import collections import logging import os import pathlib import re import sys import warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' logging.getLogger().setLevel('ERROR') warnings.filterwarnings('ignore', '.*box bound precision lowered.*') sys.path.append(str(pathlib.Path(__file__).parent)) sys.path.append(str(pathlib.Path(__file__).parent.parent)) import numpy as np import ruamel.yaml as yaml from dreamerv2 import agent from dreamerv2 import common from dreamerv2.common import Config from dreamerv2.common import GymWrapper from dreamerv2.common import RenderImage from dreamerv2.common import TerminalOutput from dreamerv2.common import JSONLOutput from dreamerv2.common import TensorBoardOutput configs = yaml.safe_load( (pathlib.Path(__file__).parent / 'configs.yaml').read_text()) defaults = common.Config(configs.pop('defaults')) def train(env, config, outputs=None): logdir = pathlib.Path(config.logdir).expanduser() logdir.mkdir(parents=True, exist_ok=True) config.save(logdir / 'config.yaml') print(config, '\n') print('Logdir', logdir) outputs = outputs or [ common.TerminalOutput(), common.JSONLOutput(config.logdir), common.TensorBoardOutput(config.logdir), ] replay = common.Replay(logdir / 'train_episodes', **config.replay) step = common.Counter(replay.stats['total_steps']) logger = common.Logger(step, outputs, multiplier=config.action_repeat) metrics = collections.defaultdict(list) should_train = common.Every(config.train_every) should_log = common.Every(config.log_every) should_video = common.Every(config.log_every) should_expl = common.Until(config.expl_until) def per_episode(ep): length = len(ep['reward']) - 1 score = float(ep['reward'].astype(np.float64).sum()) print(f'Episode has {length} steps and return {score:.1f}.') logger.scalar('return', score) logger.scalar('length', length) for key, value in ep.items(): if re.match(config.log_keys_sum, key): logger.scalar(f'sum_{key}', ep[key].sum()) if re.match(config.log_keys_mean, key): logger.scalar(f'mean_{key}', ep[key].mean()) if re.match(config.log_keys_max, key): logger.scalar(f'max_{key}', ep[key].max(0).mean()) if should_video(step): for key in config.log_keys_video: logger.video(f'policy_{key}', ep[key]) logger.add(replay.stats) logger.write() env = common.GymWrapper(env) env = common.ResizeImage(env) if hasattr(env.act_space['action'], 'n'): env = common.OneHotAction(env) else: env = common.NormalizeAction(env) env = common.TimeLimit(env, config.time_limit) driver = common.Driver([env]) driver.on_episode(per_episode) driver.on_step(lambda tran, worker: step.increment()) driver.on_step(replay.add_step) driver.on_reset(replay.add_step) prefill = max(0, config.prefill - replay.stats['total_steps']) if prefill: print(f'Prefill dataset ({prefill} steps).') random_agent = common.RandomAgent(env.act_space) driver(random_agent, steps=prefill, episodes=1) driver.reset() print('Create agent.') agnt = agent.Agent(config, env.obs_space, env.act_space, step) dataset = iter(replay.dataset(**config.dataset)) train_agent = common.CarryOverState(agnt.train) train_agent(next(dataset)) if (logdir / 'variables.pkl').exists(): agnt.load(logdir / 'variables.pkl') else: print('Pretrain agent.') for _ in range(config.pretrain): train_agent(next(dataset)) policy = lambda *args: agnt.policy( *args, mode='explore' if should_expl(step) else 'train') def train_step(tran, worker): if should_train(step): for _ in range(config.train_steps): mets = train_agent(next(dataset)) [metrics[key].append(value) for key, value in mets.items()] if should_log(step): for name, values in metrics.items(): logger.scalar(name, np.array(values, np.float64).mean()) metrics[name].clear() logger.add(agnt.report(next(dataset))) logger.write(fps=True) driver.on_step(train_step) while step < config.steps: logger.write() driver(policy, steps=config.eval_every) agnt.save(logdir / 'variables.pkl')