#!/usr/bin/python ''' This script was adapted from the original version by hieuhoang1972 which is part of MOSES. ''' # $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $ '''Provides: cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test(). cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked(). score_cooked(alltest, n=4): Score a list of cooked test sentences. score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids. The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible. ''' import sys, math, re, xml.sax.saxutils import subprocess import os # Added to bypass NIST-style pre-processing of hyp and ref files -- wade nonorm = 0 preserve_case = False eff_ref_len = "shortest" normalize1 = [ ('', ''), # strip "skipped" tags (r'-\n', ''), # strip end-of-line hyphenation and join lines (r'\n', ' '), # join lines # (r'(\d)\s+(?=\d)', r'\1'), # join digits ] normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1] normalize2 = [ (r'([\{-\~\[-\` -\&\(-\+\:-\@\/])',r' \1 '), # tokenize punctuation. apostrophe is missing (r'([^0-9])([\.,])',r'\1 \2 '), # tokenize period and comma unless preceded by a digit (r'([\.,])([^0-9])',r' \1 \2'), # tokenize period and comma unless followed by a digit (r'([0-9])(-)',r'\1 \2 ') # tokenize dash when preceded by a digit ] normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2] def normalize(s): '''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.''' # Added to bypass NIST-style pre-processing of hyp and ref files -- wade if (nonorm): return s.split() if type(s) is not str: s = " ".join(s) # language-independent part: for (pattern, replace) in normalize1: s = re.sub(pattern, replace, s) s = xml.sax.saxutils.unescape(s, {'"':'"'}) # language-dependent part (assuming Western languages): s = " %s " % s if not preserve_case: s = s.lower() # this might not be identical to the original for (pattern, replace) in normalize2: s = re.sub(pattern, replace, s) return s.split() def count_ngrams(words, n=4): counts = {} for k in range(1,n+1): for i in range(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] = counts.get(ngram, 0)+1 return counts def cook_refs(refs, n=4): '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.''' refs = [normalize(ref) for ref in refs] maxcounts = {} for ref in refs: counts = count_ngrams(ref, n) for (ngram,count) in counts.items(): maxcounts[ngram] = max(maxcounts.get(ngram,0), count) return ([len(ref) for ref in refs], maxcounts) def cook_test(test, item, n=4): '''Takes a test sentence and returns an object that encapsulates everything that BLEU needs to know about it.''' (reflens, refmaxcounts)=item test = normalize(test) result = {} result["testlen"] = len(test) # Calculate effective reference sentence length. if eff_ref_len == "shortest": result["reflen"] = min(reflens) elif eff_ref_len == "average": result["reflen"] = float(sum(reflens))/len(reflens) elif eff_ref_len == "closest": min_diff = None for reflen in reflens: if min_diff is None or abs(reflen-len(test)) < min_diff: min_diff = abs(reflen-len(test)) result['reflen'] = reflen result["guess"] = [max(len(test)-k+1,0) for k in range(1,n+1)] result['correct'] = [0]*n counts = count_ngrams(test, n) for (ngram, count) in counts.items(): result["correct"][len(ngram)-1] += min(refmaxcounts.get(ngram,0), count) return result def score_cooked(allcomps, n=4, ground=0, smooth=1): totalcomps = {'testlen':0, 'reflen':0, 'guess':[0]*n, 'correct':[0]*n} for comps in allcomps: for key in ['testlen','reflen']: totalcomps[key] += comps[key] for key in ['guess','correct']: for k in range(n): totalcomps[key][k] += comps[key][k] logbleu = 0.0 all_bleus = [] for k in range(n): correct = totalcomps['correct'][k] guess = totalcomps['guess'][k] addsmooth = 0 if smooth == 1 and k > 0: addsmooth = 1 logbleu += math.log(correct + addsmooth + sys.float_info.min)-math.log(guess + addsmooth+ sys.float_info.min) if guess == 0: all_bleus.append(-10000000) else: all_bleus.append(math.log(correct + sys.float_info.min)-math.log( guess )) logbleu /= float(n) all_bleus.insert(0, logbleu) brevPenalty = min(0,1-float(totalcomps['reflen'] + 1)/(totalcomps['testlen'] + 1)) for i in range(len(all_bleus)): if i ==0: all_bleus[i] += brevPenalty all_bleus[i] = math.exp(all_bleus[i]) return all_bleus def bleu(refs, candidate, ground=0, smooth=1): refs = cook_refs(refs) test = cook_test(candidate, refs) return score_cooked([test], ground=ground, smooth=smooth) def splitPuncts(line): return ' '.join(re.findall(r"[\w]+|[^\s\w]", line)) def computeMaps(predictions, goldfile): predictionMap = {} goldMap = {} gf = open(goldfile, 'r') for row in predictions: cols = row.strip().split('\t') if len(cols) == 1: (rid, pred) = (cols[0], '') else: (rid, pred) = (cols[0], cols[1]) predictionMap[rid] = [splitPuncts(pred.strip().lower())] for row in gf: (rid, pred) = row.split('\t') if rid in predictionMap: # Only insert if the id exists for the method if rid not in goldMap: goldMap[rid] = [] goldMap[rid].append(splitPuncts(pred.strip().lower())) sys.stderr.write('Total: ' + str(len(goldMap)) + '\n') return (goldMap, predictionMap) #m1 is the reference map #m2 is the prediction map def bleuFromMaps(m1, m2): score = [0] * 5 num = 0.0 for key in m1: if key in m2: bl = bleu(m1[key], m2[key][0]) score = [ score[i] + bl[i] for i in range(0, len(bl))] num += 1 return [s * 100.0 / num for s in score] if __name__ == '__main__': reference_file = sys.argv[1] predictions = [] for row in sys.stdin: predictions.append(row) (goldMap, predictionMap) = computeMaps(predictions, reference_file) print (bleuFromMaps(goldMap, predictionMap)[0])