import os import random import hashlib import datasets _NAMES = { "4_classes": [ "trill", "staccato", "slide", "others", ], "7_classes": [ "trill_short_up", "trill_long", "staccato", "slide_up", "slide_legato", "slide_down", "others", ], "11_classes": [ "vibrato", "trill", "tremolo", "staccato", "ricochet", "pizzicato", "percussive", "legato_slide_glissando", "harmonic", "diangong", "detache", ], } _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" _DOMAIN = f"{_HOMEPAGE}/resolve/master/data" _URLS = { "audio": f"{_DOMAIN}/audio.zip", "mel": f"{_DOMAIN}/mel.zip", "eval": f"{_DOMAIN}/eval.zip", } class erhu_playing_tech(datasets.GeneratorBasedBuilder): def _info(self): if self.config.name == "default": self.config.name = "11_classes" return datasets.DatasetInfo( features=( datasets.Features( { "audio": datasets.Audio(sampling_rate=44100), "mel": datasets.Image(), "label": datasets.features.ClassLabel( names=_NAMES[self.config.name] ), } ) if self.config.name != "eval" else datasets.Features( { "mel": datasets.Image(), "cqt": datasets.Image(), "chroma": datasets.Image(), "label": datasets.features.ClassLabel( names=_NAMES["11_classes"] ), } ) ), homepage=_HOMEPAGE, license="CC-BY-NC-ND", version="1.2.0", ) def _str2md5(self, original_string: str): md5_obj = hashlib.md5() md5_obj.update(original_string.encode("utf-8")) return md5_obj.hexdigest() def _split_generators(self, dl_manager): if self.config.name != "eval": audio_files = dl_manager.download_and_extract(_URLS["audio"]) mel_files = dl_manager.download_and_extract(_URLS["mel"]) files = {} for fpath in dl_manager.iter_files([audio_files]): fname = os.path.basename(fpath) dirname = os.path.dirname(fpath) subset = os.path.basename(os.path.dirname(dirname)) if self.config.name == subset and fname.endswith(".wav"): cls = f"{subset}/{os.path.basename(dirname)}/" item_id = self._str2md5(cls + fname.split(".wa")[0]) files[item_id] = {"audio": fpath} for fpath in dl_manager.iter_files([mel_files]): fname = os.path.basename(fpath) dirname = os.path.dirname(fpath) subset = os.path.basename(os.path.dirname(dirname)) if self.config.name == subset and fname.endswith(".jpg"): cls = f"{subset}/{os.path.basename(dirname)}/" item_id = self._str2md5(cls + fname.split(".jp")[0]) files[item_id]["mel"] = fpath dataset = list(files.values()) else: eval_files = dl_manager.download_and_extract(_URLS["eval"]) dataset = [] for fpath in dl_manager.iter_files([eval_files]): fname: str = os.path.basename(fpath) if "_mel" in fname and fname.endswith(".jpg"): dataset.append({"mel": fpath, "label": fname.split("__")[0]}) categories = {} names = _NAMES["11_classes" if "eval" in self.config.name else self.config.name] for name in names: categories[name] = [] for data in dataset: if self.config.name != "eval": data["label"] = os.path.basename(os.path.dirname(data["audio"])) categories[data["label"]].append(data) testset, validset, trainset = [], [], [] for cls in categories: random.shuffle(categories[cls]) count = len(categories[cls]) p60 = int(count * 0.6) p80 = int(count * 0.8) trainset += categories[cls][:p60] validset += categories[cls][p60:p80] testset += categories[cls][p80:] random.shuffle(trainset) random.shuffle(validset) random.shuffle(testset) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"files": trainset} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"files": validset} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"files": testset} ), ] def _generate_examples(self, files): if self.config.name != "eval": for i, item in enumerate(files): yield i, item else: for i, item in enumerate(files): yield i, { "mel": item["mel"], "cqt": item["mel"].replace("_mel", "_cqt"), "chroma": item["mel"].replace("_mel", "_chroma"), "label": item["label"], }