diff --git "a/tutorials/UNet_with_SPIDER.ipynb" "b/tutorials/UNet_with_SPIDER.ipynb" --- "a/tutorials/UNet_with_SPIDER.ipynb" +++ "b/tutorials/UNet_with_SPIDER.ipynb" @@ -1,20 +1,4768 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "5Fw5uqLfQvBB" + }, + "source": [ + "# Building a U-Net CNN Model for Magnetic Resonance Imaging (MRI) Segmentation" + ] }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" + { + "cell_type": "markdown", + "metadata": { + "id": "b4x3vZ46Quzq" + }, + "source": [ + "This tutorial will walk through building and training a U-Net convolutional neural network (CNN) model for 2D image segmentation of MRI data from scratch. We'll use the [SPIDER](https://huggingface.co/datasets/cdoswald/SPIDER) dataset containing 447 lumbar spine sagittal MRI scans for 218 unique patients.\n" + ] }, - "language_info": { - "name": "python" + { + "cell_type": "markdown", + "metadata": { + "id": "D5gcsQX9XgUZ" + }, + "source": [ + "## Why U-Net?\n", + "\n", + "U-Net was first introduced in a 2015 paper titled \"[U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/pdf/1505.04597.pdf)\" by Olaf Ronneberger, Philipp Fischer, and Thomas Brox, at the University of Freiburg, Germany. Their paper develops both a model architecture (U-Net) and a training strategy (data augmentation and a weighted loss) that enables more precise image segmentation with relatively few training examples.\n" + ] }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "c9650600cd7343c292980b61d04eaf03": { + { + "cell_type": "markdown", + "metadata": { + "id": "kHeqYMxawGvX" + }, + "source": [ + "The model architecture looks like this:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dMifvlBWuqiB" + }, + "source": [ + "![unet_architecture.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q4NOAjHvuz90" + }, + "source": [ + "The model has a \"contracting network\", which encodes higher-dimensional feature information as it reduces the spatial information, and an expanding network, which upsamples the spatial information to restore the original image size while also propagating the feature information to higher resolution layers. It also includes skip connections from the contracting to the expanding network. The model consists solely of 2D convolutional layers, ReLU activation functions, 2x2 max pooling layers, and 2x2 upsampling (tranposed convolutional) layers." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qi4EcJ7SW1wz" + }, + "source": [ + "## Downloading the SPIDER Dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lkJ8qkVhW96W" + }, + "source": [ + "First, we'll install the required dependencies and download the SPIDER dataset from HuggingFace:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FRSR1JBfIXwH", + "outputId": "e1ed5a74-35e9-4013-b894-b89f016c494e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "# Create directories\n", + "from google.colab import drive\n", + "drive.mount('/content/drive')\n", + "\n", + "import os\n", + "models_dir = '/content/drive/MyDrive/Colab Notebooks/Models'\n", + "os.makedirs(models_dir, exist_ok=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MqrP4hB2aMht", + "outputId": "05102928-fd6e-454e-bfd8-0e5a7dc55734" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m11.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.7/52.7 MB\u001b[0m \u001b[31m21.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h" + ] + } + ], + "source": [ + "!pip install datasets -q\n", + "!pip install scikit-image -q\n", + "!pip install SimpleITK -q" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 461, + "referenced_widgets": [ + "f6a917c844104e719907c7a3b6d70221", + "bd070b8464834410b5b22db4f73c2a65", + "ba22ac9ea52d4e93bb9a47a8bc67ffcb", + "7552bc87389440f0b2dfd7cd02b61655", + "f01d373efd7c4789ae6ecbad91a66a53", + "35a60134f25d419a82d46053c5179b97", + "fe40a670e3e74488876fbdabc8c617fb", + "707306d2bca245368bfcd85527387f1d", + "6de712d3e9cc457ab736e171c476de93", + "8c7fb4c3d8ee460e89ca1ea6fd297d0c", + "f8088d2b2d534ae098e4ac2401f13f48", + "ffdc5ee8b1044fa9be361ca364837743", + "8b4e8266dfa44bde8230f9b5b90c2eba", + "91193e3a4e144065bbc725e15333efe2", + "f7af04678a3e4f349771a508570bc38f", + "33b1ecffcd9d40b2ac88991844ffd689", + "96e21cc05b1541eeb2b26edf50c81e44", + "f5fdde5307764c0fa053f5c639ba54b1", + "07511f0de85b4807a280be8aade7b088", + "337287cf23664fefbb8cf10f411571b9", + "09f8148149a141fb9c82a9c4e3b0e2c2", + "2ba9e3a12aa04ec7b7d2e38bf028dd9a", + "220753d48fca4af690da4f2f1dd617db", + "11f03d3b48794f4b9c783765aad0782a", + "edcd063ff3ed49ff955b7c34264b970d", + "d7e7d9a1aa0f48c6b53ab86519952f4e", + "4848fa68b93449c8b19137df8cc91f37", + "1cd1575ef7204f00b42667e79e69ae37", + "90d4b187827c49279c8acf6c6f1cb0d7", + "0b575d6e0ccc4a178a5a47521e650347", + "03cb410132014bd686dd516dbb2c9f6e", + "e09c6143696944e6ad1a6423b1aeea8e", + "f6c2e5c9c67a4724879d655f7324a99c", + "3fac4fffe3b8455a9bc8bee2c21f4195", + "3ae3315139b74d5e9c568529b56c1fca", + "b8eaf9fa267d47cbbc36d6f55f478137", + "63b988a26b97413e8df802a4f115be0c", + "284787e1f04c4a738498e453af23d76f", + "fde7f8d39c2e486c9f1c7d4a956215a2", + "1f85ad363a584220965429b2e69ce205", + "1f4104d07dec42baab27300e27c9c33c", + "0ffd963502d94b7c9618cf58a4c51eea", + "3dce0b260a0747ef80c0a9e07ffdebbb", + "06343aa81cf242c993fdbd975525cdf5", + "448fe058be884415bbcbdf113440c62a", + "6e0014e0f28e45f59ac940f9efc32710", + "731f57cce2f040dc8c62306d4cc42e8f", + "4658c2c2090c48b79545c177f90d0b98", + "adc5898b26094c5cb01e11d1b6f54270", + "69ec3d1d294a44a989d7ea548e6e91e9", + "edd26294cc664f3180a57859d6013aff", + "7a264eaefa5841ca98a42f40bcbbbe30", + "b0f5f7ea0960431d8d540b5fa07e857b", + "4d1e471d4f8c4754a865602464d71fa9", + "bbb0f16a65cf4839a5c28449003bf332", + "9ba23e240e544bf798ca84294c522651", + "9b419e0ee8bf4b14940d413baf697fb1", + "701851dadbfe48b9886c4ad25b6bb3ef", + "af09281a16db464fb38153eecd28f1e4", + "57aa3f23120045f695be2c7249388a08", + "8c7d05c0ebe248baac3c6f554756e27f", + "ecfd90f11ca945dba32af8e4fd2bc898", + "32a13ab0b2f54af18e88c62db70faf7a", + "3f16abb536f647d0ab43ddeeb5c9425d", + "6fb0fe8671a446028f0e1a3dd30aa366", + "e3b207270bfe4783b87696eebcb683b6", + "7e5623ef40f84e718e41c18ced7b2c68", + "29e1e6d3154648ddbb23799b9065caad", + "25001c0732a042a29f976310b1e03b0e", + "6ef10b82787248ec9e63e4e74db33a39", + "9e265a90db134822a8fba172946fcfa8", + "c291fd0fb5a04630854b8774538e7d08", + "4481cc90d16f417dbcbab70a619aee77", + "4ef07a88261944bab73e17967478d88e", + "f4fe86a344c84894a181559a73ff2ea5", + "28d8bc841ad04a3892e7d04326060123", + "083d1f3e50f4431991edb80adec4daac", + "1aae387154ba4403aeb0ad6ce09003d1", + "0f3a3f2e31774eae9146c103555565da", + "b6f941281cd5440482de1989c07857cd", + "4095cc6828c74ec68020a69972f18760", + "3c3ea9eddf47444795d32e54a224e455", + "5bb1cdda34114ce4891816a7f28b3e81", + "9671133f9d2b44658f2efdaad12ff0e2", + "2efa5b3c95de49cf924906b5889b89d7", + "c5f47f0b6ab34b3f952f8e985f7d3f65", + "33d60a44f82244d6b9c30658eab410e8", + "49a897655c5c4b76880a518bb9442512", + "ae907ec7b8214ee59968398582245afb", + "e84a24cb4c1f43b99fac25f0c8cba9de", + "4b55fa4fb0b9462c9e6e467d16205ec9", + "791ec1aeda754fefbe53cab1eb0101e7", + "a24eb4bb88634e2e9b8455278f9d8ead", + "bd3093053ec34b9095ed442c61b1d371", + "1c26d3ef9b8f4bf8bab766384e60a626", + "d2bd80f26bfa4c1a8b1d7dda4f47d30e", + "f7efe82313ba409a9524ed039611bfcb", + "01f1a4988edc466083623f2cbbc2e152", + "54475b4e3bbe45dd971252d500b79ba4", + "8c773aa45974493b82523d5544403f54", + "0b3aa28e8f1e40049c3ec1207832e25b", + "8165084b2ba14e0a88c3eb1b35bc84c7", + "2fa304d3bdbf4ec1a1e1c3c2cb11be22", + "645bbe5b57694bcca53d9de84f073277", + "7fbdd74a7b6e49219d1f8abdd5e506d9", + "9fef325d45b645758877ab29b13d661f", + "40a73ad9d0d044189c2cfb7563b1f91a", + "ae49467750a7406883a9e0553981000c", + "a5cbf721e62443c09dc81726d7e2e60e", + "765ab6164d79451ba820934c37db7054" + ] + }, + "id": "pxeqTBrWZ_XG", + "outputId": "a43d654e-fdf2-4fe6-a7a1-b473ee58d4fb" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f6a917c844104e719907c7a3b6d70221", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading builder script: 0%| | 0.00/22.5k [00:00 torch.tensor:\n", + " \"\"\"Convert segmentation mask from [0, 225] to [0, 1].\n", + " Lower and upper indicate the range of values that will be mapped\n", + " to the value 1 (e.g., for vertebrae, lower=1 and upper=7). See\n", + " SPIDER documentation for more details.\n", + " \"\"\"\n", + " return torch.where((mask < lower) | (mask > upper), 0, 1)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Now we can start training. We'll loop over the `train` split of the SPIDER dataset loaded from HuggingFace and extract the image and mask 3-dimensional volumetric arrays. We'll take a single slice from each (depth=15/30) to make our job easier and reshape the image to (batch_size, channels, height, and width) and mask to (batch_size, height, width), since these are the order of the dimensions expected by our model. After iterating through all 304 training examples and recording the training loss, we'll calculate the validation loss for all 75 validation examples. If the loss decreases from our best loss to-date, then we'll save out the model parameters to use for inference later." + ], + "metadata": { + "id": "9SeqXKtGR2Z2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "background_save": true, + "base_uri": "https://localhost:8080/" + }, + "id": "vPKVsiuh7ZQ9", + "outputId": "572cf9cc-29ee-448a-8391-395eefd29f99" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1 validation loss: 17.041\n", + "Model saved for epoch 1.\n", + "Epoch 2 validation loss: 15.912\n", + "Model saved for epoch 2.\n", + "Epoch 3 validation loss: 11.255\n", + "Model saved for epoch 3.\n", + "Epoch 4 validation loss: 8.397\n", + "Model saved for epoch 4.\n" + ] + } + ], + "source": [ + "n_epochs = 40\n", + "lowest_loss = None\n", + "\n", + "for epoch in range(n_epochs):\n", + " epoch_train_loss = 0\n", + " epoch_val_loss = 0\n", + "\n", + " # Training loop\n", + " model.train()\n", + " for batch_idx, train_data in enumerate(dataset['train']):\n", + "\n", + " # Extract training image and mask (single slice from \"depth\" dim)\n", + " train_image = torch.tensor(train_data['image'])[:,:,15].float()\n", + " train_mask = torch.tensor(train_data['mask'])[:,:,15]\n", + "\n", + " # Convert mask to binary (vertebrae/non-vertebrae)\n", + " train_mask = convert_mask_to_binary(train_mask, 1, 7).reshape(512, 512)\n", + "\n", + " # Convert input image to (batch_size, channels, height, width)\n", + " train_image = train_image[None, None, :, :].to(device)\n", + "\n", + " # Convert mask to (batch_size, height, width)\n", + " train_mask = train_mask[None, :, :].to(device)\n", + "\n", + " # Forward pass\n", + " output = model(train_image)\n", + "\n", + " # Backward pass\n", + " optimizer.zero_grad()\n", + " loss = criterion(output, train_mask)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " # Record batch loss\n", + " epoch_train_loss += loss.item()\n", + "\n", + " # Validation loop\n", + " model.eval()\n", + " with torch.no_grad():\n", + " for batch_idx, val_data in enumerate(dataset['validation']):\n", + "\n", + " # Extract validation image and mask (single slice from \"depth\" dim)\n", + " val_image = torch.tensor(val_data['image'])[:,:,15].float()\n", + " val_mask = torch.tensor(val_data['mask'])[:,:,15]\n", + "\n", + " # Convert mask to binary (vertebrae/non-vertebrae)\n", + " val_mask = convert_mask_to_binary(val_mask, 1, 7)\n", + "\n", + " # Convert input image to (batch_size, channels, height, width)\n", + " val_image = val_image[None, None, :, :].to(device)\n", + "\n", + " # Convert mask to (batch_size, height, width)\n", + " val_mask = val_mask[None, :, :].to(device)\n", + "\n", + " # Generate prediction\n", + " output = model(val_image)\n", + "\n", + " # Compute loss\n", + " loss = criterion(output, val_mask)\n", + "\n", + " # Record batch loss\n", + " epoch_val_loss += loss.item()\n", + "\n", + " # Print loss\n", + " print(f'Epoch {epoch+1} validation loss: {round(epoch_val_loss, 3)}')\n", + "\n", + " # Save model if improving\n", + " if (lowest_loss is None) or (epoch_val_loss < lowest_loss):\n", + " lowest_loss = epoch_val_loss\n", + " save_model_path = os.path.join(models_dir, f'UNet_SPIDER_epoch{epoch+1}.pt')\n", + " torch.save(model.state_dict(), save_model_path)\n", + " print(f'Model saved for epoch {epoch+1}.')\n" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Unfortunately, the Colab session timed out after only 4 epochs of training...but that's okay! Let's see how much our model learned in that time by predicting new masks for the test images." + ], + "metadata": { + "id": "p0I9pEIySjw0" + } + }, + { + "cell_type": "markdown", + "source": [ + "## Generating New Segmentation Masks for the Test Data" + ], + "metadata": { + "id": "Rk4WZpavCS-y" + } + }, + { + "cell_type": "markdown", + "source": [ + "Rather than loading the full dataset again, we'll just load the first 10 images using the \"demo\" configuration:" + ], + "metadata": { + "id": "MpUl3REASuKx" + } + }, + { + "cell_type": "code", + "source": [ + "from datasets import load_dataset\n", + "\n", + "dataset = load_dataset(\n", + " \"cdoswald/SPIDER\",\n", + " name=\"demo\", # Demo configuration loads 10 examples\n", + " trust_remote_code=True,\n", + ")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 461, + "referenced_widgets": [ + "b1abebb5f64d4445bfde112a031aeda1", + "098cafccc90849dbbbb7295b393f431a", + "3e237c5b245042388ef0b9c71fc3e623", + "051529975d0b4b779f34065d55ae7227", + "5fd4b6d36af544b89860cf80a121e780", + "9c648da3e17146cd82eee179b99f8eb8", + "1751690500e341b2add193e8c736fb03", + "2a6d247bb6de49f0a76a1bb55907bd4a", + "00425b5e2c7c49f79875180161a801b5", + "e4936ebc8f8e420f91180a6b16c638c7", + "87df3f421667442591fb88402c8cc086", + "7d7076366d264ac593aa02afe178b80d", + "c5183ebd3e5e436c9fb0d12234ce4b60", + "b384bbaf731341118b3031234297fad5", + "180cd5e717d940dfbf2e877ffcd8482c", + "9de7da38e4574a139481387610c8fe30", + "eced73ed61aa4cbe9ed9349ad1679ca2", + "dad671bd79344548a5026d3eab9e8d27", + "ab8f1568a5f24f7d8a2beb275ec0326b", + "f916967165d74193ad501bba18e9e5c8", + "63a2bdf2fc3749dea86d1dc3ae34b9a8", + "44ee2034d52b496ca161bda00011d938", + "f82daf0f6c344f55968126e6038b9d71", + "6a08342987fb42768c6159a8c48b04d9", + "01bf8c2edfc343d4a9df7460186e1055", + "1e279de479cc46508ed435720c150aed", + "541bb453602e4c09815894b535ea8ede", + "76748abf3b1943378ce50c6756800dd3", + "b6a8fb591791475ba89e7df0836416b3", + "98a3b07cdf014a4a9754e16d076f5387", + "5c2284c5b10c43c49122258fa8f483ee", + "3ae603fdc5be49168bb486926978f5f0", + "c9976d10b8ae43cfae6b53c5fa5925ae", + "fa8e3109629146528bcb16d5f099a3c9", + "41af046e2cd94efd86bb82f096ca15cc", + "c4922024b72546d1a4d45bd424550156", + "df132dec32d1452c80640fe1aaae8bb4", + "738c36ad06a74ec0868c309c314e0ce5", + "532c509c87fa42668703ceaad1e7a43b", + "463bf6976a2946a9a6a398bab24caece", + "b2765fc2b6a446d8bd05d9ab180328ef", + "13b36aead23b4f039d79488c21ed0f0a", + "0ed6b8e9353741acb28f05a620a4b0d7", + "ed058654a53a40a69a6df9f8d9c33a59", + "2034b883e6c24edc8e17fc468df16e1a", + "2fed0a4eb8b24fb38449bc22f35936a0", + "f2cb8eda439b4bdc8beeca8fa7175391", + "64be9728e9f04eb698ada03ccd0bfb06", + "fbf734d689c9447483effea8f2889554", + "1bb4474bc62444e9981939a737837c47", + "ef336bdb36804b5da6072bcf45883b0f", + "53827cfcfb9a408b83fd8567f9d65aa6", + "d7de7e22a7ca47f4a7c85dfa14e9a244", + "e324c26793bb4e6594e55331b5f2fe12", + "6ba74c4c0f4a4eada32af4389ec7415b", + "bcae12f003884196ba2d334f104c445e", + "faed4877ecfc442e8a8f5f95f1ac7c4e", + "ba70689270394208ae5389d44b93bb3b", + "4a23fc7e01054262af0fb1f2d29427ed", + "d7a911f619e740c090805fb67eebaad3", + "f017087adcd74c339e0c897db8293eb4", + "29e2b14a56d946c8b01a09df4baac553", + "82f25b7af3134c53a71b7cb47d5e3b0c", + "8adffa02a1fa41e883c0827b3e6b4740", + "9f8dc3dcec6f45a6a57b860de8d84d4f", + "535b3395367b44eaaded325c3422a518", + "e4f17460a6ce49dab0c8a27e8e95a84a", + "9657d5d26abd46db841f9e3daaf55f0c", + "6d55cbbecc464148b69b12779a14289d", + "b04525ca8e52459d90d7e6339fc5a41d", + "13cd779ab96445638bc3f8eac4b78bdf", + "35febdd4fa1a4251ae79a63248b6b555", + "f15cd63ec2c846e4b9a339ae46dc44c6", + "474c7882351a45f382f2f25f873c0dfe", + "a2b4c95161534d8294d3fab118a7c100", + "76e730efef59417d8f0f8e2281a4c43b", + "da62380bc22a488b8e1d3bb994fb9a0d", + "ba27106f208e45e0a3cdc1523db20597", + "68e85f2d9d314817b3a1de2506c31ab7", + "42b190884418416a8213a472e2de8576", + "707ad31cea50457c8d1ef4c29a708684", + "5febb814e3d04a28bd9a1480e1a1731f", + "963f5d1c46214138abd6bd4f49ed898f", + "e2599f2106924e18b1af5fbf1788b22c", + "b3748f3adc044d54a20bada75dd64460", + "74ef085c049045f797cef0decfa2778a", + "b93e4b5d041a4beab4418377172f8112", + "6aa704d33cd54927afdc5ab06f898e3c", + "cb11d600b0a24095b06a53780d9ef232", + "efa42ccf972f49c494b05f901c5350d3", + "42db963704e440ffa16ee76cc5041539", + "163d1be5ed634db99c3cba3831d7039b", + "6b4cd37d2de84c6080ae5a14a7dd8cae", + "91b7afeb42bf4a6e9a3b1d0fd0a69259", + "35eb277574e7477eae7b888e428ba3b9", + "8a6a207b22a34d0a8003adb356a89e18", + "4311e8dac7ea4083b131f853a6be5158", + "3bc76450ac264484b68747b488367f34", + "55b4b209fbbb4bcaa3badb4d1343f88d", + "12c9378c7ad4450f97e4471d6932505a", + "72a5e3472077462ab52de4cdd9e0f757", + "68c93965257c4fd0a845a01a7b9b450d", + "c03a8aad8b9a48579583090155860258", + "57496db022bc4fef8d372b935b67b6c8", + "ce81dad32a06425e89f42e40b368f862", + "4d895bc501194da4bc8c7340cc32ba67", + "34bb672873ef4d0c842ec87304bced0d", + "7d181bc2473d4d4fa870a629fd79c3b4", + "b85ab036fe104e4ebde75c9627fb1713", + "afa1f6e23c9a41adb34613883d24554a" + ] + }, + "id": "yOdFVP2hBtD-", + "outputId": "a71cabba-a876-44e4-d1fb-0ade5b4d219b" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading builder script: 0%| | 0.00/22.5k [00:00" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Similarly to how we looped over the training and validation splits of the SPIDER dataset, we can loop over images/masks from the test split, generate predictions, and calculate metrics like mean Intersection-over-Union (mIOU). Since we're only interested in a qualitative assessment of the model performance for this tutorial, we'll extract just the first image from the test set:" + ], + "metadata": { + "id": "Kjd7WpIoS5hQ" + } + }, + { + "cell_type": "code", + "source": [ + "model.eval()\n", + "with torch.no_grad():\n", + "\n", + " # Get first test image\n", + " test_data = dataset['test'][0]\n", + "\n", + " # Extract test image and mask (single slice from \"depth\" dim)\n", + " test_image = torch.tensor(test_data['image'])[:,:,15].float()\n", + " test_mask = torch.tensor(test_data['mask'])[:,:,15]\n", + "\n", + " # Convert mask to binary (vertebrae/non-vertebrae)\n", + " test_mask = convert_mask_to_binary(test_mask, 1, 7)\n", + "\n", + " # Convert input image to (batch_size, channels, height, width)\n", + " test_image = test_image[None, None, :, :].to(device)\n", + "\n", + " # Convert mask to (batch_size, height, width)\n", + " test_mask = test_mask[None, :, :].to(device)\n", + "\n", + " # Generate prediction\n", + " output = model(test_image)\n", + " prediction = torch.argmax(output, 1)\n" + ], + "metadata": { + "id": "rqHSRENJDSdd" + }, + "execution_count": 32, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Note that the output gives us probabilities of belonging to each class, so we took the argmax over the 1st dimension (the channels dimension) to create a binary {0, 1} prediction. Now we can compare our predicted mask against the actual mask for the test image:" + ], + "metadata": { + "id": "QrubfpdITV3s" + } + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "id": "cd8oHF9-7ZHd", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 356 + }, + "outputId": "d42fd7f1-d3ae-46ad-ce52-46f8da0a8b41" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+EAAAFTCAYAAABWJA2xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xU5fX/P9PvzJ3ethd6F6UIqFhiQcUaiTXWJMYkGGNJokmsMdboV2MsSUzUKEZ/GsUaFcWOIlhAFKSXrbOz03t7fn/s6xxn2AV2YQVMnvfrtS/Yu3fufe69s8/O5znnfI5GCCEgkUgkEolEIpFIJBKJ5BtHu6cHIJFIJBKJRCKRSCQSyf8KUoRLJBKJRCKRSCQSiUSym5AiXCKRSCQSiUQikUgkkt2EFOESiUQikUgkEolEIpHsJqQIl0gkEolEIpFIJBKJZDchRbhEIpFIJBKJRCKRSCS7CSnCJRKJRCKRSCQSiUQi2U1IES6RSCQSiUQikUgkEsluQopwiUQikUgkEolEIpFIdhNShEu+VWzZsgWKouD999/f00PpN+eddx6sVuueHsZexZdffgm9Xo8VK1bs6aFI/gfRaDS47rrr9vQw+oVGo8HcuXN3+vWJRAJ+vx/z5s0bxFF9s1x33XXQaDQIBoN7eih7Dd3d3VBVFS+//PKeHopkN9Pc3IzzzjuPv3/rrbeg0Wjw1ltv7bExbc3WY9ybaW5uxnHHHbfTry+VShg/fjz+8Ic/DOKovlkefvhhaDQaLF26dE8PZa8hn8+joaEB99133x4bgxTh/USj0fTrazAmxVQqheuuu67fx6IJ+emnn97lc+/t3HDDDZg2bRoOPPBA3nbeeedVPAOr1YqhQ4dizpw5+Pe//41SqfSNj2ugz2wwePLJJ/H9738fI0aMgEajwaGHHtrnfvT+6Ovrww8/7PM199xzDxwOB/L5PNra2vD9738fo0aNgs1mg9PpxP77749HHnkEQoher21tbcWpp54Kp9MJu92OE088EevXr6/YZ+zYsZg9ezauueaaXb4Pkj3LfffdB41Gg2nTpu30Mdra2nDdddfhs88+G7yB7SIbN27k35Mbb7yxz33OOussnnP2Vu6++27YbDacfvrpvI1ELn1ZLBY0Njbi+OOPx0MPPYRsNrtbxnbTTTdh/vz5u+VcAPDaa6/hBz/4AcaPHw+dTofm5uY+9yt/9lt/PfHEE32+5oUXXoBWq0VHRwfS6TSfx+FwwGq1YuLEibj77ruRz+d7vTYSieDCCy+Ez+eDqqo47LDD8Mknn1Ts4/F48MMf/hBXX331Lt8HSf8h8UJfiqJg5MiRmDt3Ljo7O/f08AbEyy+/vMcXH+k+/vCHP+zz57/97W95n711Ee5f//oXtmzZUrE42tf7pLa2FrNmzcKf/vQnxOPx3TK2++67Dw8//PBuORcAfPTRR/jpT3+KyZMnw2AwQKPRbHPfbc2pt9xyS5/7f/7559BoNPjoo48AAJdeeikmTZoEt9sNi8WCMWPG4LrrrkMikej12mw2i1//+teora2F2WzGtGnTsGDBgop9DAYDLrvsMvzhD39AJpPZhbuw8+j3yFm/hTz66KMV3//zn//EggULem0fM2bMLp8rlUrh+uuvB4BtCqv/Rbq6uvDII4/gkUce6fUzk8mEBx98EACQTqexadMmvPDCC5gzZw4OPfRQPPfcc7Db7d/Y2PbEM7v//vvx8ccfY+rUqeju7t7h/j//+c8xderUim3Dhw/vc9+XXnoJRx11FAwGA4LBIFpaWjBnzhw0NjYin89jwYIFOO+88/DVV1/hpptu4tclEgkcdthhiEaj+M1vfgODwYD/+7//wyGHHILPPvsMHo+H973oootw7LHHYt26dRg2bNhO3gXJnmbevHlobm7GRx99hLVr127zPbU92tracP3116O5uRn77rvv4A9yF1AUBf/617/wu9/9rmJ7MpnEc889B0VR9tDIdkw+n8fdd9+NSy+9FDqdrtfP77//flitVmSzWbS2tuLVV1/FBRdcgLvuugsvvvgiGhoavtHx3XTTTZgzZw5OOumkb/Q8xOOPP44nn3wSkyZNQm1t7Q73P+OMM3DsscdWbJsxY0af+7700kuYPHkyqqurEQqF8MUXX+DYY49Fc3MztFotFi1ahEsvvRSLFy/G448/zq8rlUqYPXs2li1bhl/+8pfwer247777cOihh+Ljjz/GiBEjeN+LLroIf/rTn7Bw4UJ85zvf2cm7INkZbrjhBgwZMgSZTAbvvfce7r//frz88stYsWIFLBbLbh3LwQcfjHQ6DaPROKDXvfzyy7j33nv3uBBXFAX//ve/cd999/W6hn/9619QFGWPiaL+cPvtt+P000+Hw+Ho9TN6n+TzeXR0dOCtt97CL37xC9x55514/vnnsc8++3yjY7vvvvvg9Xp3W1bCyy+/jAcffBD77LMPhg4ditWrV293/yOPPBLnnHNOxbb99tuvz31feukl+P1+/ty6ZMkSzJw5E+effz4URcGnn36KW265Ba+//jreeecdaLVfx5XPO+88PP300/jFL36BESNG4OGHH8axxx6LN998EwcddBDvd/755+PKK6/E448/jgsuuGBnb8POIyQ7xc9+9jPxTd2+rq4uAUBce+21/dr/zTffFADEU0899Y2MZ2/hzjvvFGazWcTj8Yrt5557rlBVtc/X3HzzzQKAOPXUU7/RsW3vmW1vfLvC5s2bRbFYFEIIMW7cOHHIIYf0ud9A3x/JZFIoiiIeeuih7e533HHHCVVVRaFQ4G233nqrACA++ugj3rZy5Uqh0+nEVVddVfH6XC4nXC6XuPrqq/s1Lsnex/r16wUA8cwzzwifzyeuu+66nTrOkiVLBIAdvucGi/7Mrxs2bBAAxHe/+10BQHz22WcVP583b54wGAzi+OOP/0Z+v8vH+rOf/WynXvvMM88IAGLt2rUV26+99loBQHR1dfV6zWOPPSa0Wq2YNm3aTp1zIKiqKs4999xe27c3vl2htbVV5HI5IYQQs2fPFk1NTX3uR8/+9ttv7/exGxoadviemjt3rgAg2tvbeduTTz7Za34OBALC6XSKM844o9cxxo8fL84+++x+j0uyazz00EMCgFiyZEnF9ssuu0wAEI8//vg2X5tIJAZlDE1NTX3+ngyUb/Jza3/HCECcdNJJQqvVivnz51f87P333xcAxCmnnPKN/P6Xj3X27Nk79dpPPvlEABCvv/56xfZtvU+EEOKNN94QZrNZNDU1iVQqtVPn7S/b+iy4vfHtCh0dHXxNO3p/DfRv2cyZM3f4nvrjH/8oAIgPPviAty1evLjX/J1Op8WwYcPEjBkzeh3juOOOEzNnzuz3uAYTmY4+iJRKJdx1110YN24cFEVBVVUVfvzjHyMcDlfst3TpUsyaNQterxdmsxlDhgzhFZiNGzfC5/MBAK6//npO1xjoyiWlG65evRrf//734XA44PP5cPXVV0MIgS1btuDEE0+E3W5HdXU17rjjjorX53I5XHPNNZg8eTIcDgdUVcXMmTPx5ptv9jpXd3c3zj77bNjtdjidTpx77rlYtmwZNBpNr7SYVatWYc6cOXC73VAUBVOmTMHzzz/fr2uaP38+pk2bNqDUzyuvvBJHHXUUnnrqqV4rdP/5z38wc+ZMqKoKm82G2bNn44svvqjYh+q5169fj1mzZkFVVdTW1uKGG27gVOz+PrPW1lacdNJJsFqt8Pl8uOKKK1AsFiv2aW9vx6pVq/pMWdyahoaGipW//hCPx1EoFLa7zxtvvIFsNotjjjlmu/s1NzcjlUohl8vxtqeffhpTp06tiLiPHj0ahx9+OP7f//t/Fa83GAycpSD5djJv3jy4XC7Mnj0bc+bM2WbdcSQSwaWXXorm5maYTCbU19fjnHPOQTAYxFtvvcXvl/PPP59/f2ju2Fat4aGHHlqRdTKQOWsgzJgxA0OGDKmIXtK1H3300XC73b1e89xzz2H27Nmora2FyWTCsGHD8Pvf/77X7/uaNWtwyimnoLq6GoqioL6+Hqeffjqi0eh2x3TjjTdCq9Xinnvu2e5+8+fPR3Nz84AyTc466yz88Ic/xOLFi3ul7y1evBhHH300HA4HLBYLDjnkkF7+HPS3Z9WqVTj11FNht9vh8XhwySWXVES3NBoNkskkHnnkEX7mWz/nSCSC8847D06nEw6HA+effz5SqVTFPsFgEKtWreq1vS9qa2thMBj6fS+AnoyH8jmuLz7//HNs2bIFs2fP3u5+lP4eiUR429NPP42qqip897vf5W0+nw+nnnoqnnvuuV6lAUceeSReeOGFPkuBJLsPykTYsGEDgK8/K6xbtw7HHnssbDYbzjrrLAD9/2wohMCNN96I+vp6WCwWHHbYYb0+kwDbrglfvHgxjj32WLhcLqiqin322Qd33303j+/ee+8FUJkWTAz2GLdHXV0dDj744D7n1AkTJmD8+PG9XvPuu+/ie9/7HhobG2EymdDQ0IBLL70U6XS6Yr+Ojg6cf/75qK+vh8lkQk1NDU488URs3Lhxu2N65JFHoNfr8ctf/nK7+82fPx9GoxEHH3xw/y4WPe+Vq6++Gps2bcJjjz1W8bP+fCamVPd33nkHP/7xj+HxeGC323HOOedUPJ/m5mZ88cUXePvtt/n5bp2Zmc1mcdlll3Hpy8knn4yurq6KfaLRKFatWrXDv0MAUFVVBbPZ3O97AfRkq+4o0yESiWDRokU7PafqdDpceOGFvE1RFPzgBz/ABx98gC1btlQc48gjj8R7772HUCg0oOsYDKQIH0R+/OMf45e//CUOPPBA3H333Tj//PMxb948zJo1i0VVIBDAUUcdhY0bN+LKK6/EPffcg7POOotrc30+H+6//34AwMknn4xHH30Ujz76aMUf6IFw2mmnoVQq4ZZbbsG0adNw44034q677sKRRx6Juro63HrrrRg+fDiuuOIKvPPOO/y6WCyGBx98EIceeihuvfVWXHfddejq6sKsWbMq6jZLpRKOP/54/Otf/8K5556LP/zhD2hvb8e5557bayxffPEFpk+fjpUrV+LKK6/EHXfcAVVVcdJJJ+HZZ5/d7nXk83ksWbIEkyZNGvA9OPvssyGEqPhA+eijj2L27NmwWq249dZbcfXVV+PLL7/EQQcd1GuyLhaLOProo1FVVYXbbrsNkydPxrXXXotrr70WQP+eWbFYxKxZs+DxePDHP/4RhxxyCO644w789a9/rTjXVVddhTFjxqC1tXXA17kjzj//fNjtdiiKgsMOO2ybBh0vv/wyJk+ejKqqqort6XQawWAQGzduxCOPPIKHHnoIM2bM4Am4VCph+fLlmDJlSq9j7r///li3bl2vuqjJkydjxYoViMVig3SVkt3JvHnz8N3vfhdGoxFnnHEG1qxZgyVLllTsk0gkMHPmTNxzzz046qijcPfdd+Oiiy7CqlWr0NLSgjFjxuCGG24AAFx44YX8+zOQDzlA/+esneGMM87AE088wcInGAzitddew5lnntnn/g8//DCsVisuu+wy3H333Zg8eTKuueYaXHnllbxPLpfDrFmz8OGHH+Liiy/GvffeiwsvvBDr16+v+ECxNb/73e9wzTXX4C9/+Qsuvvji7Y570aJFOz1nAj011MTChQtx8MEHIxaL4dprr8VNN92ESCSC73znO1yzV86pp56KTCaDm2++Gcceeyz+9Kc/VXwoevTRR2EymTBz5kx+5j/+8Y97HSMej+Pmm2/GqaeeiocffpjLfog///nPGDNmTJ9j2FWuv/56WK1WKIqCqVOnVtyPcl5++WX4/f5ec18ul0MwGMSWLVvw7LPP4o9//COampoqSjY+/fRTTJo0qdeC6v77749UKtVr8Xjy5MmIRCIDFj6SwWXdunUAUFFiVSgUMGvWLPj9fvzxj3/EKaecAqB/nw0B4JprrsHVV1+NiRMn4vbbb8fQoUNx1FFHIZlM7nA8CxYswMEHH4wvv/wSl1xyCe644w4cdthhePHFF3kMRx55JADw71t5OeXuGGM5Z555Jl544QWu5y0UCnjqqae2Oac+9dRTSKVS+MlPfoJ77rkHs2bNwj333NMrtfmUU07Bs88+i/PPPx/33Xcffv7znyMej2Pz5s3bHMtf//pXTku+/fbbtzvuRYsWYfz48QNezOtrTh3oZ+K5c+di5cqVuO6663DOOedg3rx5OOmkk/jv0l133YX6+nqMHj2an+9vf/vbimNcfPHFWLZsGa699lr85Cc/wQsvvNDL+PPZZ5/FmDFjdvi5fGd4+OGHoaoqzGYzxo4d22shhnj11Veh0Whw1FFHVWwvFAoIBoNoa2vDa6+9ht/97new2WzYf//9eZ9PP/0UI0eO7FWCSvts/Xlg8uTJEEJg0aJFg3CFA2SPxN//C9g67eLdd98VAMS8efMq9nvllVcqtj/77LM7TAkZjHR0Sue78MILeVuhUBD19fVCo9GIW265hbeHw2FhNpsr0j4KhYLIZrMV5wmHw6KqqkpccMEFvO3f//63ACDuuusu3lYsFsV3vvOdXumlhx9+uJgwYYLIZDK8rVQqiQMOOECMGDFiu9e4du1aAUDcc889vX62o3TvTz/9VAAQl156qRBCiHg8LpxOp/jRj35UsV9HR4dwOBwV288991wBQFx88cUVY549e7YwGo2cLrWjdHQA4oYbbqjYvt9++4nJkyf3ue+GDRu2eT19sb109Pfff1+ccsop4u9//7t47rnnxM033yw8Ho9QFEV88sknvfZvbGzs8zootZ++Dj/8cLF582b+Od2Dra9TCCHuvfdeAUCsWrWqYvvjjz8uAIjFixcP6Hole56lS5cKAGLBggVCiJ7fi/r6enHJJZdU7HfNNddwyvrWlEolIcT209G3leZ4yCGHVLzn+ztnCTGwdPTbb79drFixQgAQ7777rhCi5/1stVpFMpnsc/7pK+Xwxz/+sbBYLDz/0by0ozIRlKXwXX755UKr1YqHH354u68RQoh8Pi80Go24/PLLe/1sR+ne4XBYABAnn3yyEKLnOY0YMULMmjWLnxld55AhQ8SRRx7Z69gnnHBCxTF/+tOfCgBi2bJlvG1H6ehbP7eTTz5ZeDyePvd98803+74R22B76eibNm0SRx11lLj//vvF888/L+666y7R2NgotFqtePHFF3vtv620yX/9618Vc+aUKVPE8uXLK/ZRVbXXdQohxEsvvSQAiFdeeaVi+6JFiwQA8eSTT/b/YiU7DaXxvv7666Krq0ts2bJFPPHEE8Lj8Qiz2SxaWlqEEF//7b7yyisrXt/fz4aBQEAYjUYxe/bsit+x3/zmNwJAxfuLPvPRe75QKIghQ4aIpqYmEQ6HK85TfqxtpQt/E2PcFjSfhUIhYTQaxaOPPiqE6Hm/azQasXHjxj7np77m1JtvvlloNBqxadMmIcTX89aOykjK09HvvvtuodFoxO9///sdjl0IIerr68Upp5zSa3t/0r0dDofYb7/9+Pv+fiamY0+ePJnLaYQQ4rbbbhMAxHPPPcfbdpSOfsQRR1Q8u0svvVTodDoRiUR67TvQ8rAdpaMfcMAB4q677hLPPfecuP/++8X48eMFAHHffff12vfss8/u8zo++OCDijl11KhRveb+cePGie985zu9XvvFF18IAOKBBx6o2N7W1iYAiFtvvbV/FzqIyEj4IPHUU0/B4XDgyCOPRDAY5K/JkyfDarVySqTT6QQAvPjii/1KOd5Vyh0odTodpkyZAiEEfvCDH/B2p9OJUaNGVThY63Q6NswolUoIhUIoFAqYMmVKhWvrK6+8AoPBgB/96Ee8TavV4mc/+1nFOEKhEBYuXMiRDbo/3d3dmDVrFtasWbPd6C8Zj7lcrgHfA0pfpyjsggULEIlEcMYZZ1Q8K51Oh2nTpvWZvlq+Ukgtg3K5HF5//fV+j+Oiiy6q+H7mzJm9XMMffvhhCCG26dq7MxxwwAF4+umnccEFF+CEE07AlVdeiQ8//BAajQZXXXVVxb4rVqzA5s2b+0wBOuOMM7BgwQI8/vjjvFpdngpG/zeZTL1eS+ZVW6eO0fPcW11QJdtm3rx5qKqqwmGHHQag5/fitNNOwxNPPFGRdv3vf/8bEydOxMknn9zrGNtzUh0o/Z2zdoZx48Zhn332wb/+9S8APQZfJ5544jYNmcrT82i+mzlzJlKpFFatWgUAbOrz6quv7jCVWgiBuXPn4u6778Zjjz3WZ6bR1oRCIQghBmXO/Oyzz7BmzRqceeaZ6O7u5jkzmUzi8MMPxzvvvNOrC8XWfwMoaj+QFlt9zZnd3d0VmTPXXXcdhBCDaojZ2NiIV199FRdddBGOP/54XHLJJfj000/h8/lw+eWXV+wbiUTwwQcf9DlnHnbYYViwYAGeeuopXHTRRTAYDL0ihul0Ws6Z3wKOOOII+Hw+NDQ04PTTT4fVasWzzz6Lurq6iv1+8pOfVHzf38+Gr7/+OnK5HC6++OKKefEXv/jFDsf26aefYsOGDfjFL37BnzGJ/syxu2OMW+NyuXD00UdXzKkHHHAAmpqa+ty/fE5NJpMIBoM44IADIITAp59+yvsYjUa89dZbvdLo++K2227DJZdcgltvvbWX8ea26O7u3qk5FeiZV2lO3ZnPxBdeeGFFBP4nP/kJ9Hr9gObUCy+8sOLZzZw5E8ViEZs2beJt5513HoQQg27u9v777+OSSy7BCSecgIsuuggff/wxxo8fj9/85jcV81ypVMIrr7zS55w6duxYLFiwAPPnz8evfvUrqKrayx392zSnSnf0QWLNmjWIRqPw+/19/jwQCAAADjnkEJxyyim4/vrr8X//93849NBDcdJJJ+HMM8/s802zqzQ2NlZ873A4oCgKvF5vr+1bO2w/8sgjuOOOO3rVKA8ZMoT/v2nTJtTU1PT6MLq1Q/LatWshhMDVV1+9zRYrgUCg1x+0rRE7UQdHv6A2mw1Az7MCsE132a1TWLRaLYYOHVqxbeTIkQCwwzojQlEUrhsnXC5Xv/5QfBMMHz4cJ554Ip555hkUi0V2Tn7ppZdQVVXVZ0p5U1MT/4E844wzcOGFF+KII47AV199BbPZzH8k+2pvRPU/W9cO0fMcTDEm+eYpFot44okncNhhh3FNJABMmzYNd9xxB9544w1OI1u3bh2nZX7T9GfO2lnOPPNM3HHHHbj00kuxaNEi/OY3v9nmvl988QV+97vfYeHChb1KLajObsiQIbjssstw5513Yt68eZg5cyZOOOEE9vAo55///CcSiQTuv/9+nHHGGQMa92DOmdsT/9FotOLDabmrNwAMGzYMWq2233Mm0PvvFx0/HA5/o90u+sLtduP888/HLbfcgpaWFtTX1wPoWUQB0CttEuipl6Synjlz5uCmm27CkUceiTVr1qC6uhpAz5wo58y9n3vvvRcjR46EXq9HVVUVRo0a1auEQK/X8/uC6O9nQxJBW//e+Hy+HYo+So3vq5a6P+yOMfbFmWeeibPPPhubN2/G/Pnzcdttt21z382bN+Oaa67B888/3+tzE82pJpMJt956Ky6//HJUVVVh+vTpOO6443DOOefw7xvx9ttv46WXXsKvf/3rHdaBb83OzKlAz7xK93hnPhNvfd+tVitqamoGbU7d3RiNRsydO5cFObmWL1myBF1dXX2KcLvdjiOOOAIAcOKJJ/KC+CeffIKJEycC+HbNqVKEDxKlUgl+v3+bxkQkwKif94cffogXXniBW8Lccccd+PDDDwe932xfbWn62gZUTiyPPfYYzjvvPJx00kn45S9/Cb/fD51Oh5tvvpkn/IFAUZIrrrgCs2bN6nOf7bU2orqrnZkoVqxYUXF8Gsujjz7aa2IGev6QDjbbuud7koaGBuRyOSSTSf5A+/LLL+Poo4/u12Q0Z84c/O1vf8M777yDWbNmwe12w2Qyob29vde+tG3rtkD0PLdeFJLs3SxcuBDt7e144okn+uybPG/evD5Fyc6wrfdi+eIRMPhz1tacccYZuOqqq/CjH/0IHo9nm9cXiURwyCGHwG6344YbbsCwYcOgKAo++eQT/PrXv66IGN9xxx0477zz8Nxzz+G1117Dz3/+c9x888348MMPKz7MH3jggfjss8/w5z//GaeeemqfZnBb43a7odFoBnXOvP3227fZQm5Hf7t25gNOf/5W7U6oZVsoFOLn8/LLL+PAAw/ss13R1syZMwe//e1v8dxzz3H9e01NjZwzvwXsv//+fS5Ol2MymXoJ8/5+NtyT7KkxnnDCCTCZTDj33HORzWZx6qmn9rlfsVjEkUceiVAohF//+tcYPXo0VFVFa2srzjvvvIo59Re/+AWOP/54zJ8/H6+++iquvvpq3HzzzVi4cGFFK6xx48YhEomwF0V/F2o9Hs9OzaktLS2IRqO95tSd/Uy8s+zNcyrx8ssvo7m5GWPHjt3h67/73e/i7LPPxhNPPMEivKamps/M2r1xTpUifJAYNmwYXn/9dRx44IH9cgqcPn06pk+fjj/84Q94/PHHcdZZZ+GJJ57AD3/4w71ihfvpp5/G0KFD8cwzz1SMh8zIiKamJrz55ptIpVIV0fC1a9dW7EeRZIPBwKtYA6GxsRFms7ki6tZfHn30UWg0GjYlIadgv9/fr7GUSiWsX7+eo98A2CyH0sb3hmc2UNavXw9FUfjDM7lRbm3SsS0opYdWobVaLSZMmNCn4dvixYsxdOhQjqwRGzZsgFarrbi3kr2fefPmwe/3s9tuOc888wyeffZZPPDAAzCbzRg2bBiLum2xvd8fl8vVp1HZpk2bKjJU+jtn7SyNjY048MAD8dZbb3EaYF+89dZb6O7uxjPPPFNhLretuWvChAmYMGECfve732HRokU48MAD8cADD+DGG2/kfYYPH47bbrsNhx56KI4++mi88cYbvX6Xtkav12PYsGE7PWcC4A+HNGeWRyF2xJo1ayo+2K5duxalUqmi1ObbNm9S+RCJEiEEXnnlFVxxxRX9ev3WcyYA7Lvvvnj33XdRKpUqBNzixYthsVh6zY30PMeMGbPzFyLZbfT3syFlma1Zs6ZiXuvq6tqh6KPfzxUrVmz393Nbv2+7Y4x9YTabcdJJJ+Gxxx7DMcccs00R9Pnnn2P16tV45JFHKozYtu7eUH49l19+OS6//HKsWbMG++67L+64444KZ3Kv14unn34aBx10EA4//HC89957vcRZX4wePXpQ5tSd+Uy8Zs0aLv8CeiLr7e3tOPbYY3nbt31OBXoyMsuvaXtks1mUSqVec+qbb76JWCxWkTG1ePFi/nk5e3JOlTXhg8Spp56KYrGI3//+971+VigU+ENkOBzuteJEbwhKnyAxuz2H3G8aWi0rH+vixYvxwQcfVOxHzpl/+9vfeFupVOr14dzv9+PQQw/FX/7ylz5X/bdukbA1BoMBU6ZM2aaj97a45ZZb8Nprr+G0007jVJ5Zs2bBbrfjpptu6rMuv6+x/PnPf+b/CyHw5z//GQaDAYcffjiAwXtmA2lR1l/6up5ly5bh+eefx1FHHcUf/Mi1c+sI37aezd///ndoNJoK9+U5c+ZgyZIlFc/pq6++wsKFC/G9732v1zE+/vhjjBs3rl9RJMneQTqdxjPPPIPjjjsOc+bM6fU1d+5cxONxbrNyyimnYNmyZX06rdL8oqoqgL5/f4YNG4YPP/ywok3Uiy++2KvNSH/nrF3hxhtvxLXXXrtdV/K+xpHL5XDfffdV7BeLxXq1C5wwYQK0Wm2fqXT77LMPXn75ZaxcuRLHH398r7q2vpgxY8aA58zHH38cDz74IGbMmMHz2+TJkzFs2DD88Y9/7FV/B/Q9R2z9N4DaqZW3PlRVdZfnzIG0KOsvfV1Pa2sr/vGPf2CfffZBTU0NgJ60yUAg0CttMhgM9hlZevDBBwGgIqI6Z84cdHZ24plnnql4/VNPPYXjjz++V5naxx9/DIfDgXHjxu38BUp2G/39bHjEEUfAYDDgnnvuqXjv3HXXXTs8x6RJkzBkyBDcddddvX6fyo+1rXl2d4xxW1xxxRW49tprt5mSDfQ9pwohuP0akUqlerW+GjZsGGw2W59zan19PV5//XWk02kceeSRvUoy+2LGjBlYsWJFn8fbFgsXLsTvf/97DBkyhNvW7cxn4r/+9a8Vnw3vv/9+FAqFQZ9TB9KirL/0dT3xeBx33XUXvF4vJk+eDADo7OzEJ5980mtOjUQifX4u3tacWiwWK7oPZbNZPPTQQ5g2bRpH34mPP/4YGo0GM2bM2PkL3ElkJHyQOOSQQ/DjH/8YN998Mz777DMcddRRMBgMWLNmDZ566incfffdmDNnDh555BHcd999OPnkkzFs2DDE43H87W9/g91u55Ufsu5/8sknMXLkSLjdbowfP36n6312huOOOw7PPPMMTj75ZMyePRsbNmzAAw88gLFjx1Z8CDvppJOw//774/LLL8fatWsxevRoPP/885xaUr4qd++99+Kggw7ChAkT8KMf/QhDhw5FZ2cnPvjgA7S0tGDZsmXbHdOJJ56I3/72t71Wt4CePxS0ypnJZLBp0yY8//zzWL58OQ477LCKX0a73Y77778fZ599NiZNmoTTTz8dPp8PmzdvxksvvYQDDzywQnQrioJXXnkF5557LqZNm4b//Oc/eOmll/Cb3/yGV+8G65ldddVVeOSRR7Bhw4YdmrO988473Fauq6sLyWSSo2cHH3wwR+FOO+00mM1mHHDAAfD7/fjyyy/x17/+FRaLBbfccgsf76WXXsJBBx3USxD/4Q9/wPvvv4+jjz4ajY2NCIVC+Pe//40lS5bg4osvrkiZ+ulPf4q//e1vmD17Nq644goYDAbceeedqKqq6mVolM/n8fbbb+OnP/3pgO6RZM/y/PPPIx6P44QTTujz59OnT4fP58O8efNw2mmn4Ze//CWefvppfO9738MFF1yAyZMnIxQK4fnnn8cDDzyAiRMnYtiwYXA6nXjggQdgs9mgqiqmTZuGIUOG4Ic//CGefvppHH300Tj11FOxbt06PPbYY716X/d3ztoVDjnkEBxyyCHb3eeAAw6Ay+XCueeei5///OfQaDR49NFHe4myhQsXYu7cufje976HkSNHolAo4NFHH4VOp9tmDf306dPx3HPP4dhjj8WcOXMwf/787bbKOfHEE/Hoo49i9erVfWabPP3007BarcjlcmhtbcWrr76K999/HxMnTsRTTz3F+2m1Wjz44IM45phjMG7cOJx//vmoq6tDa2sr3nzzTdjtdrzwwgsVx96wYQNOOOEEHH300fjggw/w2GOP4cwzz+SUQaBH3L/++uu48847UVtbiyFDhmDatGnbvb9b8+c//xnXX3893nzzzR2asy1fvpwXh9auXYtoNMpz5sSJE3H88ccDAH71q19h3bp1OPzww1FbW4uNGzfiL3/5C5LJZMUH/5deeqnPtMnHHnsMDzzwAE466SQMHToU8Xgcr776KhYsWIDjjz++wo9kzpw5mD59Os4//3x8+eWX8Hq9uO+++1AsFnu1YwPAx/i2Rbz+V+nvZ0Ofz4crrrgCN998M4477jgce+yx+PTTT/Gf//xnh2myWq0W999/P44//njsu+++OP/881FTU4NVq1bhiy++YN8CEjo///nPMWvWLOh0Opx++um7ZYzbYuLEiRVzQl+MHj0aw4YNwxVXXIHW1lbY7Xb8+9//7hV9X716NQ4//HCceuqpGDt2LPR6PZ599ll0dnbi9NNP7/PYw4cPx2uvvYZDDz0Us2bNwsKFC7frN3HiiSfi97//Pd5+++0+S5L+85//YNWqVSgUCujs7MTChQuxYMECNDU14fnnn2dzMGDgn4lzuRxf31dffYX77rsPBx10UMXf4smTJ+P+++/HjTfeiOHDh8Pv92/T/2hbUIu3hx56aIfmbJs2beIoPy340pza1NTErdnuvfdezJ8/H8cffzwaGxvR3t6Of/zjH9i8eTMeffRRNlV9+eWXuY1uOW+99RZ+/vOfY86cORgxYgRyuRzeffddPPPMM5gyZQq+//3v877Tpk3D9773PVx11VUIBAIYPnw4HnnkEWzcuBF///vfe13DggULcOCBB1a0G9xtfPMG7P+dbMuK/69//auYPHmyMJvNwmaziQkTJohf/epXoq2tTQghxCeffCLOOOMM0djYKEwmk/D7/eK4444TS5curTjOokWLxOTJk4XRaNxhO53ttSjbugXNttp5HXLIIWLcuHH8falUEjfddJNoamoSJpNJ7LfffuLFF18U5557bq+2Ll1dXeLMM88UNptNOBwOcd5554n3339fABBPPPFExb7r1q0T55xzjqiurhYGg0HU1dWJ4447Tjz99NPbvD6is7NT6PV6bmlRfk0oa1lgsVhEc3OzOOWUU8TTTz8tisXiNu/brFmzhMPhEIqiiGHDhonzzjuv4lnQ/Vq3bp046qijhMViEVVVVeLaa6/tddxtPbNt3XN6Rn1dS39alNHr+/oqf7/cfffdYv/99xdut1vo9XpRU1Mjvv/974s1a9bwPqVSSfj9fnHbbbf1Os9rr70mjjvuOFFbWysMBoOw2WziwAMPFA899FBFqwtiy5YtYs6cOcJutwur1SqOO+64inMR//nPfwSAPn8m2Xs5/vjjhaIoIplMbnOf8847TxgMBhEMBoUQQnR3d4u5c+eKuro6YTQaRX19vTj33HP550II8dxzz4mxY8cKvV7fqz3KHXfcIerq6oTJZBIHHnigWLp0aa8WZQOZs3Y0pwpR2aJse/T1+/3++++L6dOnC7PZLGpra8WvfvUr8eqrr1a0FVq/fr244IILxLBhw4SiKMLtdovDDjtMvP76673GSi3Kyu+VXq8Xp5122jbnNyGEyGazwuv19mq/s/XcoSiKqK+vF8cdd5z4xz/+UdEyp5xPP/1UfPe73xUej0eYTCbR1NQkTj31VPHGG2/0OvaXX34p5syZI2w2m3C5XGLu3LkinU5XHG/VqlXi4IMPFmazuaLF0bb+flHrnPL5cSAtyuj1fX2Vt1d6/PHHxcEHHyx8Pp/Q6/XC6/WKk08+WXz88ccVx5syZYr46U9/2us8S5YsEd/73vf477yqqmLSpEnizjvvFPl8vtf+oVBI/OAHPxAej0dYLBZxyCGH9NnqaOXKldwuS7J76E/rKSF23Cp1R58Nhehp73r99deLmpoaYTabxaGHHipWrFjRq03j1i3KiPfee08ceeSRwmazCVVVxT777FPR1rVQKIiLL75Y+Hw+odFoen3+GMwxbou+5rOt6ev3/8svvxRHHHGEsFqtwuv1ih/96Edi2bJlFX8rgsGg+NnPfiZGjx4tVFUVDodDTJs2Tfy///f/Ko5f3qKMWLx4sbDZbOLggw/usx1aOfvss4/4wQ9+ULFt67nFaDSK6upqceSRR4q7775bxGKxPo/Vn8/EdOy3335bXHjhhcLlcgmr1SrOOuss0d3dXXG8jo4OMXv2bGGz2QQA/hu5rfdxX++lgbQoo9f39VX+9/m1114TRx55JF+n0+kURx11VMXfDiGEmDNnjjj22GN7nWft2rXinHPOEUOHDhVms1koiiLGjRsnrr32WpFIJHrtn06nxRVXXCGqq6uFyWQSU6dO7dXuUQghIpGIMBqN4sEHH9zhtX4TSBEu+UagfujvvffeoB73ggsuEAcddNCgHnN77OgP638LixcvFgDEF198sdvOeeKJJ4qTTjppt51PIvlf5IYbbhBDhgwRhUJht5xvRz3I/1vo6OgQGo1GvPTSS7vtnJdcconYb7/9+lz8lEgku4d//vOfwmaz9erJ/k3R34Wgbzv5fF7Y7XZx77337rZz/t///Z+oqanZ4cLLN4WsCZfsMlvXJhaLRdxzzz2w2+0V9cKDwbXXXoslS5bg/fffH9TjSoCbbrqpX26Ug8HKlSvx4osv9lmDJpFIBo9LL70UiUSiTxd7yc4TjUZxzTXX9Eqb/Kbo7u7Ggw8+iBtvvFGmokske5CzzjoLjY2NfRqTSnaeUCiESy+9FCeffPJuOV8+n8edd96J3/3ud/0y1P4mkDXhkl3m4osvRjqdxowZM5DNZvHMM89g0aJFuOmmmwb9jd3Y2NjLeEOy6+y///7Yf//9d9v5xowZ08uUSiKRDD5Wq5X7/EoGj5EjR+K6667bbefzeDyD5m0gkUh2Hq1Wu8OOH5KB4/f7d+ucajAYsHnz5t12vr6QIlyyy3znO9/BHXfcgRdffBGZTAbDhw/HPffc0+9WVxKJRCKRSCQSiUTyv4JGiD3UoR09bnm33347Ojo6MHHiRNxzzz27NRonkUgkeytyfpRIJJK+kfOjRCL5trPHasKffPJJXHbZZbj22mvxySefYOLEiZg1a5ZMm5NIJP/zyPlRIpFI+kbOjxKJ5L+BPRYJnzZtGqZOncr9mEulEhoaGnDxxRfjyiuv3BNDkkgkkr0COT9KJBJJ38j5USKR/DewR2rCc7kcPv74Y1x11VW8TavV4ogjjsAHH3zQa/9sNotsNsvfl0olhEIheDwe6RIqkUh2CiEE4vE4amtrodXuPY0i5PwokUj2NP8t8yMg50iJRDK4DNb8uEdEeDAYRLFYRFVVVcX2qqoqrFq1qtf+N998M66//vrdNTyJRPI/xJYtW1BfX7+nh8HI+VEikewtfNvnR0DOkRKJ5JthV+fHb4U7+lVXXYXLLruMv49Go2hsbNyDI/rmcLlcqK6uhqqqSCQSiEajvIKby+X4y+v1oqGhAWvXrkU8HgcA1NXVwe/3Ix6PIxqNolAoQAiBQqGAYrEIAFAUBUBPL29VVWEwGFAqlZDJZFAqlVAqlaDVakFVCoqiQKvVIpPJIJvNolgswmg0Qq/Xw2g0wmAwAOhZWTYYDNBqtcjlcnw9dOxEIlGxEj1QFEWBzWaDoijQaDQwm80wGo3I5/MQQvA5NRoNYrEYotEodDodhg0bhoMOOgj77bcfFEVBsVhEJpNBsVjk1+TzeWSzWRgMBuTzeWQyGaTTaSQSCSSTSeTzeb4vpVIJqVQKgUCAW2xlMhkEAgE+XjabhUajgaIosFgsGD16NGw2G1KpFNxuN9+X7u5upNNpJJNJJBIJzJgxA7W1tTAajeju7sbHH3+MeDwOIQQOO+wwjBs3DqlUCg0NDXA4HNDpdCgUCigUCsjlcujq6sLGjRvR2dmJdDrN23O5HBKJBIQQ0Gg0MJlM0Gq1cDgcMBqNcDqdUFWV962qqsKWLVvQ1taG5cuXo7u7e6ef27cBm822p4ewS/wvzY8SiWT38m2fHwE5R0okkm+GXZ0f94gI93q90Ol06OzsrNje2dmJ6urqXvubTCaYTKbdNbw9ikajgU6nAwDo9XqYTCbkcjmUSiVYLBYYDAYUi0Ukk0kEAgHk83neVwjB4kur1VaIb0q5KpVKLKJJdOdyOWg0GuTzeRSLRSiKwmMolUooFovQarXQarV8HK1WC51Ox2kYWq0WJpMJ+XyeX0uilfbNZDJIpVID6g+t0WhgsVhgNpvhcDig1/e8ZS0WC3K5HF+3Xq+HTqdDOBxGPB6Hy+XCjBkzMH36dDQ3N/N+tNiQy+VgNptRLBZ5PCSidTodTCYTrFYr8vk8QqEQi1ij0cjXRYsfFosFqVSq4jkYjUZYrVZUV1ejpqYGJpMJra2tiMfj8Hg8KBaLqKmpYUG/ceNGHrcQAtlstuLZd3V1QVEUCCFQKpVgMpm4B3s2m0WhUKgYUyQSQT6fRyKRgE6ng16v5zFaLBY+htFo5C+TyQS9Xs8LOE6nEy6X679ehO9t6YhyfpRIJHsL3/b5EZBzpEQi+WbY1flxjxT6GI1GTJ48GW+88QZvK5VKeOONNzBjxow9MaS9ilKphEKhgHQ6jWw2i1wuh3w+D4vFAqvVCqPRiGw2i3A4zCKcxDsJaxJymUwGmUyGhSYdm6K96XQapVKJf1aO0WiETqeDEAJarRaKokBRFBZt5WK7PMIO9PzRs1gssFgsUFUVbrcbbre7QkhvCxL0JpOJo+sajQalUgl6vZ4jzFarFSaTia81GAwiEomgoaEBp5xyCk4++WSMHj2ar4HujV6v5wg+3b9SqYRgMIi1a9di9erV2LRpEzo6OpDP56GqKqxWK9eVGY1GqKoKv9/PGQs2mw01NTXwer3w+/2or69HXV0drFYrisUizGYz6urqOKvAZDJxlgF9hUIhvq9msxmKoqBQKEBVVXR3d6OzsxMajQaFQoHvId1nRVGgqiovWND7hKLeiqLAZDKhWCxCp9PxAoqiKBz9p+i9TqdDLpeDoiiwWq27/H6WDAw5P0okEknfyPlRIpH8t7DH0tEvu+wynHvuuZgyZQr2339/3HXXXUgmkzj//PP31JD2CiiFmMQQiWeKriqKglQqxVHl8tdRZDMWi6FYLKJYLKJUKrFYJsFJQplep9VqK4RxLpfjiC8JtnKBD/REiym12WAwQK/XI5PJAACLVIqSFwoF5PN5FpWU9txXpJ4EMkXV6drLf07nosWEaDQKrVYLv9+PiRMnYv/998eECRM4kkznKBQK0Gg00Gg0nHqezWbR0dHBX7FYDEIITnd3u92w2+0oFotIJBIwGAyw2+28GEFRcpfLxddBmQbFYhHRaBQajQa5XA4+n4/Hm8vlYDKZODPBarWiu7sbhUKBhbTL5UJraysMBgMymQw++ugjNDc3o7q6mgU+XQsAeDweLhugrAaCnlu5CKfFFRqfxWJBOp3mUoRcLsfvHcnuRc6PEolE0jdyfpRIJP8N7DERftppp6GrqwvXXHMNOjo6sO++++KVV17pZbbxvwaJKErDzmazXG9tsVjg9Xq5LjmdTvPrKB2bItKUxgyAo8kU9abvCUrPLv8e6BGtlJptNBorhDOJNhJpJLSBr9PQi8UihBC8IFAuDEnEU2Rar9ez0CahbDabodFoOGKr0Wi4RjqTyVSk7Y8aNQrTpk1DY2Mj7HY7p+ZTHbtWq+XFAkrbTqVS2Lx5M1auXIlgMIhkMllxrlQqxbXldH/omh0OB+LxOGKxGMxmc0VZQCqVQjKZhEaj4fPRva+vr0exWMSWLVvQ1NQEi8WCeDwOo9GIZDKJTCYDn8+HYrGIuro6bNiwAaVSCRqNBkuWLMGaNWswY8YM2O12zJw5EwC4Tl+j0cDv9yORSKBQKCCbzfJiTiKR4PR1Ghe9T1RV5YUOeo61tbWIxWKc3i7Zvcj5USKRSPpGzo8SieS/gT1qzDZ37lzMnTt3Tw5hr4NEbnnNL0WGPR4PfD4fDAYDYrEYWlpauB7aarXCarVytJoMy0jEUnSzPF18W1ANMVEu0klUk8im7eV13vl8nr83Go0oFotIp9NIpVLI5XIVNcwkjsuh1HFFUfhnVAefz+dhMBigqiqnx3s8HtTX10Or1SKRSPACgdFo5GwBMjIzGo0QQqCjowObNm3Chg0bkM1mK+q9KVJPUWG6Zoqs0yJGMpmE2+1GoVBAJBJhk7RMJsMi3Gw2IxgMAuhxURw7diwUReEFBqPRWGGiFgqF0NDQgFKpBLvdzunuiqIgk8mgq6sLWq0Wra2taG1tRWNjI0fdAcBut8Pn8yGZTHK5AUX96b7k83no9XpOg6f092KxyNH0UqmESCRSsTgj2b3I+VEikUj6Rs6PEonk2863wh39fwmq5zaZTHC73dBqtRzlJDdyp9OJmpoaJBIJrhW32WwsoMjAi+p9SRDr9Xrk8/lePe2oPpgiriR8aRvQI4Ipcp3P56HRaDjSvbUxQXkaNNATbY3FYhwJ3zrqTq+nhQIALNIpMkv/12g0UFUVTqeT68N1Oh3a29vR1tYGl8sFr9eLuro6rl1XVRUAOE2c3NrJ4ZwWAmiclH1A981gMPAzIKdx2mYwGBCJRBCPx3lxgdK8ASCdTvOCSCAQQFdXF8aNGwePx1ORVUDPPRKJIJVK8cIHjUmv18Nms6GrqwuFQgFutxstLS2ora3l6DwtJFRVVXGkn7IAALC529b3Op/Pw+l0IpVK8TOORCJIp9OwWCzQ6/UDMtOTSCQSiUQikUgk20aK8L0UEtsUsaQILKVg22w21NfXc6TX6XTCZDJBVVUUCgUkEglOi04mkyyeDQYDzGYzR3eBr+uYywW1EKJCwFMqN6WKU+szEraKoiCXy3FdeLlgp+NsLc4BsJDVaDQckS4WiyyKqX6Zot+0QAEAiUSCo8SU3p5Kpbi1mNVqRWNjI8xmM0eBKSuA6urT6TRHfBOJBGKxGEfoiUwmw0KZjOBosaKrqwudnZ3c9iyRSLARG5UNULaCVqtFV1cXVqxYgf33358d7I1GI6ePx+NxdHZ2QqvVoq2tjVu75XI5aLVaFItFrFmzBocffjji8Ti6u7vZxI6elc1mg8vlQjQarciIiMfjXGtPixz0jICeRZdgMMjXb7FY+nxmEolEIpFIJBKJZOeRInwvpVQqwWw2s6N1PB5nAV4sFqHX6+F0Ojm9GOgRpXa7HS6Xiw3TAHAElyLb1F+7/Fx9RbTLhboQgiPmJFApOkyR3/Ie4ST20uk0p6/TGAjq/U1jBMDO3+U17hSpppRtrVbLgr18cYFM6wqFAlKpFHw+HzweD6e1k3AmwR2NRpFKpThiTNkD5fX0dH8ymQzfD5vNxm2+qO0YRdhpEaL8/tL3ZGQXDofR2dlZURefSCQ4oh0IBNgkjdLiKdIuhMCmTZuQTqeh1+sRDofhdrthNps5Yq3T6eDxeBAMBnlMQghOyddoNIhEIvxs6X6qqso17uQ4v7e1p5FIJBKJRCKRSL7tSBG+F1Le95pM0ahHeCaTQSwWQyaT4VZeRqORt1N/aUo7puMVCgVOTyexSaZhlKJenqJMr6PzqKrKgpvcw00mExufAWCnbaqLJvdxMg6jdHiz2QytVgubzcZ11lSDvnX7slwux+OgFHhKjQe+XkCgNltAzwIAublTOjgtYNB4KDJPYpmEN91zSkkHwHX1tHhB9e3hcJjFbH/6n5OwNRgMCAaDUBQFQ4YMQXt7O7LZLGw2G6eERyIRRKNRrqenRRCgpwd4W1sbhg4dyteTyWR4YaBUKkFVVbhcLl4UKZVKcDqdEELw4kwoFOIsiGQyCYfDAaBnISSZTLIT/NbvC4lEIpFIJBKJRLLzSBG+F0K1z8DXApBSl8vrjimVmSK95IpNYpCi4WS6RRHr8rT28trnrSlv51Ue9aZFARLdlLpMEehsNltRj0z7kDCmiC+JchLF2WyWa5spqktRdADc4owi8uXR/fIx5/N5OByOCvFOCxjltdN07eWCG0CFWRwtUpjNZjZJy2az2LRpE6LRKD+H/tZM04JBMBjkVmd07kgkgg8//JCzBahenNqsUW17LpdDS0sLJk6cyC3VKJOBDNz0ej3Xhpeb6tH902g0iMVi/D7T6XSIx+PIZDKIx+O80EHt7iQSiUQikUgkEsngIEX4XgrVQgNgAUmpyQaDgQWVzWaD1Wplg7FsNstRaBLbiqJAVVX+GQlXEqgajYbPR8K23D2dovJGoxHA1zXkFDlWVZXbdBmNRhbhJArJpZwi4tlstqJlGtWDkxilXuEkkunaAPBCAqWG04IECX1KvQ+FQvD5fCxQqfd5eS9sEpzl7bnoPHRPhBCwWq3Q6XQcdc7n8+jq6mJxWi7g+wNFxLu6ujgNHfg6Ak37lEegaRGFftbR0cHp9/R8isUiO+QXCgU4nU54PB6OftP4qf2d3W5nJ3R69uXR+HA4jEQiMbA3rkQikUgkEolEItkuUoTvhZD4JvR6PVRVZTMxSn8mKHJMxmVk5AV83S5MURS43W7kcjlEo1HelsvlKgQs1S1T1JUiyxRVp3RxSmunWmtKB89ms2zyRuKXhB69jkQ41XRvDYnr8v7c1BKNDMjo+LSYQOZt5bXp+XyeI83hcBgNDQ2wWCzo7OzkGnVarCgX9xTVLu9DTteg0Wgq+rPvLJRWHwgE4PV6+VnU19fDbDZzxkM0GuWFgnJX+fb2djauy2QysNvtnC2hqiq/T1wuV0U9O6XqCyHgdrvR3d3N+9psNs5qICHu9XrR0dEh3dElEolEIpFIJJJBQorwvRCtVstp2uXp6JSeTDXXer2eRW+5S3m52RgJZKp9tlqt0Gg0yGQybFJGkXFyYFcUBVarldPcY7EYrFYrzGYz15VT6juNEwDXZBsMBqTTaf6+HNp3RynOJFLLKe/ZTfeJxCHtTz3TaYGA0rPJ8K38flAqOkXC6Yuge1Leh5ui0ZRaT6ntfV3r9qDa7ba2Nvj9fjidTgQCAZjNZlRVVXE02263Y8uWLZwqTnR3dyOVSsHj8VQsiJT3/qYovt1u5+sl0U4LFJRlUV5XT8cpv2cSiUQikUgkEolkcJAifC+EhK1er+eoaDweZ6fx8j7S6XSaU8ep3RfVU1OU12q1wmq1IpPJIJVKwWQysSs5CcxIJAKtVgur1QpVVWGz2bgO2mazsWM5oaoqkskkt+QiUUnR22w2+43cG0qdJsG8dSSd6tDNZjMbwJEzuM1mY+FNixnbcoYvj9SXtxGjaDhF5HO5HEfbyyPV/cFgMHAbMb/fj2AwiFAoxM8G6MlEcDgcvKhC0HuEShHS6TS3qaO6+0wmA6vVimw2i3Q6zRkIdB/JT4Dc3Wnxh7IOKBqv0+l6ub1LJBKJRCKRSCSSnUOK8L0QEoblwqg8EptIJFhEkSAtF090jPI6YpfLxXW+6XQaDocDqqpCr9cjl8uxkRmZmFFkVK/XswCNx+MsPLPZLPL5PLuC03nJmG1XoOuihYRyyOmcasq3TpMmkUnRfFrM8Pl8sNvt6Ozs5Drz8uhxOZRiT8ehVl2KovD9pLp4GhO50fdXiNPrKavA5XLB6/Xy2PR6PUf96f1QDi0I0LOhxQcS4XQOEuQOhwOlUgnRaBQGgwEmk4lLGMhvgK6DzODoPTDQmneJRCKRSCQSiUSybaQI3wuhaCsJcDLdAlDRsoocy8uFKtX3lkc8Y7EYAKCmpgZ2ux3RaBTJZJJblJHAzGazSCQSSCQSLEItFgsbulFklIQmjaXcHXxXBVv5wgIZy21df06p0n3VKVP6tMVi4R7jZF4HfO08X+7evjVarZYXJ8rFsl6vZ1d4ABV9yovFIgwGA491R2zdis1iscDj8aC9vZ2jz+QgT8+oHGpLRqKZ2qpZrVbOhqDFlEwmA5vNxu72yWSSzfBUVUWxWEQoFOKx03umPGtAIpFIJBKJRCKRDA5ShO+lUBRTCAGTyVThjE3ikVp8AV+7qVMasV6v54g5pVTHYjGuHc9mswiHw3w+MjOjc5AYC4VCnMpMx6aIebnh2mBAaeTk8q7RaDgNnq63PELfl+DV6XQswEnIOxwOmEwmrncuFAqIRCJIJpNIJpNQVZXTz2nRw2g0chTaarXyz7VaLbxeL6xWK4LBIKd49/VMdgSVC6iqyjX45cej6Dq5ylPtNj2j8nZtJNIpc4HuBb2easTpGdMChqIoSKfT3MaOHOspXZ/OIduUSSQSiUQikUgkg4MU4XshFAGlSCZFvkmYUyswchonkUbCmFptkZBWFIVFabn7N+1H9dN0PhL/1GM6mUxyCzFKNS/vYw6gX9HfHUEiliLh9C/9jKLiBoOBHdTLo7SKosBms0FVVRbSVCet1Wq5Zp5q48t7kJPwJDFdnlJPdehAT6S+uroaY8eORVtbG5YuXYpkMsn3bUcinAQtPQen0wm/3891/OWt1EiEd3Z2wufzobu7m1uY0T2hmm4qX9gaqvumHuxk3Edp+DabDZFIhBcnALDZX2dnJyKRiExHl0gkEolEIpFIBhEpwvdCylOyyyOdVMdLYq+vKDDVaFPvadoOgMXo1k7e1EfcbDaz0I5EItzvO5lMsrAkoUz/p6jtztSBU6SbapFVVWXH7vLobfm+BoMBADiqTdFwjUbDJnJWqxV+vx8NDQ2cnk2CNZFIwO12w+Vyscil9HKDwcAp8MDXqe2U+q/T6eByuTB8+HCMGzcOw4cPRz6fR2dnJ+LxOC90bA8hBIvhfD4Pl8sFp9PJ/d/pOfl8Ph6Xw+GA1+tFqVRiEU7133RfaBGmr3tsNBphMplgsVi4FRk9M3qe1OpNURQUCgWEw2GEw+F+p9dLJBKJRCKRSCSS/iFF+F5KeTRVp9PBbDYjlUpxZNNgMHDaMQCO4pJhV6lUqogYZzIZFtpGo7GiNRmllZOLOvB1SjrVgVMkmoR6eXSU0rRJNPdVq00isVysl0f7LRYLnE4nR8KBngg0LSrQuMmILJvNssEYma8pigKn04n6+nqMGDECtbW1LFbpXtntdjQ3N2PUqFEIBALo6OjglH8StZT2TWLZaDSiVCrBZrNh7NixGD16NLRaLWpqanDggQdi2bJlCIfDKBaLMJvN2+wjTs+DFjFKpRI8Hg8byNEzUFUVtbW1SCQSCIVC0Ov18Hq9iEQivChA94l6hZenoW8NXRul5NN10vvAZDLB5XIhGAzyc0+lUjCbzezAL6PhEolEIpFIJBLJ4CBF+F4Iicby9GISpiSeKepJ7tUajQaxWKzCIIyEcTabRTabhaIosFgsFa29qPZXVVV4PB44nU6USiWYzWY2aDObzSz6qKVZeTSdjN1ovOl0uiJyTqJv67riQqEARVHg9Xrh8Xhgs9nYdI0WB4xGY8X10jF1Oh0MBgNKpRK0Wi0sFgt8Ph+GDx8Ov9+PxsZGrvUuNyXT6XSw2WwYP348dDodAoEAUqlUheDWarW8yJFOp5FMJlEoFFBdXY1x48bB4XBwy7jGxkaMGTMGGzZs4NR+Sg/fmnLDNRLjVF/++eefY8OGDVBVFU6nk8eyceNGCCFgs9m4FR0A7oG+tRP6trBYLMjn81xeQO3vKGvCYDDA5/MhHA6jUCjAarUiFoshFotJAS6RSCQSiUQikQwiUoTvZZARmdFoZLMsihhTJBhAL4MuANyzmurB6eepVAoajYadzCkqSmKZ9i8WiyyUKXpOruTlUdbyXt1Uo17u5k2CmxYEzGYzNBoNR12pjZZWq4XP54PX64XD4eCxk1BMpVJIJBLIZDKc9k5inFLrgR6BWVNTg8bGRgwZMgQejwcOh4PvJQlainIDPU7xfr8fmUyGRTalrVutVmg0GsTjcWzevBn5fB5WqxUulwsulwsA+NnodDrU1tbC6XQiGo0inU6z4N8aelYmk4lT8P1+P1KpFNra2hCLxdDQ0MAlCHa7HTabDTabDXa7ndPVga9FePn7ZkfvK6vVyj4C9F6hPvNarRZVVVUIh8PsMxCLxaQzukQikUgkEolEMshIEb6XUt4rmwSX3W5HJBKBqqoAwMK0PMUZANf1ktAlsUw13pQWTf2+SWgHg0FOAScBbjKZKtLLi8Ui8vk8TCYTp8iXR2Np7HROk8kERVE4jZ2uR6PRwOfzwefzcS24oigsULu7u9Hd3Y1EIgEAPH6TycRRcHKBd7lcqKmpwbhx4zBixAiO3NNYyuvYy6+LrrtczAI9CxDJZBKBQABCCPh8PjgcDh5Xee14sViE0+lEVVUVuru7odPpeIGjL6iGO5PJoK6uDlarldPMVVXlWnBqT6eqKiwWC99Hgmrcy9mRECfDN0rnpxpwMrujZ0QLCKqqIpvNVpjBSSQSiUQikUgkkl1DivC9jPK2XMDXddMkvMl4LJVKAegRjPl8nv8lcUbH0Ol0HPHOZrOIRqPcWxr4ujVZNptFPB5nUZ/P52E2mwEAqVSqIrJObcTIIK68fRfwtfCltHZKsdZoNHx9JpMJTU1NcLvdsFqtHOXPZDLo6OhAqVRiV3jqw03iGwCfG+hZdKirq8Pw4cMxatQoFItFtLW1wWQyscA3mUyIRqPI5XJch06O7wQ5pIdCISQSCZjNZni9Xv55KpVCKpViYzOTycRu7Ha7HRaLhY/fFyTe6VxVVVXQarXYvHkzOjs74ff7YbVa2SiNFkPIlK98MYTSycuN8foy69v6vUUmbbRQY7Va2S0e6KmZD4VC7OC+M4Z7EolEIpFIJBKJZNtIEb6XQanoiqKw0Vm56zZFRskcTa/Xcwo0RaipbtxisbAop/RxamFGUXYAFf2jyWm8XDAC4NZeVKdNPaSBr93FyyETN6fTCafTCZvNBqPRiKqqKm4h5nA4YLPZ4PP5oNPpkEgksGHDBqRSKQQCAXR1dXGqO4leRVHYrdxisSASiaBQKMDj8aCxsRE+nw/t7e3sAm61Wvk+0tjp/+Wp97lcDrlcjtuy5XI56PV6XqCgRQ26h0ajkQW+TqeD2+1GfX09Nm3axHXwWwvYYrEIi8XCEeiamhq0tLTgs88+Q6FQQF1dHUwmE9e6J5NJpNNpTsMv7xNOmQMELYLsqJ83Rf7NZjOy2SycTifX+IdCIfh8PmzcuBHxeJzvrUQikUgkEolEIhk8pAjfC6F6cOoBTeZrJKgpbbg8FZzEM6Wh0/9JwNPry1tOFQoFjnZSRJuiruVGaBSFpZ+REzullZefk9LoLRYLC1Wn04m6ujpUVVWhqqqKI/QWi4WN4tLpNNLpNNcjJxIJPi65s5PYp4g4Rf4TiQRisRjsdjv0ej3C4TCsVitH4YUQ6O7uBgBOv6ZzplIpdHd3IxQKoaOjA/F4nNu4ZbNZ2Gw2eDweVFdXw2q1clsvm80Gh8MBoGfhpKamBvF4HOFwGPF4HKqqwmg0cg9xej5kPDd8+HCoqopFixYhFouhubm5whmenk15in95irvVaoXFYqnopU6LBNuDDOgoLT0ajcJmsyEcDnOPcjLFkwJcIpFIJBKJRCIZfKQI38sggVQe5aT6bTLsov1KpRISiQTXR1PqeXlPbHpNLpeDEAKqqnJUO51Osws7CWiKsJIgJ1ftdDrN28lBmwSgwWBAoVCAXq+H0+nkaC4ArjWuqanB0KFD+XtyEgeAYDCIWCzGpmnxeBzxeJzr1ctTzwGw4E8mk2wM19HRgUQiAafTiXw+D4fDAYfDAa1Wi0AggEgkwlFxEpmbNm1Ca2srurq60NbWhkAgwKn4VAtNafMjR47ktHm6N9SP3OPxwOVyoa6uDu3t7QiFQhBCwOl0suEd1XfTtQwdOhSdnZ1IpVJoamqCqqoVhnapVIoXOqjUoNyRnvqc04IJRd23lQpfjsFg4LZoJLaNRiP8fj82btzIQt1ms3EpgEQikUgkEolEIhkcpAjfyyh38ga+7tdN9b7lPaaBr93U+4paksM5iVkALKjIrIyi7uWu67Qv1aJns1lOIacxUARcq9VyLbeiKLBarSwO6fVutxtms5mj3iQAy93YVVVFOp1GPB5Hd3c3O5bTGLPZLKeSU+9zqp0GgEQiwdFzrVYLVVWhqiq2bNmC1tZWVFdXw2w2o6OjA+vXr8eGDRtYMLe3t6Ojo4Oj8CSUKQ2+q6sLVqsVNTU1AFBRe+/z+dgsrqGhAYFAgCPiiUSCU+cpbT0Wi6GxsRH19fVYsmQJrFYrbDYbzGYz15fT88zn80ilUlAUBalUig3SNBoNHA4HZyLsqD1ZX9BiCEX3qc5dCMER/mQyKQW4RCKRSCQSiUQyyEgRvpdBkU0S1+RirdPpuCaboqIkmCk9m9KXKfpNEVJyT6fXqarK6dpUc64oCgt2im5TSjW5qZMAttlsFaKfxkDikV5LrcLIIM1oNHKUl8YYj8fZzby9vR2pVIrbd2UyGU5HLxQKFU7wfS06GI1GdHV1wWAwoK6ujt3V6+rquOf2J598go0bNyIWiyEUCqGrqwuRSATpdJrvaalU4gwBnU6HeDyOrq4uuN1u6PV6xGIxxONxZDIZdHV1IZ1O8+JIbW0t8vk8R9apJRvQs1Cg1Woxbtw4roGPRCJobW2FXq+Hz+fDiBEjUF1dzaUDmUwGVquVswMIr9fLCycWi2XAYtlgMHCWA6XYh0Ih1NTUIBqNVpi1SSQSiUQikUgkksFDivC9CKoZpt7WlFpM0Vkyz4rFYhW14BQRph7Uer2e3cTJ0IzaUplMJnbyTiQSLHhJRANgYzHqm02LAiSEKZWcIvZ0jPIost1uR21tLafW22w2aLVadvymVlwU0aa0azJCI8f38mukiD6l4lNk3mAwoKamBkajEW1tbaivr0c6nUY4HIbb7QYAfPXVV1i+fDk2b96MYDCISCSClpYWboFGiwzkxk4LGPRMAoEAPB4PamtrkcvlEIlEUCqVsGnTJjaMy2azqKmpgd1uR3V1NTZt2oRYLMYZCblcDo2NjRgzZgw6Ozv5uvL5PJLJJGKxGNra2uD3+1FVVQWTyYRMJgO324329nY2zzMajfB4PCzuKXV9oJAPAEXVbTYb1/tT5oOMhEskEolEIpFIJIOLFOF7EZR6TdFTqv+mntSBQKDCsIxEFPV2JkdyihxTtJki2Tqdjo3GVFVlgzcS2CTmy3tQl5uKAeB+1jqdjo9PtcUkNEulEnw+H2pqargOnYR2NBplAZ1KpeBwOGC1WrnOXAiBRCKBZDLJUf1yszESibRgUCgUoKoqqqqquD6+UCigvb0dPp8P8XgcX3zxBdauXYsNGzZg8+bNaGlpQUdHBxudkRkZiWJaXCDTOmrnFY1G2ek9nU4jEonw4gMtfng8HuTzedjtdthsNnR2diIWiyGVSqG6uhpTp07l2utsNovq6mrU1tZy5Jki4y0tLbBYLPD5fKirq8OmTZvYAd1gMMDtdvP9p/dJeckBLZ7sCLp2OmZbWxsfsz+vl0gkEolEIpFIJANDivC9CBK/BoOhwumaorHUVstoNLKTNRmUkVgkMUjRVxLLlFqtKArsdjtqampQKBS49prS3qklGAly+p7So+n/5XXq5ISezWaRSqVgsVjgcDhgNpuxadMmFAoF+P1+GAwGhMNhOJ1O5HI5JBIJeDwejnKX18JTLXpf0MIAOarX1dXx/mazGZlMBtXV1YhGo/joo4+wZcsWrFmzBmvXrsXmzZs5ik2UG55RTTndRxK+VHddLBbh8Xi4p3o6nWand6qzpvZkHo+HFwcikQhsNhuGDx/Ogj4ajcLv98PlcnE7uWw2i2AwiM7OTu4RXigUEA6HodFoYLPZYDAY4PP5eJGCHNUpak3f9+f9RiUCVBdusVhgtVr5PkskEolEIpFIJJLBRYrwvQiqAy93FycRlkgkuEZ6677c5S28KHWcUr3LI6XUrkyr1cJut0NRFBaDFKmm1GaKAheLRVitVm6TlsvlOP2cIvblx2xvb4cQAiaTCbFYDF1dXfB6vairq8OGDRsqRLjRaER3d3eFs7fJZOJFBkrHJiEMfL1QQX20qUc3mb7l83lYLBZEo1EsXboUmzZtwrp16/DJJ5+gs7OzwqSuL6junaB6dSoRoIUMo9HI7d4o5Z3GSGZpbrebncj9fj8vbqTTaYRCIc5ooOun49bW1nLbMILM8ej+uFyuCgM9KgUgyEF+R9FsWmygVm+qqnLv9rVr18p0dIlEIpFIJBKJZJCRInwvozyFnFpHAT1O1RT5BcCtsqhumqKwJKhyuVxFrTiJdxJsmUwGFosFTqeTj089vrPZLNLpNAuweDzOQpii5VSPXC7wSdBRJDWZTKK2thZNTU3Q6/Xo6OiAVquFxWIBADgcDkQiEUSjUR5Xef05tVWj85Sn31Pdttlshsfjgd1u5zG1t7ejpaUFnZ2dCAQCWL16NVpaWvotKCnVnczZyN2czk+18vF4nNPTSdzTdVD7tUwmA6fTiXQ6jVKpBJPJhLa2NjaQI3FP1wWAn1WhUIDT6YTZbEY2m4Xf72eh7HQ6+b2hqioCgQCy2Szf+/4I8PL3HDnbU2o6Xa9EIpFIJBKJRCIZXOSn7L0ISi0mMU11yqVSib+otptMycpTj81mM8xmM/L5PG8jMQuAhVaxWEQ4HIbD4YDNZqs4j9FoRDwe53Mlk0mOBJNpGY2tXHiS+LRaraiqqkKxWITFYkFDQwNqamoQi8WQTCZRV1cHl8uFZDKJjo4OmM1mVFVVcRSb2m5R3Tg5t5dfE/W2LhQK8Hq98Pl8sFqtXHPe1taGYrGIeDyOL7/8Ehs2bBhQRJeuvVzIUio41dHTNXu9XpRKJUQiEVgsFo5qazQaXgghIzen04lkMonOzk7kcjnu9U0LL+RyT+nxlFZPfcZdLheCwSCcTif3QKcFAYqwEwOt5zYajbBarfxF7x2JRCKRSCQSiUQyuGh3vItkd0FmbGazuaLVGEVINRoNLBYLhBAcGSeh1JfIpMgtiVkA3H+aItp2u52Fl8PhgMVi4YhyNBpFPB7nc5S7fNP3qVSK+2IHg0FYrVbU1tYilUrBYDDAbrdDo9Fg8+bNXAMOgF+XTCbZ+M1sNnMUltLlycmdFh3KzcfS6TRMJhNqamrgdDqRzWYRi8Xg8Xi4J3hra2uFOO0PlD1A/cjJDM7pdKKqqgpWqxU6nY5N5cozBbLZLNd8a7VaWK1WRCIR7iUeCoUQDAZRKpUqBDiJeipHoBr5oUOHIhQKcR1+NpvlNHcy1aNoennmwM6gKAr8fj8vrFDGgkQikUgkEolEIhk8pAjfS9BoNDAajbBYLBUu5QSJQooUAz11whR5pdRhEoMkzshtvTx1nb6n4zkcDjgcDm57RWnnJMCFECzAyRyO6tPz+TwikQjWr1+P7u5uNDQ0wOfzsdEbiceNGzdyHXhXVxdCoRD0ej0ymQxaW1uxfv16FurJZJIFaS6XQzKZRCqVqqh5pvtht9vhdruRzWYRjUahqir8fj+7l5PI7y/lLeJ0Oh3y+TxHtN1uNxwOB7vDU9/wbDYLg8HAJm3pdBqJRAK5XA65XK4iuhyNRrFy5UpuF0eLI+Ut4sicrampCU1NTWhtbeWxAIDf72dXdjLII3O8XYGc7wuFAlwuF9e6SyQSiUQikUgkksFDivC9CHJEJyFMIhcAp4Ln83lks9mKFlJkVkYmaVRXTaKOTLvISI1qkCkKazabOb2ZtgE9kVFVVTkCm0qlONKbyWS4j3Y4HEYgEEB1dTVGjBiBUqnE4tjr9SIajaKlpQUOh4P3TyQSCIfDiEQi6OjoQEtLC/fCLndtJyM4Sj+ncZEr+4QJE2CxWNDS0sLu6Pl8niPzqVRqwM+A7huVAOTzeTidTvh8PuRyOeh0OtjtdlRVVSGVSnGtPhnUUYuwzs5OTucnkzy61vI+6xQJp7T7rq4uAMDMmTORSCQ4wyCVSkGr1aKhoYGzJYCvMyRUVa1I2x8oVJZQV1cHi8WyS8eSSCQSiUQikUgkfSNF+F6CRqNhcUzijAQoRZ01Gk1F2jmZs5FwLO/vTe3JcrkcotEoCoUCNBoNMpkMp2fb7XauQ6YUaIPBwNFzqlmm41ENeCKRYGfwTCaDUCgEABg9ejQsFgsKhQIaGxsxatQoOBwOdHV1cRo11U/HYjFs3LgRa9euxaZNm7BlyxaEw2EYDAbYbDZOlyeoJj2bzUKv13MUfMyYMbDZbEgkEtDr9XA6ncjn8+wmv7WTfH/IZrO84EHPo6mpiY3nzGYzrFYrFEXhfuZWq5XN5+i8yWSSU8Tj8Tg2btyILVu2wGazcUSdrtftdsNoNCKTySAYDGLUqFEYO3YsvvjiC05tD4fDMJvNqKurY+FOUX4y1aPMhZ2BUuJVVQWACqEvkUgkEolEIpFIBgdpzLaXQO7m1KZKURSOeAPg1PF8Ps8tvCg9m1K3KZJJ6eJGoxGFQgF6vZ4FH0VenU4nRzvNZjNHt+nnFFHXaDQcBafabaJUKiEcDiMcDnMauhACXq8X1dXVcLlcSCQSCIVCaG5uhtfrRTAY5LZotLiQSCQQjUa5Hp3aqpWnnxuNRo5MZ7NZ5HI5eL1eOJ1OjphbLBa4XC60t7cjHo/z4gTVsO8IyiAoj05rtVo4HA40NjaiVCrBZrOxyI3H47yQQRkKoVCIe35TSziDwYDW1la8+eabiEajMJlMLOQpW8BisSAYDCIWi0Gn0+GAAw6AwWDAl19+ySn9iUQCNTU1cLvd/H6gsoWt/QN2Br1eD5vNhq6uLphMJnbOl0gkEolEIpFIJIOHjITvJZCQJvGn0+m4Rpei0eUCkUQ3mYaV1xOX72uxWOB2u2G1WmGz2VjwGQwGJJNJjjan02muYaYIPACOdlPLMjJQoxZcwWAQQgg0NTWxQLTZbGwUtmbNGgghMGHCBBSLRbS3tyORSCAWi/E5yHQtEAigra2N+5BTTTv1TKdFAFosmDJlCiwWC5YvX45CocD3jfYjQ7qBRsMpZZ/S3uvr67l3t0ajQTKZBAB0dHTAZDIhkUggEonAbDajWCwilUohl8vBZrNBr9cjFothxYoVWL16NdLpNGw2G2w2GzweDy8kUAZBLBZDXV0dRo8ejc2bN2Pjxo0wmUzI5/NsDudyudg0rvzaaKFiV9LIdTodYrEYAOyy0ZtEIpFIJBKJRCLpjRThewlknEbu2BQRLncGt1gs7I5e7lCey+U4ekzGbJQebbPZ2GhNVVVoNBpEo1GEw2Fks1nodDrE43GEQiGUSiUW5uTmTdHhclFMkVwSgvX19Rg5ciR8Ph9sNhsCgQAfMxaLwW63I51OY82aNejo6GAxTxFtWiwgV3Gq4yazMhoHnY9S0puampDNZtHW1sa90MnwbMiQIaiqqoLb7eZFjB1BkX8S85lMBn6/H1OnToXf74der+f08VwuB4PBgK6uLqxevZozDWj8VqsVXq8XZrMZCxYswNKlS2G1WjljwGazQVVVWK1WmEymihZxU6dOhcvlwqeffop4PA6LxcL14M3NzZxyT073JNB1Oh23V9tZ9Ho9O9hTKr5EIpFIJBKJRCIZPGQ6+l4ARZcBsMEaCany1HASaeW9pAFwCnJ5KzOqoaYe03RM6mddXV0NjUaDSCSCSCSCUCjEBmOU6k7O25TWTnXQVBcNAE6nE8OHD8ewYcMqIvnRaBSJRAImkwl2ux3Lly/HmjVreMwGg4Ed1NPpNI+RTMzKr4nGAoBr5Gtrazk1f/To0YhGoygWi9yibMiQIdi4cSOKxSISiQTfh22la1M9NAl+IQRGjBiBQw89FOPGjUM+n4dOp4PRaEQ4HIaqqrDb7fjwww+RSqWg1+sRCASg1+sxdOhQOJ1OtLW14bPPPsP7778Pg8GAxsZGOByOil7oJPrj8ThisRisVivGjx+PZDKJzz77jMdL9elDhgyB2WzmVH5aeKD3Cd2/nUWr1XI/dKfTuVM19RKJRCKRSCQSiWTbSBG+l0C9uanOlwSjEIJdypPJJCKRCAtSShs3mUwsxiiarigKO4pTvbkQAiaTieuQtVot2traEIvFEIvFkM1mUSqV2BSN0pGpp3VVVVVFVB4A6urqMHToUJhMJuRyOe6l3dHRgXg8jpqaGmzZsgXr1q1DJpOBzWbj6C25oEejUa7f1mg0KBQKUBSFDc4o7Z7M5XQ6HWpra6EoCiwWCxoaGmC1Wjmde+jQoYhEIqirq0MkEoHD4UCpVEJ3dzePv7yWmszIyMzOaDRi1KhR+M53voMRI0ZwdoBWq0UgEIDRaITVasWmTZvQ1tbGUfJcLseLG2+88QY+/vhjBINBOBwOVFdXc817ufs6ACQSCbS3t2PLli2oq6tDVVUV1q5di82bN0Oj0SCRSPACTGNjI+x2O2cRkBs7LYqYTKaKBZqBQi3njEZjRV92iUQikUgkEolEMjhIEb4XQHXeJAhJhJMIpfTvUqnE0epUKsUO5QaDgV2xs9ksC2QAHMlWFAUOhwMmkwlVVVWc9u71epHJZFi4l0ol6PV6xONxGI1GdlKvq6vj/t80zkwmA6/Xy326yT09k8lw2rlWq8Xq1asRCoVgt9uh1WqRy+UQi8WQy+WQSqU4Pb1QKECn00Gn03F/bzKMI2FO9eIOhwMWiwXxeBxCCAwdOhSbN2+G2Wzma2xubkZraysaGho4VVun06FYLHIdPfUqz+fz0Gg0sNlsmDhxIg455BA0NjYin89z3/JQKAStVgu/34+Ojg4sW7YMXq8XEydORLFYhNFoRCQSwYIFC7B69WoAQHV1Nerq6ti9vDw1nhZOQqEQVq9ejXA4jMMOOwwA8MknnyASicBgMHB6Pol5Kj2ge0ERdYIyGXYmik33L5fLQVEUWK1W9hmQSCQSiUQikUgku44U4XsB5W7cFouFU8kBcGSbRHp5OzIhBOx2O4tu2tdoNLIjutls5lpm6gdOteVU+9vS0gK9Xg+73c4u3+TSTud0uVycrk29uKnu2e1285hjsRg6OzsRj8c50t7S0gIAHKEl8Q18nQYOgAV4Z2cn0uk0R+8BwGKxcEswoEeQUrTearVW3MtoNAqv14uGhgaMHz8eiqKwIRqlmlNdfSqVYnHc3NyMpqYmzJgxAy6Xi1Pq8/k8DAYDPB4PrFYr0uk0Nm3aBKfTiUmTJsHn82HdunVobW3FRx99hM7OTjgcDt6/PJvAaDSiWCzy+VtbW9HV1YVgMIiamhqMHz8era2tWLZsGdd60z3w+XzweDxsylduzkbt5ah9285GsE0mExwOBzKZDOx2O0ftJRKJRCKRSCQSyeAgP2HvBZDbOZmxKYrCwpQEFUXD7XY7zGYzm3VRlJugKDGZndXV1XG0l0zFdDodHA4Hp29nMhmOOlNtMqU/OxwOuFwu+Hw+Tvkmt26dTgePx8PiPZfLIRKJIB6PI5/P87Hi8Tji8TgLaJPJBIPBAKvVClVVOeVcq9WyODebzdwHXaPR8MJCLBaDw+Fg4zS32w2NRoNgMAiPx1NhTudwODBlyhTkcjmEQiHU1NQgGo0iHo9XRI4VRUFdXR3q6+ths9lQU1OD9vZ2BAIBNrnz+/0wGo1ob2/Hpk2boNFoMH78ePh8PsRiMbS3t2Pp0qUIBALsel4uYHU6HQBUiGOqiY/H40ilUmhsbITNZsN7772HtWvXcsSe3iNNTU1cRkD138ViEaqqcv0/tSrL5XKcoj4QNBoN94cXQkhjNolEIpFIJJIydDodpk6diqlTp+LUU0/l7R0dHTjzzDN3qUuN5H8HKcL3AijaTILaYDCwkCxPo6bacOrtTWZrJChNJhOamppgt9s53Zpqp1OpFMxmM/e01uv1iEaj6Ozs5BT08jRmSoe32Wxwu91oaGhgsafT6didnYzMKG07lUohGo2ipaUFoVAI+XwesVgMiUSCjdqMRiOMRiNnAADgum/q703baFGC0vEpRTqdTvM9ikQiLEatVivMZjO6urqQz+fhdDphs9kwffp0+P1+bNiwAfl8ntuo6fV6uN1u7pVOrdI2b96MQqHAgtputyMSiWDt2rW8EGA0GpFIJNDR0YEPP/wQra2tcLlcSKVSaGlpgdPphMPhqDDIIzFeXutONdhjx45Fd3c3PvjgA8Tj8Yr3CBm+qarKdf70L9XJ0/Hp/zsjwgHA5XLBYrHAbDbD7XZjy5YtO3UciUQikUgkkv8WGhsb0dDQgF//+teYNWtWr0DFxo0bK4I8Esn2GHDR6DvvvIPjjz8etbW10Gg0mD9/fsXPhRC45pprUFNTA7PZjCOOOKLCFRsAQqEQzjrrLNjtdjidTvzgBz9AIpHYpQv5NkMpxRT5zeVySKfTFc7YlMpNKeJUw0xu6plMBtFoFEIIOJ1OuN1uOBwOqKoKp9MJj8cDt9sNl8sFh8MBAIhGo0in0xxZBb6OygNgYziKRFMknlLay9uHUXo1paR3d3cjn88jlUqx4ZnD4YDb7Ybb7WYxSTXfqVQK8XicxX25I7rZbOa+3aqqcs28yWRCW1sbgsFgRW/udDqNZDIJo9GI7u5u2Gw2TJo0CQ6HAyNHjsSkSZMwdOhQVFVVcdQ3nU6ju7sbGzduxMqVK1EoFOD3++F2u2EymRAIBLBu3Tokk0nY7XaYTCakUimUSiWsWLECy5Yt4/tO9ePr16/Hli1beGylUomdy/P5PNLpNPdMb2hoQENDAz7++GOsX7++Vzo5tV2jZ1SeLUEu9pRmTwsq5QwkPZ2eq8fj4XNI+oecHyUSiaRv5Pwo+TbT3NyMt99+G++++y6OP/74XgI8n8/j4Ycf3qUONZL/LQYswpPJJCZOnIh77723z5/fdttt+NOf/oQHHngAixcvhqqqmDVrVoVj81lnnYUvvvgCCxYswIsvvoh33nkHF1544c5fxbccEt8AWGDncjmOmubzeW4hRvXFJLaoTrtYLHJ6s6IocDqdHBm2WCzcZ9tkMsFisSCbzaKrq4tTxEulEgtmclkvFApsBJdMJrmdFqU9kxCkxQCz2czXQanm1PPcYrHwWAwGA7vBp9PpXucksdrXRCaEQCqVYkOyYDDIY7PZbMhms4jFYjCZTEgkEli7di18Ph9nDlRXV8NoNCKTySCRSKBQKCAYDKKlpQVtbW1ob2+H0WhEbW0tnE4nNBoNAoEAVq9ejY6ODthsNvh8Pl7k+PLLL7Fw4UJoNBr4fD7Y7XY0NzfD5/NBCIGuri60t7ezkz1dEznDk/neuHHjEIvFsGTJkj4/UFRVVWHYsGEc6QbAz5SeAfUbp8yE8nZsA1mZpecj68EHjpwfJRKJpG/k/Cj5NkMdirb+PJXL5fDJJ5/gggsuwO9///tttsKVSLZmwJ+yjznmGBxzzDF9/kwIgbvuugu/+93vcOKJJwIA/vnPf6Kqqgrz58/H6aefjpUrV+KVV17BkiVLMGXKFADAPffcg2OPPRZ//OMfUVtb2+u45LxNxGKxgQ57r8dgMHB6NH0JIdicK5fLsfmWyWRi4U1iq1yYkSBOpVJszkYGZgaDAV1dXSwKyQCN/p/P57klFtAjFqkumQzhyvuRk3s79bqm/dxuN/fuLk/BLhQKnA4PgIVwoVDglHValNjaSTyRSHAdvNlsRiAQ4Br4+vp6OJ1OtLe38/k2btwIvV4Pp9OJUqnEiw+5XA4ajYbr0VOpFDu719TUwOfzwWg0cl17IBBALpfjHu20yLF8+XI88cQTCAaDqK+v56wEjUaD4cOHo1gsIhgMIhKJcC1+uTEcLRh4vV4MHz4cS5cuxYoVK/qcwBsaGuD3+7nFGvkEUA093V+6/7sSwVZVFXq9nvuflz9zyfaR86NEIpH0zZ6YHwE5R0oGh66uLtxyyy0YN24cTCYTJk+eDAB47LHH8P/+3/+r+DwmkfSHgfcw2g4bNmxAR0cHjjjiCN7mcDgwbdo0fPDBBwCADz74AE6nkydQADjiiCOg1WqxePHiPo978803w+Fw8FdDQ8NgDnuvoNzNnOpxy+ulSXxTTbXb7eY0ahLeer2eI8lktEZtv9xuN+rq6mAymRAOhzmdmyLLiUQCuVyO23Vls1loNBpOc9dqtdznmlqlUQ9zq9VaYRBHY7RarfB4PCxOVVVFNptFJBJBKBRCd3c3IpEIp2VTJD+ZTPJ10PVT1FgIAbfbjUwmg9bWVnR0dMBkMsHn8yESibCbeXd3N6xWK5qbm1nwkvime0zt4FRVhaIoqKmpQU1NDae8R6NRRKNR/uOt0Wj4Wt977z08+uij6OjoQE1NDbxeb8WigcFgQGNjI1RVRbFYRHd3Ny9o0Hji8TgymQxGjx6NTCaD999/nzMTytHpdFzrX952jEzotjYAMRqNUFV1p+uSqAUaLTbQooZk15Dzo0QikfTNNzU/AnKOlAweTz75JK655hpceeWVOOmkk3DSSSfh4YcflgJcslMMqgjv6OgA0JM6W05VVRX/rKOjA36/v+LnFDmlfbbmqquuYkEUjUb/K42iyFxLr9dzDTS1niKnchJgQggWkQDYPI1qgUmYCSGQTCZZRKbTaf45uYSnUimkUimk02kWwSTCqFacepJTlDeTySCdTkOv13O7M6vVyiJRp9OxEKTWYjqdDqlUCrFYjNuYBYNBNm2juni6Lo1GwyIym83yWAwGA1RVRTKZRDgchhAC1dXV6OrqwsaNG3lRoVQqwePxcN/yclM0yh6g6zaZTCw2C4UCuru70dXVhXg8jnQ6zSZ3Pp8PuVwO8+fPx+OPP85txfx+PwwGQ4VApmdUU1MDvV6PZDLJNfuUCp9MJuF2uzF27FgsW7YM69ev7/O9YTKZMGzYsIp2bmTIRxH7rd9LiqLstAinxQaHw4FSqSSj4IOEnB8lEomkb76p+RGQc6Rk8BFCcPamRLKzfCuKPikC/N9Mef9vct2myDalnZPwJeMsSjunNGeqD6ce0kIIpNNpFpOZTIZbW5HQTKfTFeYSdNzy1mBWq5XrjCmN3Ww2w+l08uIA9a4mp/Xy7wGwS3o2m2WjufJe6IqicJo6mc+R4KT6+FKpxG3ccrkcFEXB8OHDIYRAS0sLdDodkskkFEWB3W7n+nW6H7R4QNkDlIav1WpRLBbR1dXFIh4At0UjI7mWlhbMnz8fX331FQCgtraWW8aV91cHwAshZNYWCAQQDAa5pzktrEycOBEA8O677/YyUyO8Xi9GjBjBY6IFimw2y14AdFyNRsOu8jsL9YIvFApIpVJcjiDZO/lfmB8lEolkZ5FzpEQi2RsZVBFeXV0NAOjs7ERNTQ1v7+zsxL777sv7BAKBitcVCgWEQiF+/f8aVFdNUWCq+aVINkViga+jwtFoFJlMBhaLBclkkiPfWq2WHbwpup7JZJDL5WC326HX6xEIBDgNnMQpiTtFUdjIjVpgUW9qqvEuFArwer0cfY/H4wiHw4jFYlzzTM7ruVyOhSKJTFpsoIWCcudunU4Hq9XKCxCZTIZbeZX3raZa8Gw2i88++wxDhw6Fx+NBPB5nF3Wz2QyNRoNoNMr3iBYWyHisWCwiHA7zfU6n04jFYsjn81i3bh2cTieGDh2Kzz//HAsWLEB7ezscDgc8Hk+FUz2NPZvNcr0+peu73W7EYjF2jlcUBUajEdXV1Rg9ejTee+89tLS0bPP9MXToUNTV1QEAC3CTyYRcLsdimxZYylPiKVo+UEFOz4PavUkGBzk/SiQSSd/I+VEikfyvMajp6EOGDEF1dTXeeOMN3haLxbB48WLMmDEDADBjxgxEIhF8/PHHvM/ChQtRKpUwbdq0wRzOtwZKv9br9dBoNGwCptfrOYIMgOu+0+k0WltbEQgEUCwWEY/H2ViM6qup9RgJ5EgkgmAwiM7OTrS0tFS4jQI97cpSqRQLuXJjLxKPwWCQz2k0GpFKpbgOOxgMIh6Ps3sk7R8KhRCJRBCPxzn9nerUqRUbRcYp1ZwEMgncTCbDIpPq2KlOfM2aNSy8zWYzbDYb9zMvlUq8EGE0GmG321FTUwOn01nRCi4cDrNxm9FohNfrxebNm/Hmm2/ixRdfxD/+8Q88/vjjCAQCqK+vR1NTEwtpqiunjADKXCCzOspeqK6uhtPp5Oi1yWTC1KlTEQgEsGjRom2mfOv1eowcORI2m42zE8ozJgDwwgiACgf2rdPU+wstIFAGhGRwkPOjRCKR9I2cHyUSyf8aA46EU9snYsOGDfjss8/gdrvR2NiIX/ziF7jxxhsxYsQIDBkyBFdffTVqa2tx0kknAQDGjBmDo48+Gj/60Y/wwAMPIJ/PY+7cuTj99NO36Wz5vwClnFP0l8Q2RbHz+TySySS374pEIvxaSs2mdHFyU6fe3RSBpu1kCEaRYEobp17W9C9Fobds2QKbzcZp2l6vF52dnejs7ITZbGbn8kQigVAohFgshnQ6jUKhwOnnZIpWKBQqjm80GmE0GlmMUx08RXRpcaFYLLLBWzweR6FQgM/nQ319Pfx+PwtUioCTCC6VSryoQKnskUiE27GRSV1tbS20Wi1isRhCoRA7omcyGcTjcTZ5o/7mVAIAgNPcaGGjvA0Z1aJTej6VDAwfPhx+vx+PP/44wuHwNt8XVqsVY8aM6bUoAoCvmb6ntmz5fJ5rxXU63YAj4cViEbFYjLMHJP1Hzo8SiUTSN3J+lEgkkq8ZsAhfunQpDjvsMP7+sssuAwCce+65ePjhh/GrX/0KyWQSF154ISKRCA466CC88sorFWmy8+bNw9y5c3H44YdDq9XilFNOwZ/+9KdBuJxvJyTmKHpNUV6KTpOJWDgcZtdwirCWG6aR2KM2Yzqdjntn53K5ilZkQI/Ao2g5AG5LRRFnEswkqkkIU302tfzKZrOc0p1MJtlsjVLd6dhut5sj6KlUCj6fjxcPyqO6JMZLpRKy2SwLylwuh2AwiGKxiKqqKrhcLpjNZq4jp9ZlJLbLa77JDC0ejyMajXKqfVVVFTu7d3d3Y+3atViwYAGWL1/Ootnr9aK2thaKovDrgK/FNi0ulFMoFLhnt0aj4dR8t9uNIUOGYMqUKfjkk0+wcuXK7b43vF4vhg4dWtEfnBZOSFzTuei5FwoFOJ1OAOC2dgOBDODKywQk/UPOjxKJRNI3cn6USCSSr9GIb+En7VgsBofDsaeHMWhUV1djwoQJGDJkCKZNmwabzYZ8Po9QKITly5ejo6MDmUyGW4lRRNxsNsPlcrEAM5vNMJvNqKqq4nppi8XC0XOPx4NMJoPVq1cjm83C4XAgk8kgEomwOVqxWITNZmNzOBLfbrcbTqeT3c7dbjfXnVOaejabRTQaRSQS4RprAJxmXu7uTgsBdHxKHycnc1pUoEgviV9yMm9ubobdbofJZEJ1dTX22WcfeL1e7pFNkXDKLKAIN6XF53I5vs8dHR346quvsHLlSmzcuBGhUAhAzyJFU1MTO6dns1kUCgVOl0+n09yjnVq3bZ3mL4RAd3c3AoEAqqurMWrUKBxwwAEoFAr461//ivb29u2+Nw4//HDcdNNNcLlcUFWVBTW1sCsWi4hGo7wIEYlEoNFo4PP5APRE5ynFv7+kUik888wzaG1txSuvvIK33nqr36/9NhKNRmG32/f0MAaN/7b5USKR7Dn+2+ZHQM6REolkcNjV+fFb4Y7+3w5FsKnmm4QWrf6SQ3WxWITZbEY2m0UymYTFYuEUahKuxWKRU5DT6TRSqRTXSMdiMU7lpmg2mZflcjkkk8mK6K3BYOD2ZgC4PttsNvNCAAAEg0FEIhHkcjmkUik+BwCoqgq/389ma1T3ns/nuXY8k8lw2jlFwAFwhJvSwsm0jQQp1WV7vV5YLBYAPVFhavNW3gM9lUohm80iFoth3bp1WLt2Ldrb29HW1oZQKIRMJsOv9Xq9sNlsHKmnTAWq06eItKIoPNbyTAS69nIB7vF4MGnSJOyzzz6wWq2YN2/edluqAD3p5iNGjOCMhb6gKH5XVxccDgdnQiSTSZjNZhiNRq4ZJ3O/HVEqlSqi6hKJRCKRSCQSiWTwkCJ8D0OtsiiFGgDXapNbN9Ajtkg8K4qCTCbDtc5CCG7HVSwWYTAYEI/HuWaYhBQ5otM5afWGjpdKpdisjOrIy6OtqVQKLpcL1dXVHF2mVG8Sz9FoFMFgEIqioLGxER6PB36/H06nk0U1AAQCAY56Uw041U0TVE9OPcRJIHs8Hu4p7vP54PP5WIQD4MUA6s9NY/3888/x9ttvY+XKlbxoQIkgRqMRtbW18Hq93O+cFiMoGk8u9gDY9I0i+OQAX173TrXnw4cPx7777osxY8bA7/fjtddew+eff77DdG+73Y7Ro0dzucHWqfDlPdkjkQhH6Oln9Gwpk6C/Ipyeu06nkz0wJRKJRCKRSCSSQUaK8D2MVqvlaCsZpJERWSgUQnd3N/R6PWw2G4CeqDgZblEkWFVVrhEmp24yXgPAIoyEmKqqcLlcFSnLJErJiZxEeC6XY1EJADabjR3Qw+EwTCYTzGYzMpkMC/BMJsP9sal22+fzwWAwsBlaKpXi+nHq/00Cne4FRefJHMxut2PIkCFwOp1IJBJQFAV1dXXcx7tctNM1hMNhtLa24t1338WCBQvQ1tbGQt9ut8NiscBkMsHlcsFut/PPyNSN+pWXt1KjKDvdE4q4U8Q8n8+jq6sLmUwGU6ZMwdSpU2Gz2WC327F69Wq8/fbbFRkG28Lj8XA9eLkBG52D2o/R+yUcDsPpdMJsNsNqtfLCAQnq/iKEgMVigaqqbMYnkUgkEolEIpFIBgcpwvcwOp2Oo7jlEdVUKoVQKMRpxdQ6jOqnyZyLUqIjkQiKxSKnqCeTSQBfR7mp17jZbIbBYIDFYmGhRT8nQzgALH6ppRiJ/HQ6jba2NnR2diKXy8HlcnG0mYS+VquF3W6H3+9HdXU1LBYLzGYzEokE2tra0NHRgUgkwmngtHiQTqc5hZoWGigKDIBbkNE+dXV13PrLZDJx3XY6nUZ3dzdWrFiBL7/8EsuXL8fy5ct7RXV1Oh2cTif3DSdhTPXdlD4PfN2fm1LOhRCcsUDXYDKZEIlEEAgEoCgKDj/8cEycOBGFQgGqqqKrqwsLFixAZ2dnv94bw4cP54USotyQjf7NZrNQVRX5fJ5r9vV6Paf4l+/bH8gfwOPxwGq19vt1EolEIpFIJBKJZMdIEb6Hob7PJFTJTCyRSHC6N9AT+SQXcUo/JpFFJmTUykyr1SIUCnHqciaTYTFLBm50To/Hw/XE2WyWW58ZjUaOylN0mMQ+te0isZpMJitSpc1mMxobG1FfXw+v18sCNxKJoKOjA62trTxOSp8m0VseYaYotEajgcPhQGNjI5ux1dXVobm5GS6Xi69dp9MhnU7js88+w9KlS/HBBx9gy5YtLFKrqqr4vgE95iyKosDhcHANPKX4Uy9uqpGnSLLBYOAoNN0jWhiJRqNoa2uD2+3GMcccg0mTJqGlpYXv3dtvv40VK1b0y3XcaDRi/PjxUFWVxT49S1o0oMyBXC4HVVUBgGvvaTGCWqINhPL+7bJPuEQikUgkEolEMrhIEb4XoNVqoaoqVFXt1Wosl8ux2AV6RKDL5UIikeA0aaPRCIfDge7ubk4pj0ajLMgIii5bLBbY7XZ4PB7YbDZEIhEWatQbnMS/TqfjFlgkSklwl0olxONx3p9q1n0+H4YNG8bCMJ/Po7OzE/F4nE3SqLc5Rc+tVisvDgA9QjAUCiEUCsHn82HUqFGYPHkyfD4fXC4Xhg4dCofDwWnYkUgEX331Fd555x18+OGH2LhxIxKJBLRaLaeCK4oCs9nMDu7FYhGRSISFqqqqbGpH15rNZrkOvFgscq14NptlAa7X6xGLxViAf/e738X06dOxYcMGpFIpeDwevP7661i0aBEvMOwIt9uNkSNHwmKxVDxDWugwGo1cr0/lB9RHndrA9fdcW0MZELFYbLs9zCUSiUQikUgkEsnAkSJ8L4HEMUU3Ka2YxGAul2MXc5PJhKqqKpjNZm5BRgKWarvJ7IxqwwOBAKehq6oKt9vNZm7kWE6u6xSpzeVyHK3O5/MsBhOJBKdjU+qywWBAOp3m9mFOpxOKokBRFHR0dKCtrQ3ZbJbbg1HvcxL4NLZSqYSuri4Eg0FotVqMGTMGkydPxrRp0zB69GhOu6ZWY7FYDEuXLsVHH32EpUuXYuPGjb3qralFW6lUgsPh4Pva3d2NdDrNCxa00EE16LQwQa7zAPh5lO9HNfU1NTWYOXMmpkyZgkAggHA4DJ/Phw8++ABvvvlmv+rAierqagwZMoQj8uRyrtVqOVJPWQoWiwW5XA5Go5FFOmVY7AwWiwUajQbJZLKiP6tEIpFIJBKJRCLZdaQI3wsQQlTUP1MrLrvdzgZbJKrJXM1isfA+ZGCm0+k4Ek5GYtRWLJVKca0wGZKR2Rf1Fy8UCmxsBvSI8GKxyHXiVLsdCoUghGAzs3JncpfLxeO0Wq2wWCxobW0F0NNPLx6Pc0o1GagZjUZks1l0dnZye63q6mrsu+++mDVrFpqamtDS0oJYLIZsNouvvvoKb775JgKBAFpbW7Fu3TqEw2EUCgVOKwd6apuNRiNcLhf8fn/FooGiKNzCLZFIcA9wErlA30KW0uhp/FS773K5MGHCBOy3334IBoNob2+Hx+PBhg0b8Morr7BxG6XObw+NRoN99tkH1dXVHHmnTAQS4OQkX55qTgZu9H9aXBkoOp2OW8cNpJZcIpFIJBKJRCKR7BgpwvcwZLK2tTAjozPg63T1QqHAkWvaZjabOUpbHimlFGuXywW9Xo9UKoVSqcRp72azGaqqwul0wmKxIB6PszhNpVLQarVIJBKIx+PQaDQwmUy8nSLXW9dLA+CFBEoDJyGfz+fR2tqK7u5uvmYhBF9nNptFsViE3+/HuHHjMGPGDNTX18NiseDjjz/GG2+8Ab1ej2g0iq+++grr1q3j+2EymWC329n1vfyeUJTeYDBw2zJa8Kivr8fatWtRLBYRCARgs9l4QaG8NRpBEXyLxQKdTodUKoX29nZeMBg3bhyEEOjs7ITf70exWMR//vMfRCIRaLVaVFdXcybA9rDb7Zg0aRJUVa1wjKesBOpXDnwd5afnT89Er9dXtL0bCFSfT0Z8EolEIpFIJBKJZPCQInwPQ2KaUp5JZJdKJWSz2Yo09Wg0yuZqVN9tt9tRLBbR3d0NAGzaRQLM4XDA5XIhnU6zWRuJXlVVYbFYKsSs0+lEPp9n4ZzJZLg9GjmAU+0xuZVTZBgAH8disbBIjUQi6OrqQiKR4Ci9x+NhMzUSjH6/H0OHDkVzczOEEFi4cCG++OILbNq0CVu2bOH7QzXplFZfW1sLh8PBtem0EEARbTKOo1ZdJFRramqQSCTQ3t6OeDyOLVu2cAp4ec01fVG6OrnXb9q0CV6vF9OnT8ekSZOQz+exatUqTsl/6aWXsGHDBuh0OgwfPhzFYhEdHR07fE9UV1ejsbGRhTDdX0p/Ly8XoHteKBTYRZ+eVfn3A0Gn08HhcGDLli0s8CUSiUQikUgkEsngIEX4HobaeZnNZgA9As9oNHLNtdVq5fZbJKAzmQzy+Tyy2SzXUiuKwoIa6ImmUmo3OYxTT2yLxYJiscgRburJDfREsinlmtKbqS6Y6s5J8Hm9XlitVmSzWU6Z1ul0vF8wGEQgEEA0GuWachLBmUwGHR0d3FbL4/EA6ElZ/+ijj7B582Zs2bIFoVCoQggqioKmpibuP059zKk+WqvVIpvNsoCm3ut0HTqdjqPcZrMZtbW1iEajSCaT6O7uRiaTgdvt5t7jRqOR6/Hp/4lEAh0dHdDr9TjyyCMxbtw4aDQarF+/HhqNBg0NDUin03j77beRz+cxcuRI1NXVYfHixSzkt/d+GDt2LNxuNwDwYoJOp+PX0nVRNJzayW3tgk4LOgOFIumZTEZGwiUSiUQikUgkkkFGivA9TLnpGkUtKV3b5/Nx1DocDrPbNwnhVCrFgtlisSCRSLAwJRFKvbEzmQz8fj+cTif8fj8L8/Ie3CTuHQ4Ht+IqFAoVvbqBHqHucrlgs9lgMplYiFOUm4zCstksi7l4PA6j0YiamhoEAgFs2LCBBV48HkcwGMSGDRv4vHQsABwJ9ng88Pl8qKurY0FcHp0uj4LT6zKZDAD0ajNG/dgpU4AEPEXN6bj0Oo1Gg2g0ikwmg1AoBACYOXMmRo8ejUwmg9WrV6NYLGLo0KFwu934+9//jq+++gpDhgzBuHHjsHTp0l59yvvCYrFg+vTpcLlcFSnoNBYin8/DZDJV9I0v/zlFx3fWnI0WZfrTTk0ikUgkEolEIpH0HynC9zDlba5MJhObbuXzedhsNmQyGQSDQaTTaaTTadhsNk4zLhaLiMfjsFgs0Gq1sFqtbKql0Wi4p7fD4eB0ZoPBwE7ger0eiUQChUKBW391dXWhrq6OHcjJSIxEqV6vh8/nQ319PXQ6HYrFIlRVhclk4jRvk8mEZDLJadzU77ympgahUAjt7e0swCmCXiwWkU6nWTQDPan1VqsVTqeTTeqoFjuVSgFAxWIC3TtFUXjMJGS3jkCTGRwAOJ1OJBIJmM1mXjzo6uri+6KqKrczi0Qi0Ov1mDVrFg488ECkUils2LAByWQSw4cPR0NDAxYsWICXXnoJtbW1OPjgg7Fy5Ups2bKlX++H+vp6TJ06FXa7HUajsSK6XS6o6f/lWQD0/UD7gvdFsViEoihcWy+RSCQSiUQikUgGBynC9zAU6aTab5PJhFwux/2ZyWjNarUilUqxYFUUhR26qUabjkOR3lgsBgBsJEbGa+Xp3dFoFMViEXa7HVVVVUilUjCbzUgmkxXGaiSaVVWFx+OB0+nkiDz1DtdoNFBVlbdTyzObzQav14uWlhYsX74c8XgcQI+ANpvNiMfj0Ov13DYtnU5Dq9XC5XJxPXypVEIkEoHVaoWiKJxeThFzMlujGmoA3M4N+Lr/efmCAtATQbdYLLDZbHwv6LVdXV3Q6XTIZDLIZrMIBoNwOBw48cQTMX36dMRiMXR0dCASicDr9WLIkCFYunQp/vGPf8Bms+GII45AqVTCqlWrdpiGTs96zJgxqK+vZ2fzYrHIte3l0DhpocFsNnN9PfB1hgWlsg+UYrHYqxRAIpFIJBKJRCKR7DpShO9FUD14JpNBOByGRqPhNlTkSp7JZDjdnMzRLBYLC20S6MlkEj6fD5lMhmvKSbySsKPe4HRss9mM+vp65HI5Tk/v7OwEABbEJpMJNTU18Pv9SCaTyOVy3O/baDRyZJuM2pxOJ+rq6rBo0SJ8+OGHbCAHgOuYDQYDbDYbm6tRFoDdbgfQI4hJuNPiA7Vjo9r58lZeuVyOU/y1Wm0v4U0p1uXu7GQkR/cfALdjo6wAp9OJ0047DQcccAA6OzvR0tLCrdrGjx+PdevW4b777oPZbMYxxxwDrVaLjz76CNFotF/P32KxYObMmewPQOnllCpfTqFQqBDIFosFZrOZ96XSgp2NjOfzeW6rJpFIJBKJRCKRSAYPKcL3MBTBpah2LBbj1mBkIlYsFpFKpVgwkjkbOYQ7HA4UCgUWm6lUClarld20KUpuMplgMBjYoKw8gk3RaJ/Px63ISOBnMhnY7XaOlnu9Xmg0GnR3dyMWi3GEnqL6ZrOZW4YZjUa8/vrrePPNNysEOEE16MViEeFwmI+h1+tZYFNkne4XLUyUSiVeWCDxXt7ru7x1W19QFD+fz0Oj0XCqfygU4nR3MmKrrq7GySefjBkzZmDLli1oa2vjezly5EhEo1H85S9/QT6fx+mnnw4AWLFiBVauXNnvuurm5mbst99+FXXgVLu+rXZjpVIJmUyGSwzonuZyOS5ToP0G0q4smUwinU5LES6RSCQSiUQikQwyUoTvYUj8Wa1WAD2iLxAIoLu7m+ufqc93uWFZLpdDOp3m3t9Go5FfA/QITDJMK09Fdzqd0Gg0yGQyUBSFBS5Fnymt2WQywePxwOPxIJFIQK/Xw2AwwO/3w263s6lZKpXiqLrdbseYMWO4V7dOp8PTTz+Np556qk8BDoB7pFutVm4LRosE5W3GHA5HRWS7WCzyPlub21FKeqlU6iWAybAOAKfvK4rCbd+AnhZh3d3dvDAxatQonHzyyZgwYQLWrl2LtrY2XqCor69HoVDAQw89hHA4jFNPPRU2mw2fffYZli1bxmJ+R2i1WkyYMAH19fX8viCoXZ3BYKhIt6f3CwBeVCGneqrTJwZisEb3J5vN7rCnuUQikUgkEolEIhkYUoTvBVBNL9VrZ7NZZLNZpNNpJBIJ1NfXV0R3KR0dAP+f+m7T9lAoBKPRyEJbURTYbDaoqsop7ZTa3d3dzVFnVVUr6ogVReEFAqrhzuVyHCklcWcwGDBmzBhMnDiRI/VvvfUWnnnmGQSDwe1eP7VRox7jdDyKhlPdNglwEqKUVt9XezcS5bRAQFBknWrE6f5TSj7VUbtcLrhcLowYMQLHHnsshg0bhnXr1qG9vR0+nw9GoxF2ux2lUgn//Oc/sWbNGpxwwgmora3F8uXL8emnnyIQCPT7PWCz2TB9+nRYrdZeEWtaTCiVSjAYDJzqX27qRz8vFotcR1/OQFLSdTodL6RIYzaJRCKRSCQSiWRwkSJ8L4EEMbWaUhQFnZ2d3Pc6kUhwSjKZsZFrdywW437hBoMBBoMB0WiUxZzJZOL+4FQHrqoqLBYLwuEwG6GRwzhtpxppvV7PbuqFQoHPGQqFuDVZdXU1xo8fD5PJhEKhgLa2Njz11FNcU749hBCIx+MVKddkiFYuxClt32AwsCEZ1YOT+3t5dgC1SqPxl0olbmFG6fu5XI5T/mksGo0GdXV1mDBhAiZNmgS32421a9eiq6sLNTU1UFUVOp0OyWQSzz33HD7++GMcccQRGDFiBAKBAFauXIm2trYBPf/hw4djv/32q4juE9SGjp4FUS7CKVpO76NdIZfLsamfRCKRSCQSiUQiGVykCN/DaDSaiugt1X1T6rnb7UYikUA0GoXD4eA08WQyyb2yU6kUVFWF0+lkUeZ2u6HVatHd3Y1isViRtg70iNxoNIru7m7k83nuw+10OiGE4Ppsij4LIdDd3c2CndLhicbGRq7tLhaLWLFiBTZv3tzv+0C16SSWyTCO0vGpXzctPFBKOtXA63Q6WK1Wzh4oFosVBmvlLbwA8OIGZQUYDAZUV1fD5XKhubkZw4cPR1NTE3Q6HdauXYuWlha43W4+fyKRwAsvvICPPvoIkyZNwsSJExGLxbB+/Xp89dVXA4og63Q6TJ48Gc3NzXyd5aZrer2ex0ht5sqj9uU93SlrYVfI5/MIBoMVixMSiUQikUgkEolkcJAifA9DLuckqqlGPBwOV6QdW61WTq8ur/WlCDWZr+VyObhcLhZlqqqysCt3FdfpdCyoScyrqgpFURCNRtmwjAStRqNh0Z5MJtkpneqPPR4PMpkMzGYzIpEIPv30UyQSCdhsNiSTyX616Mrn84hEItBoNLBarbBYLCzG6V5QajmNiQQ2petTWjsZ2FGknGrESbjH43EW6bW1tRg6dCiamprQ0NAAn8/H7vBdXV1c1033KZvNYuHChViyZAnq6+uxzz77IBAIIJFI4LPPPqtYnOgPdrsdM2bMgNPp5OdG0Xp6vmSiR+OnenZ67qVSiZ/nrqLVajmLQIpwieSbQavV4uSTT8aiRYvQ3t6+p4cjkUgkEolkNyJF+B6GzMSEEDCZTCiVSnA4HKiurkYwGITJZKqoB9bpdBUty+LxeEV0l+qZDQYDC9FUKsWimZyzXS4XO56Hw2GEw2Guk47H4+ju7kY4HOb2XZS6bTAYkEqlkEgk2JF71KhRsNlsHKFes2YNli1bBkVR0NDQgFgshkAg0C+Tr3w+j3A4zFkBVNNOPb7T6TTXRVNqOrXkoig89RUvvydkRpdMJhEKhaDX6+H1emE2mzFp0iSMHz8eFouFxW44HEY8Hkc+n+fot1arRTwex5IlS7Bo0SJotVo0NTUhFApBCIFNmzahpaVlwO+BESNGYJ999uG67XInczK+A8D3v1QqoVAo8POk98JAzNe2B9XIk3u8RCIZfE444QQ8/PDDWL58Oe666y489dRTe3pIEolEIpFIdhNShO9hhBBsLqbT6ZBIJBAMBpHNZmE2m7n3M9DjEE7p5yQsqa1ZuamZEAJut5sjslRPTm3QSPhTb+x4PA6r1Yp4PM59sltbW5FOp6HX6zlqXO4sTmnc1F+czN+6urqwdOlSdHZ2wufzoVQqwev1AgDa2tr6jIhTLTwdO5/Pc29tu93ORmokuqkXOglEihhnMhmObiuKAgBcY011zu3t7VAUBc3NzfB6vZg4cSL23XdfCCEQCAQQjUbZtI6OY7VaYTabEY1GsWTJErz55ptIJBKora2FEAJdXV0wmUxYs2bNgCPHRqMRBx98cC9XdIr0A0A8HoeqqhXO6PQs4vE4b6eFBjKq21mKxSIv1kgkksGHsn1MJhMOOOAAKIqCd999Fx0dHXt6aBKJRCKRSHYDu567KtklKMWcDLey2SxHoctdvS0WC0ektVot3G43HA4HR08pLdxgMCCZTLLBGolIi8UCu92OfD7P/ccNBgMymQxCoRBisRi6uroQDAZZjFJadyKRqIgi08JBOByG3W6Hz+fjtOiVK1di8eLFHGmmqG1VVRWam5v7dOkuj/ITQgg+XyaTQT6fZ5dwIQT3Tqf0baAnakw9xMmhHegR6ZFIBNFoFG63G/vssw8AwOfzYerUqdBqtVi3bh02bdqEWCzGkWBqHUfR5w8//BBvvfUWZxbY7XZ0dXUhm83yawdKTU0NfwgnKNWc0sLJH8BkMvE9yuVyiEQibNZGpQaUvbAr6HQ6dp6XSCSDT1NTE/70pz/x79ikSZPwxBNPoKqqag+PTCKRSCQSye5ARsL3MFQTTunVANicjdzIc7kcp6Wn02nYbDbY7XaOVJLo0mg07DBOtdAUOSYhHgqF+DXBYBDJZBKFQgGBQAAWiwVAj5jVarUs+Ej8B4NBFqCpVAqKosDn8yGTyUBVVYTDYaxfvx4dHR2w2Wx8blpAcLlc0Gq1WL9+/f9n783D5CjL9f+7u3qpqq5eZ98SskJCCGHTRFD2TUAEhLggqCCigN8Dorgej54jIOARPbIcPYqooALKUWQTOLLIFgiEJAQSsmeWnum9urq7qtffH/N7HqonM5OZZJaEvJ/rykVmprvq7epQ0/f73M/9sFim10UbBqVSCblcjgU29VqTdZ6q39Tjrus6JEniSngwGOTNBQAs1nO5HAKBADo7O3nG+ZFHHolMJoMdO3agv78fXq+X55XLsgxVVZHL5ZBOp/Hss8/iqaeegsfjwfz585HJZKDrOl+nnp6ecVu3XS4Xjj32WBxwwAF1/x6o95w2SjRNg2EYvIHicrn4dYfDYbbKe71epFIpRKNRhEIhHsdmT1QfC/YsAYFAMPFcc801CIfDdd879thjcfvtt+O8886bplUJBAKBQCCYKoQIn2aoUkwJ4MVikavPbrcbPp8P1WqVK75UASdLOfVCm6bJQWWSJLGNnXqHm5ubOeANGBRauVwOpmnyjHCyNwNgu7dlWSiVSpwkTj3mmUwG7e3taG5u5lTv7u5ubNu2DZZlQZIk1Go1FoPU997V1QXLstDT08MW+kAgAMuy4Ha70dDQAIfDgVgshmQyiVKphHw+j3w+j2QyCb/fz+PZaI41VeEpgI4Eud/vh9PpRKlUQltbG/x+PxRFQVdXF4477jiEQiGsW7cOuq4jEAggEokAAG9gUB/6mjVr8NRTTyGXy6GjowOyLGPTpk3QdR3Nzc0wDGPcYWwOhwPt7e04/PDD+TXT+Sigr1QqweVy1fXby7KMSqUCn8/H4+AoM8Dj8aCpqQm6rnOgHaXlj3dtDQ0N43qOQCAYG5qmYdGiRcP+bN68eTjiiCOwcuXKKV6VQCAQCASCqUSI8L0Ay7I4+ZqELok6CiFLp9NIJpOIRCLwer0sikloU1W8WCxyJVRRFA5p8/l8yGQyPEe6VCohEomgv7+fq9Td3d3wer0s4MkGTv3UVInP5XIcSnb00Uejvb0dq1evxuuvv44XX3wR1WoVqqrWVWIlSeLX2dDQgGKxiFgshnQ6zVVc6m8OBAIIh8OQZRnlchnRaJSD4RKJBFwuF4tmGu9GqfIUVkebEoZhYP78+Zg1axZkWcaCBQuwYMECAMD27dshSRJUVUVjYyNUVa27prVaDWvXrsXjjz/OIXnJZBI7duxALpfj949640eDLN5ES0sLPvjBD2L27NnQNI03D+yhe263G8VikTcXaCOjXC4jHA5zPgD1gHu9XrjdbsiyzNZ8+/UZK4qiwOv1ip5wgWAS8Pl8nJMxlEMOOQRPP/00vvzlL+Ohhx5CPB6f4tUJBAKBQCCYCkRP+F5AuVyGZVkwDIPHYXm9XsiyzPZyXddZ/BaLRa6aBgIB+Hw+rlq73W5YloVkMglZljFnzhxEIhGuqsqyDKfTiXA4jJaWFq4ok7W5qakJfr+fK+MU/ka92FQ9nzt3Lk444QTMmDEDmzZtwoYNG/D0009jx44daGlp4T5xh8PBdmkSky6XCy0tLWhra4PD4UAymUQymeRebBoDZpomVFXlEDUSklTFz2azLFLJuk9VYMuy0Nvbi1qthqOOOgpLlizBsccei+OOOw5utxsDAwPsLKAKOSXP0+vdvHkz/v73v2Pr1q0ABgPjYrFYnQC3j5EbiaECWFEUHHzwwTj22GPR1dXFTgdqHwDA14l6xe098/TvxDAMWJbFP6fedbLTA+BEeXrcWCgUCjyKTiAQTCxXX301DjnkkBF/rmkafvWrX+H//b//t5NlXSAQCAQCwXsDUQnfi7Cne1MKNlWkdV1HY2MjPB4PAoFAXTgYVcd1XUcoFOL52lQhJ2u7x+NhQa8oCgzDgK7rqFarUBQFqqoik8kgk8nweDASe+VyGdlsFoZhYPbs2Tj++ONx0EEHYf369XjnnXeQSCTw1ltv8ZrIXk22+VKphFqtxmFjANDR0QGXy4Wenh62xVN/fENDA8/NlmUZjY2N2LRpE/r7+wGALdj2mdrZbJbt8/l8Hm1tbTj00EMxe/ZszJo1C5FIBKlUCvF4nEeZUSgebRZQ2ntPTw+efvppvP322yywhwptqvLvqmJsT5V3Op2YMWMGFi1ahNmzZyMcDnM431BIvNPPaM45bdhomsYVc3oM/bshFwFdd5ovPpY54tlsFul0WgSzCQQTzNy5c/GJT3xiTI/9xje+AUVR8LWvfW3UTT6BQCAQCAT7HkKE7wWQxTiXy6FQKKBUKnHlm2zdPp8PmqbB7/djzpw56O/v5xnemqYhEAgAeNe+TpXknp4entddKpXY2u33+1GtVlm4y7IMXdfZjh0MBuH3++FwONh+nUwmEQwGcdRRR6GrqwuvvvoqYrEYAoEAXnjhBSSTSXR0dABAXQVdURSuhFOvOSWdz5w5E36/H1u2bEEul0Nvby9SqRRaW1sRCAR4bJtlWQiHw7xBQOKSUsHtmwSZTAYHHHAAFixYgPnz56OrqwstLS2wLItT3+2hcCTmgUFhnU6n8dprr+Gll17iTZHhIBu4vR+cZnfTh2bajCBCoRBmzpyJuXPnoqGhYVSha3cj0Dx0y7Lg8Xi4l56uw0jPp2PQBshYIHv8eMetCQSCkZEkCZ/73OcwY8aMMT/+C1/4Al5//XXce++94w5+FAgEAoFAsPciRPheAFnJqXKZy+W4f5ss5mTtdjqdHEwWCAQQDAb5e7Iss6grFotIpVIwDAORSASVSgWxWAypVAqRSIQTzsm6vGnTJrjdbk4q1zQN+XwehUKBnyvLMk4++WQsW7aMx3opioLnn38eL7/8MgKBAFpbW3njwOv1coWbrN7Un0yhYh6PB11dXdA0DZs3b0Y6nUY+n8eWLVs4eZzSzik9na5ZqVTiFPZCoYBUKgVd19HQ0ICTTz4ZLS0tWLx4MZqamtiSXSgU2OZO6eokZB0OB7LZLN544w08++yzyGQyUBQFlmUNW4kiaz+JcBLLVBmncDfC4/Ggvb0dBxxwANra2nj8GfBuld3pdKJcLqNcLrNoJjcBVe2pJ97lcvF1oOtLUMAbgGHHwo0G2fMpSV8gEOw5p59+Oq699tpxPUfTNNx5552YPXs2/ud//gfRaFSIcYFAsF8w9DOUQPBeQ/SETzPUa12r1VAsFtkOTh+0SAC6XC5kMhmu9LpcLrjdbg5eo8o3id5KpYJ0Os0CkwLfmpub0draCrfbjWw2C0mSYJom+vv7+bwejwfVahU9PT3YtGkT4vE4isUiPvCBD+CUU05Be3s7LMuC1+vF1q1bcd999yGXy6G5uRl+v583CBRFgaZpHMxGyd4AODCMbrDhcBiHHXYYjjzySMyZMweBQID7w3O5HCqVCv+XyGaz6O/vx44dO7Bp0yakUikoioJzzjkHxx57LI488kjMmDGDg+7Irk495GT1p2tdLBaxZcsWrFq1Ct3d3QiFQpgzZw7b1VVVZYu4x+Phfk0S3dQzT5sO9lRyp9PJffBdXV08rq1arbIrwP5YALzhUKlUuJpNveFUuScrOj2W2BMruSRJCAaD4pefQDBBOJ1OXHfddbv1/6Wmafj+97+PFStW4Otf/zqWL1+O5cuX46CDDpqElQoEAsH0s3TpUtx+++1YsmTJuJ533HHHoaura3IWJRBMMKISPs3QHGvTNJFOp3lGtl2I0czoUqmEVCrFc66DwSCampq495t6uGmMGH3PnhwODFZde3t7sXXrVj5PKBSCaZosImu1GgYGBtDf3498Po8lS5bg+OOPR7Vaxauvvop4PA7DMPDyyy+jr68PgUAAHo8HpmnyBoFlWVy5pYotCXISjiQmgcEPm8FgEDNnzkShUEA8HsfWrVsRjUbrHkdUq1V0d3dzanggEMDZZ5+N8847D4FAoC7h2zRN3mSQZRkulwv5fJ4Dy8rlMmKxGNavX4+NGzeiVqth8eLFHCrncrkQDAbhcrmQy+UQDAahqioMw6hbE11jsuPbX1tHRwfa2trQ3t7OlWy6/iTcAfD5qI+bLOiVSoXD1+zVewqlo1F3dP49/Tc53tFmAoFgeM466ywceeSRe3SMzs5OXH/99fz1pk2bcO2112Ljxo1Yu3btni5RIBAI9hquvvpqXHDBBZg9ezbOOeecUYNiOzs7sXDhQgDAD3/4QwQCAWzYsAEf/ehHxxVKKxBMNeJT9jRTrVaRy+Wg6zpSqRTbpSlYi3qdy+UyFEVBPp+HJEls+6aqNfU4k4W9UChAURRO/yb7t2EYkCQJyWQS2WyWq6zNzc0olUowTROWZSGfz2NgYACpVAqdnZ045phjUCgU8Prrr+OVV15BU1MTUqkUXn75ZbjdbnR2diIQCHAfOAAW2lRxBgZ7pqmqS5Z3+wgtquzSuK1IJILNmzdjw4YNIwag1Wo1hMNhnHHGGTj//PPR0tLC/fWyLPMor3K5DFmWoWkaKpUKCoUCrzWbzWLbtm1Yv349+vv7sXDhQrS3t2P79u0IhUI8j9zhcEBRFE6QH8kaSq8RGBTEkUiE0+dDoRDcbje/ZhLsdtFLFnT7ayTIBk/XjXrtKWWfbPx2xtoPDgAbN27Ejh07Ru2HFwgEY2PGjBn4xje+wRMLJoo5c+bgwQcfxCOPPIJrrrkG69evn9DjCwQCwXSSSqXw5S9/eUQB7nK50Nraissuuwzf+c536n5GQcQCwd6MEOF7AdVqlcUoAK6QOp1OrrTaxTZVPyl1nAK6qGpLFV5Kz6agNxrp5fF4OFWcgtwSiQTP4M5ms0ilUhgYGICiKJg3bx5SqRTWrFmDLVu2wDRNeL1evPjii8jn85g5cyaamppYHFJlmpLDaSOBNgoAcJVckqSd1kQ2dRLdXV1dMAwD27dvH7E3+8QTT8RHPvIRdHZ2sgCm65TL5er6tL1eLxKJBItwwzDQ3d2NTZs2YcuWLZBlGbNmzUIsFoPD4UBraytM0+T3BBic9UthesNV6e2i2ev1IhgMQpZltLS08PtC6/F4PDx2jo5P7zNB/fPAu1Zz+zlo/FulUmHXhB2v1zum3vBarYZt27ZB13Wk0+ldPl4gEIzMAQccgPvvv3+Pq+Cj8eEPfxiqquLDH/5wXUikQCAQ7MsUi0Xs2LFjxJ87nU5omgZN06ZwVQLBxCG2iaYZ6gumai3w7oxw6qcul8vIZDLch10qlZDJZJBKpVCpVDgIzT5v3DAMVKtVZDIZZLNZAOBZ2KZpwjAMtp77/X7k83mk02nE43EMDAygu7sbuVwOHR0dyOVyeOKJJ/D4449j48aNcDqdWLNmDbZv346mpiZ0dHTA7/fzrHGXy8WbAvbXaa/++nw+tlxTOJzT6WTxSFV5SmtvbW0ddmauLMt43/veh5NOOglz587lvmwKMSsUCmzN93g8LMp1XUc+n0cikUBPTw82b96MdevWIZVKIRgMIpfLIZ1Oo1qtwjAMXod9A4T683f1/jY2NiIYDELTNDQ2NnKSPdn+qSd8aBo5bcZIksSVb6p0D7W707lotjxda3uy+ligDZNYLCZsXALBHiBJEr761a9OqgAnjjvuOPzHf/zHpJ9HIBAIJhOv14vPfvazPMp2JCRJQmNjI9avX4+f//zniEajdT/PZrMixFKw1yMq4dNMpVJBsVisSzW3LAuKovAoLQAswiORCADUiTfDMFi8Upq5YRjI5/NQFKWuH5rOkc1moes6V6ZVVUVjYyMymQxisRgKhQICgQBqtRpWrFiBNWvWoFqt4uCDD8bmzZuxfv16qKqKgw46CM3NzZwSTpVvSuumNVKKOzB486Qe9Xw+D1mWufJLPdDlcrmu99nlciEcDiOVSnE1XJIkHHnkkbjkkkuwYMEC1Go1pFIpOBwOri5Tv7wkSdA0DU6nE/F4HPF4nGegJxIJrF+/Htu3b4fT6WRrPgAkk0n09PSgUqnA5/NBlmUEg0GYpol4PD5i5cnj8aBUKvFc91AohFAoxKnxBAXyeTyenfq47YnnlCxfKBSgaRq8Xi8sy6qz8g993u6EQFmWha1bt/IsdYFAMH6cTicuvfRSXHLJJVNyvlKphPnz50/JuQQCgWCy+N73voePf/zj+NWvfgWXywVZloe1o8+dOxePPPIIDj/8cLzzzjt44okncMQRR6CtrQ2JRAIXXXSRaKkT7PUIEb4X4PF4oGkaIpEIV6gBcH+1YRhcEdU0DeFwmIVroVBgwUePoedEo1F0dnZyBZVC36hfmh5Pf/f5fEgkEhzK5fV6sXnzZqxduxblchldXV2oVCocXHbAAQewDb1QKHCPtH02tSzL8Pv9KJVKKBQKnBpOoWM+nw8Oh4MD3ewVW6pcZ7NZRKPRuvE8LpcLH/zgB3H11VdjyZIlqFar2L59OweckdWcZor7/X44nU7ouo7+/n5OgS8UCtiwYQPeeecdFutkzQfAs9OpUk3z1ZPJ5KhVcOqHV1UVgUAADQ0NaG5u5oRzeyI6Wcntr53cEfS4YrEIRVH4a3qOaZpc9SfIOk/29fFATgi6bgKBYHw4HA4sWrQIP/7xj+s23CaTxx9/HJ/85Cen5FwCgUAwGXi9Xpxwwglwu9047bTTcNhhh+Guu+7CM888g7vvvhvxeBzA4D322muvxRtvvAHLslCpVPCFL3yBg4ArlQp0XR/1XG63G0cddRTWr1+PZDIpquaCaUGI8GmGelr8fj8aGxuRSCQ4vZs+wFHA2IwZM9DZ2YlQKASn08n9yPbeb/uscVmWkU6n4fP5EA6HEYvFOO28WCyy7R0YrI6n02lEo1GukG/atAkDAwNwOp2YP38+yuUy3nrrLZTLZRxwwAFob28H8K6IJHs1CcJqtQpN0+Dz+RCNRrnCr6oq91OTWPR6vSx0yZZOtu9kMgld1xEMBjF37lyUSiUsXboUl19+OebNm8cBdg0NDTAMg/u/i8Vi3QiyQqHAFvNsNovNmzfjtddew+rVq9myX6lUsG3bNgBgGzdV9Mn2n0wmR71pk8h2uVwcyOb3+9Ha2gqn08mv0TRNKIrCVnyC+rrpGpZKJbaW67rOlXCXywXLsjg9nYJIyCVht6vTe7QrDMOAoii8USEQCHYNZVmcffbZWLJkCb74xS9CUZQpOXelUsENN9zA9zCBQCDYl3C5XDj//PPx1a9+FQcffDA8Hg9/vjzrrLNw1llnYe7cufjiF78IADjwwAOhqio+97nPcbV7LHkYTqcTDQ0NOPPMM3HGGWfgpJNOQjabxZe//GU8+OCDk/cCBYIRECJ8miHrtM/n40qrLMtsfU6lUiy4QqEQV0NpjBRVfCuVChKJBLxeLwzDYEt4tVpFKpWCYRjYunUrdF1HJpPhnnMSf2TbLhQKKJfLiEajGBgYQKlUQmtrK1KpFHp7eyFJEubOnYs5c+agsbGRxabH40Eul+Nzk+grl8uoVCp1Qt0+V5sqvF6vl4UjjeKSJIlng8+bNw/nnHMOp8N/9rOfRUNDQ13gm73KXqlU0NfXxzZyAMjn88hkMti6dStWrlyJV155Bclksi7sjfqtyRlAgpqC5GKxGAzDGFWgUhp8MBhEJBJBc3MzGhsb0dDQAL/fz5Zyev+Hs5PTh3oS7CSsKWTONE1eJ/DurHJ6nv060+saiwinUXnkBBAIBKOjqiq+973v4YUXXsAtt9yC2bNnT+n5H3roIaxcuXJKzykQCAQTgdvtxg9+8ANcffXVo45F/cQnPoFbb70VsVgMP/rRj/CHP/xh3OGxv/3tb7Fs2TLMmjWLvxcMBnHBBRcIES6YFoQI3wsgUeXxeBAKhXgGOAWBUR84Vc3JukwVY7fbjUqlgoGBAaiqikqlAsuykMlkeP53MpnkMV1kE1dVFeFwmG07JOyKxSL6+vq4T7mvr49HpM2bNw9tbW0IhUI8box6mil5nMaklcvlOrs0BavZe53JFk7fU1WVq9flchl+vx/ZbBbLli3DBz7wATz55JM466yz0NLSglQqVdcTbd9YGBgYQKFQgNvt5iTz/v5+rF+/Hm+88QbefPNN5PN5NDY2cqidPWGeNhZoY6JYLPKadgX1Uvt8PnYhNDc3c8uBruu80UJhenQNaAPDLsypau5wOOp66ylNXVVV/vdAGzTUgiBJEjsrdkWtVuNZ6SJlWSAYGzNmzMDnPvc5XHvttdNyfsoLmUgkScLSpUvxvve9D8uXL+fv/9u//Rsee+yxCT2XQCDYP/F6vfjBD36Af/mXf9llkSAYDOL++++HJElYuHAhWlpa8Nxzz2Hr1q1jPt+9996L+fPn14nwHTt24Mc//vHuvgSBYI8QInyaoWonjaDy+XwscKvVKpqbm3lueCQSqbMVUzWcxpuVSiXE43HuhY5Go4hEIhxsQb3XbrcbgUAAwWAQPp8Puq6jWCyycNV1nT/UkfiUJAkNDQ1wu90cmkY90XRuEtGapiGbzcIwDDgcDliWBYfDAVVVeda2w+HgKj6lttsD16iHvKmpiUPcnn32WcyaNQvz58+HruvcI28YBvcCkRWf0r2bmpogSRJ6e3uxatUqrFy5Et3d3QAGR5+FQiHkcjkMDAywTX/ofG4S+ruyZ9sfI0kSQqEQmpqaEAgEEAgE2N1gGAbS6TTPH6fnAoOCm1Lw7celtHNVVSHLMmRZ5rVR9Z6eT4KbesLHmoxeq9WwadMmbNiwYUybDQKBYOdxglNJb28v/ud//mdCjxmJRPDb3/4WJ5988k7hjjfffDMURRFVI4FAsMdcc801uPrqq8f8GeWQQw7hvx9xxBH405/+hKuuugrd3d3Yvn37Lp//8MMP45133sGLL76ISCSCarWKn//851ixYsVuvwaBYE8Y14iyG264AUcddRT8fj+am5vx0Y9+FOvXr697jGmauOKKK9DQ0ABN03Deeeehv7+/7jHbt2/HGWecAVVV0dzcjK9+9av77Yd+qlhSaJmmaXzt/H4/QqEQOjs7MX/+fASDQaRSKbbgkG2Ykr5JlNNYMgpi03UdqVQKiUQClmVxHzgFumWzWWSzWRZ3JK4pfdvr9aKrqwter5ePm06neVwWWenJQk6p5BSsVq1W4Xa7uZLscDjg9XoRCoVYnAYCAaiqyhsIuq7D4/EgnU5DURRs27YNlmXhxBNP5Mo6hbpRX7XL5YKmaSzgSagODAzg7bffxsqVK7Fq1Srs2LEDfX192LZtG1avXo233noLAwMDXO2nMLnGxkaoqopgMLjL/k5yKZAAJldAMBhkG7rb7eYNENrkGCqU6Xm0sUEWfbpmdtFOFvORBIB9rvlYsCwL77zzjkgU3U3E/XH/hO5N08Ef//hH/POf/5zQY3q9XnzoQx8adrrCokWLsGTJknHdVwQCQtwjBXZef/31PZrCcvjhh+P555/H//3f/+Hqq68e03M2bNiAxx57DLFYDLfffjtuueWW3T6/QLCnjKsS/swzz+CKK67AUUcdhXK5jG9+85s45ZRTsG7dOu67vfrqq/Hwww/j/vvvRzAYxJVXXolzzz0Xzz//PIDB6u0ZZ5yB1tZWvPDCC+jr68NFF10Et9uN66+/fuJf4V4O9WwPDAxA0zRomsaCllLOA4EAOjo6YBgG4vE4C1wSX4ZhAABXcSkBvaGhgUd86bqOSqXCdnb6hWUYBrLZLEqlEsLhMOLxOB/Pvkafz4fGxkaekw0MCkG/3w+v14tyucziMZ/Pc2WcbrD5fJ7t04FAgL/v8XhYZFJIWzqdRiaTQUdHB9vBFyxYgHPPPRetra28MUCv2Z4CXqlUuE9clmVks1ls2bIFb775JrZu3Vr32khser1eNDU1ob29HcFgEPl8nq3zW7duRblcRjqd5lnhQyGrvcPh4HA8VVXh8XigKArC4TBUVeVqtqZpPALM4/FwUrxdiNt76aknnCrt1FIw0dW3WCzGGQSC8SPuj/sn1Wp1p3vmVBCPx/HII49M+HF9Pt+oIvvaa69FU1MTvv71r+8ygVggsCPukQI7b7zxBrLZLLdc7i5z5szB4sWLx/z4X/3qV7jpppt49O5E0dzcjOuuu46LNs899xx+//vfT9jxBe89HLU9iECOxWJobm7GM888gw996EPIZDJoamrCvffei4997GMAgLfffhsLFizAiy++iKVLl+LRRx/FmWeeid7eXrS0tAAA7rzzTlx33XWIxWJjGqtESdnvBRRFwdFHH43Ozk7MnDmTLTLUY53P5+Hz+dDR0YFkMol4PI729na0trbimWeeQSaTQSQSgaqq2LZtG6rVKhKJBN588020tbWhvb0dbrcbuVyOq7oknilVvbu7G9lsFk6nE08//TQ2bNiw0zp9Ph9mzZqFzs5OhMNhDv2idVJAmz1YjQLKaJQW9bKT1Z4EdENDA1ey0+k01qxZw5sMra2tUFUVF110ET70oQ/xh0OqwpfLZciyzL3s8XgcGzduRCqVgiRJ6Ovrw7p16/Dqq69i3bp1SCaT/Jrcbjf8fj9mzZrFoXfUL9/Q0IAtW7Zg8+bN3EtfLpeRz+frql4ulwttbW1wu90oFovQdR25XA7Nzc046KCD8P73vx+HH344ZsyYwT3isiyju7sbLpcLs2fP5s0Ke+WJeuqBd3v16fr6fD74/f4R+7zpPSCb+lj6wYHB6sINN9yA3/3ud9MiKqaLTCaDQCAw4ccV98f9h6OPPhr33nsvOjs7p6xK/N3vfhff//73J+x4TqcTn/jEJ3DllVdi6dKloz42nU7joIMO2qlCKXjvMVn3R0DcI/d3HA4HTj31VCxbtgyf+9zn2Bk5lhBZ4N12yUqlgve973148803J3nFo+N0OnHxxRfjtttug6Io+MlPfoJ/+Zd/mdY1CSaXPb0/7tGnBbIt0y7WypUrUSqVcNJJJ/FjDjroIMyYMQMvvvgiAODFF1/EIYccwjdPADj11FOh6/qI/wNZlgVd1+v+vFegvl632w3LslisWpaFYrEIWZb5DaZKN/VP025bPp+HYRg8C9w0TRSLRRSLRUSjUfT19bGwLxaLKJVKbG2ORqMwTRONjY3weDwYGBgYdp25XA7r1q3DihUrsHr1amQyGbjdbsiyjEqlglwuh+7ubh5xRq+lUCigUCiw/VzTNORyOe4TlySJhXy5XEZ3dzdM00RDQwNyuRwWLFiAs846C4cffjh/uLXvG1F/ea1WQ6FQQDKZRCwWQzabRSKRQG9vL6LRKNLpdN0IH7KFU3I58K69v1KpYNOmTXj77bf53xpZ1AOBAFeKaYwGhaXRCDNJkniTg5LfKbDO4XCgXC4jEonwezFccjm9VrKkU7I82drpuUP30Oh9pzFn5CQYi8W8VCqhp6cH+Xx+l48V7Bpxf9x/eP7553HYYYfhW9/6FrZu3cr/f04G5XIZTzzxBF544YUJO6bD4cAXvvAF/PKXv9ylADcMA1deeSVisdiEnV+wfyLukfs3tVoNjz32GL773e/i0EMPxdy5c/HNb34TmzZtGlOFesWKFfxnb9gQrFaruPvuu3HJJZfgRz/6EW688cbpXpJgL2e3g9mq1Sr+5V/+BUcffTQWLVoEAIhGo5zwbaelpQXRaJQfY7950s/pZ8Nxww034Hvf+97uLnWvhnqgDcOAqqpwOBzco61pGjo7O3nsFlmWaca23+9HKpXikVzlcpmTvKniCoArqlTJ9fv9/HUqlUIul0NbWxvi8ThM02T781CBV61WkUwmkUqlsHHjRjQ1NWHevHn8ftNzLMtioUhVY0rtJsEsyzKLU5rbbZomstksgsEgTNNEW1sbjj32WBx22GF1O03UH23/kFsoFJDNZtHf349EIsEugv7+fvT29iKZTNY9nq5JY2Mjh5nlcjl4vV7EYjG89dZb3Cfv9/tRrVZ5JJzT6eRRcm63G4VCAT6fDy6XC4lEgkU49blT8ByNjSsWiwiFQjAMA6lUiueE0y8d6uV2OBwspj0eD1vaCcuy+JrSc2lDh6rfY010r9Vq6O/vx5YtWybUnrW/Iu6P+x/JZBI33ngjfv3rX0OWZQSDQVx33XU499xz69qH9oREIoHPfOYzeOaZZyZ0Lvjll1+OH/3oR2NqRbnllltw77337jKoUiAYDXGPFNghl+JNN92E3/zmN7j44otx1FFH4SMf+ciw+RQAcMwxxwAY/DzX0NCAeDw+ZesdiWq1it///vfChi4YE7stwq+44gqsXbt2wkNhhuMb3/gGrrnmGv5a13V0dXVN+nmnAqfTyTO+g8EgJ49Xq1UEAgF4PB5YloV8Ps+imqqilKZO1XO3283BbIqicB93Pp9nQelyuSDLMkzT5Bncra2tCAaDXAV2uVx1M6aHQkKbKt8ej4dHblHIGqV8U3AYVcTdbjdX8EmQk/imILjGxkb09fXhqKOOwqJFi0a0jVGPtsfjQaFQQDqdxsDAADsI6HsUVGfH4XAgHA6jWq0iFouxPd4wDOzYsYN36Kn/ulqtcpo7zW3P5XJwOp1oampCQ0MD8vk8FEWpC4vz+XycCE8bERRW19DQgP7+frbj24U4zTynv9vXQf3gtMFhr6S73e46OyzNod8VNJ7MPqNcsPuI++P+i10IfPrTn8YPfvADuN1uDqV6+eWXcdhhh6GtrW3cx37kkUfwt7/9bSKXCwD4zGc+M2r4ZCqV4krkqlWrxP1BsMeIe6RgJKLRKH74wx/C5XLh0EMPxde//nWcccYZuwzIFQj2NXZLhF955ZX429/+hmeffRadnZ38/dbWVhSLRR6/RPT396O1tZUfM3QcANlI6DFDoYrpexWqGJNlWFEUFrIkMjOZDBwOBwtpt9vNtnIALMKp/xoYFFaU7E2jySipm6zroVAIS5Ys4Y0Ae0DYcDQ3N6OtrQ1+vx/pdBqxWAyFQgGZTAbJZJJ7vhsaGtDe3s7Ba7Rml8vFlV6yTpNIpOR16nmeO3fuiL0W1WqV+8JzuRy7B1KpFL92Wl8sFtvJYt3U1ASv14tNmzbxrPNarVZXvafj0DoBsIDOZDKo1Wpobm5GKBTivm6Hw4FAIMCv1e12c0o88K59vlAoQNM0eL1eZDIZtuTbr71dsNPYNppnrmkar49S1/cE2oyg1yXYfcT9UUBUKhW2yF544YVoa2vD2rVrcfTRR+OWW27B+973vnH1kN91112Tss433nhjxI3X9evX46c//SlWr149KecW7H+Ie+T+jd/v5yC1rVu3oqenZ9jHlctlrFy5EhdccAGOOOII/PCHP8QJJ5wwlUsVCCaVcYnwWq2Gq666Cg8++CCefvrpuoH3wODcPrfbjaeeegrnnXcegMFf4Nu3b8eyZcsAAMuWLcMPfvADDAwMoLm5GQDwxBNPIBAIYOHChRPxmvYpSEwGg0FkMhm4XC4WZoVCAYqisMCSJAmRSIRTyKka7nQ6kU6nuVpOopds5VShbmhoQFNTE49EsywLs2fPRktLC3p6emAYBh+TKq92FEXBUUcdhXnz5iEcDvM6CoUCNm3ahK1btyKVSqG7uxs9PT1IpVJoa2tja7wsy2wJp95oe7U3lUrBNE0oioL29nYsWLBgRHFJgtTpdKJUKsEwDCQSCRSLRSiKgnw+z2saGBioG4OhaRpX21OpVJ2de6RzEZVKha+L2+1mAW4YBrcChMNhTkanDQaaY04uB3pvQqEQ0uk0GhoadvowTkFsQP2sb7pmXq+XXz+9b8R409NLpRJfD8HuIe6PgtFIJBJIJBIABnvIzzzzTDzyyCPo6uoaU1XcMIxJy2u47LLLJuW4AoEdcY8UAIMi/Oc//zkWLlyIt956C5s2bUKtVsOPf/xjbNmyBVu3bq17fK1Ww6uvvopPfOIT+MxnPoMf/vCHdT9PpVLTNiZSINgTxiXCr7jiCtx77734y1/+Ar/fz7Y7qrYGg0FccskluOaaaxCJRBAIBHDVVVdh2bJlHPZyyimnYOHChfj0pz+Nm266CdFoFN/+9rdxxRVX7Lc7lTSGiqqxVFFWVRXZbJZFtNvtRjqdRiAQgCzLHNDm8/lQKpVQKpVYxEuShFAoxNXUQCDAidpU8W5pacEBBxwAv9/PfeYj9YMDg+FkM2bMwKJFi1AqlRAMBnmczbJly1jcv/3223jggQewYcMGbN68GV6vF83NzdwHDoDD4xRF4T73VCrFCemzZ8/G4YcfPqKQJBFO49GKxSKniFerVUSjUWzZsgU7duzYqSfa7Xajp6eH562PVvl1u911wtv+WGoLsCwLhmEgnU5DkiQeT0ZWdHp9tDFSLpc5Pd7v90PXdeTz+bqqv12sS5LENnGa7V4qlaCqKgfj2aE+crLBjwWq4tvnxAvGh7g/CsZDIpHA0qVLceCBB+KSSy7BRRddxKJiOF566SW8/PLLU7hCgWBiEfdIAQB0dXXxhsmCBQuwYMECAMCZZ56JaDSK3/zmN/iv//qvnSrkAwMDuOuuu9DY2Iirr74a0WgUHR0dePDBB3cS7gLBvsC40tHvuOMOZDIZHHfccWhra+M/f/zjH/kxP/7xj3HmmWfivPPOw4c+9CG0trbiz3/+M/9ckiT87W9/gyRJWLZsGS688EJcdNFFEzpqZV8jFAqhra2Nq+K6rnNvr12MJZNJbNiwAT09PWyRLhQKcDgcmDFjBtrb2+FwOOB2u+H1ennUA/URk/gDBm3lc+fORWNjI7xeL1dYqIo7HBQU5nK50N7ejtmzZ9f1azc0NGDhwoU477zz8K1vfQsf+9jH0NzcDMuysGPHDqxatQpbt27lEDaqhmezWX5N8XgcL7/8Mg466KBhe8Fp/JZpmlwBJht7sVjkoLSenh50d3fvtDtK9nUS4KMhyzKL6ZEso1T9pnR6sp6Tg4GEsD393D4yjER7JpOpE9PVapXnwdMHC5rBrut6nVOBRLr9mJTEPh7sgW6C8SPuj4LxUqvV8Pbbb+O6667D0Ucfjddff33Ee9Nk9IILBFOJuEcKAIz42cThcKCtrQ1f+9rX8Nprr+H000/fqQ88FovhmWeeweWXX46vfOUr6Ovrm9CQSoFgKhm3HX1XyLKM2267DbfddtuIj5k5cyYeeeSR8Zz6PYskSWhvb8ecOXNgGAbi8TiKxSIncKuqyj3X8XgctVoNiqJAVdW6Si6N3IpGozzWyrKsupRsuvEFg0G0tLRwf3kqlcLAwAAkSUJzczN0XR/2gyAlhJfLZWiaBpfLxdVeEse6rqNWq2HBggVobm7G4sWL8fDDD2PlypXIZDLQdR3btm2DqqrQNA0+n49FbCQSYZv8okWLdhK+FOIGDFbSKQ2ehDAFtaVSKfT29u50Y3Y6nQgGg8OGtFH4Gb0nbrebNzGcTicfe+j1cDqdMAyDq/EURkfVcLr+tKFiTz2nfvOGhgYeDRYMBnnmOo0vczgcME2Tk+Spoj4Ract26N+NYPcQ90fB7lKtVrFx40Z88IMfRGtrK/7whz9wpWjNmjV44okn8MADD0zzKgWCPUPcIwVjweFwoLm5GX/+85/x5JNP4vbbb8djjz3G/34efvhhAIP/Vh5//PFRg4QFgr0ZUfaaZlwuF5qbmxEIBODz+RCLxWBZFmKxGO/wlctl6LqOaDSKAw44AMBgD0w+n4ckSchkMigWi8hkMnUV0Hw+z5Z0mtFNM7sDgQCL4mw2y6MdHA4HDMMYdq25XA5btmzBkUceySLfbruOx+NIp9PI5XIcsLZ06VI0NjZi5syZeP7557k6bVkWUqlUnf2dEsWbmprqwlqIarUKwzA43b1cLsPhcKBUKqFQKCCfz6NaraKnpwc7duxAoVCoez5Z+Mmyn8/n4XQ6eXwQOQbsc729Xi+3CQyFRo8lk8m65HJal8fjgdvtRq1WQ6lU4nT7arUKt9vNa9c0DYFAAMlkEoFAYNh0chLHLpcLHo9nwkYeDUVUwgWC6SOXy2HTpk04+eSTuQJEEy8EAoFgf0KWZZx55pn40Ic+hOuvvx533XUXBgYG+OemaXJhRiDYFxGfuKcZp9OJUCjElmeyk0uShHg8zlZrRVG4UlssFlksZ7NZKIrCI7Lcbjf8fj8LWxp95XK5EAqFeIY2MNgHTPZm6ksuFosjWntKpRJef/11rhAvXrwYkUiEBaiiKDyPmyriiqKgpaUFp556KmbMmIHXXnsNGzdu5FR1e+jZjh074HA4sHDhwmFHUZBFm266pVIJkiTBsiyk02k+Xnd3N+LxeF1V1+12IxwOwzAMOJ1OtpqT9Z76rOl1qKoKn8/HdvfhKsThcBiZTAbpdBqRSATFYpH78akHnCrpdsFMf6dRZuVymUV4Op3marhd0FMlvVgswu/3c6/5ROHxeHhjRSAQTC/pdHpMLTMCgUCwrxGPx9Hb24v29vYxPT4QCODGG2/EF7/4RfzsZz/D6tWr8cQTT0z7JJe5c+diyZIlAICnn356r5hTLti3ECJ8mnE4HFx1pRuKx+NhS3oul8PmzZvR0tKCGTNmoLm5mcVnoVBAIpFAIBDg5G232w1VVevEm9/vh9Pp5LRuEvDUe14sFjEwMMAilgSnx+NBIBBgcV4ul5HP5/GPf/wD27dvx4knnojjjz8ec+fO5epxMBismxFOGwderxdtbW04/PDDMXPmTGQyGfT392PVqlX8YZPO29raOmzAimVZnIhO89QLhQJyuRx0XWdBHIvFkM1muf+9VCrxxkSlUoGqqpAkCeFwGLIso1qtIp1O8899Ph9CoRDbwIe70dPGhmVZ3LdPgWihUAiyLCOfzyOVSkFVVbhcLhbf1HttnwXu8Xg4IV/TNEiSxP8OgMGqOzkIQqHQhAfQ0MaEQCAYOwceeCDa29vx/PPPC0ukQCAQDOHAAw9EqVTC5s2b+XsbN27E+eefjxtuuAHHHHPMmAsKM2fOxM0334xCoYB169bhRz/6EX7/+99P1tJHZeHChfjTn/6Egw46CMBgiv9tt92Gt956Cz6fD9deey0efvhh3HjjjdOyPsG+gRDh04zX6+XU81KpxFVwCt8ikZxIJKAoCjo7O6FpWl3atr2HmGzPNK6MEkfpsZIkwev1sgXd4/Egl8txYjqJZofDgZaWFsydO5f7ri3LQiKRQCaTwfr167F161Y88cQTOPXUU3H66aejubkZwWAQmqbBMAzkcjlkMhlOTc9kMjBNE06nk3uuGxsboes6C3Cn04nW1tZhrdZk66Y521S1LRQKvKmwY8cOxGIxVCoVBINB6LrOSfE0/iwcDkNRFPj9frYzqarKSeiapnFaPTDoGBhaCSdLO20MJBIJFuHkbqBqNW18eDweVCoVPg8dk3rEQ6EQMpkMMpkMQqEQC3TTNFkgDw1wmyio6i4QCMZGa2srHn30UcyYMQMvvvgiXnnlFdx8883o6OiAaZpYu3btdC9RIBAIppUrrrgCZ555JrZs2YI33ngDd955JzZs2IAXXngBp5xyCk444QR84xvfwPvf//4RQ4GHoigKDjnkkEle+c6oqoqFCxfinHPOwSc/+UluDwUGNxt++tOf8teWZeG6666b8jUK9i2ECJ9mqO9Y13VYlsVhXRT0RdVtl8uF7u5uAMCSJUvQ2NgIn8/HVdZKpcLVcXq8oigIBAIcFOZyuVjMkZh2uVzcS04zv0kc5nI5WJYFr9fLxyqXyxwSNzAwgM2bN+MXv/gFXnzxRRxxxBE4+OCDMWPGDBayPp8P5XKZX5tpmojFYti2bRt6e3uRyWTqBC6NQbOnfQ+lWq3WVewNw0AqlUI2m0V3dzdisRhbyjOZDIekqaoKVVW5/57C3ADwBoWmadzH7XQ6kc/nkcvldloD9W3T6DASxmSXp7FwJMapPYBeF1nUnU4ni3mHw8Fj6eh9o6o/nbNSqfC1nMiecLLdT9YcYoHgvYYsy+js7IQkSTjmmGNwzDHH4OSTT8aiRYuQzWbxpS99CY888giSyeR0L1UgEAimjVmzZmHWrFk44YQT8MlPfhLPP/88fve73+H//u//8Oijj+Lvf/87TjnlFHzjG9/AUUcdtUtXXnd3N26//fa6VP2p4N///d9xzTXXjOmxsVgM77zzziSvSLCvI0T4NEMjrMgKbZomB4p5vV4YhgHTNGFZFvL5PLLZLMLhMBoaGtjCTBVigqqsDocDmqZx9dVumU6n0zAMg0edeTweHvtFUDWbZpRXKhXupabwtHQ6jXg8ji1btqC/vx9PPPEEAoEAOjs7EQ6HoWkaTNNkkZxIJBCLxZBMJtnKbUdVVcyZM2fYZHTqky4Wi6hUKiiXyyiVSlzVTyQS6O3tRbFYhM/n46C2fD6Pnp4eqKqKYDAI0zTR3NzMfd8ktsliDgwKXpfLxRsiQymVSigWi+wwIBFOr4daDCiAjcQ09bo7HA5+3yndvlqtIhgMoq+vD/l8nmeo0+snke7z+SY8lI2u5XT3WAkE+zKLFi0CAPj9ftx9991YsWIF7rzzTvzlL38RPd4CgWC/p6WlBeeeey4++tGP4rnnnsNtt92Gxx9/HI8++igef/xxnHXWWVi8eDEuu+yyYZ//61//Gr/85S+xbdu2Kf+8snbtWnR3d8PlcqGlpWXEz2GGYeDCCy9ELBab0vUJ9j2ECJ9maMYzpZqn02muztZqNRbfJO6KxSJ27NiBcDiMtrY2NDQ08Kgu+/xsEoX2dO9kMolcLodqtcqp6LlcjlPTh97QqOqtaRpbuKkXm6zamqYBABobG1EoFLBjxw62HdlFrV3gjXbjDIVC6Orq2un7JHppw8E+Jz2RSHDQRzqd5uoyhWRUq1Vks1kYhoFEIgGPx4NUKoWGhgbecaVxbRR6R9X2kbBXwj0eT10SO1nPqeebquXDQe8xWde9Xi+vj+aMU2842drtGycTBQXzCQSCicHpdGLp0qU48sgjceWVV+L222/Hgw8+yCMNBQKBYH/F6XTi2GOPxQc+8AH885//xMUXX4yenh785S9/wV//+lfccsstwz5vuOLNVPHrX/8af/jDH+Dz+fD5z38eV111FVpaWnYqGj3yyCN46aWXpmWNgn0LIcKnGeoZzuVyKBQKHARWqVSQy+XqBDgRj8exevVq1Go1zJ8/n23LpVIJlmWxQFZVlcU3jcOqVCpsc8/lcpzATqPL8vk8i2R6jL2HmSzbVGEeOlM8HA5zPzVVf2kmNkFVZqqqm6bJ5+3s7EQoFNrpOtE1oL53eo2WZfFMcOqrpxAz+qBLoXT0OsrlMgYGBmAYBjo6OhAKhSBJEgzD4OC24TYlhr5vdN1pEwMYDFij90+WZe41p9T7occA3u3Hpn8LoVAIW7duhd/v500acjDQdSBXwERVxOPxOHp6ekQ6ukAwwbhcLhx55JG48847cfPNN+OPf/xjXUjRrli7di3+7//+b9RNwd3B5/Phwgsv5I1UYDCV/e677xabBAKBYI9xOByjthYCg0G1xx9/PFatWoXrrrsOv/3tbwGg7nMvfW6jPKGh0M8nG2rZLBQKuPHGG3H33XfjpZde2qlw9Nxzz4nPUoIxIUT4NEP2asMwWPiVSiXkcrmdRmPJsoxSqYR8Po+BgQFs2bKFq+Eul4vt45VKhauq9Fi3280hbplMpk5AUx+03RpPUG+5qqp1fdM0/oxmgGezWcRiMei6zrPJPR4PC3G7ICbhGgqFUCwWkUwmsWPHDvT392PGjBnw+/3DXiuqTpM93+VyIZFIIBqNco97tVqFpmncx01z2N1uN6e7U1p6Q0MD94fTdSOxThsQIwlx6hl3uVx8bagyXqlUUKlUeLOBfmnYd0vt3wdQ1/etqiqH55XLZYTDYX6M3++HqqpwOBzcKrCnQrxWqyEajWLjxo2TEvomEAgGN+gaGhrwpS99aVzPMwwDzz33HD796U8jkUjs8TqOPvpoHHLIIbjmmmswe/bsug/JyWQSa9aswYoVK/b4PAKBYP+ms7MTH//4x8f02Egkgp/+9Kf4zne+s9PPXnrpJTzyyCOYP38+Lrzwwp1+fs899+Cb3/zmHq93rKiqinPOOQcf+tCHdhqz1t3dPW2J7YJ9DyHCp5lKpQLDMFhAVioVDsgaWgGnqjKFr9FYLgo/I8t1tVrlMWGZTAa6rkNVVbS0tKBcLqOvrw+pVIptkfa+ZBLqdrxeL4/sIqs1VWUdDgensDc0NLCwz2az8Hq98Pv9LMJpbjhVvyVJ4nOm02nouo6jjjqqrjIz9LWT9Z4q/v39/UgkErypQGnz+XwekiShs7MTwWAQyWSSLfuRSATNzc18HrL/kyXcXqE2TXNY61OlUuFqPr0Weo1DoWtq3xwZbiSH3eIeCoWQTCYhSRKKxSIURYHL5UKhUEA+n2e7+0RQqVSwY8cOHtMmEAj2HjRNQ1dX17AVoN051ne/+12cfPLJO/0sk8ng/vvvx8qVK/f4PAKBQCBJ0ohFleFQFAUzZszY6fszZszABRdcMOLzIpHIbq1vd/D5fLjtttvw6U9/etjPcfRZXCAYC0KE7wXQuDGv14tqtQrLsoatSFK1tFAocPK4ZVnc1+z3+2EYBoDBqks+n4dhGBwe5vV6Ob2bUr9J2NI57bO96Zw0n5pmmtNcbOoNp5R16n/2+/1wu908Z9w+a5uq+TRqjARzqVRCS0sLjjnmmBHFJY1QKxaLPIc8kUggnU5zWFskEuHztbS0IBQKwTAM5PN5lMtlBINBhMNh7uOmij31W9uvhT0kbzgocd0wDBbQpmnyZgVVqGnTwj6ejHrlCUpLp/fA7/cjFovVpanTBkylUkFrayuHvO0plUoFPT09vBkhEAj2LhYtWoTOzk5Eo9E9Os6xxx6LE088cafvf/7zn8eKFSuwevXqPTq+QCAQvJdpa2vDpz71qTHPNhcIRkOI8GmGxLRpmjwaayy9f3a7Otm6y+Uy0uk0V6tJ8Nr/TpVyqiyT6KfK8tC+Guo9pn5wEvHU9+x0OtHQ0AC328197dQPTlVc6uOhKm+1WuWdSxpZViqV8IEPfACdnZ0jvmZ71Z4qy/F4HLlcDslkkm+KmUwGHo8H4XAYhmEgFouhVqshEokgFApxbxFVuCmQjV4rVYRJ8A8H9YPTHxLc+Xye+8FlWa6b40493EN7m7xeLwBwDxE5BihUzx4UVy6XoWkaP2ciKBQKiEajo244CASC6aFareILX/gCNmzYsEfHOeigg/CrX/2q7sNjtVrF5Zdfjvvvvx+ZTGZPlyoQCARMe3v7hE9ymW4uvvjiUV2IfX19wlEoGDNChE8zVA0mQTZ05NVIzwHAFWFFUThYjFKzA4EAVFXlCjZVrKkiS2KbRCZVYIdSLBaRz+d5JjkwGI5GPdDU3+31euvGdpHVHABbxEnAU2AZMFgZ37x5M2RZxgc/+MFdWpeoQk3BdclkErquwzAMyLLMrzESifBrJgFOM30TiQT3uluWxZZ4Csaj8Dp7BX8o9EGWhLrb7ebUTprjTW6BUqnEc9hppnu5XOZrJEkSC3T75kY4HEYsFmNLPPWsh8PhCbOiA4O/NDZt2iSCRASCvZBqtYrnnnsOuq7v0XFCoRCam5v561qthv/93//FH//4xz0+tkAgEAylsbHxPSfCDzzwwBFfU7FYxE033TThIZqC9y7CTzHNVCoVHg1Flc5d4fV6EQgE4PF4MDAwANM0WRRS1ZSq67qus02aqshU9SURT9XW4UZe2cU5CUev11sXSGZZVl1ftd/vh8/ngyzLbE2nNYZCIZ7N7fF4WLxGIhEccMABo/Y90kgyOpdhGDzvnMSvaZpsLacRZaFQCDNnzkRTUxPfPOl60PMoWZ6Or+v6qKKUNkto9BpVpulaU986CW4S46VSiTclANS9b/brX61W4ff7UavVkEql+HWRlX6iqNVq2LhxIzZu3DhtYz8EAsHU8/jjj+Ozn/2sEOACgWBSmDFjxpSI8GXLlvEGo8vlQkNDw6Sd61e/+hUeffRRbv2089prr+Ghhx6atHML3nsIET7N1Go15PN5DmIbS5+JvXqbTCaRSqUgSRJaW1sRDofh9XqhqirS6TQHvgHvBn+Vy2UWyJqmcW/z0D5lYLBSHQgEAAxa4KnqTMETlDhun0ve3NzM66AAMUoK9/l8kCSJg910XYckSTj44IOHDYUjKpUKi1qy0dPro2o19Vy3tLSwwA8Gg+wKAMDjJeLxOFKpFNLpNAYGBpBIJGAYBvfL0+scqRJOrw0AbziQ5Z42HOjaDH3vgHdFvD3MjWzt9F9JkhAOh5HP53kDY6L6wIlyuYyenh7xQVwgeI9j37zTdR233Xab+P9eIBBMGu9///unpHd60aJFOO+88wAMJrKfe+65kyb+H3vsMZxzzjk4//zz8dBDD8EwDKxevRrf+9738PnPf15MmBGMC2FHn2ZoHBkJTKpWjwZVs8naTEFe/f39dSFtqVSqruJsr3yTwHO5XGyjHi7d2257puotCWHTNHk3UFEUrvqSJd5usQ8EAmwhpyA6evysWbMwd+7cUcdtDZ01ThXiYrFYZ/3x+/1wOBywLIs3FkqlEnRdR7VaRTabha7rME2T7fN290GpVOLws9Hw+Xzc707W92QyycI7n89zlb9cLnOonb26ToFtZEWnajilzheLRTQ2NiKRSKBUKk2oBZ0ol8uIxWJiLrBA8B7nmmuuAQA8+eST+NnPfoaHH354mlckEAgEe47T6cSJJ56IO+64A8cccwyee+65Se3LtiwLjz32GJ599ln4/X5YloV0Oj1p5xO8dxEifJqxLAuGYXBf+Gh9yC6XCw6Hg23rXq+XK9tOpxP5fB7FYpGt0aqqQpIkBAIBDnyzjyFTFAVOpxMDAwN1vcx23G533exwqmTncjkelQUMVpg1TYNpmsjlchzABgwK+UKhUJcC7/V6eQOhsbGRe7FH67UB3u2Hr9VqbPmm81Av/cDAABwOB3w+H4eNUWCdYRhIpVJ1SfD26jttMIwGbWyk02k0NTXB5/Oxo4D6t03ThKqqPD7Osqw6GzpdFxLg9u/RrPFqtQpZltHc3Axd13lzYyIpFouIx+PDWqsEAsH0s3nz5gmpWN9www3Ytm0bvvOd74gKuEAgmFRCoRAOOOCAKT/v7373uyk7FxVcBILdRYjwacayLCSTSfj9fq5KjyTCqaIKvBvoVigU0NPTg5kzZ/L4MApBowTufD4PWZa52kqi0+fzwefz8Q4epYPbUVUVmqbtJBRpPjj1h8uyDJ/PV3dTorVQSjhVeilIzjRNnm2u6zpyudyo14rWQNZ0mnVOa65WqzAMA5VKBZqm1W0sUN87zUYHBlPUyf5NGxwjpaHbkSQJ6XQaPp+Pre6SJMHlcvEIMnI22GeCUz84Ba8BGLUHnsLY2tvbAQCpVAqNjY0TWhEvlUqcTi8QCMbO/Pnzp6Tf8R//+Af6+vr2+Dgvv/wyXn755QlYkUAgEIyOZVlTttlXq9X2eHqEQDAdCBE+zViWxaPGisXiLkWgvX+4Vqshm80iHo+zzZlGidFjS6USstksjwej8VkUJubxeDhcbTjxP3RsVSaT4Uo7HadSqSAQCHAwGr0W+nmtVkMoFIKqqnXp6TTeK5PJ1CXED8fQALMdO3agu7t7J+Feq9W42k9f05rI6m1/LIWzkVj2eDyjBrI5nU4oioJ0Os2j33w+H48Tc7vdKJVKyGQyyGazXPmndY/nQzttXBSLRUQiEfT29vI89dGu1XigFgGBQDA+Pv3pTw+bozGRVKtVdHd3T+o5BAKBYKIpFApIJpNTcq5KpYK77757Ss4lEEwkQoRPM1TtzGQynPI9FgqFAtxuN1wuF0zT5B5ne4WVBL7P56s7F1mnyQ5tr7APhWaL0+gwsmvbZ4DLsoxcLod4PM7V3kAgAJ/Ph2w2i3w+z5V5OiYli1OwmqZpnJo+HCRuaXxYIpFAIpHYyTpO66Me7FqtxuLXnmROc9KBQbFLI9Z2ZUWXJIlFOqWph0IheDweDryr1WrQdR3ZbJar3rRuWZbHXMmmWeuJRAJerxft7e0wTRPJZBKBQIDdDXvKZPSaCwTvZbxeL0Kh0KSfxzRN/PKXv5z08wgEAsG+ypNPPomenp7pXoZAMG6ECN8LoFncmUyG+7V3FSpBvczUn00Va6ruUqU8n8+zAKX+bkrzLpVKSCaT3Gc8dNfS6XQiEAhwD7rL5WJBSxX7SCSCpqYmfozP50MoFOJz0mgtmhFOgWyUQk6p8KZpjuoCoA0DOmYmkxm1f94+p9ztdqNaraJQKHA1nDYkCLLp7yqgrFQqccp7Pp9HOp1GMBisC1ir1WrIZDLI5XK8KUHHHboRMFJFm0bB0aaJZVk8qz2XyyGRSEDTNPj9/j0S0dST7/V6efSbQCAYnW9961s444wzJv08DocDwWBwQuzoAoFAMFW43W4uAE0227ZtE7k2gn0SMaJsmqlUKojH40gkEtB1facU8NGgHm+qSJPN2z4ujALMCBLi9sqwLMuc1G1HkiQ0NDRAVVUWkTRWi3qsgXd71YPBIILBIEKhENxuN9LpNI8NC4fDUFWVR2zRuSORCDweD8/CHu21AoPVZ8uyOIRuJChhnHrWyWquKArb6e2PNU1zTAnhDocDgUCAhb2u69B1HZlMhjcaCoUCb6pYlsXjxtxuNxRFqRtPRtdhOOwWfHpfnU4n/H4/mpubIUnSLq/DrlBVFZ2dnZyqLxAIds3ChQunpB9cURRcccUVk34egUAgmEgOPPBAnHXWWdO9DIFgr0aI8GmmXC4jGo0iHo8jmUyO2Y4OgO3TVNmlKm8ul2NhZhgG26bJRk59jCS67Ynpdsju7vP5WDhSNZr60XVdR39/P49Do5+TlVpRFDgcDq7WFwoF7hkvlUpcWaf+55GgKnWhUOCxbqPtfFLoW7Va5eq13+8fcR46WdJHg0atkYB2Op08W5zGu9GIM8Mw+H0gZwMJcrre9mtJ7yPwrsuB+vTp5/ZNCo/Hw3PeHQ7Hbo8Y83g8aG1tFZZ0gWAcvPLKK1NynnK5jBUrVkzJuQQCgWCiSCQSePvtt6d7GQLBXo0Q4dMM9Q/ruj5uIVWpVLi3m3qrKWiL7OHpdJpt0pRa7nK5UKvV4HK5YBgGp5sPhVLW8/k8i3TqhybBTAKTxoUVi0UMDAwglUpxxZ0q59lsFtlsFqVSCQ6HA8lkErFYDIqi8J+RsNvR8/k8crnciP3bVEEmoV4oFPjvZGEfKsSHm5E+FEo/p9nikiRB1/W6ERV03YvFIjKZDG9+kNtgaNCd/fy5XI6FOIXpUSXf4XAMu3lAon53A6LoHKISLhCMnWOPPXZKzlMsFvHkk09OybkEAoFgoujr68OqVaumexkCwV6N6AnfCyBhR+FjY4EC0TweD1RVRTqd5momhXcVi0UWfbIs8zgv6genyjLNCx9aibbboO22ahKFfr+/LmytUqmwGAfA9nN7jzo9lvrQVVVFS0sL+vv7R33tVFmv1WowDIN73QGgs7MTkiRxevjQDQLa6ACAQCDAmxR2LMvaaSY62dmpmk1p7oVCga8XbXTQhgNRLBa5771YLMLv9/N7UC6XefOE2gLIHWDvEff5fJxcTn38E41lWchkMuNyYAgE+zMNDQ1oaWmZ7mUIBAKBQCDYhxGV8L0A+zit8TxHkiROyM7lckin09zfbK+sk8CkZO9AIMDJvjTD255KTkJQURSEw2EEAgGunlNVnXrQ7RZuqpTTufL5PKe202sj23WhUOAKvCzLCAQC0HV9RDFoF9YkoGnM2dy5c7FgwQI0NzfD4XBwhZxELvXZV6tVpNNp5HK5nVwHZOm392H7/X40NDQgEAiwIPd4PLwpQeKZXou9Gp3P55HNZlEsFrmCT9eU7ObAoB2c/rhcLsRiMei6DrfbzdX7iapUFwqFYSv+9s0agUAwOqqqTlngkEAgEOyLaJqG1tbWKTlXe3s7VFWdknMJBBOJqIRPM9SLTBXSsUICU9M0uFwuFlE0j5pmfwPvWq1JrNM4LkmS4PF44Ha70dvbi0qlApfLhWq1Crfbjfb2dq52W5bFFVwAXE0ncW7vfSaLNNnj7aLPsiwWvHY7PCWK24Xw0OsEgFPUqfLscrnQ1tYGv9/PdvNEIrHTcx0OB88LHwl6DcDgB+1wOMzX2uv1IhKJ8M8Mw+BxaHSd7SK8WCwil8shm81ybzeNMKNKPF0jchj4fD7E43Hu7y8UCggEArvsVR8r1MNO4W60mZJMJsWscIFgjDQ0NKCtrW26lyEQCAR7La2trTjssMOm5FxTEZIpEEwGohI+zTidTqiqimAwyMnZY4EEHVm+JUlCqVTikVjAYDWWhCIlcZNlnWzp9jESJMqo15yqr9lsFoZh8HNJpNvHlTmdTrjdbh6rRZZzt9tdN8+aKtIOhwOyLCMej+P1119HIpFAJpMZsc/bfpMlFwAdu7W1FR0dHWhtbUVXV1fdayQBTucd6dher5ft7h6PB42NjSzCS6USGhsb0dTUxBsXtClA87+pt9r+/lAlO5/Ps5AHBlPr7WF0ZEWnBHeyvHs8HmiaNqZ/D2PB6/UiGAzWrfPtt9/GU089NeY2CIFgf2fVqlV4/vnnp3sZAoFAsNeyceNG3HPPPZN+nv7+fvzoRz+qy+YRCPYVhAifZhwOB1RVRSQSQUNDAzRNq6sE06xu6sMmqFJLdnIS4ul0Gk6nk1O6ZVlGtVrloC86Tq1W49FhJJgbGhrqqvGJRAL9/f1IJBKcZm5ZFiePk/gsl8ucBl4ul1mEUwganY8q8iTCAUDXdaxfvx59fX18nuEgyzyJd9okUBQFsiwjEomgsbERoVCIhWu5XEa5XOZ+dtp0IOjvXq+XbfwAeHOBrlFzczPmzZuHzs5O7vGmzRJKpLcsa6dKuK7rXPWmme70XpFLABh0B1Aom8/n437xybBX0YYDMLi58Oqrr2LDhg0Tfh6BQCAQCAT7L//6r/+Kp556atKOX6vV8LOf/QxPP/30pJ1DIJhMhB19miFRRBVkl8tVN8rK5XJBVVW2kJP1ORwOo6GhAaFQiOdfkxAOBAI8w7pQKKBWq9WNt7InYhcKBaTTaf66Wq3C6/UiHA6zwAwGg5AkCblcjq3l2WwWXq8XgUCA+75JfNNxaD2KosDtdnNyO/Wy09fpdBqbN29GW1sbCoUC/H7/TteJKskkrFVV5esjyzJ8Ph80TYOiKGhtbWW7uP18NFqMrPuSJPGoMQBcDTdNk0VxOBxGc3Mz95tT8jldB2onGNpXD4DnhZumyYKb2gWo8kwWfno8OREoyG2yoJFpzc3NaG9vRzqdnrRzCQTvJexjHiebF198EdlsdkrOJRAIBBMFhfFu3LgRJ5544qScI5lM4s4775yUY48HTdNw4YUXoqOjAwDw1FNPiY0BwZgQInyaIRFuTw+nHmKfzwdFUVAsFhEMBlnQuVwutLe3o6WlBU1NTVxVphFgbW1tqFarSCQSGBgYQHt7O/ciUyW2UqmwKA2FQlzBBsDCPxwO19ndqXeZzuf1elncRyIRtr2TNZ2EeyqV4l7ySqUCr9cLVVWRTCa5H7ynpwfvvPMOotEompubh71OPp+PK9Zut7uukk3H1DQNTU1NiMfjSCQSPBudNgfoAzR9iDZNE5IkoaGhAV6vlzctqDfe4XAgEAhAURR+rD38jdY2XE8SvV+5XA6mafJmBIC6ijxV0ovFInw+H2/GTGafE20e0GaLQCAYG+3t7dixY8eI+RUTyYoVK2AYxqSeQyAQCCaaxsZG/OEPf8Dhhx8+osNxOGhKzViY6vtjW1sbLrjggrrvORwOfP7zn8f8+fP5c+UXvvAFfPKTnxTjJQW7RIjwaUZVVTQ1NXGAGVVny+UygsEgNE2DZVlQFAW6rrPtmSrhkUiEx3MlEgmkUikWi4ZhcPAZiXxN09DW1ob+/n4eneX3+xGLxVhY5nI5bNq0Cb29vbxB4PF44PV6WTySSLSnftMHUkVR4PP5uHJNvdaqqnISuiRJ6Onp4UT3arWKTZs24dVXX8WiRYuG/XBLlWr6O1WU6aZNlfm+vj5omsbVXZfLhUqlAtM02cJO87fp2lCF3Ol0QtO0ul8EFJqWzWZZ/NtFOFWvh66ZZqMXCgUOk6P3luzutGFBgXM+nw+qqk6JMK5UKnjjjTfQ3d096ecSCN4r7NixA1/84hfx9ttvY/HixeN67mmnnYaGhoa67432gXM8EzMEAoFgb2FgYADLly8f9ySJyy+/nCvKwGDL31lnnTWsM/Dvf/97nctzsvnxj3+M5cuX7/JxTU1N+M1vfoNDDz0UsVhsClYm2FcRInyacblcaG5u5uA06jemiqvX6+UeYrIo02iwQCCASCTCFvJ0Os3p42QNp2MUCgVUKhUer0N91JZlIZlM1o3NAgYFGon4kSABSeKTxofZK+YUPKdpGmRZZmHudDoxMDCAZDLJ502n03jyySdxzjnncCiaHer/putGGwsUJOf1euHz+VhAS5KEYrHI9n66bnQNqcc8k8lwP7u9X5uC5uxQv7a9d97lcvFmgNPp5P5vuoZk1acKOvWI26viVFUbanefLGq1GvL5PFatWoVkMjmp5xII3msUi0XcfPPN437enDlzoCgKfy3LMr761a8Om//wyCOP4MEHH9yjdQoEAsF0EYvFxi1Cv/71r9d97XQ6cdBBBw1bmIlGo3u0vvEy3OfSkQgGg1PWtiTYdxH/QqYZt9uNQCAAAIjH4zw3u1wuc7W5XC7DNE1EIhEW6aFQCKqqorGxEeVyGf39/dznS9YfsoSTvdo+qsvhcKCtrQ09PT0sGEdKl6RRaBQcF4lEEIlE4Pf7EQ6HuY/aMAxs2bKFb7xU3U0kEjw2jCrAw1Gr1bBixQps2bJl2JsdbUjQa6HrROF2Xq8XoVAI7e3tSCQSfIO2LIsfTyPFTNPk62oYBveXk0CmPvPGxkYW89Snb4fC52hzwOPx8PUloUszxUnYA+9Wz+k9s6fU0/s0UQy1zdpHxFFvPWUNCASCyWPTpk07fW8slRWBQCDYl3E4HDj88MOhKAq6urrwpS99aafHvPnmm/jd734HYHByC41sXbdu3VQvd1i2bt063UsQvMcQInyaoWoxjaYKBoOcRE5VWYfDgXA4jNbWVrZ/NzQ0QFEUrgDTY4vFIkzTZJFHVXJZlnkWua7rAAYryyT2SCwOh6qqOPzww7Fw4UK0tbVh5syZmD17Ns+wJrGZSqXQ09PDIry/vx+xWAzd3d0YGBjgpHAAXO0vFAp15+3v78cbb7yBww8/fNhrReO9yEpO471odJgkSQgEAggEAiyIAXBQHYUc2QPRaD1U2afxa5S0rqoqqtUqCoXCTuKYKteyLLO9nJAkCdlslnvC7SKcAvgKhQL3ntPYNb/fz7b7PYUcFiTsPR4Pr2Mqes8FAoFAIBDs3zidTtx666045phjRnzMMcccgy984QsAgNdffx09PT3sOjIMAxs3bpxS+/lQvvrVr+Kvf/1r3fccDge+9a1vYenSpXXf93q9+M1vfsPr/a//+i/8/e9/n7K1CvYNhAjfS6BKrSRJ3AdOtmdFURCJRBAIBHjEl6Zp8Hq9yOVy3N8cCASQSCS4uko2bxp7BQxWhamvnARxoVCoSz4fitvt5hFjdsEWDAYRCoVgWRbPBA+Hw8jn89B1HaZpIp/PIx6Po7e3F729vUin08hms7AsC319fTvZ3U3TxIYNG9gJYEeSJLZy0vUCBoWm2+3mvnTq4VZVlUezARhxTrj9ddKGRiAQQGNjI/dnU9J6sVjcKWSkUChAVVU4nU5ec6VSQaFQYBFObgSC7Oz5fJ7XTK9pIsOe7LZ9Oi4J8JUrV+L1118XVXCBQCAQCASTRqVSwW233TaqCLdz2GGH4bDDDgMAnHPOOajVanjkkUewevVq/Md//AdPuZlKdF3Hww8/XPe9rq4ubNu2bScRLkkSTjrpJP66qalJiHDBTggRPs2Q8NI0DaVSiaumFGRGieZkGbfP2KYwMap0BgIB+Hw+no1tDx2jBHGyZFNFllK/fT4ffD7fsKOqCoUCenp64PV6oWka2tvb2WJNa3O73dA0jSv3VGFNJpNwOp1sXd+wYQMymQz6+/vR399f11tNr4k2EoZCIpzErj3czO/3IxAIsL3ankQ+EpIk8R9Kgad2gLa2NrS2tsLv98PhcCCdTvPs86GiNZ/PIxgM8iYKvVc0Fz2fz3PFnBwA1DfucDj4vbKH200kwx2zUCjgmWeewdtvvy3CnwQCQR2qqkJVVViWJUakCQSCCYHaAMfbK00TaM4880wsXrwYd999NzZs2DBJq9w1TqcTra2t+PKXv4xLLrlkp7DN4aAijyh6COxM7nwVwZgg0UgiNxwOIxgMIhwO8xxw0zRhmiZ0XUcmk+EQtHw+j2w2i1KpxCPNSPiRVbtSqfBYMrJs2/vFLcvisLbhoKp1IpHg6nY+n0cmk0FPTw+SySRSqRR0XUcymWT7TT6f52AySginlPLh0sSJocKccDgcPC6NxrjRa5Rlma3kVM1WVXVEqzVtSvh8Pr7O1O/e1NSExsZGtoXTtade8qEVdZqJTse1W8mp39o0zboNE3vFm/rFpxL6NzGd1i6BQLD34HQ64fP58JGPfAR//vOfsWnTJjz++OPo7Oyc7qUJBIL3AA8//DDefPPNPTpGR0cHZs+ePUErGj8OhwPLly/H6tWr8bWvfQ2NjY1jauk79NBDceqpp07BCgX7EqISPs04nU44nU4UCgW2UVNlkj4UkdCknuZ8Ps9Ck8Qb2ZpdLhdXgCmQjHYe8/k8HA4HgsEgnE4nLMtCPp/nfvHR+pALhQLy+TxyuRx27NgBj8fDAXGKorC4LBaLfM5EIoFYLMbiPBaLIZVKsT2a7PBDoerzcCiKwv3ZdB7DMOoS0CVJgt/vr+t5t0NVHgAcwEYjz/x+P1v/HQ4HC+xcLodCoTCsaK3VajAMg8fFeTwevg40j9s+xqxUKtVVxMvlMie2TwWlUglvvPEGtm/fPuKGh0Ag2H/o6urCpZdeis9//vMIBoN8f1y2bBluvvlmfOITn5jmFQoEgn2dUqnEBZTdyaKhMNvpTB3/+Mc/jp///OfQNG1cz0skEti+ffskrUqwryJE+F5ArVZDoVBArVbjoDMAPGqMQsRyuRzS6TR0XUcwGERbWxuLO4KEt8vlYks7WcUBsBWdHkfBcAAQCoXQ19c3bO90rVbD5s2boes6VFVFKBRCJBLB/Pnz0djYCE3TWDxTJb6vrw/r16/Hjh07kE6nYZom2+0phZygdUiShBkzZoy6IUCVYxKxhmFwAjjNKKeKvP1GL0kSvF4vgsEgf09VVfj9fraDh0IhtuwXi0U+Po0xG6kPiSr8qqryZgeJcEoip2R3CtCj62oYBhobG3f572SiKJVKeOWVV7By5UpRCRcI9nM6Ojpw33337dTTSIz3w6ZAIBCMxPnnn48vfelLXM1evHgxDjzwwBEfv3btWrz11luo1Wr4r//6L0SjUfT19U3VcuvYXQEODCarr1q1auIXJdinESJ8miGh7fV6WZQ6HA7IsoxqtYp0Oo1cLleXYk5hZ7FYDG1tbSgWixxOZh/fRWKcwt78fj/bomnsmN/v54pye3s7Nm7cuFPPCp27WCyit7e37vvPPvssn8MeAFcsFnmtpVJpp75jexBduVxGIBBAKpWCoiiYNWvWsLuklO5N87bpD6W+04xymkEODIps2jig6jYdo1arwePxQJZlqKrKvfnVahXZbJZnmpOtns4zHLTxEAgEoCgK0uk02/6p75taAOg9Nwxjp5C3qSCfz2P79u3o7+/fZVidQCCYemRZxtFHH82uoRdeeGHEEZJ7gtPpxN133z2iABcIBIKJZPv27XWzwDs6OtDa2jri43t7e0cU3fPnz8fMmTOxY8cOvP322xO+VjtHHnkk/vu//1tsSgomFCHC9wJKpRIkSeIxV16vF6qqcjU3mUyyYAUGhXsqlUJ/fz+ampoADPZRU6WXkrapQk5jsNxuN1urNU2Dz+fjXuhYLIaWlhYEg0EWsIqiYObMmfB6vQDAlXUAPAYtl8shm83CNE1kMpm6yj0JbxKfNBOdqs3hcLguvK1QKKCpqWnEHkSHwwGfz8dCmV4zzSOvVqvI5XLo7u6GrusIBAKIRqNsM29paeHedBo7Rr3kZCOnHnnqO49Go3yt0+n0qCFmhmHANM26sV/2arhlWRz+ViqVeFwcWfunChohR6PqBALB+GltbcXdd9896v+7+Xwet9xyy5iSfA866CBcfPHFAAbvvUuXLuXNwpdffhkXX3zxhIYRORwOXHLJJVi2bNmEHVMgEAiII488Etdff/2IzsYHHngAK1eu5K+TySQ2btxY9xhJkrBkyRIu8MycOROXX345AGDevHno6upCd3c3zj//fLz00kuT9EqAa665BoFAYLeeq+s6fvSjH03wigTvBcb1yf+OO+7AHXfcwQPrDz74YPzrv/4rTj/9dACDwuwrX/kK/vCHP8CyLJx66qm4/fbb0dLSwsfYvn07vvjFL+If//gHNE3DxRdfjBtuuGFaezymG8uyuG/b4/HwSCzDMKCqKvc9k3h1uVxIp9OIx+MwDIP7pE3TrEsEJ9u2ruswDAOVSoXngdP8a0VR4Pf7uTrb3t6OWCwGSZIwf/58zJ8/n+d5VyoVtLW18Xxuj8fDPT50bLKbF4tFfl1er5crxJIk8XtNwjQSiSCXy0FRFMyePbvu34sdSkKn8WwA6oLe6LrEYjG+Zg6Hg+3tlmVx5ZmuN/1ysG9gUA++YRjo7+9HPB5HKpUasYedoHPad0op1bNcLtfN5Sbhb5omWltbefTaZFMul/Hmm29ix44d0zLi472MuD/uX3z2s5/FySefvMvexjPPPHOPzuNwOLB06dLd/gA4HE6nE5deeiluvfXWKbv3CATiHrn/0NrairvuuguLFi0a8TEnnHBC3de9vb07CWmXy4VTTz2VP/MNR2dnJ6699lp87GMf27NFj8D73/9+nHbaabv13Gw2i8suuwz33XffBK9K8F5gXHetzs5O3HjjjZg3bx5qtRruvvtunH322Xj99ddx8MEH4+qrr8bDDz+M+++/H8FgEFdeeSXOPfdcPP/88wAGBdMZZ5yB1tZWvPDCC+jr68NFF10Et9uN66+/flJe4L6AXQyWy2Xuma5UKnWJ5VQxJZFIQpFGW5G1mFLD6XiUlE7PI/s5zRInG3kul0NrayveeecdTvKm1G+aEZ5KpTiFnI5BVWSydVMKeq1W42o83UDL5TIL4Fwux883TRPNzc04+OCDR7T7UJgHjQEj0Uyhcel0Ghs3bsT69ethGAZqtRqampo4DI3C22hjg8Lp6EMoVfCLxSKSySSi0Sh0XR+TACeoOk8fzCmFna4D9eRTywFV6XcnpGR3qFar2L59O7Zs2TItVvj3MuL+uH+xcOHCKfv/diIJh8O45ZZb8MlPfnLEiRgCwWQg7pH7D9FoFKtXrx5VhA+lvb0d55577m6dj8bSjvWz2nhob29HOBwe9/Oy2SwuvfRSIcAFIzKuEWVnnXUWPvzhD2PevHmYP38+fvCDH0DTNLz00kvIZDL45S9/if/8z//ECSecgCOOOAJ33XUXXnjhBd7Z+vvf/45169bhd7/7HZYsWYLTTz8d//7v/47bbrttvxUEJNLIakPVWuohpiRtn8/HvdqqqrJopqoziVIAPJeaKs25XI5FcbFYZBFNYWaqqsLr9cLhcCAUCiEQCHA/eiqVQiaTgcvlQiQSgdvt5iA3Epwej4eFbq1W42o39aS7XC4+P1XFg8EgAoEAWltbEYlE4HK50N7ejtbW1hF3tGmtZImn70mSBF3X8eSTT+LRRx/Fm2++iWw2y84C6k2XZRnBYBCapnF1mn5mGAaHx1GaOzkIxpMgTq/Rbr+yW9iHBsWNZZ75RJJKpbBt2zZRBZ8ExP1x/+KJJ56Y8tGCE8FHP/pRXHzxxWMW4CK8UTBRiHvk/sVUZs6ceuqpeN/73jcpxyb34HggAX7//fdPypoE7w12e054pVLBH/7wB+RyOSxbtgwrV65EqVTCSSedxI856KCDMGPGDLz44osAgBdffBGHHHJInbXo1FNPha7ro84OtCwLuq7X/XkvQRZoqhzTTl6hUEA2m2UbNwW0aZoGj8fDI8tIJPp8PgQCARbbNAaMRm1RCBqdh+aTa5qGhoYG/iXm9/sBAJlMBoVCAQ0NDXxOEusAuBpPM7kpNZ3+UB87iXEKRyMhHAqFeCRbS0sLZs6ciaamJt6QGA5KQKe/+3w++Hw+PPLII3jooYcQi8V4PFmlUuEQOrv4p42CYrGIXC6HZDKJgYEBZLNZFAoFtvpnMhkepzFW3G43txSQyLcH3dEGBs15BzClVfDXXnsNq1evZoeDYHIQ98f3Ps8+++w+F2zY0tKCyy+/fNTpE3bWrVuH6667bpJXJdgfEfdIwUQiSRK+/vWvw+l0crvfRLFhw4ZxJbJns1l8/vOfx/333z+uz4+C/Y9xi/A1a9ZwT+7ll1+OBx98EAsXLuQArFAoVPf4lpYWRKNRAIP2lKH9vvQ1PWY4brjhBgSDQf7T1dU13mXv9VCCdqlUQqlUYgFMFe5MJsNJ6fTBr1AoQNd17jd2u93c303juXw+H1u/nU4nTNOEZVnIZrPIZrMsSFtaWpDNZlEqlRAIBDgorVAocGWX5nCTfZ7s1DTqzO12c585VXdJoMuyzMch4U3HrFarCIVC8Pv9CIVCo1aGaQ3AoKBtbm5GIpHA3/72N+i6js7OTvj9ft6coH51oN5uTufNZrMYGBhg9wC5C9LpdN1zxwo5G0jk2yvOFFoHDLoIaINgIn9Z7ArqmZ8My5ZA3B8Fezc333zzmKpFtVoNa9euxU9+8hNs3rx5ClYm2F8Q90jBZHHSSSfhyiuvxA9+8AMcdthhE3rsV199dafvUesnfbYE6i3oQoALdsW4kywOPPBArFq1CplMBg888AAuvvhiPPPMM5OxNuYb3/gGrrnmGv5a1/X3zE3U3udMQrBYLLJIooC2aDSKQqHA1eZSqcR90KZp1iWGk8Xasiz4fD5OMackcEVRUC6XkclkoGkaV8sjkQhXcCVJQqlUQiKRQHd3N5qamlhc20Wy/Wsa/0WbApVKhUV6pVKpCymzi1FN0xAMBqGqKoLB4KiVYeqldrlcfJyenh5kMhk0NDTA6/UilUrVzeymTQMS5tRzn81mObyNZqkXi0XEYrHdsrbZBTVdP13XWXxblsVtBuQioPT0qYB+UZimKX45TBLi/ijYW1m8eDE++tGP7vJx8Xgc119/Pf76179i06ZNk78wwX6FuEfuP/zsZz/Dxz/+8SkLzZNlGTfeeCNyuRxWrFgxrHDeXb72ta+hUChg7ty5/L0XXngBf/vb3wAMprZ/4QtfwD333IMHHnhAfMYSjIlx/5/h8Xj4H+ERRxyBV155BT/5yU+wfPlyFItFpNPpup3M/v5+ngHY2tqKFStW1B2vv7+ffzYSVF18L0JilUS3aZo885vEtK7rKBQKsCwLsiyz1Zz6thOJBBRF4f/pSdxVKhW2U5MIDoVCUFW1Lim8VCohl8uho6MDpmli+/btdetJJpM7hVJQEBwlk7vdbni9Xg5lK5fL8Hg8UFWVx5mRNZ02CwjqDyfRPlplWJIkBAIBrshTzztVyMktAICD3+h6BYNBPjdZ+WkzIJPJQFVVSJKEVCo1pvfOHoYHvLtBQKIeGOzPpxFx9JxSqYRqtcqbFlNFNpvFpk2bkM1mp+yc+xvi/rj/0NfXhwcffBAXXHDBdC9lTKiqyq1Gdl555ZW6GeSJRAJ33HGH6AUXTAriHrn/0N/fP+Vi9J133kEoFJrw+1cul8O111474s/XrVuHRx99dELPKXjvs8clOKrwHXHEEXC73Xjqqaf4Z+vXr8f27dt5DumyZcuwZs0ankMNDIbbBAIBLFy4cE+Xsk9CQpLmXJO1u1Kp8Axue/Caqqr8GIfDwSLPNM1hK5wkpkn0BoNBTlnPZDIsomlWuc/nqwsWoxRxr9fLFVsS9VTtpfR1Sl0vFAool8tsay+VSvB4PHC73XU7omRpp/RwXdd3eeN0uVxscaeqO1V4E4kEEokEp6Xn83lUKhX+xa7rOvL5fN1ccYJGtJFAHUuftr0/nqDgOvo+pczTNaPNEbpe9us62WzcuBGvvPIKMpnMlJxPIO6P72Usy2IBsC9gGAYymQxKpRLeeOMN3HrrrTjttNNw/PHH47jjjuM/5513nhDggilD3CMFEwX1Yt911111/0YEgr2VcVXCv/GNb+D000/HjBkzkM1mce+99+Lpp5/G448/jmAwiEsuuQTXXHMNIpEIAoEArrrqKixbtgxLly4FAJxyyilYuHAhPv3pT+Omm25CNBrFt7/9bVxxxRX77S5lqVRigUxCmvqS7XO3qX/Y5XJB0zQWklQhp8A1Et0kMCVJQq1WY9s3CWTq+U4mk0ilUnA4HCgUCvD5fDjiiCPw6quvIhqNsn3bNM060WqaJmRZ5oRdCn3zeDw8Cg0AjyCrVqvI5XLco06WcloPBZVRkvto1XC7ACdbN4C66jqt0Q7Z1Om5hL2CXSqVIMsynE7nLsPL6Dq6XK46V4H9vBQIQ/3l9s0KYHBDg1oSJpNarYb+/n7EYrF9MtF5X0DcHwV7M2vXrsWZZ56JSCSChx9+WNwHBFOOuEfuX8RiMTz55JM8B36yefnll7FixYqd3BICwd7KuET4wMAALrroIvT19SEYDGLx4sV4/PHHcfLJJwMAfvzjH8PpdOK8886DZVk49dRTcfvtt/PzJUnC3/72N3zxi1/EsmXL4PP5cPHFF+P73//+xL6qfQhKLaek7lwuh0wmw5VwqnLncrmdAsuowmqf1002bZrbTX3IqVQKqqoil8shnU5zengmk0Emk4GiKEin08hms2hvb8eMGTMQjUZRqVSQSCS4Wk89zF6vl8U0CUhKpSShaZom29RpRne1WuWUdZrT7XQ6kc/nuU97NGgkGgnx8UDj3rxeL19Lqv5TyBy5A8Z6PLrm9F7Q+0SOBLLzF4tF7pVXFGWnTY3JxuFwoK2tjZPlBROPuD/ufzz66KO47LLL9hkB8M9//nO6lyDYjxH3yP2LXC6HN954A6eddtqUTIERU18E+xrjEuG//OUvR/25LMu47bbbcNttt434mJkzZ+KRRx4Zz2nf05BNGQBbu0mwka2aRlxRBTWVSnHfc61Wg2VZyOfzLCapMkvWZxq7FQ6HuY+cKufAYGW5WCxC13W43W7MmTMHS5YswWuvvcaJ4aVSiSu5JKJdLlfdjdXj8XAluFarsVgm8WvvhaYKfa1Wg6ZpvDmwq5ncbrcbsixDVVUeB+bz+VAoFHbZe0SjymgDoFKp1G0mlEolWJY1LnFMmyVEKpXi1HdKvI9Go8jlctzHT/PBdV2fkiq4fa2pVGpcc88FY0fcH/c/nnnmGTz99NM49dRTp3spAsFej7hH7n/cdtttuPLKK6Fp2qSf6+abb570cwgEE8nUNKMKxoS9v5oSvKk6TMIpmUwin8+jVqtxEBqJdhr7BQz2Ttt7uOk5Ho8HlmUhyn5qyAAAhnxJREFUnU6jUqnwzwzDQDKZRKlUwsyZM7FkyRIOY6PjUOCY3+/nvnJ7NZpS3Q3D4Io2vQZ7jzlV+EmcUzWZRPhoNklaA/Wue71enke+KygYjoSvw+HgtPB0Oo3+/v49Ht2Vz+fR19fH499qtRr6+vqQTqfr+sMppZ4S2iebarU67lmXAoFgdPL5PF544YXpXoZAIBDslVAw7lSdSyDYl5iauQGCESG7Ns3oJtu3YRgsrukmVigU4HQ6uQqs6zr/TJIkFu5Op7NOmNJs7GKxCI/Hg1qtBl3XoaoqDMPAwMAAPB4PHA4HGhsb4XQ6kU6nOUSN+r1JxFKP91ArNlW5fT4fjyIzTbMufMw+Wozmh5NYLZVKdUniw0HVbLKjy7LM9neqQI9U6aXAO0pwp+o5pblP1C8K2ngg0uk0j5ijHniy1ScSiSn5xVGpVLB169a6qr1AIBAIBAKBQCCYeoQIn2ZIjFFV2p4wTunoJEopsIwqqZIkwbIstnkXi0Uee0XVdLvdnfqV6WcUqqYoCgzD4A2BdevWob+/n3ujyWJOM65J6FMwGfVXF4vFutA1Sl6nzYChM7HpuQ6HA36/Hz6fD7lcblS7NFXCFUWBJEl87nK5jI6ODsyaNQu9vb2IxWLIZDKQJIl77mkcHF3LQqEwkW/liBQKBWzfvh3ZbJbfE3rtQy39Ew1tUGQyGXR3d8Pr9Yq+KYFAIBAIBAKBYBoRInwvxTRNHk9GUHo3VZepIm0YBot4GvdB3wPAX2ezWZ7HTUJflmUoioJoNIpkMonXXnsN6XSajwuALdsAEAqFuLeHZpB7vV7UajUW3hQW53a7WbRTwjodj+Z1249FleFdVcLtPeFkj0+n03C73ViyZAk6OjqwadMmvPXWWxwOR9fHjtvtntAK+EiUy2Vs374dvb29mD17NjsSyGkwmT3atOlBGyBT1X8uEAgEAoFAIBAIhkeI8GlmOFFE48mG2pQpgZfSvQOBAAzDYGu41+tFuVxmC7vb7eZKOQW11Wo1ZDIZHnlWrVbh9XphmiYSiQRyuRzi8TgHlwGDopkEud/vh6ZpO80FVxQFHo+Hq980CozEtn10F1XyTdOEw+FALpeDYRjwer2IxWIoFAoIBAKjXjefz1f3R1EUJJNJVCoVzJ07F8BgZb63txfVarXOKQCAU9IdDseU2MG7u7uxfft2ZDIZDtGbChFO0Dz5Pe15FwgEgvEiyzLmzJmDvr4+JJPJ6V6OQCAQCATTjghmm2aGSxmn6uzQsTe1Wg2qqkJRFO6LJku5qqpQVRXAuwnidsgmXq1WubecxDmlnVNauM/ng8fjYRs5Vdxp3BkFm5GwLpfLyGaz/OGqWq3C5XKx8CUrOL0GCkQrl8vI5/NwOBxwOp0IBoM8km00qO+cqskul4sr/KVSCe3t7ejq6sKCBQvQ2trKveskugGwZX4iZ+VS2NtwJBIJvPXWW5xsb78OlH4/mZimiUwmI5LRBYJ9lAsvvHCfGYVm5/3vfz/uu+8+rF69Gvfddx+ampqme0kCgeA9SCgUmu4lCATjQojwvQCHw1EnxO3VSruoo8AvCi8rl8uQZZlD2DweD5xOJzweD/8dQJ3QowA0qpxbloVKpYJIJAKfz4fGxkYsWrQICxYs4A9LkiQhFArB4/HAMAwkEgkOhaN51zTnm85NGwnUo04p6DRWDAD3plPaOYn+XYWHeTweBINB+P1+lEol+P1+BAIBuFwu5HI5BAIBhMNhhEIhRCIRyLIMv99fN9OcwuzsPep78v55PB4oisKOgKFUKhVs2LAB8XgcpmmiWCyym2BXYXR7SrVaRXNzM1pbW6dE8AsEgonnqquuwrJly6Z7GePiyCOPxH333YezzjoLTqcTJ554Ir785S+LthiBYD+BCj9TwVe+8pUpOY9AMFEIEb4XQKniLpeL+6VJ4A7tVy4UCmwnL5fL/GGGKrokvkncksik5HVKLKegNb/fj2q1CrfbDU3T0NLSggMOOABdXV2IRCJ8XqrAU3812c7tY9XIjk5UKhUW3/bZ4vR92kCgx5IFP5PJjHq9PB4PNE1Dc3MzZFlGOByGpmnwer2IRqMol8sIh8MIBALQNA1+v59D51RV5WtN6xrPB0IKUwPe7bemvnrqufb7/fwYOz09PdiyZQu/dwCgaRpb8ycLh8OBaDSKDRs2TGjlXyAQTB37WqbD4sWL8cADD2DGjBl13//yl7+M8847b596LQKBYPdIJBL4n//5nyk513Cfu/YVKGRYsH8hRPheRqFQ4NFkw0HWb13X4fF44PP5AAwGm1WrVciyjGAwyFVzTdN4LFihUGDbeDweR19fH8/qNk0TTqcTkUgEzc3NaGlp4eos9X4DYPs3MFght9veyV6ez+d5dFmlUuHKNn3ocjgcbGun3nOqihcKhV3OsqYRbMFgkJPSqYqfTqeRyWTg8/kQiUS4Ak5rp80Eu2PA4XBwivquKJVKfC3o+lAlnER5pVJBMBjc6RdCoVDA+vXr2UVA136yf3GUSiU899xz6OnpmdTzCAQCAXH44Ydj5syZO30/EAjgF7/4xbA/EwgE7y2mquUOwKQ6Cieb66+/HnPmzJnuZQimGCHC9wJoxjUATi4fDrKgV6tV5HI5npMNgG3h1P8MgO3qjY2NLLRN00Q8HkcsFkMymcQ777yDUqkEn8+HUCgEVVXR1dWFtrY2Pg5VsMliTiPRXC4XB7VRCByFvZXLZa6YU9AcrZ2Om8/nkc1mkc1mUSgUUKlUkMlksGnTpl2OKaM+cEVRWJBrmsY96pSg3tLSwlZ3CoSzbyLQ871eLwvy0Xq7R4IcDPRfADvZ0svlMjZv3oxsNssBepVKBbIsD2thnyioOj9r1qwxbTQIBIK9k0MOOWS6lzAhhEIhXH311dO9DIFAMAW88847UyLEb7311kk/h525c+finHPO4T+tra27faxFixbhqKOOmsDVCfYFhAjfCyAxTRZtALscm0WJ3hRQZq9607gvClujUV5kg9Z1HYZhIJfLIZlMIp1OIxQKcVW9tbUVfr+/ThiSUMzn81zBpmq7PeCMBC6Jb7LUm6aJXC6HTCYDwzCQz+eRSqVgGAYfhyz4a9asQT6fH/X1K4oCv9+PYDDIYjoYDKJWqyGbzSIUCiEQCKCjowPt7e1QVRXFYnGn49JroWo6Ja2PpzpNVXSyi9Lcd2ozsBOLxRCLxdh6Txsak2nNpI2RLVu2CDu6QLAPc+GFF073EiYMEdAmEOwfPPTQQ0ilUpN+nlgsNunnIHw+H/70pz/hz3/+M/959tln8dhjj+GAAw4Y17HOP//8fS7vQzAxCBG+F0Bp5lSJLRaLPHd7JKjKDAwKZLfbzVVOqqxT/zelcZPVXZIkpFIpxONxAIBhGFwpBnZObLdXr6kXnOztNH+cwsbS6TTS6TSvzf6aqPJbKBQ4od3lcvEmgSRJMAwDr7/+OqLR6KjXjKrfwWCQXz+lw/f09PDXsiyjpaWF3QB24V+r1fh6UEWfbORjTREnS759w6JWq/Gxh26mZLNZ9PT08GYAbZRM5qzycrmMjRs3Ih6PT/pMdIFAIBgLxx9/vLBfCgSCfRJJktDe3l73vXnz5uHUU0/F2WefPa5jXX311QgGgxO5PME+wr6bYvAeweFwwO1285guEruUeF6r1YatXlISOAC2YlcqFTgcDk4Bp+cVCgVEIhFYloVcLgfTNJFOpxEIBFAsFpHL5dje7vP5OD2d0s1J3FqWxULW6/XymDHgXXFOo81IhCaTSfT390PX9TrBrWkaNE2Dx+NhgZ5MJpHNZhGPx/HWW29h3rx5I1aIJUli0RyLxVjEezwexGIxFItFtqQ3NDSgtbUV0WgUAwMDKJVKLNIVRakLtysUCtyvPp73kKD+J6pwD4UcAGTdVxSFNwUmqzec5qRrmsYbLwKBYHoZGBhAOp0e9TFOpxMHHHAAuru7ceutt2L16tVTs7gJIJPJ8AjM4WhpaYHf75/iVQkEgr0dy7Kwbds2/vuPfvSjuqk5LS0tuOqqq/iz11jH204klUoFiUQCjY2Ndd8vl8u7DBe24/P5dhopLNh/ECJ8L4CSy2lGN9mqSQRTvzRBfd9U6Sb7M1W/SdTT94vFItxuN2q1GlKpFNLpNPdtp1IphEIhmKaJSCTCGwGUsE7nKxaLnK5O9mYa80XincZu9ff3Y+PGjUilUtwPTtjHlpEgJ8guLkkSnnnmGZxxxhkjClPaHGhoaMCmTZsADG5cBAIBmKZZNy7N5/OhqakJjY2N6Onp4cp9qVRCIBCA0+mErus8Zm0kqFfcLq7tI9eI0ezllHxP51FVlVPlFUUZ8dx7gtPpRD6fR39//6QcXyAQjI1isYj77rsPS5YswYUXXog333xz1Me7XC6cd955eOyxx5BIJKZolRPDX/7yF/zHf/wHvvOd74jkX4FgP8Y0TTz88MO45JJLRn1cLBbDO++8g//8z//EX/7yFwAYsRB155138ues+fPno7+/f0rvkblcDp/85CfxwAMPYNasWUgkErj77rvx6quv4v777x/TMXw+H+644w4cdthhk7xawd6KEOHTDFWMq9UqFEWBqqoIhUKo1WrI5XJcEc9ms6hWqwiFQlAUhavekiQhn88jFoshFApxyjgwaHXOZrMAwD3L6XQaxWKRE8opLM00Tfh8PtRqNa585/N5DkHzer1s3fb5fHA6nXWbBH19fejv70c8Hkcmk0GpVIKiKIhEIujq6oKmaajVashkMkin0yx6h6sWl8tlPP/884hGo+js7Bzx2lECOol6n8+HcDiMTCaDXC6H5uZmXntTUxOampoQCAT4mlDPOvW076r67XQ669ZLKe0Oh4OvI22GUFDdcMek610qldi5MJmhJfl8HolEgnMEBALB1GFZFgqFAu666y6sWrUKv//97+FyucY0O7dcLuOee+6ZglVOPNVqFddffz2OPfZYHHvssfv0+CCBQLD7lMtlrFy5cicRThk+L7/8Mv7xj3/gt7/9LWKxGH8eotDcww8/HCeddBIA4N5770V3dzeq1Sp/llu3bt3UvqD/n9deew3nnnsuTj/9dNx///3D5u5omsYFMns1PxwO49Zbb+Wcj76+PqxZs2ZK1y+YfsRvxWmGKqskcL1eL2RZRqFQgMvlgs/ng2VZnH5OAWL5fJ6FOFU6dV1HrVZDPp/nkWVUuaagMEpQpxnfZJ82DAORSASapnE1mkRmIBCAqqpcIU+n0xyylslkkM/nkUwmUa1W4fV6MXPmTCxYsACdnZ08y5tEOwnxRCKBzZs3Y8uWLVydt1eh33nnHbz55pvo6OgYsaosyzL8fj+8Xi8kSYLD4UAgEEA6nUYikcCMGTPgdrsRCARQrVbR1NQETdN2Os6uktg9Hg/3swPv9txTmB4AdhzQ5sNoUAAdORloM6VarfKYs4mkp6eHN090XZ/w4wsEgnooAPOee+7BP//5Tzz11FNIp9N8DxnNcfNeolKp4LzzzsNXvvIVfOc735nu5QgEgmmGJuw8+uijeOONN3DHHXdwUQYYdBeed9556OrqwmmnnYYjjjgCsizzZ7crrrgCpVIJmUwGd955J0zTxD333IN0Oj0tmTerVq3CqlWrdvq+JEk47LDDcM899yASiaC3txfLly/HwMAALrnkEnz5y19Ge3s7f77905/+tEtnlOC9hxDh0wzdkEgIUigaCXISzVRxdTqdLJpJsJfLZU74Jqu12+1GuVxm2zpVvzVNQ7Va5TnjlFxumiZkWYbP58PAwAB8Ph+LQpfLxVbx/v5+RKNR6LrOot7pdCIQCOCggw7CsmXLsGTJEu43B8D93pIkQVVVNDU14cADD8TixYuRSqXQ19eHF198EatXr+bn5HI5rF27FieddNKIY7UkSUIgEEBjYyPi8TjcbjdvPGQyGbhcLk6OdzqdPIaN+tB3BVW0KfW8UqnA5XLxWDO3280fpqk/ngLwRuqDpPFytCFB76/9Wk4ktVqtrhdeIBBMLPYPfr29vXjqqadw7733Yu3atejp6dnvwxAzmQz+/Oc/49vf/nbdhurWrVuRTCancWUCgWCqqNVq2LJlC37961/j7rvvxsDAALuBHA4H5s6di2XLluGyyy7DkUceOWKfNAWYNTY24uabb0atVsNXvvIVnHjiidi8efOUvZ7RkGUZ//mf/4nly5cjEokAGFzvs88+C8uyhi0uPfzww9OxVME0I0T4NEN2ZMLpdCIUCsHlciGdTsPj8aBarXLV1e12I5fLse1ZlmXous49xZZloVKpwOl08viuVCrFo7jcbjePLSNxSbZ0n8/Hop2q3vl8Hj09PYjFYtB1Hblcjnue/X4/urq6MHv2bMyfPx8LFy5EZ2cnXC4XdF3nc1BvOq2Bqu8ejweNjY18UxoYGEBvby/K5TJKpRK2bNnCInWka6dpGkKhEH+Yq1arPEqNKvlU2ZdlGU1NTZBleZci3N7rTeumIDe6jiTCh84Hp42V4aAqerFYRKFQQDAYhNfrhWEYfN0nEofDgdbWVvT3909paIlAsL/w29/+FldddRXWrFmDf/3Xf8Xzzz8/3UvaJ3jppZewffv26V6GQCCYAu677z48/PDD2LFjB39PlmWcccYZ+NrXvob29vZR2w9HwuFwoLOzc6/JnVAUBbfeeisuvfTSnYoqI41lTCaTGBgYmIrlCfYyhAjfC7BXSmRZhqIoLMioKk6CkFLRSfRRBZ0SxsmWDQxW1Z1OJ5LJJAeVkfVZlmXuYbYsC5IkIRQKsSAk22S1Wt1p9qLD4UBDQwOWLFmCuXPnoqurC+FwGA6HA729vWx9ppsinRsAi3ASrplMBslkkkWo/ZoMDAzwhsFIUM83vWaauU4J6Yqi8OsNBAI8S304HA4HarUaC2za9LBb92mDw55qT+0CdobrdQcGb9B0zHK5jHK5DFVVJ3V+dzAYRCAQmLTjCwT7M9u3b8eHP/xhrF27Vmx0jYBhGIjH4/whtFarYevWrdO7KIFAMGUkk8mdnC/XXXcdvvvd747YcjhWotFoXQDwdLB48WLMnz8f1113HY444ohxvaaHHnoIr7322iSuTrC3IkT4NENVYQoHI8u2aZrQNG2n9HN7knexWEQ2m4XL5YKqqnVzuE3ThNPp5FnVxWKxTgBThZkq6BSA4ff70d3djWAwOKw1mirsra2tKJVKiEajKJfLyGazXD1WFAWBQIB7o6nvmYQpBZnl83ls3LgRb731FtasWYNkMlm3ITHcnO2h+Hw++Hw+Pj6J44GBAeTzeXi9Xni9XuTzee6PHw4aVUaOANoEURSFr12hUODxbbRBIssyMpnMmEKWgMEKO7Uc0Ptqmia7ESYaXdfx2muvidFkAsEkUa1W8eqrr073MiYNv9+P4447DmeffTZuueUWrF+/ftwW+40bN+KTn/wkbr75ZpTLZdx8883429/+NkkrFggEezterxeHHnroHgvw7u5uLF++vK7CPtWcddZZuPvuuxEOh8f9XF3X8eMf/3gSViXYFxAifC/B6XSy6KW/kw2bxLRlWRxQkc1mWTR6vV4Eg0HIsswBbjRijOzp9HwSmJTWWKlUUKlUuOfc7XZzYnhDQwM2btxYt07qfc5ms1zJJTEaDoe5iux0OuH1euHxeKBpGizLQjabhWEYME0T8XgcGzZswJo1a9DT08NJ4VQxpz75XX3Yo+A12qCgPnkKjevq6gIAFsm0NoLC3OiaejweDsSjfnhKoLf3l9sTzqk9YCy4XC5EIhG+TtVqFZZlca//cMFxe0Iul8Ozzz6Lvr6+/b43VSAQjI+uri7cdNNNWL58ORwOB5YvX44LLrgAjz766LiP9eSTT+Lwww8HAHEvEgj2c7xeL4B3x9aOl3K5jF/84hf4+c9/XheMFg6HkUqlJmqZu+TMM8/cbQEOAH/+85/xxhtvTPCqBPsKQoRPMzTaiv5OYs5uRa9Wq0in00in0wgGg9A0DT6fD9lslsdgZTIZTienGdwAuGIOgNPUqWJNI8LI1k43w1qthlAohPnz52PFihV1H5hqtRoLaRq94Pf7kclkUKlUkM/nWZRTFbparSKZTCKRSCCRSCAWi2Hr1q2IxWIoFApwOBwIBoPo6upCa2srarUaXnvtNZimiWKxyCPThoPO7/f7OW3c6/WiUqlg+/btmDFjBvdo08aEff653++Hpmk8X52q9zSurVgssi3dbqMnp0EqlRpXBVtRFLS1tfEvIOr5j0Qi0HWdR65NFMFgEJ2dnQiHw+jt7RUffgWCfZBIJILLLrsMbW1tAIDf//73eOmllybtfLIs49/+7d9w6aWX1t2TNE3D/Pnzd0uEA0J8CwSCQXRdx2c/+1kAwAc/+EFEIpFh3Ze1Wo2n7xB//OMf8dprr+F3v/sd5+984AMfwPLly/H+978fDz30EK6//vpJv98cf/zx+M1vfrPbAvzll1/G1772tQlelWBfQojwaaZUKsE0TU7VrtVqPELM4/FAVVVkMhnu+SY7NIlssmxns1mkUikODiORNxSyoTudTvj9flSrVbhcLqRSKRQKBbZHq6qKefPmwel07lTlJVGbTqdhmib6+/s50M2OJElczbcsC8Vikcd40c/D4TC6urpw4IEHIhQKsW28paUF1Wp1l4ne9sA0GtEGDG44RKNRPkY+n8fatWuxYsUKGIYBl8uFcDhcl5SuKArPM5ckiWdV2n9O14N6usebOC7LMlRV5Yo/XR/6r71/fiIgx4NhGOIDsECwD3HyySdj6dKlWLduHb71rW/h0EMP5Q+pkUgEr7766qS0sGiahg9+8IO49NJL0dDQMOHHFwgEAmBwcsInPvEJ+Hw+XHLJJfD7/Ts9plgs4he/+EVdyx+N6FVVFccccww+9KEP4dJLL+Vgt1AohBtvvHFSs3Y8Hg+uuOKK3RbglUoFd9xxx06ZS4L9CyHCpxkSdGQXJ+FKApBEFACoqsrJ3mQFp2NYlgVd11nM2YPDRoL60KnXmUSly+VCqVTCnDlz0NjYiP7+/mGfTxsHdHOkPmcKPiM7N1nrQ6EQW+WbmprQ0NAATdPg9/uhKAoHoFUqFQQCAbZo74pQKARFUfjYVK1OJBLQdR2JRAL//Oc/8Y9//AO5XA6yLKOxsREul4uD2IB3Q93InUCJ7sVikTcvXC4XW/x35wZP14gC4+g4NNZspCT43YXC5HK53IQeVyAQjA8KxRyNlpYWfOQjHwEAfOxjH8MJJ5zA9wZ7lei4447jMZQTSTgcxuc//3lcd911u/3hUiAQCMYKfZ4aa190S0sLPvWpTyEUCuFLX/oSQqHQhLfxjYWlS5fi1FNP3e3nr1y5En/9618ncEWCfREhwqcZmuFNUEVZlmUYhsG9x/RhiyzauVyOrdwUuEb9zpTebe8zt5+PrNRkdafgsXw+D13X4XK5kEgk0NbWhqOOOgqPPPJInRWIeqaDwSDcbjdkWWZhS/3ZJIg1TeM+c5o1XqvV2K5OwXSUYE62cp/Ph0KhMCYRTuFsAOo+5GYyGcRiMbzwwgt46qmnUCwW0dTUhKamJkiSBF3XUSqVoGkanE4nSqUSp6DboTFytKlAPeBjCY4bCln0KdWd+vjj8TjC4fCEi3CPx4MFCxZgxowZiMfjohouEEwRRx55JGbPns1fL1y4EJ/61KdGfY4syzuN6aEWmckmHA7jN7/5Dc4888xRH7dw4UIezygQCATj5fjjj+dJCYqi4Ctf+cqY73PD3SOHEggEMGvWrJ0yjSYKWZZxxRVX7Lb4f/nll3HBBRdMae+6YO9EiPBphiqVkiSxIKU+ZAA8l9vlcqFQKPDX9rRzqqZSH7mqqkgkEjwz2w49NxQKcZWcbn47duxArVbjnmeqhlPPNz12zpw5mDlzJsLhMPdLy7LMoW9k1SbRStVfwzC4um1ZFlfrSZDTa5ZlGaFQCNu3bx9T6rjH40EoFIIkSVxJL5fLSKVSWLNmDZ5//nmUy2V0dHQgGAxywBpdj2q1ykn0JFLtM7+psg6ANzXsToTRoM0QqprTcej7NEaOrsdEU61Wkc/nudVBIBBMHkuXLsWiRYvwxS9+ETNnztyn7NynnHLKLgU4MCjWh+vdFAgEgl3x6U9/GrfffvukVq/b2tpw3HHHTZoID4fD+PCHP7xbzx0YGMDy5cuxffv2CV6VYF9EiPC9BBKFpVIJ2WwWlUoF1WqVU8jJOm2aJs+qJuFI1VvTNOH3++HxeGBZFtvMh8PpdLINm1LN0+k02tvb4XQ6IcsyEokEyuUympqaoOs6gMFKLs0Ap6p1sViELMtcHSYBa++dph53t9vNdnvqbScbOAAW4qFQCLFYbEyzHx0OB6/J/uEwk8lg5cqV6OvrQ3t7OxoaGthdQI+j9VC/N1XsCdq0oM2MXC7H1v2xQOuiHU8S73TtKam+VqvxBstEfsCtVCqIx+P8/gkEgsnj61//Os4+++xJP4/X60VLS8uEzdr+yEc+gjvuuGNMjz3++OMhy/KYXEoCgUBANDQ04Fvf+taU2Mc7Ozu5PXGi6ejo2C3X4jvvvIPbbrttWsepCfYuxHb2XgD1fVOImGVZ/F8S0ySo7bO2SeTaw8hoVrbL5UI2mx2xF5hmZlM6t8vlgqZpkGUZpVIJbrcbuq4jGo1yGntzczMURUE2m0U0GuU53JSoTjZzenwwGISiKCy+SfjTHHEa0+V2u+sq6mR3b2hoGFMFl6zskiSxxR0ADMPAG2+8AUmSOO2c5pMXi0W+XtQ7Tzb6bDbLVnOa301fk9V/rAxtCaD3mM5FGyyRSAR9fX2c3D5RSJKESCTCs9QFAsHkcdlll+Ef//jHpJ+nqakJH//4xyfseN/61rd26gGv1WrDhgbdf//9ImNCIBCMm5NOOgkHHnjglJzrkksuGTGgeCKOPZ42oa1bt+KJJ57Acccdh5/85CeTsjEg2DcRInwvgPqzSWwXCgXous7905IkcbK4XXDb51NTYnkul0O5XIaqqlBVlUWyHRKCTqeTRXK5XIbH44HH44Gu60in07wuGkUmyzI6Ojo4BI2C4ChhnNZnr5ZTZZtENgC2YFPVniiVSigWi2xTJ8E/Fht1MBhkAU5ryeVyiMfjPJaMqvLJZBLJZBLlcpnXUCqVUCgUkMlkkMvloOs6crkcp7VTonpbWxvmzJmD5ubmMaWYD732+XweqVRqp1C31tZWngc/kUiShJaWFnYaCASCyWNgYADf/OY3p+Rcfr9/0mzhtVoNf/rTn3DKKafgpz/9KQAgkUjgpz/9KW677bZJSWUXCASCicLlcg2btj4R/O///i+2bt06rJiuVCro7u5Gd3c3tm/fjq997Wt4//vfj9NOOw29vb2QJAltbW2ipUcAQIjwvQYSrE6nE4ZhIB6PI5fLcXKkJEmjVjJ1Xa9LTae+ak3TWAjbcTqd8Hg8XN0l2zUJ4HQ6DVmWsWjRInR0dHA1OxgMwuFwwOFwIJ/PY2BggCv0NPqMRn0pisI94TSDnHYmSbzbx61RHzmFlymKgoGBgTGlkNP8dEp3pz5rqvhLksSiPJ1OIxaLsSWe3Ab5fJ77pzOZDEzT5NA5VVURDofR2dmJBQsWYM6cOXV99cNB19hOJpNBOp3mGe0UBqcoCiKRCDKZzIT2bjscDrS0tCASiUx46JtAIJg+LrvsMoRCoQk9ZrVaRXd3N6677jp87nOfw6pVq/CTn/wE1113HY455hhcc801ePPNNyf0nAKB4L2P0+ncozTx8dLa2oqLLrpoUo79+OOP49BDD8U999wDwzAADH5+3bBhA6666iocdNBBmDdvHg488EDccsstGBgYYMF+4YUXYvXq1TjnnHMmZW2CfQvRE76X4HA4oKoqC7RUKgW3283jx4YT0nZyuRzS6TSamprY9u12uzl4bLjzkfBWFKXOUh4IBGBZFpxOJ9rb27Ft2zbMmzcPXq8XoVAImUyGg9qKxSJaW1vh8/k4KI6q7DR2jTYHSGybpglFUfh7iqLAsiwOZyuVSvD5fPD7/YhGo6hUKvzckfB6vYhEInC5XGw/p0A1j8dTV+UGBis9NH+detKpEk8J9V6vF36/Hy6XC9VqFbIsIxAIcAuA/Rrb2wIA1G0+0EYA9X1Ho1HE43EEg0EeE+dwONDU1MQV+l293rFCwX2qqtaNuxMIBJNDb28v7rrrLnzmM5+Z1BYQl8s1Yccvl8vo7u7G7bffjv/+7/9GMpnkn23evBk33XTThJxHIBDsnzidTnzwgx+c0nPu6nPznqDrOi677DL8/Oc/x9lnn43u7m78+te/5s/GI7Fs2TI0Njbife97H/70pz9N2voE+wZChE8zVCmlPmUa42VZFvcHVyoVDmAbDrK19Pf3o7OzE6qqIpvNwjRNrqQPpVQqIZ/P1/Vf+/1+DgcjG3w6nYbb7UZDQwMHnIXDYUSjUWSzWbS1tSEYDLLduVarwTAMmKbJr4lGfNE4LloPfYCkijFVrqvVKhRFQSgUwsDAAPL5/C7t1C6XC6FQCLIss62ejm8YBr8uO5VKBYZhcDAaPcfpdCIcDiMSifBscxpnViqVkEwmEY1GUSwW4Xa7ORTP/jroOKZpctgaBddt27YN/f39vHlBzgW/349kMgnTNCdMhFcqFWzbtm3CA98EAsHwbN++Hd/+9rfxgQ98YMr6H/eUr3zlK3A6nXjhhRemeykCgeA9SLVaxcqVKzF37twpO+fixYvh9XonLUTSNE3885//xD//+c8RHzM0HO6GG26AZVm49dZbJ2VNgn0L8al8L4B6lS3LYrFEwi6fz3Ni90g2ZbJ667qObDbLFe6hM8jtFItFGIbBo82amprgcrnQ29sLy7IwMDCAXC4Ht9uNlpYWOBwOrFu3DitXruQ1FgoFFs20RrKqW5aFWq0Gv98Pv98PRVE4VVxRFLajkyVdVVWufjc2NsLn80FRFOi6PqZkb0mSEAqF+DhkT6cK9EhBGA6HA36/H21tbWzb9nq9CAQC6OjoQEdHB/x+P2RZ5l74bDaLdDrNyfWUTu/xeOpeaz6f53nutPFQrVaxdetWTn63/3KgxPuJrJ45HA6EQiE0NTVBVdUJO65AIBiZ3t5ePP/889O9jDHz0ksvCQEuEAgmjWq1issuuwwPPPDAlJ3z9NNPn5Ik9pGYPXs2/vGPf+D888/n723btg3/7//9P/T19U3bugR7D0KE7yU4HA6utJL9ebReaLtQI8sxWaNzuRyPDRsuHZIqtmS5puruwMAAgEFrt67rGBgYgN/vR2dnJ1paWuDxeJBOp9Hf3w9Zltl6bl8HVbzdbjeamprQ2toKTdO43zsYDCIUCkFRFPh8Pvh8PgDgajCJaOqTLpVKu7T3EDQDnEaOtba27jLB0u12IxKJoK2tjav81EdP74G9kl8ul5HL5Tg5nZLs7fPEycJO12To5kk8HseOHTuQSqW4n55S2seTuDkWJEnCggUL0NHRManWLIFAUM+WLVsmNQXX5XJh5syZk3Z8gUAgmEh0XccvfvGL6V7GpHHOOeegpaWFv6bpPqINUDASQoRPMxRmRkKMbOcUJjaSLXm4kC3qMdZ1HYZhcLr6UKrVKldgKdk8FotxYjl9cKSZ37IsY8aMGejs7ORZ24lEgv9Lo8rs6d6apsHtdnP1mwQ/hbXROLJKpYJSqVRnuaf/0uiwvr6+MYWV+Xw+BAIBeL1eSJKEYDCIQCAw6nOq1Sry+TzPD6d+dhLbqVSKb6CmaSKZTCKTyQzbGkCvlcafjUQ2m0VfXx/i8ThXw8n+T0J/IvH7/QgEAhMu8AUCwcg89thjk/rhS9M0fOpTn5q04wsEAsFEQ59P34s88cQTdW1/fX19WL58OZ566qlpXJVgb0aI8GmGqp8U5EVhZhSuRoJ8qEV5uA93JJ7dbjckSYKu6yOKQbKPZzIZlMtlBINBBINB5PN5dHd3o1AocLCY0+nEggULMHPmTA42S6fTKJVKSKfTiMfjnEhOVWJ6rq7rPAsbGBT2NM+b1kzzuqmHnULPisUifD4f+vr6RuyHt6MoClpaWth+5PF40NHRgVAoxBZ16n2n61kul5HJ/H/tnXt0W/WV77/S0fstS37HeeFAEkgIkBLSFhhISgoMZQprCLnQUkp7BwilQMoC2g5QmHvhMre0lGZ4dBhgeLZQSFsoXAKB0ADhEQhJyIOkcfy2ZVvPI+kcvc79w2v/kBzb8UOybLM/a2nFkY7O+f0k55fz/e29vzsCWZaFACeoxzd9N4qiIBaLIZFIiAh5PpRCT5/BUKRSKbS1taGvrw+RSKQgWkZt1orpkJ7NZlFRUYHq6mquC2eYCeLKK68cURtDhmGYLwtbt27Fhg0b0NLSUvJr2e32CXUhl2X5sDTz7u7uEZVUMl9O+I68zJChmNVqFaKPasIpWk31yBaLZdh64UQiAaA/QkI9ZIcTr/kinPqJUw02RWjJnd3v96OmpkZcgyD3c2qnRnXNFKmn+VA7NHIUp3mYzWZYLBbxPrPZDIfDIVLsPR4PgsHgiPpnm0wmVFVViUi4wWBARUUFqqqqcNRRR2HVqlU466yzsGzZMtTX14ssAxLBFInOT9smt3WK5lPdPfVVzzeXI+M5Eu5DoWkaurq6RDZB/ndEn08xIcM/SptnGKb0lNIZnbDZbLyxxjDMlOJ73/seli5dWnIfCqPRiAULFpT0GgwzHvh/7zJD4pIiw3q9HpIkifpiMmijFljD3XBROjRBdc3DQRFvq9UKp9MJk8kkUsmppVc6nRZC3GazCZELfNHqLBwOI5vNwuFwwGQyQa/Xi7ZrZI6WL6QpDZ36gtMmhCRJIp3barXC6/Wir68PsVjsiJ8lmbOZzWbYbDYxr4qKCsiyjIaGBpx88slYtGgRlixZgoaGBkiSJFzS6bMgFEURnyd9F4lEQjxHot1oNMJut0NRFEQiEZhMJrhcLjH3wejr60N3dzdkWRbRf8Jms41o02GkuN1uzJ49G3V1ddwrnGEmCOoOUUouvfRS1NfXl/QaDMMwxSSbzaKnpweffvppya918sknw+12l/w6Y4UMifne7MsJi/AyQ7XgJEZTqRSi0SgURYEkSULAkgnYcLXGFPEkJ/WRREhISHo8HuHsPdCd3Ww2i9Tuuro62O12Ea2la+RyOWGKRoKWnNOpT7bJZBJRX3IVp7ZklIZPddlUk200GpFMJtHX1zeiz9Pj8cDj8Qh3dLvdjtraWqiqikQigdmzZ6OyshINDQ2YM2cOvF6v+A8hHo8LAU1ppNRyjXqjU/sw2rSg6+l0OrFRQPXu+Z/PQKLRKDo7O5FIJJBMJpFMJsVrR4qkjxaDwYCGhgbRQ55hmNLz05/+FA8//HBJr5GfVcQwDDOVuO+++0rWPoz4yle+MqEi3Ol04vLLLxfBrKHEtdFoxOWXX44PPvgAmzZtwuzZsydsjMzkge/Iy0x+j2qqB6bIKNVZj5RsNotwOCwcGUcCpYB3dXWhubkZmUwGwWAQoVAIqVQK3d3dUFUVDocD9fX1qKysLEiZJkM1in7r9XokEgnkcjlIkoTe3l709fWJ3tm5XA7JZFII7YGbC5T+TrXaoVAIqqqOWISTODYajXC5XHA6naiurobP54OiKKiqqoLP54Pb7UZVVRXq6upE/XkikYBOpxMCnurAKRLf19eHZDIpIvQulwsGgwGyLAsBbrFYxOLrdDrFz4N9V5SKTlkB+RR7V1Sv16Ovr4/T0RlmgojFYgWbawzDMMwX9PT0YO/eveUeRlHx+XxYv349du7cib179+KFF15ARUVFwTFLlizBfffdh4cffhgulwvXXHMN/v73v5dpxEw5YRFeZiiSkclkRNr5eAgGg6IvdSqVEmnhg0Gtt3Q6Hfbu3Yv9+/eL91IkNxKJQFVVOJ1ONDY2YtasWTAYDGJnUdM0YURG0W4S5MlkEh0dHVAUpWAMiqJAURTRSo02GihlndqSpdNpxGIxBINB9PT0jEhAUiQb6BfkNptNRPFDoRAikYgQ0B6PBz6fD1arFdlsVqTem81mIZxlWRYu8VS3brPZkE6nEQgE0NnZKTY9qMWawWAQny21ZBtMiCeTyYLa++EYr3h2u92ora2Fx+MZ13kYhhk5f//737k9DcMwzCAEg0G89tpr5R5G0ZEkCbNnz8bcuXPxrW99C3PnzhWvfe1rX8OGDRswb9483H333Tj11FPx/vvvA+gvRfzmN7+Js846i009vyRw4+Ayo2maSLcmx3G6aaO08tFA0Rdqs2U0GmEwGAY1aCPRTGZsAOD3++F0OsX1bTYbJElCOp1GZWUl6uvrcejQIaiqivb2dmQyGdEvnOrYc7kcIpGIcOWmummqdacxUZq7Xq8XBm80rvxa9ng8Lq5JmwNDQcJXp9MVpGrSuNvb2zF79mz4fD7E43FUVlbC6XQiEomgt7cXVqtVbAwkk0kR0c7lcjAYDMhmswiFQiLan39dcoTPd7SnungywcuH0v3pMxwK+kzHEx13uVzwer2D9o1nGKY0PPLIIzjuuONwzTXXlOT8JpMJ3//+93H77beX5Pyl4vzzz4fH48Hjjz9e7qEwDFNGnnrqKVx55ZXivnOqo6oqurq6MHPmTPHcww8/jPb2duzatQvV1dW47LLL8M477xRs0M6fPx/r1q3Dd7/7Xbzzzjv46KOPEAwGyzEFZgJhEV5mstksEomEiAqTkAMgossDRemRzqcoCmw2mxBvwwk8RVHQ1dWFbDYrUsnp+Ww2i5kzZyKXy0GWZVRXV0PTNFRVVSGdTsNgMIh6b7PZDFmW0dXVBZ1OJ0zWXC6XcGm32WxQVRVms1m0JTMajYjH41AUpWBcmqaJ1mZGoxH79+9HOBxGTU3NsPPX6/XweDyiPt1sNkNVVVRWVqKlpQUdHR044YQThOu62+1GXV0dent7oSgKOjs7oSiKSEUn0Z+fYTDwu5AkCTabDQCEQ7zVahUbALTZMRBKx6c6/mw2O6jQps9zPBgMBmGqxzDMxJDJZNDa2lqy8+t0OixZsgQzZ86ckJY/xaK6uhqvv/56uYfBMEyZaWlpmVbZQp2dnTjnnHNw9NFH48Ybb4TT6URzczN++ctfYsuWLYO+59hjj8Wbb76JyspK3H///bj++uvHnRXLTA3GdWd/9913Q6fT4brrrhPPKYqCtWvXwufzweFw4MILL0R3d3fB+1paWnDuuefCZrOhqqoKN95447T6Rzha8lO1qb0Ytb8aS89oWZZF+nS+w/dAcrkcurq60N3dDUVR0N3djVAoBOCLXuMulwu5XA6JRAImkwlGoxE2mw12u12cx2g0Qq/XIxQKIRqNCnFtMpmQzWYLIvuKoohIcSaTQTKZFDXwtGmQy+WEUVsmk4HFYkF7e/th/ReHwufzobKyUqSHU/swt9uNQ4cOiWMqKirgcDhQVVUFv98PoD/qHgwGRR/1rq4utLa2IhqNimj/QIxGI7LZrBDo+YJZkiRRdz9QSNvtdlEjTyZ2Q1EM86UZM2bA5/OxkdMEwesjMxGcf/75uP/++8s9jFFBbR6ZLy+8PjLTlc8++wwvvvgivva1r+H444/HBRdcMKQAB4DGxkZUVlYiEAjgoYceYgH+JWLMIvzDDz/EQw89hMWLFxc8f/311+Mvf/kLnnvuOWzevBkdHR244IILxOvZbBbnnnsuUqkU3n33XTz++ON47LHHcOutt459FlMYMmSj1lxmsxkVFRUF7tijFeHkOp6f4n0kqB+2LMvQ6/WiZprqm0mI2+122O12IZjpvdRrnB70HnoAKEipJvfzcDgMVVWFQ3hvby8ikQgSiQTS6bTYUGhvb8eePXtGNBer1SrG7nA4YLFYoGkaPB6PiIaTEzzNO//zps+NXOKHWxDzMxUo5Z9ELr2XnO4HinDaICBztoE3EmPZgBkKSqWn8TKlhddHBuhfi1asWFHy60y1f9O///3vS5ohwExueH1kiEQigU2bNpV7GCVhJNmoALBu3ToA/ZuTn3/++UQMjZkkjEmEy7KMSy65BL/73e/g9XrF85FIBI888gjuvfdenHnmmTjppJPw6KOP4t1338XWrVsBAK+99hp2796NJ598EkuWLMHZZ5+NO++8E+vXry95T9XJCLWjUlUVsVhMmIAN7B09GlKplDAUG8kOMbVCs1gs0Ov1ok7baDSKFlrRaBSHDh0SCwo5iet0OiFgyQmc3L51Op1wGac50QYB1ULnt1WLx+PiuhRZ1ul0cLlcSKfT2LFjx4jaWdA5aGOAPl+XywVVVUU0nPp7OxwO+Hw+kTKezWYRDAaFqzudk9q35UNp8/mRbEotp02GaDRa4ChPnzmlzdPnNdh3lV/LP9KShMHQ6XTo6elBJpPhNmUlhtdHhrBYLFiyZEm5hzHpGMmNKTM94fWRyUdVVXzwwQdjfn8mk0EikUAikcAjjzyCu+66Czt37iziCEvPU089hT179mDTpk0cBf+SMaa78bVr1+Lcc8/FypUrC57ftm0b0ul0wfPz58/HzJkz8d577wEA3nvvPSxatAjV1dXimFWrViEajeKzzz4b9HqqqgrzsHwTsekACStVVUUK+HhvTlKpFJLJ5KhFG7mTUw/vdDotnM/b2trQ1tYGm82Grq4uUU8N9IvW/L7iOp1OCPt0Oo1UKoVQKIRQKFTgAE+LZ2dnJ/bs2YO9e/fi0KFDCAQCokbdarUil8shm81i3759CIfDR5yH2WyG0+kUteqUOk/9zVtbW5HNZoUI9/v9mD17tkhJz/88CIp0U+o98EUbMZojodPpoKqqSGmnlPt8EW4wGFBRUSFqtCn1Pp+BfgAk+MeCJEmora0tanSdGRxeHxkiHA7joYceGvP7aTNysAf9O85kMuO6iWWYiWSi10eA18jJzs6dOyHL8oiPp3vCd999F9///vcxb948zJs3D1dddRV++tOf4oILLsBDDz2Ejz/+GJqm4YQTTijh6MfPQw89hFNPPRU//vGPxxVsYaYeozZme/bZZ/Hxxx/jww8/POy1rq4umEymw9ogVVdXo6urSxyTv4DS6/TaYNx11134xS9+MdqhTgnIGZtqrZPJJLxeL5LJJAKBwJjPm58efSRIcJOLent7u3A2t9lscDqdwrnd4/HgwIEDwryMhK7JZEIul4OiKMIhPJVKIRaLQVEUmM1mOBwO5HI59PT0oL29HS0tLYhGo+KYXC4nIuuU1m6z2ZDJZBAIBCDLMj799FOcddZZw85Hp9PB4/HAarXCbrcLZ3K9Xg+n04kDBw5AVVUYDAZYLBa4XC44HA54vV50dnYOKVIzmYwwT8tPswcgxpxvppc/nkQiUZDybjabhelbOp0eUhwPjJ6PFUmS0NjYCJ/PB0mSeLe1RPD6yOSjadqobi6JDz/8EHv27MG99957mGklcdZZZ+FrX/sa7r33Xmzfvn2cI2WY0lOO9RHgNXKy8+abbyIUCsHhcBzx2M2bN+NXv/oV9u7di0AgIHyM8jlw4ACuvPJK+P1++Hy+wzrTTEb6+vrKPQSmDIxKhLe2tuLHP/4xNm7ceMRWUcXklltuwQ033CD+Ho1G0dDQMGHXLyUU0fD7/YjFYmJBcblcCIfDY0qxokjtaIQWGcL19PSgra0N2WwWdXV1aGhoEKnjwWBQpI5LkiRuDm02G1wuF0wmE5LJpEhtp+uTkGxqakJnZyeCwaAwXPP7/ZgzZ46IXMfjcXR0dKCzsxPRaLRAmHZ0dODVV1/FP/zDPwzbQ1Gv1wvTNbo+bRJUVFRg7969iEQicLlcsNlsole63W6HxWJBMpksOBf1WqdUbmp9RvOjTQcS/dlsFiaTSTjNU723zWaD0WgUvcgpFZ36hdPvQinqO3U6HXw+H6qrq+F0OnnBLwG8PjIDMRgMmD179oiO7evrw4YNG/Dggw+iqanpiP9G9+3bN6GGbHa7HU6nc1ixwzBDUa71EeA1crKjqioefvhh3HnnnYO+rmka3nnnHdxzzz148803xcam0WjE6aefXhDgAPoNdrdu3Yre3l709vaWfPyjYf78+aivrwfQ76S+e/fuMo+IKSejEuHbtm1DIBDAiSeeKJ7LZrN4++238dvf/hb/7//9P6RSKYTD4YLdzO7ubtFaqqam5rDUOXK/HKr9FEVFpyNUS6xpGlRVFSJcVdUxRz5JyOn1+hGntlBUmFzAgS9S5Ts6OmC329HR0SFM23p6epBOp6HX6+H1ekWfbIPBAJPJBJPJhFAohN7eXnR0dKC5uRmBQACVlZVYsmQJFi1ahMbGRlRUVMDpdAoxTFHvTz75BO+//z4++OADkZ6ey+Xw4YcfIhAIYMaMGcPOh1LPk8kkLBaLmJvX60Uul0N3dzfcbjcMBgOsViskSYLb7Ybb7RYi3Gg0wufzQVEU0VqNouB2u11E+8k1XVEUUQNPIp2i+6lUSswzEokUiH7KWojH47Db7aLd2VDf61ix2+1wu92w2+0swksAr4/MQJxOJy6++OIhX08kEvjud7+LcDiMvr6+SRvRdjgcuP/++9HQ0IBvfvOboizmuOOOQyqVYjMh5oiUa30EeI2c7Giahvb29oLnVFXFrl27kEwmcc899+D1119HMpmEw+HA0qVLcdFFF2HZsmX46le/epgITyQS2Lp1K1555ZWymkBWV1fjvvvuQygUgl6vx1FHHYUFCxagrq4OwBci/IEHHsDGjRu5TOJLyKhE+IoVKw4zPLj88ssxf/583HTTTWhoaIDRaMQbb7yBCy+8EED/bn1LSwuWL18OAFi+fDn+1//6XwgEAqiqqgIAbNy4ES6XCwsXLizGnKYU1CecouCKogzaF3o0KcRULzNSNE0riFADECIxm82KiLROpxM13ZFIBKqqwmq1wuFwiHrylpYWtLe3IxqNCnM4RVFgNBqxcOFCnH322Vi+fDkaGhrgcDjERgFF14H+G766ujosWrQICxcuxNtvv43t27cjHo/j4MGDaG1tPaIIN5vNcLvdojbd4/EgkUjA4/FAr9fj0KFDmDdvnohyG41GsRFB8/f7/aivr4csywgGg8jlcqLVmE6nE07yFPUnN3WKmkuSJDZTaKPF4/GIhdZgMMBut0OSJLFxMZxpWiaTKUhPHy1erxd+v3/YLAJm7PD6yIyEtrY2tLS04L777oOqqnj11VdHZDhZLux2O8477zx873vfQ1tbGyoqKtDT04OLL74YDz/8MHbs2IE1a9ZMqT7lzMTD6yMzHOFwGPv27cODDz6I1tZWyLKMjRs3FgSSZs+ejdtuuw3f+973hj2XzWbDmWeeiTPPPBOXX345Tj/99AmPiOt0OvzgBz/A6tWrhzymtrYWtbW1WLFiBbZs2SI2lH7/+9/jueeem6ihMmVkVCLc6XTiuOOOK3jObrfD5/OJ56+44grccMMNqKiogMvlwo9+9CMsX74cp5xyCoD+OraFCxfiO9/5Du655x50dXXh5z//OdauXful3KmUJAlms1lEUx0OB7LZrBCDqqqKaOpoGG0aO6WZ0wYA1XrbbDZYrVbE43ExNjJhS6VSMBgM6OnpQSgUQmdnJ1pbW5FKpWA0GlFRUQGv1wu73Y65c+eisbERfr8fwWBQiE5q4UDjpd7hVCNdWVmJ+vp67Nu3D/F4HMlkEj09PUecD7mqJxIJkfpN7uZOpxMdHR2iPVkkEhHn7e3tFaK9vr4eFRUVACAi3SS4ZVkucJSn8VL6PLnDU6o60B9Zd7vd4rscWDuu1+uHzX4g076xRsNpk4E2EtgApLjw+sgMJJFI4NVXX8WaNWsQCATw4IMP4r/+679Eyc9U4LTTTsOTTz4JAJgxYwb++Mc/Yv/+/fjnf/5nOBwOnHjiibj//vtx/vnnl3mkzGSG10dmODZs2IA///nPBesiZe5JkoRrrrkGl19+OSorK0d13pqamgn/3dDr9Vi9ejVuvvnmEb/n61//uvh5qrm7M2Nn1MZsR+JXv/oV9Ho9LrzwQqiqilWrVuE//uM/xOuSJOGll17CVVddheXLl8Nut+Oyyy7DHXfcUeyhTAlIIGqaBrfbDb1ej76+PpHWPVh/6ZGg0+lgMpmQSqVG7YadL/JoAQyHw7DZbCLiTcIykUhg+/btIp2eIsj0H6eiKKJ+R1VVNDU1obu7G7FYTPRDJ/FJi6/D4YDZbEZLSws2btyIrVu3ijT9dDqNYDB4RDFKRnd0TkpHSyQScLvdIkovyzI6Ozuxb98+0YKtoaEBVVVVIsJPLu3Uai0ejyOTyYiNCvqMaSOB6sYp4k1p9na7vcBZPb92fyTO5zqdDqFQCF6vd0xCXKfTwev1wuv1wmAwcEuXMsDr45cLVVXxm9/8Bjt37sQTTzyBjo6OKbf5Rb4YxNe//vWCG8b33ntv2GgPw4wUXh+/vGiaViDAL774Ylx77bU4/vjjAQBWq3VU9z2apuHll1/G+vXr0dHRUfTxDoVOp8Pq1avx8MMPj8hobjCWLl0Km80mfIWY6cu4Rfhbb71V8HeLxYL169dj/fr1Q75n1qxZ+Otf/zreS08LqE2XyWSCw+FAJBJBLBZDJpOB1WoVUfKROp0TJOpGK8BpISTB19fXB5PJhHg8LgRnPB4vcOylnw0GAxobG7F48WIsWLAAVVVVBSY+FAUml/FsNgur1QqgX4iSyI1EItizZw/++7//W7QtIdGay+UQCoWOmJqt1+vhdruFKZvb7UZfXx8ymQwqKyvR0tKCAwcOoL29HU1NTWhqaoJOp8O8efPg9/uRyWSE0zulqxuNRuEKbzKZxHdHWQz5juk0NkmSxH8e5A5Pz9PnTW3MRhIZG09NuMlkQn19PXw+H4vwCYLXR2br1q2iz3EpoE3M0ZYhjZSB9Zb57NmzB7///e+HdHBnmOHg9ZEZjKqqKtx0001YsmTJmN6fyWSwYcMGfP/730csFgPQf/9DnWhKyaxZs/Dggw+OWIAP7GSUTCbx+OOPFxgEM9OXokfCmdEhyzJCoZCoSZYkCU6ns8BMbCwtbgAIMT2WRYfqxHfs2IG6ujpRq07icrAaRpvNhtraWpjNZkSjUXR0dIi0ddpQoDZeQL+hSjgchizLiMfjkGUZXV1d2L17N95//320tbXBbrfjqKOOwqxZs5DL5dDc3IxoNHpY3+3BIMd34ItIODmnU215IBDAvn37IEkS5s+fL9rE9fX1iVIBo9EoHM6plVsmk4GqqpBlWUTxNU0TmyYklrPZLFRVhcPhgNFoFNkClB5FCzClrR/pu7Lb7WMW4jqdDjabDXq9vsC9nWGYqYkkSbj99ttx8sknIxAI4JZbbkFbW1vRzj937twhHYv37NmDb3/729i3b1/RrscwDHPeeeeNSYDncjm8/vrr+PWvf42//e1v4t65sbERTz/9NH73u9/hd7/7XZFHW8i6devgcrmOeFw2m8WGDRuwbds2PP300wXPt7e3l3yzgJkcsAifBJBpF9C/E1xbWyuEHrXPGss/SEqjJjO10ZLJZNDa2ipEn9lshtPphMPhgCRJh6VPx+Nx7Nu3D5FIBLNmzUJNTQ1SqRS6u7sRDAZFqjq9/6OPPoIsy6JPeCQSgSzLkGUZBoMBS5YswaxZs+D3+2EwGIR5XW9vr3AiHw6KXsuyDKPRCIfDga6uLuRyOZH239vbi3g8jhkzZoga8mAwiEQiAb/fL5zKKVpNn2UymYQsy4f1C6ca9/y/K4oizNAoO4GiS+l0Wgj8I6WpjsUbIB+qYQcw4S1iGIYpDna7HWeccQZ0Oh1OPfVUXHfddWJDsre3F9dff31RrqPT6XD55Zdj0aJFh722e/duXHDBBSzAGYYpOg0NDejo6BAu4pqmYdOmTUgkEvB6vaIcJpVKYdOmTUin09i1axeefvppNDU1IR6Pi3MdffTR+OMf/4jjjjsOiqKUVIQ3NjbikksuOeJx6XQat912G/7v//2/o85yZaYXLMLLDIm2RCKBXC4nxBG5pgMYVPCOBJ1OB6fTCaPRiHA4POL35Av+cDgMvV6P6upqBINBkTZtMBgOi4Zns1l0dHSgp6cHn3/+OVwuFwwGA5LJJMLhMHQ6HdxuN7xeL5xOJ7LZrEj5NhqNyGQy8Hg8mDNnDhwOB7xeL4D+BYvmbzabRT33kaDsAvrZZrOJlE2LxYK9e/ciFArB4/HAZrOhp6cHmUxG9PQm4WyxWApSmZLJJOLx+GGimVLP6bMgcrmcGD8J8PzMBzJ9OxJj9QfIp7q6Gj6fj01sGGaSM3fuXHETCgDz5s3DD37wA1itVpxwwgmDvmfVqlX4xje+gY0bN477+kajcdAbynA4jH/+539mAc4wTEm4/fbb8fTTT8Pv9wPov4f65JNPoKoqnE6n2BhMpVL45JNPBg0ymUwmnHbaabjvvvuEcz7df5LHULGxWCwF7fUGkkwm8dFHH+Gll17CvffeO6b7emZ6wSK8zGiahmg0img0Cr1ej2w2i1QqhUwmI/4cK5TqbDabRxxNNxgMBTtzuVwOwWAQ2WxWCEav1ztkKjiJRFVVEQwGUVFRAZvNBpvNBqfTCbfbDYfDIdJ1SJRms1lR+009uBVFEWM3mUwwGAyw2WyIxWIIh8MFN6hDjYXq7En4Ug22xWLBZ599hmw2i3nz5iGVSomNEIKEMfXyJqf6ZDIpNiAoRZ82UGjTgb5HgvqAUySdxL5erxdR9lQqBVVVh20hNp5IONAfRfN4PONqdcYwzPgxGAyYP38+JEnCkiVLDjM3W7BgAWbPnj2qcy5YsEDcuJaKJ598kvuCMwxTUj7//HN8/vnnqKmpQXV1NebPn49jjjlmyPZkmqbht7/9LTo6OlBZWYmbb74ZZ5xxRkHgYvHixVi2bBleffXVCZrFF2zevBm33nor3n777cNes9vtaGxsRHNz84gDZsz0gEV4maEoKaXPkBhMpVLjdtHVNA2JREKkVI+EwUQ/maERqVRqUKFoMpkwZ84cWK1WmEwm2O12OBwOmEwm5HI5YZBmt9sBFEaLVVVFKpVCNpsV9du5XA42m60gddvtdo/KIZ0cztPptKhLj0QiCIVCCIVC0Ov16O7uLth8oJruVCoFn8+HRCIBWZaFCVt+1Npms4kovtFoRDqdRjKZPOy7S6fTwhiOIt8k5MlZXpblEZUNUPbEcO3MhsJgMMDlco2oZolhmOJSV1cnsp38fj/eeOONcfk8DIbP5yvaufJJpVLYtWsXHnjgAY7gMAxTdGw2G2699VY0NDSI5xYvXoxjjz0WwJGDEGeffbb4eahjKcOyFLS2tuKll17CeeedV/D822+/jYsvvrjAqJhYuXIlbrrpJqxYsQL/43/8Dzz77LMlGx8z+WARXmZUVRW9sVVVFYKR6qN1Ot24HG+pjthutw9r8EZR7pFEy+PxODRNg9VqFRFsarHW0NAgIt8DU55JqFosFtHzmj4DSZLg9XoLxCnQLxrpYbFYkEql0NXVhd7e3iFFONV8AxB9vBVFEZsDiqKI96dSKfT19cFutyObzcJkMhV87hSlDwaDkGW5IEvAarUK53OKhsdisUE3T3K5HHp6ekRPcep5bjKZxOdErvFHQqfTCTO40Qpxh8OByspK0aaMb6YZZmIwm8144YUXcOKJJ4rnSpGRcu211+Khhx4qeq3hJ598gtNOO427KjAMUxJOO+00XH/99cNmAw7HSDYz161bh2effbYkxmeRSATf/e53sWbNmoKuEs8///ygAnzFihV4+umnUVlZiba2Nnz88cdFHxMzuWERXmYoAmw0GhEKhaAoChKJBFRVLcpNFLUCI9OxoaLroxH6FGE3m82wWq2w2WwIh8PC4Zzq0KnWmwQxiVYyTKMNB71eL1LNqU7cZDKJ1juUpi5JEtxuN7q6uhCJRJDNZgetkc5/jmrBg8EgJEkSvdcTiYQYn8/nQzqdRiwWg6qqiMfjMBgMiMfjiEajqKqqgqIoBYKVNhrIOZ1auw2XvZD//nwDODq3qqoilX0k4nos0XCTySQ2DIoZfWMYZngaGhrg8XjEulYqin1uMqK86667WIAzDFMyXn/9dezYsQNLly4t2TWotLFUhmjhcBgPPPDAEY/7+te/jmeeeQaVlZUAgJ6eHuzfv78kY2ImLyzCy0wmk0EkEhHCNhKJFG1x0Ol0sFqtQuBRi6xiQK7fQL/Zl06nQzgcRkdHh6j9drlcos0XRXkpmkzGZxQdN5vNIvLsdDrFa+Q+HovFYDQaYbfbYTKZ0NXVBUVRBo0kkbg3mUyi1ZumaTCZTEI85wvnSCQCRVEK+jLSpkQmkxGRcdo4MJvNIs2e3M4ppZyi8Gazedg+jxSBj8fjYiyqqiIajaK6unpEN9JjiaLR7wTDMBPLgQMH8NWvfhV//OMf8Q//8A8lu45Opxu3gSPQvwY++eSTCAaDeOaZZ7hWkWGYkqHT6UacDTgeFixYgH/8x3/Eiy++WNLrDIfVasXVV18tBDgAbN26lduSfQlhEV5mNE2DLMtQFAWxWKwku3OUjq3T6Y5o0EbHjLQe3WQywe/3o6amBi0tLVBVFaFQCHPnzoXb7YamaQWp7iQcKbJtNBrFNTOZTEEEnAQ4tVkD+qO/Ho8Hvb296OvrE33AB0ILOQl3ishbrdaC6w6sdx8MSmWnTQW6yc2PjpNxGwBRC5/v6j6QTCaD7u5uUf9PAlxRlJJGyYD+mihqE8ftMRhm4ggGg0XbCB2KhoYGXHTRRXjiiSfGdZ5sNotbb721SKNiGIYZHEmS8LOf/QyhUKhknhYElTaWC6vVit/+9rcFRpyBQAAPPfRQ2cbElA8W4ZOAVCqFYDBY9FQ/qj0m8Ugp2MOh1+thNBpH1DLLYrHA7XajpqYGiqKgqqpKpJM3NzeLdg3JZFJEpt1utxDXFCWn6DgJ3Px6cRqTy+USY6qsrERnZycCgQBmzZp1WFo1Ra3zx0nmRzabTaS/6/X6EW020Fj0er3o204Cm+rsKRVdkiRhhGe1WpFIJAbd2dU0Dd3d3SK6lEwmEYvFSr4LDPT/h8dppQxTHvbv349Vq1aV7PwGgwFut7tk52cYhikmRqMRP/jBDwoM2UrJvHnzRtwxqNhUVFRgzZo1aGpqwg9/+EPh/8QdJ76cjD9njRkXJJRjsVhJFgRy0h4pVI/scDiGPY7M3sxmM9LpNJxOJ6qqqlBZWQm32422tja0t7eL1HAinU5DVVVhSJcfKSbhTJFwSlOn69lsNjgcDvT19eHAgQPo6+sb9jOjc1ssFpGK73A44HQ6xXNDYTQaRdScxqTX6wtSPSm6T67uOp1OpNXH43GYzWbYbLYha6+DwSC6u7tFPToJ+1JGp8lwjkU4w5SHW265BW+++Wa5h8EwDDMpSKVSeOyxxybseitWrCh5xuFQpFIp3HHHHVi1ahXefPNNfPzxxyzAv8RwJLzM5HI54TZeKqhmWZKkI7ph63Q6WCwWOJ3OYd3Ugf6Ii6qqCIfDmDt3rjCXo1ZcAISgNxgMMJvNUBRFtACjvui0GJIopk0Ds9ksWmn19vYKgbt//3709PSgo6MDqqoOWuNMnyddx2QyiXPY7XbhlD5Y3TbVTVssFqTTaeGaTuLbZDIJ47x8gZ2f7p/NZkXaKc1zIOTSXlFRgWQyKY4bS2u6fEf4I+H1euHxeGCz2UaU8cAwTPGQZRn33HMPFi1aVPKe3gzDMJOdXC6HpqamCbvegw8+WLbOMD09Pbj77rvLcm1m8sGR8DKT3yO8VFAa9Uh2/qxWKxwOBywWC6xW65DCjlK67XY77HY7nE4nXC4X5syZA0mShNimnuIkel0uF2w2m6jTpvRuOp/D4RAu6gaDQQjSVCqFWCyGWCwGu90Or9eLzs5OxGKxQcdHc5UkCRaLRbQay2QyIj3d6XSK+VVUVMDtdouUeJvNBo/Hg8rKSrhcLmiadphpSCaTERFlqjcHUOB2TkZug5FKpdDb2wsAIvo9Vlf80RgxUe/0iUh9ZxjmcF5//XW88sorJTu/0+nk7gcMwzCD4PF4yj0EhgHAInxSUOooeCqVGvE1KB06k8ngqKOOwpw5c1BRUVGQuk3RcrPZDI/HA6fTiXQ6jUQiAZfLBYfDgZ6eHrS2tqK1tVVcnwQ1pW3r9XohOClan8vlhIANh8MIBALo6uoSqeuapmHhwoWorq5GS0vLkI691I+boBZoBoMBHo8HDocDbrdbpLzPmzcPc+bMgdfrFc7tHo8H9fX1qKmpEbXuZKBGAjsfel88HoeqqkLkGgyGITdAenp6RESdBHip65SSySR6enpKbhDFMMzg2O32AmfcYnPNNdfAbreX7PwMwzDFZNu2bQgEAgD6yyJDoVDJ7lFuuOGGI5ZcFgO9Xo/zzjtvSANhhmERPoXR6XQwGIavKKAU6ZHWAFM9cyKREK22amtrUV9fD7fbLVwlqc9iLpdDOp1GPB6H2+2G2WzGjBkz4HK50NHRgUAggEQiAaA/jRtAQU9takmWyWTQ2tqK3t5epFIpYSJHr1MEnaLoLpcLvb29CIVCQ6Zvk/EaRbYtFgsymYyIjjudTjidTiGwa2tr4ff7Ybfbxfh8Ph/mzJkj2rDRpgb18yYMBoNIYacIFLUdy2azQ7pxUiSfPk/6TEtJLpcTZn0Mw0w8kUgEV111lVgbi43RaBxTC0OGYZhysHPnTtE2rLe3F+eccw6efPLJklxr7ty5WLNmTUnOnY9er8cdd9yBzZs346ijjir59ZipB4vwKYperxfGaCRuh0LTNCSTyRGLOzJPCwaD6OvrQzKZhMFgEGnj5K6dSCQQDAYRjUYhSRJmzZoFt9sNt9uN2bNnw2w2I5fLifElEglIkgSr1VrQmo36b0ejUVEjbrPZ4HK54PV64fV6hWgkwWy322EwGBAIBIadFwllcn3PZrNic8FqtaKiokJE7t1uN2pra8WuJfUOdzgcmD9/PmbNmgWXywW73S7OQYI7l8uhp6cHqVRKCG7aoKDoNqW6D/ysc7mcqM+m40sJZTIUo5cwwzBjIxgMYufOnSU5t8/nww9+8IOSnJthmOmBz+c7ojjMN6MtJZqm4dVXXwUAVFdX43vf+x7mzp1bkmtRiWapyWQyWL9+PU444QQ8//zzmDt3LpcJMQXwXfgUJT+9e7gF0mg0itrq4cSq3W6HJEmiNhvor0/W6XSIRqPo7e1FNpuF0WiEy+USfbIVRYGmaaLuu6KiAh6PB8cccwwaGhrEdVOpFCKRCKLRqEh5l2UZ4XAYwWAQOp0OtbW18Pl8sFqtsNlscDqdkCQJqqoKB3JyVbdarXC73ZBleVBztYFQCjxF1il1vLKyEn6/H/F4HAaDAX6/Hy6XS6S/9/X1QVEUeDwezJgxA5WVlfB6vUK800KeyWSQTCahKApsNluBWVx+ZHzgd5VKpSDLcsH3NFiqezFJpVKHmcoxDDOxRKNRrF+/viSdCvR6PdauXcvGbwzDDInb7cZ3vvOdYe8h//f//t/YsmXLhKRUd3Z2IhQKAQD+5V/+BWeccUbJrnXllVeKdrKlZPfu3QiHw1iyZAk2b96Mf/u3f0NjY2PJr8tMDViET1Eouk0mYEORyWSQy+VgNpuHTT82mUxwOBwi5VuSJEiSBJfLBZPJBJ1OB4fDIdLbKfVaURQhsnO5HBwOh3A1t1gs6OrqQktLixDwfX19CIVCkGVZpHeHQiFkMhmxyJPQVlUViqJAlmUkEgmxiSBJknBbl2V5SHO2geZjlKJpsVjEvEwmE+x2O0wmk4iwU0p5KpVCOBwWLuxk1Ob1elFdXQ2v13uYeV0mkxHt26xWq7gmbUYMNEPLZrMik4A2P5LJZElFOP0ucDo6w5SXP/3pT4hEIiU5t8/n43/jDMMMycGDB3H77bcPG6B56aWXcPzxx+NnP/vZEbMux8v7778v2nUlk0m89dZbaG5uLsm16urqMHv27JKcO593330Xr732GgBgxowZ+OlPf4pNmzbh2muvLfm1mckPi/ApDok6ivIOhNKgyXF8qB1PWZaRyWRgMBhgMplgNpthsVhgsVhgs9ng9XpFGnYsFhNp3VTXne88DvSnYrvdbkQiEYTDYSHoJUlCIpGALMtIpVLQ6XQizTwajSIcDoua60QiIaK2JEopDZzanbW0tKCnp2dQp29Km8/PAqD2YtRzHOjPAtDpdIhEIrBarWJOqqqir68Pn3/+OT777DNxs2w2m+F0OkU6en5EmQzmSIiTUB8q6pzL5SDLMjRNE7uypXYt1+v1iEQi3CucYaYxer0etbW15R4GwzBTmLa2NkiShBtvvBHXXXddya/X3t6OZDKJdevW4cwzz8S3vvWtkmxUejweXHTRRUU/72BcddVVeO6554SRcENDA6655pqSmnMyUwMW4VOUfIdxMhsbLqWIxOJQRm7kbk5O5kajUTh9U59tg8EgzM1CoRCCwaAQjOl0GrFYTKSmZ7NZHH300Zg7d64Q8hRNNxgMQlzTg9LNc7mcELKUfp6/S0vGaHRsIBBAIBAYNCWdPg86Jwn4bDYLq9UqIuCUit/e3o50Oi2Oo7r4zs5O7NixA9u2bcO+ffvQ1dUlNhH0ej2cTqdwi6f0ecpOoP7iQ0WkcrmcqNfP5XLiuFJGwqm13FCt0xiGmRgSiQReeOGFkpzbZrPhhz/8YUnOzTDMl4N0Oo1wOAy9Xj8h5mJXXXUV1q9fjwceeAB6vR6nnnrqhNRvl5JgMIiLLroI5557Lp599lkcOHAAb7/9dsnbEzOTn+GttZmSQ+J4LI7Y1LKLUovzTciAL8QnpaxT2vhQOBwO+Hw+AP1CLT/SLctyQYsxoD9iSynbXV1daGtrw9y5c5HJZNDV1YVZs2ahpqYG8XhciG3qp0114dlstsC0LJfLQVEUmEwm0W+c6qXJXC3fcVyWZXR1dSEUComIdj5Uu57/d3IydzqdsFqtUFUVLpcLgUAA4XAYZrNZ9G+nOSuKgtbWVuh0OphMJrjdbvE5OxwOmEwmkTKfXwdP1xxOVCuKIjY/stms+BxKlUpK7vAMw5SXTCaD3bt3l+z8VFpU6uwahmGmJx0dHfjd736Hq6++Gn/5y19Kfr1AIICbbroJQH8QY9myZUilUiUJGqxYsQL33nsvotFo0c89GO+++y62bt0q7q1L3QmHmfxwJHwSMBaDLE3ThAjP5XJC3JKAGxg9HonQr6ioQF1dHUwmE2RZFiZqVB9NKcz5i6GiKAiFQojFYujp6UF3dzey2ayo16aabVmWkU6nRR07RcNzuZyIIlPtuSRJyGQyQpjG43FEo1GkUimoqiqi0EajEYlEAk1NTWhvbx90V5FqywGIunQyQKO0dgCwWq3IZrOIxWIiA0Cn08HtdhfUQVHbsXA4jFwuB6PRKIQ9fcb0feZvVuRvBAwkmUwKM7ZsNivc6UuFLMtobm6GLMsluwbDMOVn9erVaGhoKNn5jUYj1q5di6uuumpC+u4yDDPx/Pu//zsuuOACvPzyyxNyPbpXTSaTuOKKK3DeeecJw7ZismTJkgIT3Ykgl8uJoBjDsAifBlCUlUTsQCh6e6TIaiQSgaIo0Ov1QgzGYjEEg0ERiU4kEgWCUtM0YYymqioCgQAA4LjjjsOMGTOEKKU0eHIdp+g3vU7i22q1wmQyCbfxRCKBZDIpou29vb2IRCIF4r6pqQktLS2i3iYfi8WCbDYrHkajUbRIs9vtsNls0DQNDocDer1e1JeT+ZzH44HX6z0s1d9isYiUfaPRiEwmI65BIlqv10On0x0xCqUoiqipD4fDokd7qejs7Cy5+RvDMOXHbDbj61//eknObTAYcOedd+LXv/41fvOb3+DDDz/E8ccfX5JrMQxTPqLRKDZv3lyWe4Z0Oo0tW7bglVdeKfq5OUOIKTcswsvMQAfvsUDpzkMtkFTvfaT+05FIBH19fbDZbKisrERlZSUkSUI8Hhema4Pt4MmyjO7ubhgMBvT09ODQoUPCgZyEqtlsFnXZFAWnSDTVmgMQ6eiqqop68PxNBmpfRmZwer1e9DMPh8OHOcVT+rqqqmIjIN+1nFLSqR0atSQjl3iHwyGc4GmDg8ZAz9O5yOE8lUqJqH0sFjui4KVe4eFwGOFweMgoeP5nMVY0TUNXVxfi8Tj/B8Qw0xy9Xo9zzjmnJOdevXo11q1bB4PBAIPBgPnz5+PJJ5/kUheGYYpKNpvFSy+9NOb353I5vPTSSwgEAgX3UFu3buWMQKascE34NIBqtil9eyCUQj0SKMWaotEul0ukvJPQHOw9JOxqamrQ0dEBvV6P6upqpFIp2Gw2kSpuNBrFn5RST7XlqVRK1IpTJJwM3KLRqKiT1ul0cDqd0Ol0iMfjCAaDaG1tRTgchizL8Hg8h41PVVUhyMnIjqLvRqNRRMkpBd9qtcJgMMDhcCCdTsNoNIpxkfgm0zVN02C1WpFKpURtEV1zJFB2QCwWG7ZvZS6XQzqdHlFWw1AoioKDBw+WNNLOMMzkIJPJYP369UU/ryRJOPHEEw8z+vR4PGMqr2IYhik2+/btw+OPP46XX34Zn3/+OWbMmAGbzYbVq1djyZIlSCaT4p6UYcoBi/BpABmADVd3PBJImFK7rEQiAQCi1pxE6GDE43EcPHhQ1B/KsgyHw4FkMgmr1YpkMgmHwyGi0k6nE7FYTERkLRYL9Ho90uk0IpEIotEouru7hfiOxWLCvR2AqMUm0V5ZWYmFCxeiurpaRLUJajdGItZgMBSYFZnNZqTTadjtdgQCAREJp/pxcqLXNA3pdFqkqVNtOZnX5ZvNDde7fSCZTAaBQABOpxNVVVVDHkclAYqiDNv2bDhkWUZ7e7twl2cYpnxIkjTmmu3m5mYcOnQIv/zlL4esl9Q0Ddu2bRvPEAfFbDZjzZo1RT8vwzDMeJBlGa+//jp+9atf4eDBg2hraxOvHThwAACwY8eOCRuPz+cTXkYMMxAW4Ywgm82KHt5Op1M8T1FxcjkfDE3T0Nraiu7ubtFPXJZlZLNZuFwumEwmJJNJJJNJIVSTyaRorUZ9wnt7e9HT0wNZloUYrqmpgdfrhSRJCIVCOHToENra2sQmAQDs3r0bn3/+ORobG9HQ0FAgwkncGwwGIbgpgi1JkojI05xlWUZ9fX2BkCYDt1wuB6fTCa/Xi3Q6LTY+FEURfdVH67SpKArC4bCoXx8u5TzfgG8syLIsPl+GYcqL3W7HZZddNqJjqewnHA7jjjvuwO7du8VN5WRAVVX8x3/8R0lNJRmGYQYjGo3ijTfewL333ostW7aI5/1+P2pqagqObW1tLUnv8YH4/X489dRT2LdvH6699tqSX4+ZerAIZwTUzoxamlEEmNy9j3RzRSI6k8lAURR0dXUhk8nA7XZDkiTIsgxN02CxWIQozmazaG9vR3t7O6LRKCwWC2prazFv3jxUVFRgzpw5mDFjBioqKmAwGJBMJtHU1IQ333wTH3/8sYhcR6NRtLS0oLe3F6FQCFVVVaJ1m8lkElFfo9Eofs5kMqLXOtCfSkkp6Y2NjWKjAPjC6dxkMsHj8cDlconIPDm505+jjTCTg7vNZhObFcPV748n3TMWi4n0f4ZhpgZtbW34+c9/jr/+9a+w2Wxobm4u95AO49ChQ7jnnns4w4ZhmAkhFAqht7cXv/rVr7B79268/fbb0DQNBoMBV199NZYuXYoFCxbgpJNOKnjfli1bcMcdd+D1118v6fguvPBCnHXWWRMi+JmpCYtwRmAwGITbN7UZi8ViQ9aaDySdTqOzsxOxWEw4oFPEOZVKQafTCVdzWjx7e3sRCASg1+vR0NCAxYsXY9GiRZg9ezZcLhdcLhf0ej2SySQikQgSiQS8Xi8WL14seog3NzdDURS0t7ejt7cXsVgMPp9PpNcD/RHsbDYrNhIsFoswxbNarUgkEsJ8Lh6Pi3NT+jc5lldVVcHr9QoHddqgSKVS4rMaLWS45na7Rf1+qUQyGcaNJl2eYZiJh9bK9evX4z//8z8PMxUqJ6effnpBtlQmk0EoFJo042MYZnpht9sRDodx6NAhPP744wD6xfSOHTsKyhQXLFiA66+/HpdeeulhnhXEwoULEQwGSz5mnU4HVVXxf/7P/yn5tZipCYtwRkCtzIxGI2RZRi6XgyzLQrCZzWbRz3owMpkM+vr6kE6n0d3dDUmSUFtbi0OHDiGRSCAej6OrqwvBYBCJREJETDweD44//niccsop8Pv9QoxGIhHRvowi9JqmwWw2Ix6PY//+/WhubhZR47a2NgQCAQSDQVRXV4v+3rSpkEqloNfrYTKZRHQ+m82KORsMBtjtdkQiEfT29sLhcAiDuGQyCZfLhdraWhiNRgSDQZHyriiKaKc2nigQtWyjqHopoEwAvllmmPKjaZronkC+FX/605/Q1NSETZs24cMPP0QsFpt0/16XLFlS0Bf8008/xVlnncVRcIZhio5er4fRaMRXvvIVdHZ2CqNfwmq14uijj8batWuxZs2agrVpMCKRCHbu3FnKIQPoD0xt2LAB27dvL/m1mKkJi3BGQP2tFUVBLpdDNBoVojedTkPTNGHcNhSJRAIejwfxeByqqiIcDqOpqUkI1FwuB71eD7fbDZ/Ph6qqKhx99NE4+uij4Xa7odPpRBuzdDot+nWbTCbYbDakUimRjn7w4MGCmz5FUSDLMmRZFkZwQL/wJCFPddd6vR42mw2xWEy0UIvFYsKALRKJQJIkqKoqRD7Vp+dHvMnZXJZl0WpstFBNfH60vlR1lT6fDx6PBxaLZdxGfgzDjA9ZlrF8+XL86Ec/wu9//3t0d3cjGAwW7d9/vgGlXq8vmUh+9913EYvFSnJuhmG+3ORyOTzwwAOHPW+z2XDppZdi3bp1qKyshNfrHdG5Pvjgg4K1MH+dLCbPPPMMXnjhBW4HywwJi3CmADIVy0/RHs4VfSDxeFw4mlMaen5qtcViwaxZszBv3jzU1tbC5/OhpqYGLpcLQL9gtlqtIiIcCAQQi8XQ19eHnp4e9Pb2YteuXdi/fz90Oh2qqqrQ2NiIRCIhhDulj1NPc71eD7PZjFAoJIzPqE0Z0H9zSqnlZNSWTCaFI3w6nRY9zfV6fcHxVAeeXwuu1+uF2zvV1w8F7fBSxgG1NqOof7Hb/djtdlgsljG3OGMYpnhomoaOjg7ccsstRT+33W7HK6+8gqeeegp9fX1YunQpbr755nGf12QyYf78+eLvgUAADz/88LjPyzAMMxpuuOEG/OIXvxhRy9XOzk688847ePzxx7F582YhjI8++mg89thj+PWvf40//OEPRR1fIpEoMBBmmIGwCC8zFPmdLDtl2WwW4XAY0WhUjIlE9EgiKaqqoru7e9Boud1uR21tLRoaGuDxeGC1WmE0GhGJRNDT0yOc2ckELhaLQVEU0Z4sEokgmUyK+nG/348ZM2bA7/cLoU6bABSZ1uv1kCQJFosFiUQC6XQaFosFZrNZpKtrmiZ6flMNUTQaRV9fnxDX1EsyFotBVVWxc0pimb5Dg8Eg+qxTz+8jOZHnp/2n02kxTuqLXkwkSUJlZSXq6+shyzI7GTPMNOO4445DY2MjbrrpJixduhSnnnoqgP51aN++fXj00UfHdX6Xy4Xzzz9f/H3Hjh3YtWvXuM7JMAwzGiwWC44//vjDBPjHH39cUO+9ZcsWvPzyywiHw4d1k5g/fz6ee+45HHfccYhEIkUX4QxzJFiElxmK0lJd4GSADMsGMtJURuq5TeZshKIowoRN0zQEAgEkEgn09PQgHA4XuLJTuy+DwSAM4yorK2EwGFBZWSn6dNP1SAjLsiyEeCKRgMPhECKcItwmk0k4v5PIJgFOkedUKiVS0vNJJBIIh8PCxE2n00GSJLhcLkSjUZE+bzabYbFYkEqlkEwmh9xkyeVyYtOBourpdBrJZLIkItzhcOC0007Dnj17RrR7zDDM5GTGjBmi9c7ChQtFq7Njjz0W1dXVhx3vcDjwk5/8BI8//vi40tIzmQy6urrgdrvHfA6GYZjx4PV6UVNTg3vuuQevvvqqeH779u0IhUJHfP/ChQvxxz/+UWT1eDweOJ1OLqthJhQW4WWGBCeJsekApaKbTKaCSCv1Ao/FYmhtbRXp6hRpttlsqKyshN/vh9PphNlsFn3EgS9St/PTyFOpFIxGoxC9JGhzuRySySRsNptID9fpdEKEU6o3pZyTUB84D2rR5nA4oNfr0dvbK6LWfr9f1JOT2I/H4zCZTDCZTMJBnYzhhsJgMIjUdQAFPdkpAl8s9Ho96urqRGo+wzBTg1mzZqGxsRFXXXUVdDodjj32WBxzzDGjOkdDQwPOOOMMvPHGG2MeRzgcxhNPPIF/+7d/AwD09PSM+VwMwzBjobOzU2T5DKSurk50bwiFQggEAgWv19bW4pZbbikoqznllFNw0kkn4a233irZmBlmICzCywyJNEpLny7usvF4HHa7XdRNE9Q2jFK6HQ4H3G436uvrUVtbC5PJBKvVKiLo5BSuaVpByzPgC1Gey+VgtVqFoM/lcqK+GugX0yS4KbWeIuE2m03Un5tMJhF9T6fTQmAriiJatvX19SGZTMJut4tNAsLj8RS0ZAO+MLsbDqpRj0ajMBgMwpitVCKZ2rIZDAbuF84wkwzKqgH666/vvPNOfPLJJ/j1r3+NysrKcWWwOJ1OzJw5c1zj0+v1Be7D995777jOxzAMMxbcbrdYixYuXIiLLroIAHDGGWdg9uzZAIDPPvsMH3zwQcH7Tj/9dDQ2Nh52PvImYpiJgkV4mSEjrrE6a09WKKXdYrGImmir1YqjjjoKHo8HyWQSTqdT1IVbrVbYbDYhsCnN22QyQVEUSJIEo9EITdOQTqdFmjr1Hwcg0r/ps4zH40JsUrSdRD3VblP0nNqXGQwGSJKEdDot2pqRsUZVVRVcLhcymYwwZ7PZbIjH42KsqqoikUiIVm6JROKIZQa0aRCPx+F2u0VtOLmyFxun0wmv1ztkD02GYcrDrFmz8N///d947733oGkajEYj/uVf/gVms7loWTErV67EE088MeY2iBUVFfjhD39YlLEwDMOMhu9+97tYsGABAOC0007DCSecAADiHmwgixcvxuLFi0d07p/85Cf485//XLzBMswR4LvwMkNp06XqC11OFEVBRUWFSNN2u92oqalBbW0tAIg5S5IkenRT+jmliBuNRjgcDhGpTqVSIpJLx1KbMLPZLMQs/WmxWOByuQoM8PJdzKk+nM4lSRJsNptwWE8kEshms8Jt/aijjoLNZhMp6T6fT9QQ2Ww2JBIJpFIpYTA3kjp/2ogJhULw+/3IZrNIJpMlM03z+/1iY4JhmMnDjBkzcNppp+G0004r2TVOPfVUGAyGMf+fk0wm8dFHH2HVqlVFHhnDMMzwdHZ24vHHHy/JuYtd/scwR4JFeJnRNG1aO1SbzWb4/X5EIhEoioJgMAi32y2izVQ/bbVaYbVaRZq4oijCCZ0ituQ+brfbhQO50WgUgptSzru6uhAKheBwOERLMko1j0QiUFVVLLZUj03H2Ww2VFRUIBQKFUSiKSo+c+ZMuFwuHDhwQHxvTqdTiHuKnJNZ3EhJpVIIh8OIRCLw+/1HbG02HqiGfbBdY4ZhysdEmHPSOjlW4vE4Lr30Utx2221wOBzo7e0t4ugYhmGGJh6Pl3sIDFM02B6ZKSnkdu52u5HNZtHZ2QlFUaDX6+FyuWCz2UTPbeCLTQmq/6b6R3JIpxRycjKnemoS00ajEbFYDB0dHaJGnMQ+Ga/l3+jS+UiEUx/twW5S6fx+vx8+n0+kv2ezWaiqKhzeU6mUGP9IyWaziMfjCAaDor1aqUS4w+EQvdgZhpk8tLS0YO/evSW9RnV1NS6++OJxnaO3txc/+tGPcPnll+PQoUPFGRjDMMwR2L59OzZv3lzuYTBMUWARzpQMTdMK2o7V19cjmUyivb1dpH2T6HW5XCIdHeivH7fb7cLoTNM0SJIkaryBftOzVCol6riB/tR2WZbR29uLeDyORCJRkH6ey+WEaM4X49lsVpivDSbCaRMgHA7DZDJh5syZqK2thcViKXBrt1gs8Hq9cDqdQ4r5waD2ZGT8Ro9SCGWj0SiM5RiGmTxEIpGSR5ZpI5FhGGaqkUgk8Omnn5Z7GAxTFFiEMyNmLCmMFBUOBoPweDywWCw4ePAgZFkWPdKtVquox6Za5XzxSdHmfNFMxmgU4SancurvHQ6HkUgkkEwmhUM5Rc6pJ3e++zjVZRsMBjGmfKxWqxDhmUwG1dXVqK+vFy3Vampq4PP5UFVVhYqKCiFwRxoNpw2LSCSCUCgk+ouXQoRbLBbU1taKFh4Mw0wOYrEYtm3bht27d5c0Nb26urqgswPDMMxU4f7770dfX1+5h8Ew42ZUIvz2228X9WT0yO+zpygK1q5dC5/PB4fDgQsvvBDd3d0F52hpacG5554Lm82Gqqoq3HjjjdPSlGw6QiZmoyGdTot083A4jFQqhVgshp07d6K5uVk4jyeTSVFLnU6nEYvFCnpl56d9U/9uqutWVVW8TinooVBIvD8Wi4n+4BaLRdzcUusyEvj0XrvdXiBQdTqd6BMeCoUQjUaRy+Xg8/ngcrngcrngdDrFTS1dh3qYj+Qzo2h/JpNBX18fotEokslkSW7EDQYDZsyYAZPJNK52R0whvD4yxeC6667DqlWrShoRv/zyy3kTjplweI1kisGBAwfwne98B8FgsKjnffbZZ4t6PoY5EqO+Az/22GPR2dkpHlu2bBGvXX/99fjLX/6C5557Dps3b0ZHRwcuuOAC8Xo2m8W5556LVCqFd999F48//jgee+wx3HrrrcWZDVNSBqZwjwSKarvdbuEYDgBtbW3Yu3evcDKn1HJqJSZJEiRJEkKZBCOleMdiMYTDYciyLN4HQKS5y7KMvr4+xONxyLIs0tIpEk4tyKjPOPBFWzWn04mKigohUKmXey6XgyzLiEajSCQSsFgsIu2c+p+nUimkUik4nU44HI4RmyDRtfV6Pfr6+hAKhZBMJkvWK7yiokKY4jHFg9dHphi0tbXhsssuQzKZLMn57XY7vvGNb5Tk3AwzHLxGMsXglVdewaWXXlq0NXLPnj14/vnni3Iuhhkpo3ZHNxgMqKmpOez5SCSCRx55BE8//TTOPPNMAMCjjz6KBQsWYOvWrTjllFPw2muvYffu3Xj99ddRXV2NJUuW4M4778RNN92E22+/nQXBJCQ/PZwELvXmJkE9HJqmIRKJwOfzIZvNwu/3i9rsdDqNZDIJn88nRCzVd5N4JYdyTdMgy7L4HSEDNHJWp2NIUMuyjEAggIaGBtjtdsiyLF7LZrNQFAXZbFakwFMLs2QyCbvdLmrPSeDTXFVVRXt7u6irdrlcIn3cbrcjkUiINCmr1TrqjQuLxYJEIoFwOAxVVaGqqjCUKyYNDQ3wer1FP++XHV4fmWKxefNmvPnmmzjnnHOKfm6z2YxTTjkFzz///IQ4sjMMwWskM14uvvhiHDx4ELt370Y6nT6sfHAsNDc3o729vQijY5iRM+pI+P79+1FXV4e5c+fikksuQUtLCwBg27ZtSKfTWLlypTh2/vz5mDlzJt577z0AwHvvvYdFixahurpaHLNq1SpEo1F89tlnQ15TVVVEo9GCBzMxZDIZ5HI50VObWoaNxv2bWkrodDpUVFRg6dKlWLRoEZxOJ5LJJIxGI5xOpzg39bAl0zWTyYR0Og1FURCLxRAKhZDNZg9zMk+n09Dr9XA6nbDZbIjH44jFYlAUpaDOnJzH803fAIh2Z5qmwWKxFPyHTqnukiTh0KFD+Oyzz9DU1IRcLgeLxQJFUWA0GuFyuWCxWMRYgNG3HaKe4bIslywS5vf74fF4OB29yPD6yBSLRCJRECUsNldccQW+9a1vlez8DDMYvEYy42XOnDl47bXX8OGHHxatrIa7xTDlYFR34MuWLcNjjz2GV199FQ888ACamppw6qmnIhaLoaurCyaTCR6Pp+A91dXV6OrqAgB0dXUVLJ70Or02FHfddRfcbrd4NDQ0jGbYTBEwmUzI5XKIx+MFtdkjQVVVxGIx6PV6pNNpeL1ezJgxAzabDaqqIpFICAd1Mk+j96VSKQD9AtnhcIgab4rMk4jMZrNCXOeL8kQigVgsJlK9gX5RrNPpIElSQaSaNhrIiT3fcV2v10OWZeh0OoRCITQ1NWH//v1oa2sTfbd1Oh3sdjtsNhskSRp1nRrVhAP9NfLxeLxkPeSdTidqamrgcDhKcv4vI7w+MlMJt9vNIpyZUHiNZIrBk08+iWAwiMrKyjEZBuejaRqam5vxr//6r0UaHcOMnFGlo5999tni58WLF2PZsmWYNWsW/vCHPxQlHWQobrnlFtxwww3i79FolBfREkG9ufMjx0ajUUSNqR83id6RQKZn1dXVUBQF0WhUGIOR2DSbzeK6ZJZGQpZqt00mE2KxGCwWC4xGo+g3TsIZgGhfBkBEwj0eDxKJREHauqqqMJvNQpCbTCYoiiLmR8/RZ2IwGMT1FEVBMplEc3MzAGDBggXQ6XRIJBIFUe/R7qxS7TmdX5blktWEW61W1NbWcvpeEeH1kSk2Tz/9NG644QZuKcZMC3iNZIpBa2srHn30UVx88cVob2/HaaedNqqWqzt27MBTTz2FZDKJv/3tbwiHwzh06FDpBswwQzDqmvB8PB4Pjj76aBw4cADf+MY3kEqlEA6HC3Yyu7u7Rf1PTU0NPvjgg4JzkPPlYDVChNls5p7GEwi5oFOLLNppNJlMMJvNyGazoqZ7pKTTadhsNgD9tV8zZ86E0+lEc3Mzenp6YLPZhIAeGA0nMUup4m63Wwj0ga/RWA0GgzBvq6ysFHOhsedvMtDmgslkEpF+SZKEs3kmk0E0GoXX60VfX5+Yd3t7O7q7u9Hc3Cx24/Mj85QGP1JoHHTNZDIpMgGKjdFoxMyZM+FwOCBJUsnE/pcZXh+Z8dLV1YWDBw+yCGemJbxGMmPlnnvuwSOPPIKuri589atfxdNPPz3ijZW7774bzzzzTIlHyDBHZlwFobIs4+9//ztqa2tx0kknwWg04o033hCv79u3Dy0tLVi+fDkAYPny5di5cycCgYA4ZuPGjXC5XFi4cOF4hsIUiVwuJ4zX8tO6JUmCw+GAy+US9dGjIZVKCZOxXC6HRCKBiooKuFwuyLIsarSBwhpq6p+dTqehaZowYrPZbKIVGNWR528MGAwGZLNZBINBJBIJ4VoOoECIAxAu7DTvfDFPY1BVVbRZG/hZtba2oqmpCbFYTLRKo/GOhkwmA4PBALvdDk3TkEgkRmR+NxYkScLcuXPhdrvHnc7FDA6vj8x4UVUVv/zlL0u2Gccw5YTXSGasNDY2YtWqVZg/fz6i0eioAgnr1q3Dhg0bcO2112LhwoVYuHAhZs6cWcLRlhez2SzmSY+LL74YGzZsOOzx/PPP46tf/ao4zm63l3v405pRRcJ/8pOf4LzzzsOsWbPQ0dGB2267DZIkYc2aNXC73bjiiitwww03CHH1ox/9CMuXL8cpp5wCADjrrLOwcOFCfOc738E999yDrq4u/PznP8fatWt5l3ISQZHY/Eixpmkwm82wWCywWq2jNjahWu6amhro9Xq0tbVBr9fD7/eL9OvBIEFrNpuFWzr19c4XurlcTvTVVlVVRJF7e3vR3t6OXC4Hq9WKVCqFUCgEvV4Ph8MhnMjD4bCIgpMber6IJnE+WJ03ZQ2oqgqj0YhkMol0Oi2yCPIj+8ORSqXQ3t6ObDaLZDKJjz76CKlUCq+//npJhHJ7ezva2to4Cl4keH1kSsELL7yAq6++GnPnzi3qebds2YJHH320qOdkmOHgNZIpBlVVVbjvvvswb968Ak+f1tbWEb+/qqoKJ5xwAm644QZomoZbb70VTzzxRCmHXTZsNhuWLl1acB+p0+nwpz/9adDj582bJ36me2OmRGijYPXq1Vptba1mMpm0+vp6bfXq1dqBAwfE68lkUrv66qs1r9er2Ww27dvf/rbW2dlZcI5Dhw5pZ599tma1WjW/36+tW7dOS6fToxmGFg6HNQD8mIIPnU436EOv1xf9QeeWJEkzGAziIUmSeE6SpMOOp0e5P6vhPq9iPco9v8nwCIfDo1p/eH3kx0Q/jEajZjabi/qQJKns8+LH5H8Ua33UNF4j+VG8R7HXw3LPhx9T8zHe9VGnaVOvSejBgwdx1FFHlXsYDMNMA1pbWzFjxoxyD6NotLW1sekQwzBFYbqtjwDfQzIMUxzGuz6Oy5itXFRUVAAAWlpa4Ha7yzya4kGOna2trXC5XOUeTlGYjnMCpue8vmxz0jQNsVgMdXV1ZRpdaairq8Pu3buxcOHCL813OVWZjnMCpue8puOcgKHnNV3XR2B63kN+2X4/pzLTcU7A9JxXqdfHKSnCycDL7XZPmy86H5fLNe3mNR3nBEzPeX2Z5jRdbsDy0ev1qK+vB/Dl+i6nMtNxTsD0nNd0nBMw+Lym4/oITO97yC/T7+dUZzrOCZie8yrV+jgud3SGYRiGYRiGYRiGYUYOi3CGYRiGYRiGYRiGmSCmpAg3m8247bbbpl1Liuk4r+k4J2B6zovnNH2YjvPmOU0dpuO8puOcgOk7r+GYjnOejnMCpue8puOcgOk5r1LPaUq6ozMMwzAMwzAMwzDMVGRKRsIZhmEYhmEYhmEYZirCIpxhGIZhGIZhGIZhJggW4QzDMAzDMAzDMAwzQbAIZxiGYRiGYRiGYZgJgkU4wzAMwzAMwzAMw0wQU1KEr1+/HrNnz4bFYsGyZcvwwQcflHtIQ/L222/jvPPOQ11dHXQ6HTZs2FDwuqZpuPXWW1FbWwur1YqVK1di//79BccEg0FccsklcLlc8Hg8uOKKKyDL8gTOopC77roLX/nKV+B0OlFVVYV/+qd/wr59+wqOURQFa9euhc/ng8PhwIUXXoju7u6CY1paWnDuuefCZrOhqqoKN954IzKZzEROpYAHHngAixcvhsvlgsvlwvLly/HKK6+I16finAZy9913Q6fT4brrrhPPTbV53X777dDpdAWP+fPni9en2nyKDa+PvD6WAl4fp868eI0cmqm0PgK8Rk6V31FeH6fOvCbV+qhNMZ599lnNZDJp//Vf/6V99tln2g9/+EPN4/Fo3d3d5R7aoPz1r3/Vfvazn2kvvPCCBkB78cUXC16/++67NbfbrW3YsEH79NNPtW9961vanDlztGQyKY755je/qR1//PHa1q1btb/97W9aY2OjtmbNmgmeyResWrVKe/TRR7Vdu3Zp27dv18455xxt5syZmizL4pgrr7xSa2ho0N544w3to48+0k455RTtq1/9qng9k8loxx13nLZy5Urtk08+0f76179qfr9fu+WWW8oxJU3TNO3Pf/6z9vLLL2uff/65tm/fPu2nP/2pZjQatV27dmmaNjXnlM8HH3ygzZ49W1u8eLH24x//WDw/1eZ12223accee6zW2dkpHj09PeL1qTafYsLrI6+PpYLXx6kzL14jB2eqrY+axmvkVPkd5fVx6sxrMq2PU06En3zyydratWvF37PZrFZXV6fdddddZRzVyBi4gOZyOa2mpkb793//d/FcOBzWzGaz9swzz2iapmm7d+/WAGgffvihOOaVV17RdDqd1t7ePmFjH45AIKAB0DZv3qxpWv8cjEaj9txzz4lj9uzZowHQ3nvvPU3T+v9j0ev1WldXlzjmgQce0Fwul6aq6sROYBi8Xq/2n//5n1N+TrFYTJs3b562ceNG7fTTTxeL6FSc12233aYdf/zxg742FedTTHh95PVxIuH1cXLOi9fIwZnK66Om8Ro51X5HeX2cnPOaTOvjlEpHT6VS2LZtG1auXCme0+v1WLlyJd57770yjmxsNDU1oaurq2A+brcby5YtE/N577334PF4sHTpUnHMypUrodfr8f7770/4mAcjEokAACoqKgAA27ZtQzqdLpjX/PnzMXPmzIJ5LVq0CNXV1eKYVatWIRqN4rPPPpvA0Q9ONpvFs88+i3g8juXLl0/5Oa1duxbnnntuwfiBqftd7d+/H3V1dZg7dy4uueQStLS0AJi68ykGvD72w+tj6eH1cfLPi9fIQqbb+gjwGjlZf0d5fZz885os66OhCHOZMHp7e5HNZgsmDgDV1dXYu3dvmUY1drq6ugBg0PnQa11dXaiqqip43WAwoKKiQhxTTnK5HK677jp87Wtfw3HHHQegf8wmkwkej6fg2IHzGmze9Fq52LlzJ5YvXw5FUeBwOPDiiy9i4cKF2L59+5Sd07PPPouPP/4YH3744WGvTcXvatmyZXjsscdwzDHHoLOzE7/4xS9w6qmnYteuXVNyPsWC18d+eH0sHbw+9jPZ58Vr5OFMt/UR4DVysv2O8vrYz2Sf12RaH6eUCGcmH2vXrsWuXbuwZcuWcg+lKBxzzDHYvn07IpEInn/+eVx22WXYvHlzuYc1ZlpbW/HjH/8YGzduhMViKfdwisLZZ58tfl68eDGWLVuGWbNm4Q9/+AOsVmsZR8YwhfD6OLmZjusjwGskM3WYTmskr49Tg8m0Pk6pdHS/3w9Jkg5zqevu7kZNTU2ZRjV2aMzDzaempgaBQKDg9Uwmg2AwWPY5X3PNNXjppZfw5ptvYsaMGeL5mpoapFIphMPhguMHzmuwedNr5cJkMqGxsREnnXQS7rrrLhx//PG47777puyctm3bhkAggBNPPBEGgwEGgwGbN2/Gb37zGxgMBlRXV0/JeeXj8Xhw9NFH48CBA1P2eyoGvD72w+tj6eD1sZ/JPq+B8Bo5/dZHgNfIyfY7yutjP5N9XgMp5/o4pUS4yWTCSSedhDfeeEM8l8vl8MYbb2D58uVlHNnYmDNnDmpqagrmE41G8f7774v5LF++HOFwGNu2bRPHbNq0CblcDsuWLZvwMQP9LTGuueYavPjii9i0aRPmzJlT8PpJJ50Eo9FYMK99+/ahpaWlYF47d+4s+M9h48aNcLlcWLhw4cRMZATkcjmoqjpl57RixQrs3LkT27dvF4+lS5fikksuET9PxXnlI8sy/v73v6O2tnbKfk/FgNfHfnh9nDh4fZyc8xoIr5HTb30EeI2c7L+jvD5OznkNpKzr4yhN5crOs88+q5nNZu2xxx7Tdu/erf3P//k/NY/HU+BSN5mIxWLaJ598on3yyScaAO3ee+/VPvnkE625uVnTtP72Eh6PR/vTn/6k7dixQzv//PMHbS9xwgknaO+//762ZcsWbd68eWVtL3HVVVdpbrdbe+uttwos/hOJhDjmyiuv1GbOnKlt2rRJ++ijj7Tly5dry5cvF6+Txf9ZZ52lbd++XXv11Ve1ysrKsrYtuPnmm7XNmzdrTU1N2o4dO7Sbb75Z0+l02muvvaZp2tSc02Dku1tq2tSb17p167S33npLa2pq0t555x1t5cqVmt/v1wKBwJScTzHh9ZHXx1LB6+PUmRevkYMz1dZHTeM1cqr8jvL6OHXmNZnWxyknwjVN0+6//35t5syZmslk0k4++WRt69at5R7SkLz55psagMMel112maZp/S0m/vVf/1Wrrq7WzGaztmLFCm3fvn0F5+jr69PWrFmjORwOzeVyaZdffrkWi8XKMJt+BpsPAO3RRx8VxySTSe3qq6/WvF6vZrPZtG9/+9taZ2dnwXkOHTqknX322ZrVatX8fr+2bt06LZ1OT/BsvuD73/++NmvWLM1kMmmVlZXaihUrxAKqaVNzToMxcBGdavNavXq1Vltbq5lMJq2+vl5bvXq1duDAAfH6VJtPseH1kdfHUsDr49SZF6+RQzOV1kdN4zVyqvyO8vo4deY1mdZHnaZp2uhi5wzDMAzDMAzDMAzDjIUpVRPOMAzDMAzDMAzDMFMZFuEMwzAMwzAMwzAMM0GwCGcYhmEYhmEYhmGYCYJFOMMwDMMwDMMwDMNMECzCGYZhGIZhGIZhGGaCYBHOMAzDMAzDMAzDMBMEi3CGYRiGYRiGYRiGmSBYhDMMwzAMwzAMwzDMBMEinGEYhmEYhmEYhmEmCBbhDMMwDMMwDMMwDDNBsAhnGIZhGIZhGIZhmAni/wO6vn4vRk4xUgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots(1, 3, figsize=(12, 8))\n", + "ax[0].imshow(test_image.reshape(512, 512), cmap='gray')\n", + "ax[1].imshow(test_mask.reshape(512, 512), cmap='gray', vmin=0, vmax=1)\n", + "ax[2].imshow(prediction.reshape(512, 512), cmap='gray', vmin=0, vmax=1)\n", + "\n", + "ax[0].set_title(f'Test Image (Depth: 15/30)')\n", + "ax[1].set_title(f'Actual Mask (Depth: 15/30)')\n", + "ax[2].set_title(f'Predicted Mask (Depth: 15/30)')\n", + "\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Not bad for only 4 epochs! In future iterations of this tutorial, we'll experiment with various data augmentation techniques to improve model performance." + ], + "metadata": { + "id": "DuBIoPyRTkHc" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CNZbAfXZm21Q" + }, + "source": [ + "### Sources\n", + "\n", + "\n", + "\n", + "- *van der Graaf, J.W., van Hooff, M.L., Buckens, C.F.M. et al. (2024) Lumbar spine segmentation in MR images: a dataset and a public benchmark. https://doi.org/10.1038/s41597-024-03090-w*\n", + "\n", + "- *Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. https://doi.org/10.1007/978-3-319-24574-4_28*\n", + "\n", + "- https://github.com/milesial/Pytorch-UNet/tree/master\n", + "\n", + "- https://discuss.pytorch.org/t/understanding-channels-in-binary-segmentation/79966/2" + ] + } + ], + "metadata": { + "colab": { + "machine_shape": "hm", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "01f1a4988edc466083623f2cbbc2e152": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "03cb410132014bd686dd516dbb2c9f6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "06343aa81cf242c993fdbd975525cdf5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "07511f0de85b4807a280be8aade7b088": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "083d1f3e50f4431991edb80adec4daac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "09f8148149a141fb9c82a9c4e3b0e2c2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0b3aa28e8f1e40049c3ec1207832e25b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7fbdd74a7b6e49219d1f8abdd5e506d9", + "placeholder": "​", + "style": "IPY_MODEL_9fef325d45b645758877ab29b13d661f", + "value": "Generating test split: " + } + }, + "0b575d6e0ccc4a178a5a47521e650347": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f3a3f2e31774eae9146c103555565da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5bb1cdda34114ce4891816a7f28b3e81", + "placeholder": "​", + "style": "IPY_MODEL_9671133f9d2b44658f2efdaad12ff0e2", + "value": "Generating train split: " + } + }, + "0ffd963502d94b7c9618cf58a4c51eea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "11f03d3b48794f4b9c783765aad0782a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1cd1575ef7204f00b42667e79e69ae37", + "placeholder": "​", + "style": "IPY_MODEL_90d4b187827c49279c8acf6c6f1cb0d7", + "value": "Downloading data: 100%" + } + }, + "1aae387154ba4403aeb0ad6ce09003d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0f3a3f2e31774eae9146c103555565da", + "IPY_MODEL_b6f941281cd5440482de1989c07857cd", + "IPY_MODEL_4095cc6828c74ec68020a69972f18760" + ], + "layout": "IPY_MODEL_3c3ea9eddf47444795d32e54a224e455" + } + }, + "1c26d3ef9b8f4bf8bab766384e60a626": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "1cd1575ef7204f00b42667e79e69ae37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f4104d07dec42baab27300e27c9c33c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1f85ad363a584220965429b2e69ce205": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "220753d48fca4af690da4f2f1dd617db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_11f03d3b48794f4b9c783765aad0782a", + "IPY_MODEL_edcd063ff3ed49ff955b7c34264b970d", + "IPY_MODEL_d7e7d9a1aa0f48c6b53ab86519952f4e" + ], + "layout": "IPY_MODEL_4848fa68b93449c8b19137df8cc91f37" + } + }, + "25001c0732a042a29f976310b1e03b0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4ef07a88261944bab73e17967478d88e", + "max": 1199, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f4fe86a344c84894a181559a73ff2ea5", + "value": 1199 + } + }, + "284787e1f04c4a738498e453af23d76f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "28d8bc841ad04a3892e7d04326060123": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "29e1e6d3154648ddbb23799b9065caad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c291fd0fb5a04630854b8774538e7d08", + "placeholder": "​", + "style": "IPY_MODEL_4481cc90d16f417dbcbab70a619aee77", + "value": "Downloading data: 100%" + } + }, + "2ba9e3a12aa04ec7b7d2e38bf028dd9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2efa5b3c95de49cf924906b5889b89d7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "2fa304d3bdbf4ec1a1e1c3c2cb11be22": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a5cbf721e62443c09dc81726d7e2e60e", + "placeholder": "​", + "style": "IPY_MODEL_765ab6164d79451ba820934c37db7054", + "value": " 68/0 [01:18<00:00,  1.04 examples/s]" + } + }, + "32a13ab0b2f54af18e88c62db70faf7a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "337287cf23664fefbb8cf10f411571b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "33b1ecffcd9d40b2ac88991844ffd689": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "33d60a44f82244d6b9c30658eab410e8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "35a60134f25d419a82d46053c5179b97": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3ae3315139b74d5e9c568529b56c1fca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fde7f8d39c2e486c9f1c7d4a956215a2", + "placeholder": "​", + "style": "IPY_MODEL_1f85ad363a584220965429b2e69ce205", + "value": "Downloading data: 100%" + } + }, + "3c3ea9eddf47444795d32e54a224e455": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3dce0b260a0747ef80c0a9e07ffdebbb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3f16abb536f647d0ab43ddeeb5c9425d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "3fac4fffe3b8455a9bc8bee2c21f4195": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ae3315139b74d5e9c568529b56c1fca", + "IPY_MODEL_b8eaf9fa267d47cbbc36d6f55f478137", + "IPY_MODEL_63b988a26b97413e8df802a4f115be0c" + ], + "layout": "IPY_MODEL_284787e1f04c4a738498e453af23d76f" + } + }, + "4095cc6828c74ec68020a69972f18760": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_33d60a44f82244d6b9c30658eab410e8", + "placeholder": "​", + "style": "IPY_MODEL_49a897655c5c4b76880a518bb9442512", + "value": " 304/0 [05:38<00:00,  1.08s/ examples]" + } + }, + "40a73ad9d0d044189c2cfb7563b1f91a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "4481cc90d16f417dbcbab70a619aee77": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "448fe058be884415bbcbdf113440c62a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6e0014e0f28e45f59ac940f9efc32710", + "IPY_MODEL_731f57cce2f040dc8c62306d4cc42e8f", + "IPY_MODEL_4658c2c2090c48b79545c177f90d0b98" + ], + "layout": "IPY_MODEL_adc5898b26094c5cb01e11d1b6f54270" + } + }, + "4658c2c2090c48b79545c177f90d0b98": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_4d1e471d4f8c4754a865602464d71fa9", + "placeholder": "​", + "style": "IPY_MODEL_bbb0f16a65cf4839a5c28449003bf332", + "value": " 120k/? [00:00<00:00, 8.02MB/s]" + } + }, + "4848fa68b93449c8b19137df8cc91f37": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "49a897655c5c4b76880a518bb9442512": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4b55fa4fb0b9462c9e6e467d16205ec9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_d2bd80f26bfa4c1a8b1d7dda4f47d30e", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f7efe82313ba409a9524ed039611bfcb", + "value": 1 + } + }, + "4d1e471d4f8c4754a865602464d71fa9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4ef07a88261944bab73e17967478d88e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "54475b4e3bbe45dd971252d500b79ba4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "57aa3f23120045f695be2c7249388a08": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5bb1cdda34114ce4891816a7f28b3e81": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "63b988a26b97413e8df802a4f115be0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_3dce0b260a0747ef80c0a9e07ffdebbb", + "placeholder": "​", + "style": "IPY_MODEL_06343aa81cf242c993fdbd975525cdf5", + "value": " 58.2M/58.2M [00:00<00:00, 76.5MB/s]" + } + }, + "645bbe5b57694bcca53d9de84f073277": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "69ec3d1d294a44a989d7ea548e6e91e9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6de712d3e9cc457ab736e171c476de93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6e0014e0f28e45f59ac940f9efc32710": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69ec3d1d294a44a989d7ea548e6e91e9", + "placeholder": "​", + "style": "IPY_MODEL_edd26294cc664f3180a57859d6013aff", + "value": "Downloading data: " + } + }, + "6ef10b82787248ec9e63e4e74db33a39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_28d8bc841ad04a3892e7d04326060123", + "placeholder": "​", + "style": "IPY_MODEL_083d1f3e50f4431991edb80adec4daac", + "value": " 1.20k/1.20k [00:00<00:00, 108kB/s]" + } + }, + "6fb0fe8671a446028f0e1a3dd30aa366": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "701851dadbfe48b9886c4ad25b6bb3ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_32a13ab0b2f54af18e88c62db70faf7a", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_3f16abb536f647d0ab43ddeeb5c9425d", + "value": 1 + } + }, + "707306d2bca245368bfcd85527387f1d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "731f57cce2f040dc8c62306d4cc42e8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7a264eaefa5841ca98a42f40bcbbbe30", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_b0f5f7ea0960431d8d540b5fa07e857b", + "value": 1 + } + }, + "7552bc87389440f0b2dfd7cd02b61655": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c7fb4c3d8ee460e89ca1ea6fd297d0c", + "placeholder": "​", + "style": "IPY_MODEL_f8088d2b2d534ae098e4ac2401f13f48", + "value": " 22.5k/22.5k [00:00<00:00, 1.66MB/s]" + } + }, + "765ab6164d79451ba820934c37db7054": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "791ec1aeda754fefbe53cab1eb0101e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_01f1a4988edc466083623f2cbbc2e152", + "placeholder": "​", + "style": "IPY_MODEL_54475b4e3bbe45dd971252d500b79ba4", + "value": " 75/0 [01:24<00:00,  1.14s/ examples]" + } + }, + "7a264eaefa5841ca98a42f40bcbbbe30": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "7e5623ef40f84e718e41c18ced7b2c68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_29e1e6d3154648ddbb23799b9065caad", + "IPY_MODEL_25001c0732a042a29f976310b1e03b0e", + "IPY_MODEL_6ef10b82787248ec9e63e4e74db33a39" + ], + "layout": "IPY_MODEL_9e265a90db134822a8fba172946fcfa8" + } + }, + "7fbdd74a7b6e49219d1f8abdd5e506d9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8165084b2ba14e0a88c3eb1b35bc84c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_40a73ad9d0d044189c2cfb7563b1f91a", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_ae49467750a7406883a9e0553981000c", + "value": 1 + } + }, + "8b4e8266dfa44bde8230f9b5b90c2eba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_96e21cc05b1541eeb2b26edf50c81e44", + "placeholder": "​", + "style": "IPY_MODEL_f5fdde5307764c0fa053f5c639ba54b1", + "value": "Downloading readme: 100%" + } + }, + "8c773aa45974493b82523d5544403f54": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b3aa28e8f1e40049c3ec1207832e25b", + "IPY_MODEL_8165084b2ba14e0a88c3eb1b35bc84c7", + "IPY_MODEL_2fa304d3bdbf4ec1a1e1c3c2cb11be22" + ], + "layout": "IPY_MODEL_645bbe5b57694bcca53d9de84f073277" + } + }, + "8c7d05c0ebe248baac3c6f554756e27f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8c7fb4c3d8ee460e89ca1ea6fd297d0c": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "90d4b187827c49279c8acf6c6f1cb0d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "91193e3a4e144065bbc725e15333efe2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_07511f0de85b4807a280be8aade7b088", + "max": 11405, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_337287cf23664fefbb8cf10f411571b9", + "value": 11405 + } + }, + "9671133f9d2b44658f2efdaad12ff0e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "96e21cc05b1541eeb2b26edf50c81e44": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b419e0ee8bf4b14940d413baf697fb1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8c7d05c0ebe248baac3c6f554756e27f", + "placeholder": "​", + "style": "IPY_MODEL_ecfd90f11ca945dba32af8e4fd2bc898", + "value": "Downloading data: " + } + }, + "9ba23e240e544bf798ca84294c522651": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9b419e0ee8bf4b14940d413baf697fb1", + "IPY_MODEL_701851dadbfe48b9886c4ad25b6bb3ef", + "IPY_MODEL_af09281a16db464fb38153eecd28f1e4" + ], + "layout": "IPY_MODEL_57aa3f23120045f695be2c7249388a08" + } + }, + "9e265a90db134822a8fba172946fcfa8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9fef325d45b645758877ab29b13d661f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a24eb4bb88634e2e9b8455278f9d8ead": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a5cbf721e62443c09dc81726d7e2e60e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "adc5898b26094c5cb01e11d1b6f54270": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ae49467750a7406883a9e0553981000c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ae907ec7b8214ee59968398582245afb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e84a24cb4c1f43b99fac25f0c8cba9de", + "IPY_MODEL_4b55fa4fb0b9462c9e6e467d16205ec9", + "IPY_MODEL_791ec1aeda754fefbe53cab1eb0101e7" + ], + "layout": "IPY_MODEL_a24eb4bb88634e2e9b8455278f9d8ead" + } + }, + "af09281a16db464fb38153eecd28f1e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6fb0fe8671a446028f0e1a3dd30aa366", + "placeholder": "​", + "style": "IPY_MODEL_e3b207270bfe4783b87696eebcb683b6", + "value": " 34.4k/? [00:00<00:00, 2.27MB/s]" + } + }, + "b0f5f7ea0960431d8d540b5fa07e857b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b6f941281cd5440482de1989c07857cd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2efa5b3c95de49cf924906b5889b89d7", + "max": 1, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c5f47f0b6ab34b3f952f8e985f7d3f65", + "value": 1 + } + }, + "b8eaf9fa267d47cbbc36d6f55f478137": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_1f4104d07dec42baab27300e27c9c33c", + "max": 58222897, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_0ffd963502d94b7c9618cf58a4c51eea", + "value": 58222897 + } + }, + "ba22ac9ea52d4e93bb9a47a8bc67ffcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_707306d2bca245368bfcd85527387f1d", + "max": 22528, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_6de712d3e9cc457ab736e171c476de93", + "value": 22528 + } + }, + "bbb0f16a65cf4839a5c28449003bf332": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "bd070b8464834410b5b22db4f73c2a65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_35a60134f25d419a82d46053c5179b97", + "placeholder": "​", + "style": "IPY_MODEL_fe40a670e3e74488876fbdabc8c617fb", + "value": "Downloading builder script: 100%" + } + }, + "bd3093053ec34b9095ed442c61b1d371": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c291fd0fb5a04630854b8774538e7d08": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c5f47f0b6ab34b3f952f8e985f7d3f65": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d2bd80f26bfa4c1a8b1d7dda4f47d30e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "20px" + } + }, + "d7e7d9a1aa0f48c6b53ab86519952f4e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e09c6143696944e6ad1a6423b1aeea8e", + "placeholder": "​", + "style": "IPY_MODEL_f6c2e5c9c67a4724879d655f7324a99c", + "value": " 3.70G/3.70G [00:43<00:00, 92.8MB/s]" + } + }, + "e09c6143696944e6ad1a6423b1aeea8e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e3b207270bfe4783b87696eebcb683b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e84a24cb4c1f43b99fac25f0c8cba9de": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bd3093053ec34b9095ed442c61b1d371", + "placeholder": "​", + "style": "IPY_MODEL_1c26d3ef9b8f4bf8bab766384e60a626", + "value": "Generating validation split: " + } + }, + "ecfd90f11ca945dba32af8e4fd2bc898": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "edcd063ff3ed49ff955b7c34264b970d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0b575d6e0ccc4a178a5a47521e650347", + "max": 3700562886, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_03cb410132014bd686dd516dbb2c9f6e", + "value": 3700562886 + } + }, + "edd26294cc664f3180a57859d6013aff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f01d373efd7c4789ae6ecbad91a66a53": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f4fe86a344c84894a181559a73ff2ea5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f5fdde5307764c0fa053f5c639ba54b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f6a917c844104e719907c7a3b6d70221": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_bd070b8464834410b5b22db4f73c2a65", + "IPY_MODEL_ba22ac9ea52d4e93bb9a47a8bc67ffcb", + "IPY_MODEL_7552bc87389440f0b2dfd7cd02b61655" + ], + "layout": "IPY_MODEL_f01d373efd7c4789ae6ecbad91a66a53" + } + }, + "f6c2e5c9c67a4724879d655f7324a99c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f7af04678a3e4f349771a508570bc38f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_09f8148149a141fb9c82a9c4e3b0e2c2", + "placeholder": "​", + "style": "IPY_MODEL_2ba9e3a12aa04ec7b7d2e38bf028dd9a", + "value": " 11.4k/11.4k [00:00<00:00, 832kB/s]" + } + }, + "f7efe82313ba409a9524ed039611bfcb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f8088d2b2d534ae098e4ac2401f13f48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fde7f8d39c2e486c9f1c7d4a956215a2": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fe40a670e3e74488876fbdabc8c617fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "ffdc5ee8b1044fa9be361ca364837743": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b4e8266dfa44bde8230f9b5b90c2eba", + "IPY_MODEL_91193e3a4e144065bbc725e15333efe2", + "IPY_MODEL_f7af04678a3e4f349771a508570bc38f" + ], + "layout": "IPY_MODEL_33b1ecffcd9d40b2ac88991844ffd689" + } + }, + "b1abebb5f64d4445bfde112a031aeda1": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -29,14 +4777,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_20e2382700d64cdbb84527fe703379cb", - "IPY_MODEL_5efcf1ff4f624663b212bbc365f4f2c0", - "IPY_MODEL_6ee267eb3ad041dd9eb8ffd9ee05236e" + "IPY_MODEL_098cafccc90849dbbbb7295b393f431a", + "IPY_MODEL_3e237c5b245042388ef0b9c71fc3e623", + "IPY_MODEL_051529975d0b4b779f34065d55ae7227" ], - "layout": "IPY_MODEL_d6c18edcbdba4b41af1ce91dac8b63a1" + "layout": "IPY_MODEL_5fd4b6d36af544b89860cf80a121e780" } }, - "20e2382700d64cdbb84527fe703379cb": { + "098cafccc90849dbbbb7295b393f431a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -51,13 +4799,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_716b73c444c84b61bb332bcda6c333a9", + "layout": "IPY_MODEL_9c648da3e17146cd82eee179b99f8eb8", "placeholder": "​", - "style": "IPY_MODEL_98bc0b04f0c347b79fcd0c0e8efed42a", + "style": "IPY_MODEL_1751690500e341b2add193e8c736fb03", "value": "Downloading builder script: 100%" } }, - "5efcf1ff4f624663b212bbc365f4f2c0": { + "3e237c5b245042388ef0b9c71fc3e623": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -73,15 +4821,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2a8d474e8a1941ea980c44ecc443bafb", + "layout": "IPY_MODEL_2a6d247bb6de49f0a76a1bb55907bd4a", "max": 22528, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_70e8d6c4ae584125890f46d21edd5029", + "style": "IPY_MODEL_00425b5e2c7c49f79875180161a801b5", "value": 22528 } }, - "6ee267eb3ad041dd9eb8ffd9ee05236e": { + "051529975d0b4b779f34065d55ae7227": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -96,13 +4844,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f4e40ae545ac43f7a9eae4c48127e851", + "layout": "IPY_MODEL_e4936ebc8f8e420f91180a6b16c638c7", "placeholder": "​", - "style": "IPY_MODEL_f6b7db3b39b3479baa0c183fb19cccf1", - "value": " 22.5k/22.5k [00:00<00:00, 945kB/s]" + "style": "IPY_MODEL_87df3f421667442591fb88402c8cc086", + "value": " 22.5k/22.5k [00:00<00:00, 1.40MB/s]" } }, - "d6c18edcbdba4b41af1ce91dac8b63a1": { + "5fd4b6d36af544b89860cf80a121e780": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -154,7 +4902,7 @@ "width": null } }, - "716b73c444c84b61bb332bcda6c333a9": { + "9c648da3e17146cd82eee179b99f8eb8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -206,7 +4954,7 @@ "width": null } }, - "98bc0b04f0c347b79fcd0c0e8efed42a": { + "1751690500e341b2add193e8c736fb03": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -221,7 +4969,7 @@ "description_width": "" } }, - "2a8d474e8a1941ea980c44ecc443bafb": { + "2a6d247bb6de49f0a76a1bb55907bd4a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -273,7 +5021,7 @@ "width": null } }, - "70e8d6c4ae584125890f46d21edd5029": { + "00425b5e2c7c49f79875180161a801b5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -289,7 +5037,7 @@ "description_width": "" } }, - "f4e40ae545ac43f7a9eae4c48127e851": { + "e4936ebc8f8e420f91180a6b16c638c7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -341,7 +5089,7 @@ "width": null } }, - "f6b7db3b39b3479baa0c183fb19cccf1": { + "87df3f421667442591fb88402c8cc086": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -356,7 +5104,7 @@ "description_width": "" } }, - "58f0e107e43c4f2b8e2379a8fb7d5316": { + "7d7076366d264ac593aa02afe178b80d": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -371,14 +5119,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_82811d5225b343ec8f53e007e4319d68", - "IPY_MODEL_1f8f568b7c954b41b2870c9571836cfd", - "IPY_MODEL_d53e7d6bdb744e7092f251429c0aa091" + "IPY_MODEL_c5183ebd3e5e436c9fb0d12234ce4b60", + "IPY_MODEL_b384bbaf731341118b3031234297fad5", + "IPY_MODEL_180cd5e717d940dfbf2e877ffcd8482c" ], - "layout": "IPY_MODEL_8aa94f3020e54ae49185c492b91d5637" + "layout": "IPY_MODEL_9de7da38e4574a139481387610c8fe30" } }, - "82811d5225b343ec8f53e007e4319d68": { + "c5183ebd3e5e436c9fb0d12234ce4b60": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -393,13 +5141,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_af2ebce079984fd0ab7d898ba2482226", + "layout": "IPY_MODEL_eced73ed61aa4cbe9ed9349ad1679ca2", "placeholder": "​", - "style": "IPY_MODEL_239cf53a0a0840e39b109d7c4ceadbcb", + "style": "IPY_MODEL_dad671bd79344548a5026d3eab9e8d27", "value": "Downloading readme: 100%" } }, - "1f8f568b7c954b41b2870c9571836cfd": { + "b384bbaf731341118b3031234297fad5": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -415,15 +5163,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d53eada0510e4dfa9ac8325d9aef7ea6", - "max": 10461, + "layout": "IPY_MODEL_ab8f1568a5f24f7d8a2beb275ec0326b", + "max": 11405, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_f10503b122e94cc784cc0e8dd2d7d793", - "value": 10461 + "style": "IPY_MODEL_f916967165d74193ad501bba18e9e5c8", + "value": 11405 } }, - "d53e7d6bdb744e7092f251429c0aa091": { + "180cd5e717d940dfbf2e877ffcd8482c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -438,13 +5186,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e5720f60f5e14b5780909f794d752a92", + "layout": "IPY_MODEL_63a2bdf2fc3749dea86d1dc3ae34b9a8", "placeholder": "​", - "style": "IPY_MODEL_a33044c6dfc24a2e8ed6fe25ada13216", - "value": " 10.5k/10.5k [00:00<00:00, 141kB/s]" + "style": "IPY_MODEL_44ee2034d52b496ca161bda00011d938", + "value": " 11.4k/11.4k [00:00<00:00, 698kB/s]" } }, - "8aa94f3020e54ae49185c492b91d5637": { + "9de7da38e4574a139481387610c8fe30": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -496,7 +5244,7 @@ "width": null } }, - "af2ebce079984fd0ab7d898ba2482226": { + "eced73ed61aa4cbe9ed9349ad1679ca2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -548,7 +5296,7 @@ "width": null } }, - "239cf53a0a0840e39b109d7c4ceadbcb": { + "dad671bd79344548a5026d3eab9e8d27": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -563,7 +5311,7 @@ "description_width": "" } }, - "d53eada0510e4dfa9ac8325d9aef7ea6": { + "ab8f1568a5f24f7d8a2beb275ec0326b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -615,7 +5363,7 @@ "width": null } }, - "f10503b122e94cc784cc0e8dd2d7d793": { + "f916967165d74193ad501bba18e9e5c8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -631,7 +5379,7 @@ "description_width": "" } }, - "e5720f60f5e14b5780909f794d752a92": { + "63a2bdf2fc3749dea86d1dc3ae34b9a8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -683,7 +5431,7 @@ "width": null } }, - "a33044c6dfc24a2e8ed6fe25ada13216": { + "44ee2034d52b496ca161bda00011d938": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -698,7 +5446,7 @@ "description_width": "" } }, - "dd20c17f8e0c4a82922a35079f7c2545": { + "f82daf0f6c344f55968126e6038b9d71": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -713,14 +5461,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_54da72de8aae40238ed8fcc82e86e455", - "IPY_MODEL_1d6299feef4343beabcc90d6f0076ab3", - "IPY_MODEL_6b05f938c3a240eeac9eb8458885a002" + "IPY_MODEL_6a08342987fb42768c6159a8c48b04d9", + "IPY_MODEL_01bf8c2edfc343d4a9df7460186e1055", + "IPY_MODEL_1e279de479cc46508ed435720c150aed" ], - "layout": "IPY_MODEL_c6de29321a0d4121aea5b3e01348e8bc" + "layout": "IPY_MODEL_541bb453602e4c09815894b535ea8ede" } }, - "54da72de8aae40238ed8fcc82e86e455": { + "6a08342987fb42768c6159a8c48b04d9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -735,13 +5483,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_090ab6f273bf41709f0eb7f11e02c5b7", + "layout": "IPY_MODEL_76748abf3b1943378ce50c6756800dd3", "placeholder": "​", - "style": "IPY_MODEL_6ad271bdd06b45998d472d7774124ff9", + "style": "IPY_MODEL_b6a8fb591791475ba89e7df0836416b3", "value": "Downloading data: 100%" } }, - "1d6299feef4343beabcc90d6f0076ab3": { + "01bf8c2edfc343d4a9df7460186e1055": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -757,15 +5505,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b336d3956cac4df6a6c58bd5665768eb", + "layout": "IPY_MODEL_98a3b07cdf014a4a9754e16d076f5387", "max": 3700562886, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_bce3b01062f14eaca2c5736a3bec70ce", + "style": "IPY_MODEL_5c2284c5b10c43c49122258fa8f483ee", "value": 3700562886 } }, - "6b05f938c3a240eeac9eb8458885a002": { + "1e279de479cc46508ed435720c150aed": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -780,13 +5528,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d80c9658e1db4c639a5fecfc29315b14", + "layout": "IPY_MODEL_3ae603fdc5be49168bb486926978f5f0", "placeholder": "​", - "style": "IPY_MODEL_2efce9bd4153496784bb62851b1964fc", - "value": " 3.70G/3.70G [03:24<00:00, 18.1MB/s]" + "style": "IPY_MODEL_c9976d10b8ae43cfae6b53c5fa5925ae", + "value": " 3.70G/3.70G [00:52<00:00, 67.3MB/s]" } }, - "c6de29321a0d4121aea5b3e01348e8bc": { + "541bb453602e4c09815894b535ea8ede": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -838,7 +5586,7 @@ "width": null } }, - "090ab6f273bf41709f0eb7f11e02c5b7": { + "76748abf3b1943378ce50c6756800dd3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -890,7 +5638,7 @@ "width": null } }, - "6ad271bdd06b45998d472d7774124ff9": { + "b6a8fb591791475ba89e7df0836416b3": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -905,7 +5653,7 @@ "description_width": "" } }, - "b336d3956cac4df6a6c58bd5665768eb": { + "98a3b07cdf014a4a9754e16d076f5387": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -957,7 +5705,7 @@ "width": null } }, - "bce3b01062f14eaca2c5736a3bec70ce": { + "5c2284c5b10c43c49122258fa8f483ee": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -973,7 +5721,7 @@ "description_width": "" } }, - "d80c9658e1db4c639a5fecfc29315b14": { + "3ae603fdc5be49168bb486926978f5f0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1025,7 +5773,7 @@ "width": null } }, - "2efce9bd4153496784bb62851b1964fc": { + "c9976d10b8ae43cfae6b53c5fa5925ae": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1040,7 +5788,7 @@ "description_width": "" } }, - "d281ae7b529e44879317013cf64c997b": { + "fa8e3109629146528bcb16d5f099a3c9": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1055,14 +5803,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_88af215a975c4f4d8af464cb9b763703", - "IPY_MODEL_2ec0ec1169fb4e2687d425f85808d53c", - "IPY_MODEL_e03bd7d07a424d8ba5733b27c84b56c1" + "IPY_MODEL_41af046e2cd94efd86bb82f096ca15cc", + "IPY_MODEL_c4922024b72546d1a4d45bd424550156", + "IPY_MODEL_df132dec32d1452c80640fe1aaae8bb4" ], - "layout": "IPY_MODEL_fee82ef3c42d4f6eaeea3b1eb3b80cd5" + "layout": "IPY_MODEL_738c36ad06a74ec0868c309c314e0ce5" } }, - "88af215a975c4f4d8af464cb9b763703": { + "41af046e2cd94efd86bb82f096ca15cc": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1077,13 +5825,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c8255b617715416197d246477f76f826", + "layout": "IPY_MODEL_532c509c87fa42668703ceaad1e7a43b", "placeholder": "​", - "style": "IPY_MODEL_45f2c512c78243d1913a0825225143b3", + "style": "IPY_MODEL_463bf6976a2946a9a6a398bab24caece", "value": "Downloading data: 100%" } }, - "2ec0ec1169fb4e2687d425f85808d53c": { + "c4922024b72546d1a4d45bd424550156": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1099,15 +5847,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3684e18e68134a2b8fa52e72d400223e", + "layout": "IPY_MODEL_b2765fc2b6a446d8bd05d9ab180328ef", "max": 58222897, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_2c899d3480744a5daf503134c9977a83", + "style": "IPY_MODEL_13b36aead23b4f039d79488c21ed0f0a", "value": 58222897 } }, - "e03bd7d07a424d8ba5733b27c84b56c1": { + "df132dec32d1452c80640fe1aaae8bb4": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1122,13 +5870,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f806cebaf5214419a4241ea207550ebc", + "layout": "IPY_MODEL_0ed6b8e9353741acb28f05a620a4b0d7", "placeholder": "​", - "style": "IPY_MODEL_40d20a934785453d8664dfa4ad4e4769", - "value": " 58.2M/58.2M [00:04<00:00, 15.8MB/s]" + "style": "IPY_MODEL_ed058654a53a40a69a6df9f8d9c33a59", + "value": " 58.2M/58.2M [00:00<00:00, 65.2MB/s]" } }, - "fee82ef3c42d4f6eaeea3b1eb3b80cd5": { + "738c36ad06a74ec0868c309c314e0ce5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1180,7 +5928,7 @@ "width": null } }, - "c8255b617715416197d246477f76f826": { + "532c509c87fa42668703ceaad1e7a43b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1232,7 +5980,7 @@ "width": null } }, - "45f2c512c78243d1913a0825225143b3": { + "463bf6976a2946a9a6a398bab24caece": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1247,7 +5995,7 @@ "description_width": "" } }, - "3684e18e68134a2b8fa52e72d400223e": { + "b2765fc2b6a446d8bd05d9ab180328ef": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1299,7 +6047,7 @@ "width": null } }, - "2c899d3480744a5daf503134c9977a83": { + "13b36aead23b4f039d79488c21ed0f0a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1315,7 +6063,7 @@ "description_width": "" } }, - "f806cebaf5214419a4241ea207550ebc": { + "0ed6b8e9353741acb28f05a620a4b0d7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1367,7 +6115,7 @@ "width": null } }, - "40d20a934785453d8664dfa4ad4e4769": { + "ed058654a53a40a69a6df9f8d9c33a59": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1382,7 +6130,7 @@ "description_width": "" } }, - "11439465ba194d579a30d758272adf83": { + "2034b883e6c24edc8e17fc468df16e1a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1397,14 +6145,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4598652fde514a3493531b16010cf45f", - "IPY_MODEL_3c63a05c887f41ed91f43b920921c60a", - "IPY_MODEL_c685cb6201784a27b46103e1d00448b1" + "IPY_MODEL_2fed0a4eb8b24fb38449bc22f35936a0", + "IPY_MODEL_f2cb8eda439b4bdc8beeca8fa7175391", + "IPY_MODEL_64be9728e9f04eb698ada03ccd0bfb06" ], - "layout": "IPY_MODEL_de14db64a2aa443e9c77f8e88ab4d7fa" + "layout": "IPY_MODEL_fbf734d689c9447483effea8f2889554" } }, - "4598652fde514a3493531b16010cf45f": { + "2fed0a4eb8b24fb38449bc22f35936a0": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1419,13 +6167,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8c0163e5f5734533bfd0ad2830613616", + "layout": "IPY_MODEL_1bb4474bc62444e9981939a737837c47", "placeholder": "​", - "style": "IPY_MODEL_d68c7d5dd02c488496eb121f6164faa1", + "style": "IPY_MODEL_ef336bdb36804b5da6072bcf45883b0f", "value": "Downloading data: " } }, - "3c63a05c887f41ed91f43b920921c60a": { + "f2cb8eda439b4bdc8beeca8fa7175391": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1441,15 +6189,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e87199d4c5b848f8be8510e92b78c573", + "layout": "IPY_MODEL_53827cfcfb9a408b83fd8567f9d65aa6", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_4fa820f5ab5c470a99ec2c0af3d880a1", + "style": "IPY_MODEL_d7de7e22a7ca47f4a7c85dfa14e9a244", "value": 1 } }, - "c685cb6201784a27b46103e1d00448b1": { + "64be9728e9f04eb698ada03ccd0bfb06": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1464,13 +6212,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_641a2ef83e4840729af7bbc07bbdfd5d", + "layout": "IPY_MODEL_e324c26793bb4e6594e55331b5f2fe12", "placeholder": "​", - "style": "IPY_MODEL_93d24e3e6ac54dfd92e1257c04624eb2", - "value": " 120k/? [00:00<00:00, 1.32MB/s]" + "style": "IPY_MODEL_6ba74c4c0f4a4eada32af4389ec7415b", + "value": " 120k/? [00:00<00:00, 7.44MB/s]" } }, - "de14db64a2aa443e9c77f8e88ab4d7fa": { + "fbf734d689c9447483effea8f2889554": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1522,7 +6270,7 @@ "width": null } }, - "8c0163e5f5734533bfd0ad2830613616": { + "1bb4474bc62444e9981939a737837c47": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1574,7 +6322,7 @@ "width": null } }, - "d68c7d5dd02c488496eb121f6164faa1": { + "ef336bdb36804b5da6072bcf45883b0f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1589,7 +6337,7 @@ "description_width": "" } }, - "e87199d4c5b848f8be8510e92b78c573": { + "53827cfcfb9a408b83fd8567f9d65aa6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1641,7 +6389,7 @@ "width": "20px" } }, - "4fa820f5ab5c470a99ec2c0af3d880a1": { + "d7de7e22a7ca47f4a7c85dfa14e9a244": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1657,7 +6405,7 @@ "description_width": "" } }, - "641a2ef83e4840729af7bbc07bbdfd5d": { + "e324c26793bb4e6594e55331b5f2fe12": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1709,7 +6457,7 @@ "width": null } }, - "93d24e3e6ac54dfd92e1257c04624eb2": { + "6ba74c4c0f4a4eada32af4389ec7415b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1724,7 +6472,7 @@ "description_width": "" } }, - "b3d9d50b9ed94f90b460637c9c6351d6": { + "bcae12f003884196ba2d334f104c445e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1739,14 +6487,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d52ac9f025a64e61b13108d4c897583a", - "IPY_MODEL_23a7d52e7e7b457fad0a41c4abd8afc7", - "IPY_MODEL_7f30f5d483e347e79adfab3ad9704022" + "IPY_MODEL_faed4877ecfc442e8a8f5f95f1ac7c4e", + "IPY_MODEL_ba70689270394208ae5389d44b93bb3b", + "IPY_MODEL_4a23fc7e01054262af0fb1f2d29427ed" ], - "layout": "IPY_MODEL_e57207d42c8b4e80b8f21b6b20ccea50" + "layout": "IPY_MODEL_d7a911f619e740c090805fb67eebaad3" } }, - "d52ac9f025a64e61b13108d4c897583a": { + "faed4877ecfc442e8a8f5f95f1ac7c4e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1761,13 +6509,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a5f655e1483b4234a12ca2f899958a6e", + "layout": "IPY_MODEL_f017087adcd74c339e0c897db8293eb4", "placeholder": "​", - "style": "IPY_MODEL_504924862efa416fad8ca5e289567674", + "style": "IPY_MODEL_29e2b14a56d946c8b01a09df4baac553", "value": "Downloading data: " } }, - "23a7d52e7e7b457fad0a41c4abd8afc7": { + "ba70689270394208ae5389d44b93bb3b": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1783,15 +6531,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a1ccc3f8c8ee4cad9fd0ff7f98e60d3b", + "layout": "IPY_MODEL_82f25b7af3134c53a71b7cb47d5e3b0c", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_194a309163e74de3978488693de0716f", + "style": "IPY_MODEL_8adffa02a1fa41e883c0827b3e6b4740", "value": 1 } }, - "7f30f5d483e347e79adfab3ad9704022": { + "4a23fc7e01054262af0fb1f2d29427ed": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1806,13 +6554,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_433bffefbb0e4c8eaec2da9a7df5d58d", + "layout": "IPY_MODEL_9f8dc3dcec6f45a6a57b860de8d84d4f", "placeholder": "​", - "style": "IPY_MODEL_2507e1639347409eb5f0186f08edaa63", - "value": " 34.4k/? [00:00<00:00, 951kB/s]" + "style": "IPY_MODEL_535b3395367b44eaaded325c3422a518", + "value": " 34.4k/? [00:00<00:00, 1.89MB/s]" } }, - "e57207d42c8b4e80b8f21b6b20ccea50": { + "d7a911f619e740c090805fb67eebaad3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1864,7 +6612,7 @@ "width": null } }, - "a5f655e1483b4234a12ca2f899958a6e": { + "f017087adcd74c339e0c897db8293eb4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1916,7 +6664,7 @@ "width": null } }, - "504924862efa416fad8ca5e289567674": { + "29e2b14a56d946c8b01a09df4baac553": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1931,7 +6679,7 @@ "description_width": "" } }, - "a1ccc3f8c8ee4cad9fd0ff7f98e60d3b": { + "82f25b7af3134c53a71b7cb47d5e3b0c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1983,7 +6731,7 @@ "width": "20px" } }, - "194a309163e74de3978488693de0716f": { + "8adffa02a1fa41e883c0827b3e6b4740": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1999,7 +6747,7 @@ "description_width": "" } }, - "433bffefbb0e4c8eaec2da9a7df5d58d": { + "9f8dc3dcec6f45a6a57b860de8d84d4f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2051,7 +6799,7 @@ "width": null } }, - "2507e1639347409eb5f0186f08edaa63": { + "535b3395367b44eaaded325c3422a518": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2066,7 +6814,7 @@ "description_width": "" } }, - "4a78a2c21e9d46de8d74b7b4aa219fd4": { + "e4f17460a6ce49dab0c8a27e8e95a84a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2081,14 +6829,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_24eab29165b54af6a397ba9a620a07ac", - "IPY_MODEL_2c028540fb774b6e9246a7df6daaa856", - "IPY_MODEL_9be5482eacb547c599a06a9f3a4e041e" + "IPY_MODEL_9657d5d26abd46db841f9e3daaf55f0c", + "IPY_MODEL_6d55cbbecc464148b69b12779a14289d", + "IPY_MODEL_b04525ca8e52459d90d7e6339fc5a41d" ], - "layout": "IPY_MODEL_10fd8acc20a64a6cb1a3e92e93ac7077" + "layout": "IPY_MODEL_13cd779ab96445638bc3f8eac4b78bdf" } }, - "24eab29165b54af6a397ba9a620a07ac": { + "9657d5d26abd46db841f9e3daaf55f0c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2103,13 +6851,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3f2bf749b9884765bdf62336da7e7a1f", + "layout": "IPY_MODEL_35febdd4fa1a4251ae79a63248b6b555", "placeholder": "​", - "style": "IPY_MODEL_d7b1906d7f944b72a79ab3da621efa81", + "style": "IPY_MODEL_f15cd63ec2c846e4b9a339ae46dc44c6", "value": "Downloading data: 100%" } }, - "2c028540fb774b6e9246a7df6daaa856": { + "6d55cbbecc464148b69b12779a14289d": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2125,15 +6873,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7d03f69a3bc34d3ca467ce157d7fdc27", + "layout": "IPY_MODEL_474c7882351a45f382f2f25f873c0dfe", "max": 1199, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_97fceaf55d5148e6865adc65022e52dc", + "style": "IPY_MODEL_a2b4c95161534d8294d3fab118a7c100", "value": 1199 } }, - "9be5482eacb547c599a06a9f3a4e041e": { + "b04525ca8e52459d90d7e6339fc5a41d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2148,13 +6896,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_53cfc67369fe4887bd1edd1b1749e0b2", + "layout": "IPY_MODEL_76e730efef59417d8f0f8e2281a4c43b", "placeholder": "​", - "style": "IPY_MODEL_20f096fc120446fd8463ec414a95a8c0", - "value": " 1.20k/1.20k [00:00<00:00, 58.4kB/s]" + "style": "IPY_MODEL_da62380bc22a488b8e1d3bb994fb9a0d", + "value": " 1.20k/1.20k [00:00<00:00, 90.1kB/s]" } }, - "10fd8acc20a64a6cb1a3e92e93ac7077": { + "13cd779ab96445638bc3f8eac4b78bdf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2206,7 +6954,7 @@ "width": null } }, - "3f2bf749b9884765bdf62336da7e7a1f": { + "35febdd4fa1a4251ae79a63248b6b555": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2258,7 +7006,7 @@ "width": null } }, - "d7b1906d7f944b72a79ab3da621efa81": { + "f15cd63ec2c846e4b9a339ae46dc44c6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2273,7 +7021,7 @@ "description_width": "" } }, - "7d03f69a3bc34d3ca467ce157d7fdc27": { + "474c7882351a45f382f2f25f873c0dfe": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2325,7 +7073,7 @@ "width": null } }, - "97fceaf55d5148e6865adc65022e52dc": { + "a2b4c95161534d8294d3fab118a7c100": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2341,7 +7089,7 @@ "description_width": "" } }, - "53cfc67369fe4887bd1edd1b1749e0b2": { + "76e730efef59417d8f0f8e2281a4c43b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2393,7 +7141,7 @@ "width": null } }, - "20f096fc120446fd8463ec414a95a8c0": { + "da62380bc22a488b8e1d3bb994fb9a0d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2408,7 +7156,7 @@ "description_width": "" } }, - "dfee95b4b6e64cc481cc76f8916a2b34": { + "ba27106f208e45e0a3cdc1523db20597": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2423,14 +7171,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_61eb0044c9694dbf9cc962d8e5492d6a", - "IPY_MODEL_078efc7446114e129d28e7236824327e", - "IPY_MODEL_a7d47632c31745f08ed34634b3c54ac2" + "IPY_MODEL_68e85f2d9d314817b3a1de2506c31ab7", + "IPY_MODEL_42b190884418416a8213a472e2de8576", + "IPY_MODEL_707ad31cea50457c8d1ef4c29a708684" ], - "layout": "IPY_MODEL_525da1fc7bf24cbf956ee99f000e9ec6" + "layout": "IPY_MODEL_5febb814e3d04a28bd9a1480e1a1731f" } }, - "61eb0044c9694dbf9cc962d8e5492d6a": { + "68e85f2d9d314817b3a1de2506c31ab7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2445,13 +7193,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_90eff81beb824793b8feba9cffa9df8c", + "layout": "IPY_MODEL_963f5d1c46214138abd6bd4f49ed898f", "placeholder": "​", - "style": "IPY_MODEL_1c3716c2560d4fdba909e1b19bb1b167", + "style": "IPY_MODEL_e2599f2106924e18b1af5fbf1788b22c", "value": "Generating train split: " } }, - "078efc7446114e129d28e7236824327e": { + "42b190884418416a8213a472e2de8576": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2467,15 +7215,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3627b62eb6d845fb85e3398155dc297e", + "layout": "IPY_MODEL_b3748f3adc044d54a20bada75dd64460", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_7e5ba0a540e549fd833656449809a429", + "style": "IPY_MODEL_74ef085c049045f797cef0decfa2778a", "value": 1 } }, - "a7d47632c31745f08ed34634b3c54ac2": { + "707ad31cea50457c8d1ef4c29a708684": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2490,13 +7238,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5aba826a1f45413daf9801b21fa9d6cc", + "layout": "IPY_MODEL_b93e4b5d041a4beab4418377172f8112", "placeholder": "​", - "style": "IPY_MODEL_9230506ea3384a7fb92faee219851308", - "value": " 304/0 [08:07<00:00,  1.60s/ examples]" + "style": "IPY_MODEL_6aa704d33cd54927afdc5ab06f898e3c", + "value": " 10/0 [00:15<00:00,  1.14s/ examples]" } }, - "525da1fc7bf24cbf956ee99f000e9ec6": { + "5febb814e3d04a28bd9a1480e1a1731f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2548,7 +7296,7 @@ "width": null } }, - "90eff81beb824793b8feba9cffa9df8c": { + "963f5d1c46214138abd6bd4f49ed898f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2600,7 +7348,7 @@ "width": null } }, - "1c3716c2560d4fdba909e1b19bb1b167": { + "e2599f2106924e18b1af5fbf1788b22c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2615,7 +7363,7 @@ "description_width": "" } }, - "3627b62eb6d845fb85e3398155dc297e": { + "b3748f3adc044d54a20bada75dd64460": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2667,7 +7415,7 @@ "width": "20px" } }, - "7e5ba0a540e549fd833656449809a429": { + "74ef085c049045f797cef0decfa2778a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -2683,7 +7431,7 @@ "description_width": "" } }, - "5aba826a1f45413daf9801b21fa9d6cc": { + "b93e4b5d041a4beab4418377172f8112": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2735,7 +7483,7 @@ "width": null } }, - "9230506ea3384a7fb92faee219851308": { + "6aa704d33cd54927afdc5ab06f898e3c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2750,7 +7498,7 @@ "description_width": "" } }, - "1f061ec24adc4f6c84719cd282cd724c": { + "cb11d600b0a24095b06a53780d9ef232": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -2765,14 +7513,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9c5e881661464b1c8740bc338ba07e29", - "IPY_MODEL_4db8cd2fc3a3447f91d54b2b5f6a802b", - "IPY_MODEL_95fd55d5740d4d8897d6aa2a3ec3a9bd" + "IPY_MODEL_efa42ccf972f49c494b05f901c5350d3", + "IPY_MODEL_42db963704e440ffa16ee76cc5041539", + "IPY_MODEL_163d1be5ed634db99c3cba3831d7039b" ], - "layout": "IPY_MODEL_1900e79e8e5b4b8e958d0927788007f7" + "layout": "IPY_MODEL_6b4cd37d2de84c6080ae5a14a7dd8cae" } }, - "9c5e881661464b1c8740bc338ba07e29": { + "efa42ccf972f49c494b05f901c5350d3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2787,13 +7535,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1253cf65050d4d4f92d6a462904330c6", + "layout": "IPY_MODEL_91b7afeb42bf4a6e9a3b1d0fd0a69259", "placeholder": "​", - "style": "IPY_MODEL_724040f3418f4ab686e01dba6b85d2dc", + "style": "IPY_MODEL_35eb277574e7477eae7b888e428ba3b9", "value": "Generating validation split: " } }, - "4db8cd2fc3a3447f91d54b2b5f6a802b": { + "42db963704e440ffa16ee76cc5041539": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -2809,15 +7557,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1a3e57feb3944199a2e2fcfdaf081ad0", + "layout": "IPY_MODEL_8a6a207b22a34d0a8003adb356a89e18", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_188f15361f2a4977848a9e722d09008a", + "style": "IPY_MODEL_4311e8dac7ea4083b131f853a6be5158", "value": 1 } }, - "95fd55d5740d4d8897d6aa2a3ec3a9bd": { + "163d1be5ed634db99c3cba3831d7039b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -2832,13 +7580,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1f474674526b40359319144cacff3495", + "layout": "IPY_MODEL_3bc76450ac264484b68747b488367f34", "placeholder": "​", - "style": "IPY_MODEL_b5c66a307a8e44d7a984bfa7042f8120", - "value": " 75/0 [02:02<00:00,  1.32s/ examples]" + "style": "IPY_MODEL_55b4b209fbbb4bcaa3badb4d1343f88d", + "value": " 10/0 [00:09<00:00,  1.25 examples/s]" } }, - "1900e79e8e5b4b8e958d0927788007f7": { + "6b4cd37d2de84c6080ae5a14a7dd8cae": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2890,7 +7638,7 @@ "width": null } }, - "1253cf65050d4d4f92d6a462904330c6": { + "91b7afeb42bf4a6e9a3b1d0fd0a69259": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2942,7 +7690,7 @@ "width": null } }, - "724040f3418f4ab686e01dba6b85d2dc": { + "35eb277574e7477eae7b888e428ba3b9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -2957,7 +7705,7 @@ "description_width": "" } }, - "1a3e57feb3944199a2e2fcfdaf081ad0": { + "8a6a207b22a34d0a8003adb356a89e18": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3009,7 +7757,7 @@ "width": "20px" } }, - "188f15361f2a4977848a9e722d09008a": { + "4311e8dac7ea4083b131f853a6be5158": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3025,7 +7773,7 @@ "description_width": "" } }, - "1f474674526b40359319144cacff3495": { + "3bc76450ac264484b68747b488367f34": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3077,7 +7825,7 @@ "width": null } }, - "b5c66a307a8e44d7a984bfa7042f8120": { + "55b4b209fbbb4bcaa3badb4d1343f88d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3092,7 +7840,7 @@ "description_width": "" } }, - "47f4611f7d5446568004037a27220708": { + "12c9378c7ad4450f97e4471d6932505a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3107,14 +7855,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2cd92a7b684449a3bdca3662760eaf9d", - "IPY_MODEL_4c34df3a361a4def8ab495eefd884fd0", - "IPY_MODEL_5b6f3dc5635e4d0c8914f9bdccb13463" + "IPY_MODEL_72a5e3472077462ab52de4cdd9e0f757", + "IPY_MODEL_68c93965257c4fd0a845a01a7b9b450d", + "IPY_MODEL_c03a8aad8b9a48579583090155860258" ], - "layout": "IPY_MODEL_110690eeda504b2f94c267ba19b6abfa" + "layout": "IPY_MODEL_57496db022bc4fef8d372b935b67b6c8" } }, - "2cd92a7b684449a3bdca3662760eaf9d": { + "72a5e3472077462ab52de4cdd9e0f757": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3129,13 +7877,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_f36a2867e8274ab683ff74ae84970031", + "layout": "IPY_MODEL_ce81dad32a06425e89f42e40b368f862", "placeholder": "​", - "style": "IPY_MODEL_38f23c80950645b08c283a48b28a84aa", + "style": "IPY_MODEL_4d895bc501194da4bc8c7340cc32ba67", "value": "Generating test split: " } }, - "4c34df3a361a4def8ab495eefd884fd0": { + "68c93965257c4fd0a845a01a7b9b450d": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3151,15 +7899,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_da367d567be1468c87134e5a0395327c", + "layout": "IPY_MODEL_34bb672873ef4d0c842ec87304bced0d", "max": 1, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_48f0150808b449178072986c220048f9", + "style": "IPY_MODEL_7d181bc2473d4d4fa870a629fd79c3b4", "value": 1 } }, - "5b6f3dc5635e4d0c8914f9bdccb13463": { + "c03a8aad8b9a48579583090155860258": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3174,13 +7922,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eb906de9af7048c3839898c2cb40600e", + "layout": "IPY_MODEL_b85ab036fe104e4ebde75c9627fb1713", "placeholder": "​", - "style": "IPY_MODEL_0ea793c09c3f4948b7b4a5fc65cc8e1a", - "value": " 68/0 [01:52<00:00,  2.03s/ examples]" + "style": "IPY_MODEL_afa1f6e23c9a41adb34613883d24554a", + "value": " 10/0 [00:14<00:00,  1.15s/ examples]" } }, - "110690eeda504b2f94c267ba19b6abfa": { + "57496db022bc4fef8d372b935b67b6c8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3232,7 +7980,7 @@ "width": null } }, - "f36a2867e8274ab683ff74ae84970031": { + "ce81dad32a06425e89f42e40b368f862": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3284,7 +8032,7 @@ "width": null } }, - "38f23c80950645b08c283a48b28a84aa": { + "4d895bc501194da4bc8c7340cc32ba67": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3299,7 +8047,7 @@ "description_width": "" } }, - "da367d567be1468c87134e5a0395327c": { + "34bb672873ef4d0c842ec87304bced0d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3351,7 +8099,7 @@ "width": "20px" } }, - "48f0150808b449178072986c220048f9": { + "7d181bc2473d4d4fa870a629fd79c3b4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3367,7 +8115,7 @@ "description_width": "" } }, - "eb906de9af7048c3839898c2cb40600e": { + "b85ab036fe104e4ebde75c9627fb1713": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3419,7 +8167,7 @@ "width": null } }, - "0ea793c09c3f4948b7b4a5fc65cc8e1a": { + "afa1f6e23c9a41adb34613883d24554a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3437,384 +8185,6 @@ } } }, - "cells": [ - { - "cell_type": "markdown", - "source": [ - "# Building a U-Net CNN Model for Spinal MRI Segmentation" - ], - "metadata": { - "id": "5Fw5uqLfQvBB" - } - }, - { - "cell_type": "markdown", - "source": [ - "This tutorial will walk through building and training a simplified U-Net convolutional neural network (CNN)-type model for 3D image segmentation using the SPIDER dataset. We'll use PyTorch in this example." - ], - "metadata": { - "id": "b4x3vZ46Quzq" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Why a U-Net CNN Model?\n", - "\n", - "Lorum ipsum" - ], - "metadata": { - "id": "D5gcsQX9XgUZ" - } - }, - { - "cell_type": "markdown", - "source": [], - "metadata": { - "id": "50dpysUcX-96" - } - }, - { - "cell_type": "markdown", - "source": [ - "## Downloading the SPIDER Dataset" - ], - "metadata": { - "id": "qi4EcJ7SW1wz" - } - }, - { - "cell_type": "markdown", - "source": [ - "First, install the required dependencies and download the SPIDER dataset from HuggingFace." - ], - "metadata": { - "id": "lkJ8qkVhW96W" - } - }, - { - "cell_type": "code", - "source": [ - "!pip install datasets -q\n", - "!pip install scikit-image -q\n", - "!pip install SimpleITK -q" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "MqrP4hB2aMht", - "outputId": "4ba5dca4-cbf8-4c36-c770-770626178951" - }, - "execution_count": 2, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m510.5/510.5 kB\u001b[0m \u001b[31m6.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.3/116.3 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m194.1/194.1 kB\u001b[0m \u001b[31m8.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.7/52.7 MB\u001b[0m \u001b[31m7.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h" - ] - } - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 441, - "referenced_widgets": [ - "c9650600cd7343c292980b61d04eaf03", - "20e2382700d64cdbb84527fe703379cb", - "5efcf1ff4f624663b212bbc365f4f2c0", - "6ee267eb3ad041dd9eb8ffd9ee05236e", - "d6c18edcbdba4b41af1ce91dac8b63a1", - "716b73c444c84b61bb332bcda6c333a9", - "98bc0b04f0c347b79fcd0c0e8efed42a", - "2a8d474e8a1941ea980c44ecc443bafb", - "70e8d6c4ae584125890f46d21edd5029", - "f4e40ae545ac43f7a9eae4c48127e851", - "f6b7db3b39b3479baa0c183fb19cccf1", - "58f0e107e43c4f2b8e2379a8fb7d5316", - "82811d5225b343ec8f53e007e4319d68", - "1f8f568b7c954b41b2870c9571836cfd", - "d53e7d6bdb744e7092f251429c0aa091", - "8aa94f3020e54ae49185c492b91d5637", - "af2ebce079984fd0ab7d898ba2482226", - "239cf53a0a0840e39b109d7c4ceadbcb", - "d53eada0510e4dfa9ac8325d9aef7ea6", - "f10503b122e94cc784cc0e8dd2d7d793", - "e5720f60f5e14b5780909f794d752a92", - "a33044c6dfc24a2e8ed6fe25ada13216", - "dd20c17f8e0c4a82922a35079f7c2545", - "54da72de8aae40238ed8fcc82e86e455", - "1d6299feef4343beabcc90d6f0076ab3", - "6b05f938c3a240eeac9eb8458885a002", - "c6de29321a0d4121aea5b3e01348e8bc", - "090ab6f273bf41709f0eb7f11e02c5b7", - "6ad271bdd06b45998d472d7774124ff9", - "b336d3956cac4df6a6c58bd5665768eb", - "bce3b01062f14eaca2c5736a3bec70ce", - "d80c9658e1db4c639a5fecfc29315b14", - "2efce9bd4153496784bb62851b1964fc", - "d281ae7b529e44879317013cf64c997b", - "88af215a975c4f4d8af464cb9b763703", - "2ec0ec1169fb4e2687d425f85808d53c", - "e03bd7d07a424d8ba5733b27c84b56c1", - "fee82ef3c42d4f6eaeea3b1eb3b80cd5", - "c8255b617715416197d246477f76f826", - "45f2c512c78243d1913a0825225143b3", - "3684e18e68134a2b8fa52e72d400223e", - "2c899d3480744a5daf503134c9977a83", - "f806cebaf5214419a4241ea207550ebc", - "40d20a934785453d8664dfa4ad4e4769", - "11439465ba194d579a30d758272adf83", - "4598652fde514a3493531b16010cf45f", - "3c63a05c887f41ed91f43b920921c60a", - "c685cb6201784a27b46103e1d00448b1", - "de14db64a2aa443e9c77f8e88ab4d7fa", - "8c0163e5f5734533bfd0ad2830613616", - "d68c7d5dd02c488496eb121f6164faa1", - "e87199d4c5b848f8be8510e92b78c573", - "4fa820f5ab5c470a99ec2c0af3d880a1", - "641a2ef83e4840729af7bbc07bbdfd5d", - "93d24e3e6ac54dfd92e1257c04624eb2", - "b3d9d50b9ed94f90b460637c9c6351d6", - "d52ac9f025a64e61b13108d4c897583a", - "23a7d52e7e7b457fad0a41c4abd8afc7", - "7f30f5d483e347e79adfab3ad9704022", - "e57207d42c8b4e80b8f21b6b20ccea50", - "a5f655e1483b4234a12ca2f899958a6e", - "504924862efa416fad8ca5e289567674", - "a1ccc3f8c8ee4cad9fd0ff7f98e60d3b", - "194a309163e74de3978488693de0716f", - "433bffefbb0e4c8eaec2da9a7df5d58d", - "2507e1639347409eb5f0186f08edaa63", - "4a78a2c21e9d46de8d74b7b4aa219fd4", - "24eab29165b54af6a397ba9a620a07ac", - "2c028540fb774b6e9246a7df6daaa856", - "9be5482eacb547c599a06a9f3a4e041e", - "10fd8acc20a64a6cb1a3e92e93ac7077", - "3f2bf749b9884765bdf62336da7e7a1f", - "d7b1906d7f944b72a79ab3da621efa81", - "7d03f69a3bc34d3ca467ce157d7fdc27", - "97fceaf55d5148e6865adc65022e52dc", - "53cfc67369fe4887bd1edd1b1749e0b2", - "20f096fc120446fd8463ec414a95a8c0", - "dfee95b4b6e64cc481cc76f8916a2b34", - "61eb0044c9694dbf9cc962d8e5492d6a", - "078efc7446114e129d28e7236824327e", - "a7d47632c31745f08ed34634b3c54ac2", - "525da1fc7bf24cbf956ee99f000e9ec6", - "90eff81beb824793b8feba9cffa9df8c", - "1c3716c2560d4fdba909e1b19bb1b167", - "3627b62eb6d845fb85e3398155dc297e", - "7e5ba0a540e549fd833656449809a429", - "5aba826a1f45413daf9801b21fa9d6cc", - "9230506ea3384a7fb92faee219851308", - "1f061ec24adc4f6c84719cd282cd724c", - "9c5e881661464b1c8740bc338ba07e29", - "4db8cd2fc3a3447f91d54b2b5f6a802b", - "95fd55d5740d4d8897d6aa2a3ec3a9bd", - "1900e79e8e5b4b8e958d0927788007f7", - "1253cf65050d4d4f92d6a462904330c6", - "724040f3418f4ab686e01dba6b85d2dc", - "1a3e57feb3944199a2e2fcfdaf081ad0", - "188f15361f2a4977848a9e722d09008a", - "1f474674526b40359319144cacff3495", - "b5c66a307a8e44d7a984bfa7042f8120", - "47f4611f7d5446568004037a27220708", - "2cd92a7b684449a3bdca3662760eaf9d", - "4c34df3a361a4def8ab495eefd884fd0", - "5b6f3dc5635e4d0c8914f9bdccb13463", - "110690eeda504b2f94c267ba19b6abfa", - "f36a2867e8274ab683ff74ae84970031", - "38f23c80950645b08c283a48b28a84aa", - "da367d567be1468c87134e5a0395327c", - "48f0150808b449178072986c220048f9", - "eb906de9af7048c3839898c2cb40600e", - "0ea793c09c3f4948b7b4a5fc65cc8e1a" - ] - }, - "id": "pxeqTBrWZ_XG", - "outputId": "b0ea47e3-62c4-4946-faeb-b0a0dc8cfcef" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:88: UserWarning: \n", - "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", - "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", - "You will be able to reuse this secret in all of your notebooks.\n", - "Please note that authentication is recommended but still optional to access public models or datasets.\n", - " warnings.warn(\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Downloading builder script: 0%| | 0.00/22.5k [00:00