File size: 4,663 Bytes
9bc3674 d0522cf c7dee24 d0522cf a2394aa d0522cf c7dee24 d0522cf c7dee24 d0522cf c7dee24 5a54381 c7dee24 bf9652f 9bc3674 bf9652f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
license: other
dataset_info:
features:
- name: subject_id
dtype: int64
- name: trial_id
dtype: int64
- name: session_id
dtype: int64
- name: nsd_id
dtype: int64
- name: image
dtype: image
- name: activity
dtype: image
- name: subject
dtype: string
- name: flagged
dtype: bool
- name: BOLD5000
dtype: bool
- name: shared1000
dtype: bool
- name: coco_split
dtype: string
- name: coco_id
dtype: int64
- name: objects
struct:
- name: area
sequence: int64
- name: bbox
sequence:
sequence: float64
- name: category
sequence: string
- name: iscrowd
sequence: int64
- name: segmentation
list:
- name: counts
dtype: string
- name: poly
sequence:
sequence: float64
- name: size
sequence: int64
- name: supercategory
sequence: string
- name: target
sequence: int64
- name: captions
sequence: string
- name: repetitions
struct:
- name: subject1_rep0
dtype: int64
- name: subject1_rep1
dtype: int64
- name: subject1_rep2
dtype: int64
- name: subject2_rep0
dtype: int64
- name: subject2_rep1
dtype: int64
- name: subject2_rep2
dtype: int64
- name: subject3_rep0
dtype: int64
- name: subject3_rep1
dtype: int64
- name: subject3_rep2
dtype: int64
- name: subject4_rep0
dtype: int64
- name: subject4_rep1
dtype: int64
- name: subject4_rep2
dtype: int64
- name: subject5_rep0
dtype: int64
- name: subject5_rep1
dtype: int64
- name: subject5_rep2
dtype: int64
- name: subject6_rep0
dtype: int64
- name: subject6_rep1
dtype: int64
- name: subject6_rep2
dtype: int64
- name: subject7_rep0
dtype: int64
- name: subject7_rep1
dtype: int64
- name: subject7_rep2
dtype: int64
- name: subject8_rep0
dtype: int64
- name: subject8_rep1
dtype: int64
- name: subject8_rep2
dtype: int64
splits:
- name: train
num_bytes: 26695182666.0
num_examples: 195000
download_size: 20619988360
dataset_size: 26695182666.0
task_categories:
- image-to-image
- object-detection
tags:
- biology
- neuroscience
- fmri
size_categories:
- 100K<n<1M
---
# NSD-Flat
[[`GitHub`]](https://github.com/clane9/NSD-Flat) [[🤗 `Hugging Face Hub`]](https://huggingface.co/datasets/clane9/NSD-Flat)
A Hugging Face dataset of pre-processed brain activity flat maps from the [Natural Scenes Dataset](https://naturalscenesdataset.org/), constrained to a visual cortex region of interest and rendered as PNG images.
## Load the dataset
Load the dataset from [Hugging Face Hub](https://huggingface.co/datasets/clane9/NSD-Flat)
```python
from datasets import load_dataset
dataset = load_dataset("clane9/NSD-Flat", split="train")
```
## Building the dataset
### 1. Download source data
Run [`download_data.sh`](download_data.sh) to download the required source data:
- NSD stimuli images and presentation info
- COCO annotations
- NSD beta activity maps in fsaverge surface space
```bash
bash download_data.sh
```
### 2. Convert the COCO annotations
Run [`convert_nsd_annotations.py`](convert_nsd_annotations.py) to crop and reorganize the COCO annotations for NSD.
```bash
python convert_nsd_annotations.py
```
### 3. Generate the dataset
Run [`generate_dataset.py`](generate_dataset.py) to generate the huggingface dataset in Arrow format.
```bash
python generate_dataset.py --img_size 256 --workers 8
```
## Citation
If you find this dataset useful, please consider citing:
```
@article{allen2022massive,
title = {A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence},
author = {Allen, Emily J and St-Yves, Ghislain and Wu, Yihan and Breedlove, Jesse L and Prince, Jacob S and Dowdle, Logan T and Nau, Matthias and Caron, Brad and Pestilli, Franco and Charest, Ian and others},
journal = {Nature neuroscience},
volume = {25},
number = {1},
pages = {116--126},
year = {2022},
publisher = {Nature Publishing Group US New York}
}
```
```
@misc{lane2023nsdflat,
author = {Connor Lane},
title = {NSD-Flat: Pre-processed brain activity flat maps from the Natural Scenes Dataset},
howpublished = {\url{https://huggingface.co/datasets/clane9/NSD-Flat}},
year = {2023},
}
```
## License
Usage of this dataset constitutes agreement to the [NSD Terms and Conditions](https://cvnlab.slite.page/p/IB6BSeW_7o/Terms-and-Conditions). |