# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """COVID-19 Japanese Tweets Dataset.""" import bz2 import csv import datasets _CITATION = """\ No paper about this dataset is published yet. \ Please cite this dataset as "鈴木 優: COVID-19 日本語 Twitter データセット (http://www.db.info.gifu-u.ac.jp/data/Data_5f02db873363f976fce930d1)" """ _DESCRIPTION = """\ 53,640 Japanese tweets with annotation if a tweet is related to COVID-19 or not. The annotation is by majority decision by 5 - 10 crowd workers. \ Target tweets include "COVID" or "コロナ". The period of the tweets is from around January 2020 to around June 2020. \ The original tweets are not contained. Please use Twitter API to get them, for example. """ _HOMEPAGE = "http://www.db.info.gifu-u.ac.jp/data/Data_5f02db873363f976fce930d1" _LICENSE = "CC-BY-ND 4.0" # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLs = { "url": "http://www.db.info.gifu-u.ac.jp/data/data.csv.bz2", } class CovidTweetsJapanese(datasets.GeneratorBasedBuilder): """COVID-19 Japanese Tweets Dataset.""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "tweet_id": datasets.Value("string"), "assessment_option_id": datasets.ClassLabel(names=["63", "64", "65", "66", "67", "68"]), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs["url"] # data_url = dl_manager.download_and_extract(my_urls) data_url = dl_manager.download(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_url, "split": "train"}, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" with bz2.open(filepath, "rt") as f: data = csv.reader(f) _ = next(data) for id_, row in enumerate(data): yield id_, { "tweet_id": row[0], "assessment_option_id": row[1], }