import tensorflow as tf from tensorflow_probability import distributions as tfd from dreamerv2 import agent from dreamerv2 import common class Random(common.Module): def __init__(self, config, act_space, wm, tfstep, reward): self.config = config self.act_space = self.act_space def actor(self, feat): shape = feat.shape[:-1] + self.act_space.shape if self.config.actor.dist == 'onehot': return common.OneHotDist(tf.zeros(shape)) else: dist = tfd.Uniform(-tf.ones(shape), tf.ones(shape)) return tfd.Independent(dist, 1) def train(self, start, context, data): return None, {} class Plan2Explore(common.Module): def __init__(self, config, act_space, wm, tfstep, reward): self.config = config self.reward = reward self.wm = wm self.ac = agent.ActorCritic(config, act_space, tfstep) self.actor = self.ac.actor stoch_size = config.rssm.stoch if config.rssm.discrete: stoch_size *= config.rssm.discrete size = { 'embed': 32 * config.encoder.cnn_depth, 'stoch': stoch_size, 'deter': config.rssm.deter, 'feat': config.rssm.stoch + config.rssm.deter, }[self.config.disag_target] self._networks = [ common.MLP(size, **config.expl_head) for _ in range(config.disag_models)] self.opt = common.Optimizer('expl', **config.expl_opt) self.extr_rewnorm = common.StreamNorm(**self.config.expl_reward_norm) self.intr_rewnorm = common.StreamNorm(**self.config.expl_reward_norm) def train(self, start, context, data): metrics = {} stoch = start['stoch'] if self.config.rssm.discrete: stoch = tf.reshape( stoch, stoch.shape[:-2] + (stoch.shape[-2] * stoch.shape[-1])) target = { 'embed': context['embed'], 'stoch': stoch, 'deter': start['deter'], 'feat': context['feat'], }[self.config.disag_target] inputs = context['feat'] if self.config.disag_action_cond: action = tf.cast(data['action'], inputs.dtype) inputs = tf.concat([inputs, action], -1) metrics.update(self._train_ensemble(inputs, target)) metrics.update(self.ac.train( self.wm, start, data['is_terminal'], self._intr_reward)) return None, metrics def _intr_reward(self, seq): inputs = seq['feat'] if self.config.disag_action_cond: action = tf.cast(seq['action'], inputs.dtype) inputs = tf.concat([inputs, action], -1) preds = [head(inputs).mode() for head in self._networks] disag = tf.tensor(preds).std(0).mean(-1) if self.config.disag_log: disag = tf.math.log(disag) reward = self.config.expl_intr_scale * self.intr_rewnorm(disag)[0] if self.config.expl_extr_scale: reward += self.config.expl_extr_scale * self.extr_rewnorm( self.reward(seq))[0] return reward def _train_ensemble(self, inputs, targets): if self.config.disag_offset: targets = targets[:, self.config.disag_offset:] inputs = inputs[:, :-self.config.disag_offset] targets = tf.stop_gradient(targets) inputs = tf.stop_gradient(inputs) with tf.GradientTape() as tape: preds = [head(inputs) for head in self._networks] loss = -sum([pred.log_prob(targets).mean() for pred in preds]) metrics = self.opt(tape, loss, self._networks) return metrics class ModelLoss(common.Module): def __init__(self, config, act_space, wm, tfstep, reward): self.config = config self.reward = reward self.wm = wm self.ac = agent.ActorCritic(config, act_space, tfstep) self.actor = self.ac.actor self.head = common.MLP([], **self.config.expl_head) self.opt = common.Optimizer('expl', **self.config.expl_opt) def train(self, start, context, data): metrics = {} target = tf.cast(context[self.config.expl_model_loss], tf.float32) with tf.GradientTape() as tape: loss = -self.head(context['feat']).log_prob(target).mean() metrics.update(self.opt(tape, loss, self.head)) metrics.update(self.ac.train( self.wm, start, data['is_terminal'], self._intr_reward)) return None, metrics def _intr_reward(self, seq): reward = self.config.expl_intr_scale * self.head(seq['feat']).mode() if self.config.expl_extr_scale: reward += self.config.expl_extr_scale * self.reward(seq) return reward