import csv import pandas as pd import random import datasets from sklearn.model_selection import train_test_split _DOWNLOAD_URL = "https://huggingface.co/datasets/cfigueroa/glosas_etiquetadas/resolve/main/datasetNew.csv" class GlosasEtiquetadas(datasets.GeneratorBasedBuilder): """Glosas Etiquetadas classification dataset.""" def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.ClassLabel(names = ["LIBRERIA_ACCESORIOS","ALIMENTOS","ASEOPERSONAL","VEHICULOS", "BANO","BEBE","BEBIDAS","CARNE","CERVEZA","CONSTRUCCION", "DECORACION","DEPORTE","DORMITORIO","ELECTRONICA","EQUIPAJE","FERRETERIA", "GRIFERIA","ILUMINACION","JARDIN","JOYERIA","JUGUETERIA","LACTEO","LAVANDERIA", "LICORES","LIMPIEZA","MASCOTAS","MENAJE","MOBILIARIO", "ORGANIZACION","OUTDOOR","PANADERIA","PISOSMUROS","PUERTASVENTANAS", "SERVICIOS","TECNOLOGIA","TERRAZAS","VESTUARIO","VINOS","ZAPATERIA", "ILEGIBLE"] ), } ) ) def _split_generators(self, dl_manager): path = dl_manager.download_and_extract(_DOWNLOAD_URL) # Cargar el archivo .csv en un dataframe de pandas with open(path, 'r', encoding='latin-1', errors='ignore') as archivo: data_df = pd.read_csv(archivo ,sep=";") data_df.info() # Estratificación manual con sklearn train_data, temp_data = train_test_split( data_df, test_size=0.2, stratify=data_df[" categoria"] ) test_data, val_data = train_test_split( temp_data, test_size=0.5, stratify=temp_data[" categoria"] ) train_data.info() test_data.info() val_data.info() # Guardar divisiones en archivos temporales train_data.to_csv("train_data.csv", index=False) test_data.to_csv("test_data.csv", index=False) val_data.to_csv("val_data.csv", index=False) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": "train_data.csv"}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": "test_data.csv"}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": "val_data.csv"}), ] def _generate_examples(self, filepath): # Generar ejemplos sin duplicación de claves with open(filepath, 'r', encoding='latin-1', errors='ignore') as archivo: data = pd.read_csv(archivo ,sep=",") data.info() for idx, row in data.iterrows(): yield idx, { "text": row["glosa"], "label": row[" categoria"] }