# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Medical BIOS""" import json import os import textwrap import datasets MAIN_CITATION = """NA""" _DESCRIPTION = """NA""" MAIN_PATH = 'https://huggingface.co/datasets/coastalcph/medical-bios/resolve/main' class MedicalBIOSConfig(datasets.BuilderConfig): """BuilderConfig for Medical BIOS.""" def __init__( self, label_classes, url, data_url, citation, **kwargs, ): """BuilderConfig for Medical BIOS. Args: label_classes: `list`, list of label classes url: `string`, url for the original project data_url: `string`, url to download the zip file from data_file: `string`, filename for data set citation: `string`, citation for the data set url: `string`, url for information about the data set **kwargs: keyword arguments forwarded to super. """ super(MedicalBIOSConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.label_classes = label_classes self.url = url self.data_url = data_url self.citation = citation class XAIFairness(datasets.GeneratorBasedBuilder): """Fairlex: A multilingual benchmark for evaluating fairness in legal text processing. Version 1.0""" BUILDER_CONFIGS = [ MedicalBIOSConfig( name="standard", description=textwrap.dedent( """\ The dataset is based on the Common Crawl. Specifically, De-Arteaga et al. identified online biographies, written in English, by filtering for lines that began with a name-like pattern (i.e., a sequence of two capitalized words) followed by the string β€œis a(n) (xxx) title,” where title is an occupation from the BLS Standard Occupation Classification system. This version of the dataset comprises English biographies labeled with occupations. We also include a subset of biographies labeled with human rationales. """ ), label_classes=['psychologist', 'surgeon', 'nurse', 'dentist', 'physician'], data_url=os.path.join(MAIN_PATH, "bios.zip"), url="https://github.com/microsoft/biosbias", citation=textwrap.dedent( """\ @inproceedings{10.1145/3287560.3287572, author = {De-Arteaga, Maria and Romanov, Alexey and Wallach, Hanna and Chayes, Jennifer and Borgs, Christian and Chouldechova, Alexandra and Geyik, Sahin and Kenthapadi, Krishnaram and Kalai, Adam Tauman}, title = {Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting}, year = {2019}, isbn = {9781450361255}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3287560.3287572}, doi = {10.1145/3287560.3287572}, booktitle = {Proceedings of the Conference on Fairness, Accountability, and Transparency}, pages = {120–128}, numpages = {9}, location = {Atlanta, GA, USA}, series = {FAT* '19} }""" ), ), ] def _info(self): features = {"text": datasets.Value("string"), "label": datasets.ClassLabel(names=self.config.label_classes), "foil": datasets.ClassLabel(names=self.config.label_classes), "words": datasets.Sequence(datasets.Value("string")), "rationales": datasets.Sequence(datasets.Value("int")), "contrastive_rationales": datasets.Sequence(datasets.Value("int"))} return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation + "\n" + MAIN_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(self.config.data_url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, f"train.jsonl"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "test.jsonl"), "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, f"validation.jsonl"), "split": "val", }, ), datasets.SplitGenerator( name="test-extra", # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, f"test_extra.jsonl"), "split": "test-extra", }, ), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw (text) form.""" with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) example = { "text": data["text"], "label": data[self.config.label_column] } if split != "test-extra": example["foil"] = data["foil"] example["words"] = data["words"] example["rationales"] = data["rationales"] example["contrastive_rationales"] = data["contrastive_rationales"] else: example["foil"] = 'N/A' example["words"] = ['N/A'] example["rationales"] = [0] example["contrastive_rationales"] = [0] yield id_, example