# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BERT classification fine-tuning: utilities to work with GLUE tasks """ from __future__ import absolute_import, division, print_function import csv import json import logging import os import sys from io import open from sklearn.metrics import f1_score, precision_score, recall_score from torch.utils.data import Dataset import torch csv.field_size_limit(sys.maxsize) logger = logging.getLogger(__name__) class InputFeatures(object): """A single training/test features for a example.""" def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, label, idx): self.code_tokens = code_tokens self.code_ids = code_ids self.nl_tokens = nl_tokens self.nl_ids = nl_ids self.label = label self.idx = idx class InputFeaturesTriplet(InputFeatures): """A single training/test features for a example. Add docstring seperately. """ def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, ds_tokens, ds_ids, label, idx): super(InputFeaturesTriplet, self).__init__(code_tokens, code_ids, nl_tokens, nl_ids, label, idx) self.ds_tokens = ds_tokens self.ds_ids = ds_ids def convert_examples_to_features(js, tokenizer, args): # label label = js['label'] # code code = js['code'] code_tokens = tokenizer.tokenize(code)[:args.max_seq_length-2] code_tokens = [tokenizer.cls_token]+code_tokens+[tokenizer.sep_token] code_ids = tokenizer.convert_tokens_to_ids(code_tokens) padding_length = args.max_seq_length - len(code_ids) code_ids += [tokenizer.pad_token_id]*padding_length nl = js['doc'] # query nl_tokens = tokenizer.tokenize(nl)[:args.max_seq_length-2] nl_tokens = [tokenizer.cls_token]+nl_tokens+[tokenizer.sep_token] nl_ids = tokenizer.convert_tokens_to_ids(nl_tokens) padding_length = args.max_seq_length - len(nl_ids) nl_ids += [tokenizer.pad_token_id]*padding_length return InputFeatures(code_tokens, code_ids, nl_tokens, nl_ids, label, js['idx']) class TextDataset(Dataset): def __init__(self, tokenizer, args, file_path=None, type=None): # json file: dict: idx, query, doc, code self.examples = [] self.type = type data=[] with open(file_path, 'r') as f: data = json.load(f) # data = data[:114560] if self.type == 'test': for js in data: js['label'] = 0 for js in data: self.examples.append(convert_examples_to_features(js, tokenizer, args)) if 'train' in file_path: for idx, example in enumerate(self.examples[:3]): logger.info("*** Example ***") logger.info("idx: {}".format(idx)) logger.info("code_tokens: {}".format([x.replace('\u0120','_') for x in example.code_tokens])) logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids)))) logger.info("nl_tokens: {}".format([x.replace('\u0120','_') for x in example.nl_tokens])) logger.info("nl_ids: {}".format(' '.join(map(str, example.nl_ids)))) def __len__(self): return len(self.examples) def __getitem__(self, i): """ return both tokenized code ids and nl ids and label""" return torch.tensor(self.examples[i].code_ids), \ torch.tensor(self.examples[i].nl_ids),\ torch.tensor(self.examples[i].label) def simple_accuracy(preds, labels): return (preds == labels).mean() def acc_and_f1(preds, labels): acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) prec = precision_score(y_true=labels, y_pred=preds) reca = recall_score(y_true=labels, y_pred=preds) return { "acc": acc, "precision": prec, "recall": reca, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def compute_metrics(task_name, preds, labels): assert len(preds) == len(labels) if task_name == "webquery": return acc_and_f1(preds, labels) if task_name == "staqc": return acc_and_f1(preds, labels) else: raise KeyError(task_name)