import pathlib import pickle import re import numpy as np import tensorflow as tf from tensorflow.keras import mixed_precision as prec try: from tensorflow.python.distribute import values except Exception: from google3.third_party.tensorflow.python.distribute import values tf.tensor = tf.convert_to_tensor for base in (tf.Tensor, tf.Variable, values.PerReplica): base.mean = tf.math.reduce_mean base.std = tf.math.reduce_std base.var = tf.math.reduce_variance base.sum = tf.math.reduce_sum base.any = tf.math.reduce_any base.all = tf.math.reduce_all base.min = tf.math.reduce_min base.max = tf.math.reduce_max base.abs = tf.math.abs base.logsumexp = tf.math.reduce_logsumexp base.transpose = tf.transpose base.reshape = tf.reshape base.astype = tf.cast # values.PerReplica.dtype = property(lambda self: self.values[0].dtype) # tf.TensorHandle.__repr__ = lambda x: '' # tf.TensorHandle.__str__ = lambda x: '' # np.set_printoptions(threshold=5, edgeitems=0) class Module(tf.Module): def save(self, filename): values = tf.nest.map_structure(lambda x: x.numpy(), self.variables) amount = len(tf.nest.flatten(values)) count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values))) print(f'Save checkpoint with {amount} tensors and {count} parameters.') with pathlib.Path(filename).open('wb') as f: pickle.dump(values, f) def load(self, filename): with pathlib.Path(filename).open('rb') as f: values = pickle.load(f) amount = len(tf.nest.flatten(values)) count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values))) print(f'Load checkpoint with {amount} tensors and {count} parameters.') tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values) def get(self, name, ctor, *args, **kwargs): # Create or get layer by name to avoid mentioning it in the constructor. if not hasattr(self, '_modules'): self._modules = {} if name not in self._modules: self._modules[name] = ctor(*args, **kwargs) return self._modules[name] class Optimizer(tf.Module): def __init__( self, name, lr, eps=1e-4, clip=None, wd=None, opt='adam', wd_pattern=r'.*'): assert 0 <= wd < 1 assert not clip or 1 <= clip self._name = name self._clip = clip self._wd = wd self._wd_pattern = wd_pattern self._opt = { 'adam': lambda: tf.optimizers.Adam(lr, epsilon=eps), 'nadam': lambda: tf.optimizers.Nadam(lr, epsilon=eps), 'adamax': lambda: tf.optimizers.Adamax(lr, epsilon=eps), 'sgd': lambda: tf.optimizers.SGD(lr), 'momentum': lambda: tf.optimizers.SGD(lr, 0.9), }[opt]() self._mixed = (prec.global_policy().compute_dtype == tf.float16) if self._mixed: self._opt = prec.LossScaleOptimizer(self._opt, dynamic=True) self._once = True @property def variables(self): return self._opt.variables() def __call__(self, tape, loss, modules): assert loss.dtype is tf.float32, (self._name, loss.dtype) assert len(loss.shape) == 0, (self._name, loss.shape) metrics = {} # Find variables. modules = modules if hasattr(modules, '__len__') else (modules,) varibs = tf.nest.flatten([module.variables for module in modules]) count = sum(np.prod(x.shape) for x in varibs) if self._once: print(f'Found {count} {self._name} parameters.') self._once = False # Check loss. tf.debugging.check_numerics(loss, self._name + '_loss') metrics[f'{self._name}_loss'] = loss # Compute scaled gradient. if self._mixed: with tape: loss = self._opt.get_scaled_loss(loss) grads = tape.gradient(loss, varibs) if self._mixed: grads = self._opt.get_unscaled_gradients(grads) if self._mixed: metrics[f'{self._name}_loss_scale'] = self._opt.loss_scale # Distributed sync. context = tf.distribute.get_replica_context() if context: grads = context.all_reduce('mean', grads) # Gradient clipping. norm = tf.linalg.global_norm(grads) if not self._mixed: tf.debugging.check_numerics(norm, self._name + '_norm') if self._clip: grads, _ = tf.clip_by_global_norm(grads, self._clip, norm) metrics[f'{self._name}_grad_norm'] = norm # Weight decay. if self._wd: self._apply_weight_decay(varibs) # Apply gradients. self._opt.apply_gradients( zip(grads, varibs), experimental_aggregate_gradients=False) return metrics def _apply_weight_decay(self, varibs): nontrivial = (self._wd_pattern != r'.*') if nontrivial: print('Applied weight decay to variables:') for var in varibs: if re.search(self._wd_pattern, self._name + '/' + var.name): if nontrivial: print('- ' + self._name + '/' + var.name) var.assign((1 - self._wd) * var)