--- languages: - en multilinguality: - monolingual size_categories: - 100K<n<1M task_categories: - conditional-text-generation task_ids: - summarization --- # PubMed dataset for summarization Dataset for summarization of long documents.\ Adapted from this [repo](https://github.com/armancohan/long-summarization).\ Note that original data are pre-tokenized so this dataset returns " ".join(text) and add "\n" for paragraphs. \ This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable: ```python "ccdv/pubmed-summarization": ("article", "abstract") ``` ### Data Fields - `id`: paper id - `article`: a string containing the body of the paper - `abstract`: a string containing the abstract of the paper ### Data Splits This dataset has 3 splits: _train_, _validation_, and _test_. \ Token counts are white space based. | Dataset Split | Number of Instances | Avg. tokens | | ------------- | --------------------|:----------------------| | Train | 119,924 | 3043 / 215 | | Validation | 6,633 | 3111 / 216 | | Test | 6,658 | 3092 / 219 | # Cite original article ``` @inproceedings{cohan-etal-2018-discourse, title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents", author = "Cohan, Arman and Dernoncourt, Franck and Kim, Doo Soon and Bui, Trung and Kim, Seokhwan and Chang, Walter and Goharian, Nazli", booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)", month = jun, year = "2018", address = "New Orleans, Louisiana", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/N18-2097", doi = "10.18653/v1/N18-2097", pages = "615--621", abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.", } ```