# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Telugu Books Dataset""" from __future__ import absolute_import, division, print_function import csv import os import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {Indic NLP - Natural Language Processing for Indian Languages}, authors = {Sudalai Rajkumar, Anusha Motamarri}, year={2019} } """ _DESCRIPTION = """\ This dataset is created by scraping telugu novels from teluguone.com this dataset can be used for nlp tasks like topic modeling, word embeddings, transfer learning etc """ _HOMEPAGE = "https://www.kaggle.com/sudalairajkumar/telugu-nlp" _LICENSE = "Data files © Original Authors" _FILENAME = "telugu_books.csv" class TeluguBooks(datasets.GeneratorBasedBuilder): """Telugu novels""" VERSION = datasets.Version("1.1.0") @property def manual_download_instructions(self): return """\ You need to go to https://www.kaggle.com/sudalairajkumar/telugu-nlp, and manually download the telugu_books. Once it is completed, a file named telugu_books.zip will be appeared in your Downloads folder or whichever folder your browser chooses to save files to. You then have to unzip the file and move telugu_books,csv under . The can e.g. be "~/manual_data". telugu_books can then be loaded using the following command `datasets.load_dataset("telugu_books", data_dir="")`. """ def _info(self): features = datasets.Features( { "text": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) if not os.path.exists(path_to_manual_file): raise FileNotFoundError( "{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('telugu_books', data_dir=...)` that includes file name {}. Manual download instructions: {}".format( path_to_manual_file, _FILENAME, self.manual_download_instructions, ) ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(path_to_manual_file, "telugu_books.csv"), "split": "train", }, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader(csv_file) for id_, row in enumerate(csv_reader): _, text = row yield id_, {"text": text}