import datasets from io import BytesIO import numpy as np _TAR_FILES=[ "data/00000.tar", "data/00001.tar", "data/00002.tar", "data/00003.tar", "data/00004.tar", "data/00005.tar", "data/00006.tar", "data/00007.tar", "data/00008.tar", "data/00009.tar", ] _TAR_FILES_DICT={ "00000": "data/00000.tar", "00001": "data/00001.tar", "00002": "data/00002.tar", "00003": "data/00003.tar", "00004": "data/00004.tar", "00005": "data/00005.tar", "00006": "data/00006.tar", "00007": "data/00007.tar", "00008": "data/00008.tar", "00009": "data/00009.tar", } class Food101(datasets.GeneratorBasedBuilder): """Food-101 Images dataset.""" def _info(self): return datasets.DatasetInfo( description="TMP description", homepage="google it", citation="lmao", license="dunno, tbh, assume the worst, k thx." ) def _split_generators(self, dl_manager): l=[] for k in _TAR_FILES_DICT.keys(): archive_path = dl_manager.download(_TAR_FILES_DICT[k]) l.append( datasets.SplitGenerator( name=k, gen_kwargs={ "npy_files": dl_manager.iter_archive(archive_path), },) ) return l def _generate_examples(self, npy_files): """Generate images and labels for splits.""" for file_path, file_obj in npy_files: # NOTE: File object is (ALREADY) opened in binary mode. numpy_bytes = file_obj.read() numpy_dict = np.load(BytesIO(numpy_bytes), allow_pickle=True) reconverted_dict = { "frames": numpy_dict.item().get("frames"), "prompt": numpy_dict.item().get("prompt") } yield file_path, { "tokenized_prompt": reconverted_dict['prompt'], "video": reconverted_dict['frames'] }