# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Did You Know? dataset""" from __future__ import absolute_import, division, print_function import csv import os import datasets _CITATION = """\ @inproceedings{marcinczuk2013open, title={Open dataset for development of Polish Question Answering systems}, author={Marcinczuk, Michal and Ptak, Marcin and Radziszewski, Adam and Piasecki, Maciej}, booktitle={Proceedings of the 6th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Wydawnictwo Poznanskie, Fundacja Uniwersytetu im. Adama Mickiewicza}, year={2013} } """ _DESCRIPTION = """\ The Did You Know (pol. Czy wiesz?) dataset consists of human-annotated question-answer pairs. The task is to predict if the answer is correct. We chose the negatives which have the largest token overlap with a question. """ _HOMEPAGE = "http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset" _LICENSE = "CC BY-SA 3.0" _URLs = "https://klejbenchmark.com/static/data/klej_dyk.zip" class DYK(datasets.GeneratorBasedBuilder): """Did You Know? Dataset""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "q_id": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "target": datasets.ClassLabel(names=["0", "1"]), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URLs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, "train.tsv"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"}, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for id_, row in enumerate(reader): yield id_, { "q_id": row["q_id"], "question": row["question"], "answer": row["answer"], "target": -1 if split == "test" else row["target"], }