# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Czech restaurant information dataset for NLG""" import json import datasets # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @article{DBLP:journals/corr/abs-1910-05298, author = {Ondrej Dusek and Filip Jurcicek}, title = {Neural Generation for Czech: Data and Baselines}, journal = {CoRR}, volume = {abs/1910.05298}, year = {2019}, url = {http://arxiv.org/abs/1910.05298}, archivePrefix = {arXiv}, eprint = {1910.05298}, timestamp = {Wed, 16 Oct 2019 16:25:53 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-05298.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ _DESCRIPTION = """\ This is a dataset for NLG in task-oriented spoken dialogue systems with Czech as the target language. It originated as a translation of the English San Francisco Restaurants dataset by Wen et al. (2015). """ _LICENSE = "Creative Commons 4.0 BY-SA" _URLs = { "CSRestaurants": "https://raw.githubusercontent.com/UFAL-DSG/cs_restaurant_dataset/master/", } class CSRestaurants(datasets.GeneratorBasedBuilder): """Czech restaurant information dataset for NLG""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [datasets.BuilderConfig(name="CSRestaurants", description="NLG data for Czech")] DEFAULT_CONFIG_NAME = "CSRestaurants" def _info(self): features = datasets.Features( { "da": datasets.Value("string"), "delex_da": datasets.Value("string"), "text": datasets.Value("string"), "delex_text": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage="https://github.com/UFAL-DSG/cs_restaurant_dataset", license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" master_url = _URLs[self.config.name] train_path = dl_manager.download_and_extract(master_url + "train.json") valid_path = dl_manager.download_and_extract(master_url + "devel.json") test_path = dl_manager.download_and_extract(master_url + "test.json") return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), ] def _generate_examples(self, filepath): """ Yields examples. """ with open(filepath, encoding="utf8") as f: data = json.load(f) for id_, instance in enumerate(data): yield id_, { "da": instance["da"], "delex_da": instance["delex_da"], "text": instance["text"], "delex_text": instance["delex_text"], }