Datasets:
Tasks:
Translation
Size Categories:
1K<n<10K
Language Creators:
crowdsourced
Annotations Creators:
machine-generated
Source Datasets:
original
ArXiv:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import json | |
import os | |
import re | |
import datasets | |
_CITATION = """\ | |
@inproceedings{cmu_dog_emnlp18, | |
title={A Dataset for Document Grounded Conversations}, | |
author={Zhou, Kangyan and Prabhumoye, Shrimai and Black, Alan W}, | |
year={2018}, | |
booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing} | |
} | |
@inproceedings{khanuja-etal-2020-gluecos, | |
title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}", | |
author = "Khanuja, Simran and | |
Dandapat, Sandipan and | |
Srinivasan, Anirudh and | |
Sitaram, Sunayana and | |
Choudhury, Monojit", | |
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", | |
month = jul, | |
year = "2020", | |
address = "Online", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/2020.acl-main.329", | |
pages = "3575--3585" | |
} | |
""" | |
_DESCRIPTION = """\ | |
This is a collection of text conversations in Hinglish (code mixing between Hindi-English) and their corresponding English only versions. Can be used for Translating between the two. | |
""" | |
_HOMEPAGE = "http://festvox.org/cedar/data/notyet/" | |
_URL_HINGLISH = "http://festvox.org/cedar/data/notyet/CMUHinglishDoG.zip" | |
# From: https://github.com/festvox/datasets-CMU_DoG/archive/master/Conversations.zip | |
_URL_ENGLISH = "data-english.zip" | |
class CMUHinglishDoG(datasets.GeneratorBasedBuilder): | |
"""Load the CMU Hinglish DoG Data for MT""" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"date": datasets.Value("string"), | |
"docIdx": datasets.Value("int64"), | |
"translation": datasets.Translation(languages=["en", "hi_en"]), | |
"uid": datasets.Value("string"), | |
"utcTimestamp": datasets.Value("string"), | |
"rating": datasets.Value("int64"), | |
"status": datasets.Value("int64"), | |
"uid1LogInTime": datasets.Value("string"), | |
"uid1LogOutTime": datasets.Value("string"), | |
"uid1response": { | |
"response": datasets.Sequence(datasets.Value("int64")), | |
"type": datasets.Value("string"), | |
}, | |
"uid2response": { | |
"response": datasets.Sequence(datasets.Value("int64")), | |
"type": datasets.Value("string"), | |
}, | |
"user2_id": datasets.Value("string"), | |
"whoSawDoc": datasets.Sequence(datasets.Value("string")), | |
"wikiDocumentIdx": datasets.Value("int64"), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""The linking part between Hinglish data and English data is inspired from the implementation in GLUECoS. | |
Refer here for the original script https://github.com/microsoft/GLUECoS/blob/7fdc51653e37a32aee17505c47b7d1da364fa77e/Data/Preprocess_Scripts/preprocess_mt_en_hi.py""" | |
eng_path = dl_manager.download_and_extract(_URL_ENGLISH) | |
data_dir_en = os.path.join(eng_path, "Conversations") | |
hi_en_path = dl_manager.download_and_extract(_URL_HINGLISH) | |
data_dir_hi_en = os.path.join(hi_en_path, "CMUHinglishDoG", "Conversations_Hinglish") | |
hi_en_dirs = { | |
"train": os.path.join(data_dir_hi_en, "train"), | |
"valid": os.path.join(data_dir_hi_en, "valid"), | |
"test": os.path.join(data_dir_hi_en, "test"), | |
} | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"hi_en_dir": hi_en_dirs["train"], | |
"data_dir_en": data_dir_en, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"hi_en_dir": hi_en_dirs["test"], | |
"data_dir_en": data_dir_en, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"hi_en_dir": hi_en_dirs["valid"], | |
"data_dir_en": data_dir_en, | |
}, | |
), | |
] | |
def _generate_examples(self, hi_en_dir, data_dir_en): | |
"""Yields examples.""" | |
english_files_train = os.listdir(os.path.join(data_dir_en, "train")) | |
english_files_val = os.listdir(os.path.join(data_dir_en, "valid")) | |
english_files_test = os.listdir(os.path.join(data_dir_en, "test")) | |
hinglish_files = os.listdir(hi_en_dir) | |
key = 0 | |
for f in hinglish_files: | |
en_file_path = f.split(".json")[0] + ".json" | |
found = True | |
# Looks for the corresponding english file in all 3 splits | |
if en_file_path in english_files_train: | |
en = json.load(open(os.path.join(os.path.join(data_dir_en, "train"), en_file_path))) | |
elif en_file_path in english_files_val: | |
en = json.load(open(os.path.join(os.path.join(data_dir_en, "valid"), en_file_path))) | |
elif en_file_path in english_files_test: | |
en = json.load(open(os.path.join(os.path.join(data_dir_en, "test"), en_file_path))) | |
else: | |
found = False | |
if found: | |
hi_en = json.load(open(os.path.join(hi_en_dir, f))) | |
assert len(en["history"]) == len(hi_en["history"]) | |
for x, y in zip(en["history"], hi_en["history"]): | |
assert x["docIdx"] == y["docIdx"] | |
assert x["uid"] == y["uid"] | |
assert x["utcTimestamp"] == y["utcTimestamp"] | |
x["text"] = re.sub("\t|\n", " ", x["text"]) | |
y["text"] = re.sub("\t|\n", " ", y["text"]) | |
line = { | |
"date": hi_en["date"], | |
"uid": x["uid"], | |
"docIdx": x["docIdx"], | |
"utcTimestamp": x["utcTimestamp"], | |
"translation": {"hi_en": y["text"], "en": x["text"]}, | |
"rating": hi_en["rating"], | |
"status": hi_en["status"], | |
"uid1LogOutTime": hi_en.get("uid1LogOutTime"), | |
"uid1LogInTime": hi_en["uid1LogInTime"], | |
"uid1response": { | |
"response": hi_en["uid1response"]["response"] if "uid1response" in hi_en else [], | |
"type": hi_en["uid1response"]["type"] if "uid1response" in hi_en else None, | |
}, | |
"uid2response": { | |
"response": hi_en["uid2response"]["response"] if "uid2response" in hi_en else [], | |
"type": hi_en["uid2response"]["type"] if "uid2response" in hi_en else None, | |
}, | |
"user2_id": hi_en["user2_id"], | |
"whoSawDoc": hi_en["whoSawDoc"], | |
"wikiDocumentIdx": hi_en["wikiDocumentIdx"], | |
} | |
yield key, line | |
key += 1 | |