''' ShuffleNet in PyTorch. ShuffleNet是一个专门为移动设备设计的高效卷积神经网络。其主要创新点在于使用了两个新操作: 1. 逐点组卷积(pointwise group convolution) 2. 通道重排(channel shuffle) 这两个操作大大降低了计算复杂度,同时保持了良好的准确率。 主要特点: 1. 使用组卷积减少参数量和计算量 2. 使用通道重排操作使不同组之间的信息可以流通 3. 使用深度可分离卷积进一步降低计算复杂度 4. 设计了多个计算复杂度版本以适应不同的设备 Reference: [1] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. CVPR 2018. ''' import torch import torch.nn as nn import torch.nn.functional as F class ShuffleBlock(nn.Module): """通道重排模块 通过重新排列通道的顺序来实现不同组之间的信息交流。 Args: groups (int): 分组数量 """ def __init__(self, groups): super(ShuffleBlock, self).__init__() self.groups = groups def forward(self, x): """通道重排的前向传播 步骤: 1. [N,C,H,W] -> [N,g,C/g,H,W] # 重塑为g组 2. [N,g,C/g,H,W] -> [N,C/g,g,H,W] # 转置g维度 3. [N,C/g,g,H,W] -> [N,C,H,W] # 重塑回原始形状 Args: x: 输入张量,[N,C,H,W] Returns: out: 通道重排后的张量,[N,C,H,W] """ N, C, H, W = x.size() g = self.groups return x.view(N,g,C//g,H,W).permute(0,2,1,3,4).reshape(N,C,H,W) class Bottleneck(nn.Module): """ShuffleNet的基本模块 结构: x -> 1x1 GConv -> BN -> Shuffle -> 3x3 DWConv -> BN -> 1x1 GConv -> BN -> (+) -> ReLU |---------------------| Args: in_channels (int): 输入通道数 out_channels (int): 输出通道数 stride (int): 步长,用于下采样 groups (int): 组卷积的分组数 """ def __init__(self, in_channels, out_channels, stride, groups): super(Bottleneck, self).__init__() self.stride = stride # 确定中间通道数和分组数 mid_channels = out_channels // 4 g = 1 if in_channels == 24 else groups # 第一个1x1组卷积 self.conv1 = nn.Conv2d(in_channels, mid_channels, kernel_size=1, groups=g, bias=False) self.bn1 = nn.BatchNorm2d(mid_channels) self.shuffle1 = ShuffleBlock(groups=g) # 3x3深度可分离卷积 self.conv2 = nn.Conv2d(mid_channels, mid_channels, kernel_size=3, stride=stride, padding=1, groups=mid_channels, bias=False) self.bn2 = nn.BatchNorm2d(mid_channels) # 第二个1x1组卷积 self.conv3 = nn.Conv2d(mid_channels, out_channels, kernel_size=1, groups=groups, bias=False) self.bn3 = nn.BatchNorm2d(out_channels) # 残差连接 self.shortcut = nn.Sequential() if stride == 2: self.shortcut = nn.Sequential( nn.AvgPool2d(3, stride=2, padding=1) ) def forward(self, x): # 主分支 out = F.relu(self.bn1(self.conv1(x))) out = self.shuffle1(out) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) # 残差连接 res = self.shortcut(x) # 如果是下采样层,拼接残差;否则相加 out = F.relu(torch.cat([out, res], 1)) if self.stride == 2 else F.relu(out + res) return out class ShuffleNet(nn.Module): """ShuffleNet模型 网络结构: 1. 一个卷积层进行特征提取 2. 三个阶段,每个阶段包含多个带重排的残差块 3. 平均池化和全连接层进行分类 Args: cfg (dict): 配置字典,包含: - out_channels (list): 每个阶段的输出通道数 - num_blocks (list): 每个阶段的块数 - groups (int): 组卷积的分组数 """ def __init__(self, cfg): super(ShuffleNet, self).__init__() out_channels = cfg['out_channels'] num_blocks = cfg['num_blocks'] groups = cfg['groups'] # 第一层卷积 self.conv1 = nn.Conv2d(3, 24, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(24) self.in_channels = 24 # 三个阶段 self.layer1 = self._make_layer(out_channels[0], num_blocks[0], groups) self.layer2 = self._make_layer(out_channels[1], num_blocks[1], groups) self.layer3 = self._make_layer(out_channels[2], num_blocks[2], groups) # 分类层 self.avg_pool = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(out_channels[2], 10) # 初始化权重 self._initialize_weights() def _make_layer(self, out_channels, num_blocks, groups): """构建ShuffleNet的一个阶段 Args: out_channels (int): 输出通道数 num_blocks (int): 块的数量 groups (int): 分组数 Returns: nn.Sequential: 一个阶段的层序列 """ layers = [] for i in range(num_blocks): stride = 2 if i == 0 else 1 cat_channels = self.in_channels if i == 0 else 0 layers.append( Bottleneck( self.in_channels, out_channels - cat_channels, stride=stride, groups=groups ) ) self.in_channels = out_channels return nn.Sequential(*layers) def forward(self, x): """前向传播 Args: x: 输入张量,[N,3,32,32] Returns: out: 输出张量,[N,num_classes] """ # 特征提取 out = F.relu(self.bn1(self.conv1(x))) # 三个阶段 out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) # 分类 out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.classifier(out) return out def _initialize_weights(self): """初始化模型权重 采用kaiming初始化方法: - 卷积层权重采用kaiming_normal_初始化 - BN层参数采用常数初始化 - 线性层采用正态分布初始化 """ for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.constant_(m.bias, 0) def ShuffleNetG2(): """返回groups=2的ShuffleNet模型""" cfg = { 'out_channels': [200,400,800], 'num_blocks': [4,8,4], 'groups': 2 } return ShuffleNet(cfg) def ShuffleNetG3(): """返回groups=3的ShuffleNet模型""" cfg = { 'out_channels': [240,480,960], 'num_blocks': [4,8,4], 'groups': 3 } return ShuffleNet(cfg) def test(): """测试函数""" # 创建模型 net = ShuffleNetG2() print('Model Structure:') print(net) # 测试前向传播 x = torch.randn(1,3,32,32) y = net(x) print('\nInput Shape:', x.shape) print('Output Shape:', y.shape) # 打印模型信息 from torchinfo import summary device = 'cuda' if torch.cuda.is_available() else 'cpu' net = net.to(device) summary(net, (1,3,32,32)) if __name__ == '__main__': test()