|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Cartpole domain.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import collections |
|
|
|
import numpy as np |
|
from dm_control import mujoco |
|
from dm_control.rl import control |
|
from dm_control.utils import containers, rewards |
|
from . import base, common |
|
from lxml import etree |
|
from six.moves import range |
|
|
|
_DEFAULT_TIME_LIMIT = 10 |
|
SUITE = containers.TaggedTasks() |
|
|
|
|
|
def get_model_and_assets(num_poles=1, xml_file_id=None): |
|
"""Returns a tuple containing the model XML string and a dict of assets.""" |
|
return _make_model(num_poles, xml_file_id), common.ASSETS |
|
|
|
|
|
@SUITE.add("benchmarking") |
|
def balance( |
|
time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None, |
|
): |
|
"""Returns the Cartpole Balance task.""" |
|
physics = Physics.from_xml_string(*get_model_and_assets()) |
|
task = Balance(swing_up=False, sparse=False, random=random) |
|
environment_kwargs = environment_kwargs or {} |
|
return control.Environment( |
|
physics, task, time_limit=time_limit, **environment_kwargs |
|
) |
|
|
|
|
|
@SUITE.add("benchmarking") |
|
def balance_sparse( |
|
time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None |
|
): |
|
"""Returns the sparse reward variant of the Cartpole Balance task.""" |
|
physics = Physics.from_xml_string(*get_model_and_assets()) |
|
task = Balance(swing_up=False, sparse=True, random=random) |
|
environment_kwargs = environment_kwargs or {} |
|
return control.Environment( |
|
physics, task, time_limit=time_limit, **environment_kwargs |
|
) |
|
|
|
|
|
@SUITE.add("benchmarking") |
|
def swingup( |
|
time_limit=_DEFAULT_TIME_LIMIT, |
|
xml_file_id=None, |
|
random=None, |
|
environment_kwargs=None, |
|
): |
|
"""Returns the Cartpole Swing-Up task.""" |
|
physics = Physics.from_xml_string(*get_model_and_assets(xml_file_id=xml_file_id)) |
|
task = Balance(swing_up=True, sparse=False, random=random) |
|
environment_kwargs = environment_kwargs or {} |
|
return control.Environment( |
|
physics, task, time_limit=time_limit, **environment_kwargs |
|
) |
|
|
|
|
|
@SUITE.add("benchmarking") |
|
def swingup_sparse( |
|
time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None |
|
): |
|
"""Returns the sparse reward variant of teh Cartpole Swing-Up task.""" |
|
physics = Physics.from_xml_string(*get_model_and_assets()) |
|
task = Balance(swing_up=True, sparse=True, random=random) |
|
environment_kwargs = environment_kwargs or {} |
|
return control.Environment( |
|
physics, task, time_limit=time_limit, **environment_kwargs |
|
) |
|
|
|
|
|
@SUITE.add() |
|
def two_poles(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): |
|
"""Returns the Cartpole Balance task with two poles.""" |
|
physics = Physics.from_xml_string(*get_model_and_assets(num_poles=2)) |
|
task = Balance(swing_up=True, sparse=False, random=random) |
|
environment_kwargs = environment_kwargs or {} |
|
return control.Environment( |
|
physics, task, time_limit=time_limit, **environment_kwargs |
|
) |
|
|
|
|
|
@SUITE.add() |
|
def three_poles( |
|
time_limit=_DEFAULT_TIME_LIMIT, |
|
random=None, |
|
num_poles=3, |
|
sparse=False, |
|
environment_kwargs=None, |
|
): |
|
"""Returns the Cartpole Balance task with three or more poles.""" |
|
physics = Physics.from_xml_string(*get_model_and_assets(num_poles=num_poles)) |
|
task = Balance(swing_up=True, sparse=sparse, random=random) |
|
environment_kwargs = environment_kwargs or {} |
|
return control.Environment( |
|
physics, task, time_limit=time_limit, **environment_kwargs |
|
) |
|
|
|
|
|
def _make_model(n_poles, xml_file_id=None): |
|
"""Generates an xml string defining a cart with `n_poles` bodies.""" |
|
if xml_file_id is not None: |
|
filename = f"cartpole_{xml_file_id}.xml" |
|
print(filename) |
|
else: |
|
filename = f"cartpole.xml" |
|
xml_string = common.read_model(filename) |
|
if n_poles == 1: |
|
return xml_string |
|
mjcf = etree.fromstring(xml_string) |
|
parent = mjcf.find("./worldbody/body/body") |
|
|
|
for pole_index in range(2, n_poles + 1): |
|
child = etree.Element( |
|
"body", name="pole_{}".format(pole_index), pos="0 0 1", childclass="pole" |
|
) |
|
etree.SubElement(child, "joint", name="hinge_{}".format(pole_index)) |
|
etree.SubElement(child, "geom", name="pole_{}".format(pole_index)) |
|
parent.append(child) |
|
parent = child |
|
|
|
floor = mjcf.find("./worldbody/geom") |
|
floor.set("pos", "0 0 {}".format(1 - n_poles - 0.05)) |
|
|
|
cameras = mjcf.findall("./worldbody/camera") |
|
cameras[0].set("pos", "0 {} 1".format(-1 - 2 * n_poles)) |
|
cameras[1].set("pos", "0 {} 2".format(-2 * n_poles)) |
|
return etree.tostring(mjcf, pretty_print=True) |
|
|
|
|
|
class Physics(mujoco.Physics): |
|
"""Physics simulation with additional features for the Cartpole domain.""" |
|
|
|
def cart_position(self): |
|
"""Returns the position of the cart.""" |
|
return self.named.data.qpos["slider"][0] |
|
|
|
def angular_vel(self): |
|
"""Returns the angular velocity of the pole.""" |
|
return self.data.qvel[1:] |
|
|
|
def pole_angle_cosine(self): |
|
"""Returns the cosine of the pole angle.""" |
|
return self.named.data.xmat[2:, "zz"] |
|
|
|
def bounded_position(self): |
|
"""Returns the state, with pole angle split into sin/cos.""" |
|
return np.hstack( |
|
(self.cart_position(), self.named.data.xmat[2:, ["zz", "xz"]].ravel()) |
|
) |
|
|
|
|
|
class Balance(base.Task): |
|
"""A Cartpole `Task` to balance the pole. |
|
|
|
State is initialized either close to the target configuration or at a random |
|
configuration. |
|
""" |
|
|
|
_CART_RANGE = (-0.25, 0.25) |
|
_ANGLE_COSINE_RANGE = (0.995, 1) |
|
|
|
def __init__(self, swing_up, sparse, random=None): |
|
"""Initializes an instance of `Balance`. |
|
|
|
Args: |
|
swing_up: A `bool`, which if `True` sets the cart to the middle of the |
|
slider and the pole pointing towards the ground. Otherwise, sets the |
|
cart to a random position on the slider and the pole to a random |
|
near-vertical position. |
|
sparse: A `bool`, whether to return a sparse or a smooth reward. |
|
random: Optional, either a `numpy.random.RandomState` instance, an |
|
integer seed for creating a new `RandomState`, or None to select a seed |
|
automatically (default). |
|
""" |
|
self._sparse = sparse |
|
self._swing_up = swing_up |
|
super(Balance, self).__init__(random=random) |
|
|
|
def initialize_episode(self, physics): |
|
"""Sets the state of the environment at the start of each episode. |
|
|
|
Initializes the cart and pole according to `swing_up`, and in both cases |
|
adds a small random initial velocity to break symmetry. |
|
|
|
Args: |
|
physics: An instance of `Physics`. |
|
""" |
|
nv = physics.model.nv |
|
if self._swing_up: |
|
physics.named.data.qpos["slider"] = 0.01 * self.random.randn() |
|
physics.named.data.qpos["hinge_1"] = np.pi + 0.01 * self.random.randn() |
|
physics.named.data.qpos[2:] = 0.1 * self.random.randn(nv - 2) |
|
else: |
|
physics.named.data.qpos["slider"] = self.random.uniform(-0.1, 0.1) |
|
physics.named.data.qpos[1:] = self.random.uniform(-0.034, 0.034, nv - 1) |
|
physics.named.data.qvel[:] = 0.01 * self.random.randn(physics.model.nv) |
|
super(Balance, self).initialize_episode(physics) |
|
|
|
def get_observation(self, physics): |
|
"""Returns an observation of the (bounded) physics state.""" |
|
obs = collections.OrderedDict() |
|
obs["position"] = physics.bounded_position() |
|
obs["velocity"] = physics.velocity() |
|
return obs |
|
|
|
def _get_reward(self, physics, sparse): |
|
if sparse: |
|
cart_in_bounds = rewards.tolerance( |
|
physics.cart_position(), self._CART_RANGE |
|
) |
|
angle_in_bounds = rewards.tolerance( |
|
physics.pole_angle_cosine(), self._ANGLE_COSINE_RANGE |
|
).prod() |
|
return cart_in_bounds * angle_in_bounds |
|
else: |
|
upright = (physics.pole_angle_cosine() + 1) / 2 |
|
centered = rewards.tolerance(physics.cart_position(), margin=2) |
|
centered = (1 + centered) / 2 |
|
small_control = rewards.tolerance( |
|
physics.control(), margin=1, value_at_margin=0, sigmoid="quadratic" |
|
)[0] |
|
small_control = (4 + small_control) / 5 |
|
small_velocity = rewards.tolerance(physics.angular_vel(), margin=5).min() |
|
small_velocity = (1 + small_velocity) / 2 |
|
return upright.mean() * small_control * small_velocity * centered |
|
|
|
def get_reward(self, physics): |
|
"""Returns a sparse or a smooth reward, as specified in the constructor.""" |
|
return self._get_reward(physics, sparse=self._sparse) |
|
|