetch=2, locom_rodent_maze_forage=1, locom_rodent_two_touch=1, ).get(name, 0) self._camera = camera self._ignored_keys = ['orientations', 'height', 'velocity', 'pixels'] for key, value in self._env.observation_spec().items(): if value.shape == (0,): print(f"Ignoring empty observation key '{key}'.") self._ignored_keys.append(key) @property def obs_space(self): spaces = { 'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8), 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), } for key, value in self._env.observation_spec().items(): if key in self._ignored_keys: continue if value.dtype == np.float64: spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32) elif value.dtype == np.uint8: spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8) else: raise NotImplementedError(value.dtype) return spaces @property def act_space(self): spec = self._env.action_spec() action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32) return {'action': action} def step(self, action): assert np.isfinite(action['action']).all(), action['action'] reward = 0.0 for _ in range(self._action_repeat): time_step = self._env.step(action['action']) reward += time_step.reward or 0.0 if time_step.last(): break assert time_step.discount in (0, 1) obs = { 'reward': reward, 'is_first': False, 'is_last': time_step.last(), 'is_terminal': time_step.discount == 0, 'image': self._env.physics.render(*self._size, camera_id=self._camera), } obs.update({ k: v for k, v in dict(time_step.observation).items() if k not in self._ignored_keys}) return obs def reset(self): time_step = self._env.reset() obs = { 'reward': 0.0, 'is_first': True, 'is_last': False, 'is_terminal': False, 'image': self._env.physics.render(*self._size, camera_id=self._camera), } obs.update({ k: v for k, v in dict(time_step.observation).items() if k not in self._ignored_keys}) return obs class DistractingDMC: def __init__(self, name, action_repeat=1, size=(64, 64), camera=None, **kwargs): os.environ['MUJOCO_GL'] = 'egl' domain, task, difficulty = name.split('_', 2) from envs.distracting_control import suite as dsuite self._env = dsuite.load( domain_name=domain, task_name=task, difficulty=difficulty, **kwargs ) self._action_repeat = action_repeat self._size = size if camera in (-1, None): camera = dict( quadruped_walk=2, quadruped_run=2, quadruped_escape=2, quadruped_fetch=2, locom_rodent_maze_forage=1, locom_rodent_two_touch=1, ).get(name, 0) self._camera = camera self._ignored_keys = [] for key, value in self._env.observation_spec().items(): if value.shape == (0,): print(f"Ignoring empty observation key '{key}'.") self._ignored_keys.append(key) @property def obs_space(self): spaces = { 'image': gym.spaces.Box(0, 255, self._size + (3,), dtype=np.uint8), 'reward': gym.spaces.Box(-np.inf, np.inf, (), dtype=np.float32), 'is_first': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_last': gym.spaces.Box(0, 1, (), dtype=np.bool), 'is_terminal': gym.spaces.Box(0, 1, (), dtype=np.bool), } for key, value in self._env.observation_spec().items(): if key in self._ignored_keys: continue if value.dtype == np.float64: spaces[key] = gym.spaces.Box(-np.inf, np.inf, value.shape, np.float32) elif value.dtype == np.uint8: spaces[key] = gym.spaces.Box(0, 255, value.shape, np.uint8) else: raise NotImplementedError(value.dtype) return spaces @property def act_space(self): spec = self._env.action_spec() action = gym.spaces.Box(spec.minimum, spec.maximum, dtype=np.float32) return {'action': action} def step(self, action): assert np.isfinite(action['action']).all(), action['action'] reward = 0.0 for _ in range(self._action_repeat): time_step = self._env.step(action['action']) reward += time_step.reward or 0.0 if time_step.last(): break assert time_step.discount in (0, 1) obs = { 'reward': reward, 'is_first': False, 'is_last': time_step.last(), 'is_terminal': time_step.discount == 0, 'image': self._env.physics.render(*self._size, camera_id=self._camera), } obs.update({ k: v for k, v in dict(time_step.observation).items() if k not in self._ignored_keys}) return obs def reset(self): time_step = self._env.reset() obs = { 'reward': 0.0, 'is_first': True, 'is_last': False, 'is_terminal': False, 'image': self._env.physics.render(*self._size, camera_id=self._camera), } obs.update({ k: v for k, v in dict(time_step.observation).items() if k not in self._ignored_keys}) return obs