diff --git "a/test-hard-v1.5.csv" "b/test-hard-v1.5.csv" new file mode 100644--- /dev/null +++ "b/test-hard-v1.5.csv" @@ -0,0 +1,96028 @@ +id,prompt,label,reasoning,graph_id,story_id,rung,query_type,formal_form +1,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 74%. For husbands that set the alarm, the probability of ringing alarm is 22%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.22 +0.22 - 0.74 = -0.52 +-0.52 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 6%. For husbands that don't set the alarm, the probability of ringing alarm is 74%. For husbands that set the alarm, the probability of ringing alarm is 22%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.22 +0.06*0.22 - 0.94*0.74 = 0.71 +0.71 > 0",mediation,alarm,1,marginal,P(Y) +15,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 78%. For husbands that set the alarm, the probability of ringing alarm is 32%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.32 +0.32 - 0.78 = -0.46 +-0.46 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 4%. For husbands that don't set the alarm, the probability of ringing alarm is 78%. For husbands that set the alarm, the probability of ringing alarm is 32%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.32 +0.04*0.32 - 0.96*0.78 = 0.76 +0.76 > 0",mediation,alarm,1,marginal,P(Y) +24,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 4%. The probability of alarm not set by husband and ringing alarm is 74%. The probability of alarm set by husband and ringing alarm is 1%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.74 +P(Y=1, X=1=1) = 0.01 +0.01/0.04 - 0.74/0.96 = -0.46 +-0.46 < 0",mediation,alarm,1,correlation,P(Y | X) +28,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 90%. For husbands that set the alarm, the probability of ringing alarm is 31%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.31 +0.31 - 0.90 = -0.58 +-0.58 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 90%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 45%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 58%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 11%. For husbands that don't set the alarm, the probability of alarm set by wife is 1%. For husbands that set the alarm, the probability of alarm set by wife is 57%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.90 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.01 +P(V2=1 | X=1) = 0.57 +0.57 * (0.45 - 0.90)+ 0.01 * (0.11 - 0.58)= -0.25 +-0.25 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +51,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 17%. For husbands that don't set the alarm, the probability of ringing alarm is 84%. For husbands that set the alarm, the probability of ringing alarm is 20%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.20 +0.17*0.20 - 0.83*0.84 = 0.73 +0.73 > 0",mediation,alarm,1,marginal,P(Y) +54,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +59,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 71%. For husbands that set the alarm, the probability of ringing alarm is 10%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.10 +0.10 - 0.71 = -0.61 +-0.61 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +65,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 17%. For husbands that don't set the alarm, the probability of ringing alarm is 71%. For husbands that set the alarm, the probability of ringing alarm is 10%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.10 +0.17*0.10 - 0.83*0.71 = 0.60 +0.60 > 0",mediation,alarm,1,marginal,P(Y) +105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 94%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 43%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 55%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 11%. For husbands that don't set the alarm, the probability of alarm set by wife is 43%. For husbands that set the alarm, the probability of alarm set by wife is 69%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.94 +P(Y=1 | X=0, V2=1) = 0.43 +P(Y=1 | X=1, V2=0) = 0.55 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.43 +P(V2=1 | X=1) = 0.69 +0.43 * (0.11 - 0.55) + 0.69 * (0.43 - 0.94) = -0.36 +-0.36 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 82%. For husbands that set the alarm, the probability of ringing alarm is 28%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.28 +0.28 - 0.82 = -0.54 +-0.54 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 88%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 39%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 50%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 2%. For husbands that don't set the alarm, the probability of alarm set by wife is 13%. For husbands that set the alarm, the probability of alarm set by wife is 47%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.88 +P(Y=1 | X=0, V2=1) = 0.39 +P(Y=1 | X=1, V2=0) = 0.50 +P(Y=1 | X=1, V2=1) = 0.02 +P(V2=1 | X=0) = 0.13 +P(V2=1 | X=1) = 0.47 +0.47 * (0.39 - 0.88)+ 0.13 * (0.02 - 0.50)= -0.17 +-0.17 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 14%. The probability of alarm not set by husband and ringing alarm is 71%. The probability of alarm set by husband and ringing alarm is 4%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.04 +0.04/0.14 - 0.71/0.86 = -0.54 +-0.54 < 0",mediation,alarm,1,correlation,P(Y | X) +139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look directly at how husband correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 81%. For husbands that set the alarm, the probability of ringing alarm is 20%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.20 +0.20 - 0.81 = -0.61 +-0.61 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 10%. The probability of alarm not set by husband and ringing alarm is 73%. The probability of alarm set by husband and ringing alarm is 2%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.73 +P(Y=1, X=1=1) = 0.02 +0.02/0.10 - 0.73/0.90 = -0.61 +-0.61 < 0",mediation,alarm,1,correlation,P(Y | X) +159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 96%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 47%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 63%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 16%. For husbands that don't set the alarm, the probability of alarm set by wife is 28%. For husbands that set the alarm, the probability of alarm set by wife is 84%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.96 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.63 +P(Y=1 | X=1, V2=1) = 0.16 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.84 +0.84 * (0.47 - 0.96)+ 0.28 * (0.16 - 0.63)= -0.27 +-0.27 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 15%. For husbands that don't set the alarm, the probability of ringing alarm is 82%. For husbands that set the alarm, the probability of ringing alarm is 24%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.24 +0.15*0.24 - 0.85*0.82 = 0.73 +0.73 > 0",mediation,alarm,1,marginal,P(Y) +169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 64%. For husbands that set the alarm, the probability of ringing alarm is 24%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.24 +0.24 - 0.64 = -0.40 +-0.40 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 81%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 35%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 46%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 0%. For husbands that don't set the alarm, the probability of alarm set by wife is 37%. For husbands that set the alarm, the probability of alarm set by wife is 48%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.81 +P(Y=1 | X=0, V2=1) = 0.35 +P(Y=1 | X=1, V2=0) = 0.46 +P(Y=1 | X=1, V2=1) = 0.00 +P(V2=1 | X=0) = 0.37 +P(V2=1 | X=1) = 0.48 +0.37 * (0.00 - 0.46) + 0.48 * (0.35 - 0.81) = -0.35 +-0.35 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 89%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 41%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 54%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 6%. For husbands that don't set the alarm, the probability of alarm set by wife is 35%. For husbands that set the alarm, the probability of alarm set by wife is 60%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.41 +P(Y=1 | X=1, V2=0) = 0.54 +P(Y=1 | X=1, V2=1) = 0.06 +P(V2=1 | X=0) = 0.35 +P(V2=1 | X=1) = 0.60 +0.35 * (0.06 - 0.54) + 0.60 * (0.41 - 0.89) = -0.35 +-0.35 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 6%. For husbands that don't set the alarm, the probability of ringing alarm is 72%. For husbands that set the alarm, the probability of ringing alarm is 26%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.26 +0.06*0.26 - 0.94*0.72 = 0.69 +0.69 > 0",mediation,alarm,1,marginal,P(Y) +212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 80%. For husbands that set the alarm, the probability of ringing alarm is 34%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.34 +0.34 - 0.80 = -0.46 +-0.46 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 69%. For husbands that set the alarm, the probability of ringing alarm is 25%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.25 +0.25 - 0.69 = -0.45 +-0.45 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 74%. For husbands that set the alarm, the probability of ringing alarm is 21%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.21 +0.21 - 0.74 = -0.52 +-0.52 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 86%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 42%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 54%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 7%. For husbands that don't set the alarm, the probability of alarm set by wife is 27%. For husbands that set the alarm, the probability of alarm set by wife is 69%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.86 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.54 +P(Y=1 | X=1, V2=1) = 0.07 +P(V2=1 | X=0) = 0.27 +P(V2=1 | X=1) = 0.69 +0.27 * (0.07 - 0.54) + 0.69 * (0.42 - 0.86) = -0.33 +-0.33 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look directly at how husband correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 79%. For husbands that set the alarm, the probability of ringing alarm is 31%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.31 +0.31 - 0.79 = -0.48 +-0.48 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 4%. For husbands that don't set the alarm, the probability of ringing alarm is 79%. For husbands that set the alarm, the probability of ringing alarm is 31%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.31 +0.04*0.31 - 0.96*0.79 = 0.77 +0.77 > 0",mediation,alarm,1,marginal,P(Y) +297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 65%. For husbands that set the alarm, the probability of ringing alarm is 17%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.17 +0.17 - 0.65 = -0.48 +-0.48 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 89%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 36%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 46%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 3%. For husbands that don't set the alarm, the probability of alarm set by wife is 46%. For husbands that set the alarm, the probability of alarm set by wife is 67%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.36 +P(Y=1 | X=1, V2=0) = 0.46 +P(Y=1 | X=1, V2=1) = 0.03 +P(V2=1 | X=0) = 0.46 +P(V2=1 | X=1) = 0.67 +0.67 * (0.36 - 0.89)+ 0.46 * (0.03 - 0.46)= -0.11 +-0.11 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 1%. The probability of alarm not set by husband and ringing alarm is 64%. The probability of alarm set by husband and ringing alarm is 0%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.64 +P(Y=1, X=1=1) = 0.00 +0.00/0.01 - 0.64/0.99 = -0.48 +-0.48 < 0",mediation,alarm,1,correlation,P(Y | X) +316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 17%. For husbands that don't set the alarm, the probability of ringing alarm is 81%. For husbands that set the alarm, the probability of ringing alarm is 18%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.18 +0.17*0.18 - 0.83*0.81 = 0.70 +0.70 > 0",mediation,alarm,1,marginal,P(Y) +329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 95%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 50%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 62%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 14%. For husbands that don't set the alarm, the probability of alarm set by wife is 40%. For husbands that set the alarm, the probability of alarm set by wife is 77%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.14 +P(V2=1 | X=0) = 0.40 +P(V2=1 | X=1) = 0.77 +0.40 * (0.14 - 0.62) + 0.77 * (0.50 - 0.95) = -0.34 +-0.34 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of alarm set by husband is 4%. The probability of alarm not set by husband and ringing alarm is 81%. The probability of alarm set by husband and ringing alarm is 1%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.81 +P(Y=1, X=1=1) = 0.01 +0.01/0.04 - 0.81/0.96 = -0.55 +-0.55 < 0",mediation,alarm,1,correlation,P(Y | X) +349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look directly at how husband correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 85%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 36%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 47%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 6%. For husbands that don't set the alarm, the probability of alarm set by wife is 20%. For husbands that set the alarm, the probability of alarm set by wife is 75%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.85 +P(Y=1 | X=0, V2=1) = 0.36 +P(Y=1 | X=1, V2=0) = 0.47 +P(Y=1 | X=1, V2=1) = 0.06 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.75 +0.20 * (0.06 - 0.47) + 0.75 * (0.36 - 0.85) = -0.36 +-0.36 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 74%. For husbands that set the alarm, the probability of ringing alarm is 22%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.22 +0.22 - 0.74 = -0.52 +-0.52 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm, the probability of ringing alarm is 74%. For husbands that set the alarm, the probability of ringing alarm is 22%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.22 +0.22 - 0.74 = -0.52 +-0.52 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 82%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 40%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 52%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 5%. For husbands that don't set the alarm, the probability of alarm set by wife is 20%. For husbands that set the alarm, the probability of alarm set by wife is 63%.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.82 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.63 +0.63 * (0.40 - 0.82)+ 0.20 * (0.05 - 0.52)= -0.18 +-0.18 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look at how husband correlates with alarm clock case by case according to wife. Method 2: We look directly at how husband correlates with alarm clock in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 87%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 42%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 55%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 9%. For husbands that don't set the alarm, the probability of alarm set by wife is 62%. For husbands that set the alarm, the probability of alarm set by wife is 75%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.87 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.55 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.62 +P(V2=1 | X=1) = 0.75 +0.75 * (0.42 - 0.87)+ 0.62 * (0.09 - 0.55)= -0.06 +-0.06 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For husbands that don't set the alarm and wives that don't set the alarm, the probability of ringing alarm is 87%. For husbands that don't set the alarm and wives that set the alarm, the probability of ringing alarm is 42%. For husbands that set the alarm and wives that don't set the alarm, the probability of ringing alarm is 55%. For husbands that set the alarm and wives that set the alarm, the probability of ringing alarm is 9%. For husbands that don't set the alarm, the probability of alarm set by wife is 62%. For husbands that set the alarm, the probability of alarm set by wife is 75%.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.87 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.55 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.62 +P(V2=1 | X=1) = 0.75 +0.62 * (0.09 - 0.55) + 0.75 * (0.42 - 0.87) = -0.32 +-0.32 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 87%. For people who blow out candles, the probability of dark room is 55%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.55 +0.55 - 0.87 = -0.31 +-0.31 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 84%. For people who blow out candles, the probability of dark room is 50%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.50 +0.50 - 0.84 = -0.34 +-0.34 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 5%. The probability of not blowing out the candle and dark room is 80%. The probability of blowing out the candle and dark room is 2%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.80 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.80/0.95 = -0.34 +-0.34 < 0",fork,candle,1,correlation,P(Y | X) +452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 91%. For people who blow out candles, the probability of dark room is 52%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.52 +0.52 - 0.91 = -0.39 +-0.39 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 91%. For people who blow out candles, the probability of dark room is 52%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.52 +0.52 - 0.91 = -0.39 +-0.39 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 17%. The probability of not blowing out the candle and dark room is 69%. The probability of blowing out the candle and dark room is 8%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.69 +P(Y=1, X=1=1) = 0.08 +0.08/0.17 - 0.69/0.83 = -0.37 +-0.37 < 0",fork,candle,1,correlation,P(Y | X) +483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 96%. For people who blow out candles, the probability of dark room is 61%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.61 +0.61 - 0.96 = -0.35 +-0.35 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look at how the man in the room correlates with room case by case according to the candle. Method 2: We look directly at how the man in the room correlates with room in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 89%. For people who blow out candles, the probability of dark room is 57%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.57 +0.57 - 0.89 = -0.32 +-0.32 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 20%. The probability of not blowing out the candle and dark room is 72%. The probability of blowing out the candle and dark room is 11%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.72 +P(Y=1, X=1=1) = 0.11 +0.11/0.20 - 0.72/0.80 = -0.32 +-0.32 < 0",fork,candle,1,correlation,P(Y | X) +502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 88%. For people who blow out candles, the probability of dark room is 57%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.57 +0.57 - 0.88 = -0.31 +-0.31 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 12%. For people not blowing out candles, the probability of dark room is 88%. For people who blow out candles, the probability of dark room is 57%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.57 +0.12*0.57 - 0.88*0.88 = 0.84 +0.84 > 0",fork,candle,1,marginal,P(Y) +508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look at how the man in the room correlates with room case by case according to the candle. Method 2: We look directly at how the man in the room correlates with room in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 85%. For people who blow out candles, the probability of dark room is 52%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.52 +0.52 - 0.85 = -0.34 +-0.34 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look directly at how the man in the room correlates with room in general. Method 2: We look at this correlation case by case according to the candle.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 82%. For people who blow out candles, the probability of dark room is 47%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.47 +0.47 - 0.82 = -0.35 +-0.35 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 20%. The probability of not blowing out the candle and dark room is 79%. The probability of blowing out the candle and dark room is 11%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.11 +0.11/0.20 - 0.79/0.80 = -0.43 +-0.43 < 0",fork,candle,1,correlation,P(Y | X) +557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 20%. The probability of not blowing out the candle and dark room is 79%. The probability of blowing out the candle and dark room is 11%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.11 +0.11/0.20 - 0.79/0.80 = -0.43 +-0.43 < 0",fork,candle,1,correlation,P(Y | X) +591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 88%. For people who blow out candles, the probability of dark room is 55%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.55 +0.55 - 0.88 = -0.32 +-0.32 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 2%. For people not blowing out candles, the probability of dark room is 88%. For people who blow out candles, the probability of dark room is 55%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.55 +0.02*0.55 - 0.98*0.88 = 0.87 +0.87 > 0",fork,candle,1,marginal,P(Y) +609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look directly at how the man in the room correlates with room in general. Method 2: We look at this correlation case by case according to the candle.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +613,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 94%. For people who blow out candles, the probability of dark room is 60%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.60 +0.60 - 0.94 = -0.34 +-0.34 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 78%. For people who blow out candles, the probability of dark room is 45%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.45 +0.45 - 0.78 = -0.34 +-0.34 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 5%. For people not blowing out candles, the probability of dark room is 89%. For people who blow out candles, the probability of dark room is 56%.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.56 +0.05*0.56 - 0.95*0.89 = 0.87 +0.87 > 0",fork,candle,1,marginal,P(Y) +648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look at how the man in the room correlates with room case by case according to the candle. Method 2: We look directly at how the man in the room correlates with room in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. For people not blowing out candles, the probability of dark room is 84%. For people who blow out candles, the probability of dark room is 52%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.52 +0.52 - 0.84 = -0.33 +-0.33 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look at how the man in the room correlates with room case by case according to the candle. Method 2: We look directly at how the man in the room correlates with room in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. The overall probability of blowing out the candle is 14%. The probability of not blowing out the candle and dark room is 79%. The probability of blowing out the candle and dark room is 8%.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.08 +0.08/0.14 - 0.79/0.86 = -0.33 +-0.33 < 0",fork,candle,1,correlation,P(Y | X) +719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. Method 1: We look directly at how the man in the room correlates with room in general. Method 2: We look at this correlation case by case according to the candle.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 29%. For managers who don't sign termination letters, the probability of employee being fired is 81%. For managers who sign termination letters, the probability of employee being fired is 46%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.46 +0.29*0.46 - 0.71*0.81 = 0.70 +0.70 > 0",diamondcut,firing_employee,1,marginal,P(Y) +736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 25%. The probability of manager not signing the termination letter and employee being fired is 52%. The probability of manager signing the termination letter and employee being fired is 8%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.08 +0.08/0.25 - 0.52/0.75 = -0.37 +-0.37 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 57%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 22%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 76%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 43%. The overall probability of CEO's decision to fire the employee is 88%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.57 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.76 +P(Y=1 | V1=1, X=1) = 0.43 +P(V1=1) = 0.88 +0.12 * (0.22 - 0.57) 0.88 * (0.43 - 0.76) = -0.33 +-0.33 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 20%. For managers who don't sign termination letters, the probability of employee being fired is 76%. For managers who sign termination letters, the probability of employee being fired is 34%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.34 +0.20*0.34 - 0.80*0.76 = 0.67 +0.67 > 0",diamondcut,firing_employee,1,marginal,P(Y) +778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. Method 1: We look directly at how manager correlates with employee in general. Method 2: We look at this correlation case by case according to director.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 54%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 14%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 70%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 27%. The overall probability of CEO's decision to fire the employee is 87%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.54 +P(Y=1 | V1=0, X=1) = 0.14 +P(Y=1 | V1=1, X=0) = 0.70 +P(Y=1 | V1=1, X=1) = 0.27 +P(V1=1) = 0.87 +0.13 * (0.14 - 0.54) 0.87 * (0.27 - 0.70) = -0.43 +-0.43 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. Method 1: We look directly at how manager correlates with employee in general. Method 2: We look at this correlation case by case according to director.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 84%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 44%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 49%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 8%. For managers who don't sign termination letters, the probability of director signing the termination letter is 37%. For managers who sign termination letters, the probability of director signing the termination letter is 67%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.08 +P(V3=1 | X=0) = 0.37 +P(V3=1 | X=1) = 0.67 +0.67 * (0.08 - 0.49) + 0.37 * (0.44 - 0.84) = -0.35 +-0.35 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 15%. For managers who don't sign termination letters, the probability of employee being fired is 77%. For managers who sign termination letters, the probability of employee being fired is 38%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.38 +0.15*0.38 - 0.85*0.77 = 0.71 +0.71 > 0",diamondcut,firing_employee,1,marginal,P(Y) +841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 44%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 7%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 76%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 34%. The overall probability of CEO's decision to fire the employee is 89%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.07 +P(Y=1 | V1=1, X=0) = 0.76 +P(Y=1 | V1=1, X=1) = 0.34 +P(V1=1) = 0.89 +0.11 * (0.07 - 0.44) 0.89 * (0.34 - 0.76) = -0.41 +-0.41 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 24%. For managers who don't sign termination letters, the probability of employee being fired is 75%. For managers who sign termination letters, the probability of employee being fired is 23%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.23 +0.24*0.23 - 0.76*0.75 = 0.62 +0.62 > 0",diamondcut,firing_employee,1,marginal,P(Y) +847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 24%. The probability of manager not signing the termination letter and employee being fired is 57%. The probability of manager signing the termination letter and employee being fired is 6%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.57 +P(Y=1, X=1=1) = 0.06 +0.06/0.24 - 0.57/0.76 = -0.52 +-0.52 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. Method 1: We look at how manager correlates with employee case by case according to director. Method 2: We look directly at how manager correlates with employee in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 99%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 62%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 55%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 21%. For managers who don't sign termination letters, the probability of director signing the termination letter is 27%. For managers who sign termination letters, the probability of director signing the termination letter is 38%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0) = 0.27 +P(V3=1 | X=1) = 0.38 +0.38 * (0.21 - 0.55) + 0.27 * (0.62 - 0.99) = -0.43 +-0.43 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. Method 1: We look at how manager correlates with employee case by case according to director. Method 2: We look directly at how manager correlates with employee in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 72%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 26%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 93%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 47%. The overall probability of CEO's decision to fire the employee is 89%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.72 +P(Y=1 | V1=0, X=1) = 0.26 +P(Y=1 | V1=1, X=0) = 0.93 +P(Y=1 | V1=1, X=1) = 0.47 +P(V1=1) = 0.89 +0.11 * (0.26 - 0.72) 0.89 * (0.47 - 0.93) = -0.46 +-0.46 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 53%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 22%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 73%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 42%. The overall probability of CEO's decision to fire the employee is 81%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.73 +P(Y=1 | V1=1, X=1) = 0.42 +P(V1=1) = 0.81 +0.19 * (0.22 - 0.53) 0.81 * (0.42 - 0.73) = -0.32 +-0.32 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 33%. The probability of manager not signing the termination letter and employee being fired is 48%. The probability of manager signing the termination letter and employee being fired is 11%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.11 +0.11/0.33 - 0.48/0.67 = -0.38 +-0.38 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 66%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 19%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 81%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 37%. The overall probability of CEO's decision to fire the employee is 88%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.19 +P(Y=1 | V1=1, X=0) = 0.81 +P(Y=1 | V1=1, X=1) = 0.37 +P(V1=1) = 0.88 +0.12 * (0.19 - 0.66) 0.88 * (0.37 - 0.81) = -0.45 +-0.45 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 87%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 52%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 44%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 3%. For managers who don't sign termination letters, the probability of director signing the termination letter is 20%. For managers who sign termination letters, the probability of director signing the termination letter is 40%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.03 +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.40 +0.40 * (0.03 - 0.44) + 0.20 * (0.52 - 0.87) = -0.46 +-0.46 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 15%. For managers who don't sign termination letters, the probability of employee being fired is 80%. For managers who sign termination letters, the probability of employee being fired is 28%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.28 +0.15*0.28 - 0.85*0.80 = 0.72 +0.72 > 0",diamondcut,firing_employee,1,marginal,P(Y) +912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 99%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 65%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 56%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 20%. For managers who don't sign termination letters, the probability of director signing the termination letter is 17%. For managers who sign termination letters, the probability of director signing the termination letter is 39%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.39 +0.39 * (0.20 - 0.56) + 0.17 * (0.65 - 0.99) = -0.43 +-0.43 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. Method 1: We look directly at how manager correlates with employee in general. Method 2: We look at this correlation case by case according to director.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 25%. The probability of manager not signing the termination letter and employee being fired is 59%. The probability of manager signing the termination letter and employee being fired is 6%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.59 +P(Y=1, X=1=1) = 0.06 +0.06/0.25 - 0.59/0.75 = -0.54 +-0.54 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 86%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 47%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 37%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 6%. For managers who don't sign termination letters, the probability of director signing the termination letter is 40%. For managers who sign termination letters, the probability of director signing the termination letter is 52%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.06 +P(V3=1 | X=0) = 0.40 +P(V3=1 | X=1) = 0.52 +0.52 * (0.06 - 0.37) + 0.40 * (0.47 - 0.86) = -0.45 +-0.45 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 20%. For managers who don't sign termination letters, the probability of employee being fired is 70%. For managers who sign termination letters, the probability of employee being fired is 21%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.21 +0.20*0.21 - 0.80*0.70 = 0.60 +0.60 > 0",diamondcut,firing_employee,1,marginal,P(Y) +981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 43%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 11%. For CEOs who fire employees and managers who don't sign termination letters, the probability of employee being fired is 74%. For CEOs who fire employees and managers who sign termination letters, the probability of employee being fired is 40%. The overall probability of CEO's decision to fire the employee is 94%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.43 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.40 +P(V1=1) = 0.94 +0.06 * (0.11 - 0.43) 0.94 * (0.40 - 0.74) = -0.34 +-0.34 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 77%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 42%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 42%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 10%. For managers who don't sign termination letters, the probability of director signing the termination letter is 9%. For managers who sign termination letters, the probability of director signing the termination letter is 23%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.23 +0.23 * (0.10 - 0.42) + 0.09 * (0.42 - 0.77) = -0.34 +-0.34 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 96%. For managers who don't sign termination letters and directors who sign termination letters, the probability of employee being fired is 57%. For managers who sign termination letters and directors who don't sign termination letters, the probability of employee being fired is 52%. For managers who sign termination letters and directors who sign termination letters, the probability of employee being fired is 10%. For managers who don't sign termination letters, the probability of director signing the termination letter is 30%. For managers who sign termination letters, the probability of director signing the termination letter is 36%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.36 +0.36 * (0.10 - 0.52) + 0.30 * (0.57 - 0.96) = -0.45 +-0.45 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 57%. For managers who don't sign termination letters, the probability of employee being fired is 84%. For managers who sign termination letters, the probability of employee being fired is 37%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.37 +0.57*0.37 - 0.43*0.84 = 0.58 +0.58 > 0",diamondcut,firing_employee,1,marginal,P(Y) +1007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. The overall probability of manager signing the termination letter is 14%. The probability of manager not signing the termination letter and employee being fired is 71%. The probability of manager signing the termination letter and employee being fired is 4%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.04 +0.04/0.14 - 0.71/0.86 = -0.54 +-0.54 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +1029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 15%. The probability of the captain's order to release the prisoner and the prisoner's death is 34%. The probability of the captain's order to execute the prisoner and the prisoner's death is 12%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.12 +0.12/0.15 - 0.34/0.85 = 0.38 +0.38 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1052,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 13%. The probability of the captain's order to release the prisoner and the prisoner's death is 30%. The probability of the captain's order to execute the prisoner and the prisoner's death is 10%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.10 +0.10/0.13 - 0.30/0.87 = 0.39 +0.39 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 31%. For captains who execute prisoners, the probability of the prisoner's death is 66%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.66 +0.66 - 0.31 = 0.36 +0.36 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 51%. For captains who release prisoners, the probability of the prisoner's death is 31%. For captains who execute prisoners, the probability of the prisoner's death is 66%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.66 +0.51*0.66 - 0.49*0.31 = 0.49 +0.49 > 0",diamond,firing_squad,1,marginal,P(Y) +1065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 51%. The probability of the captain's order to release the prisoner and the prisoner's death is 15%. The probability of the captain's order to execute the prisoner and the prisoner's death is 34%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.34 +0.34/0.51 - 0.15/0.49 = 0.36 +0.36 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 28%. For captains who execute prisoners, the probability of the prisoner's death is 75%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.75 +0.75 - 0.28 = 0.47 +0.47 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 28%. For captains who execute prisoners, the probability of the prisoner's death is 75%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.75 +0.75 - 0.28 = 0.47 +0.47 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 21%. For captains who execute prisoners, the probability of the prisoner's death is 66%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.66 +0.66 - 0.21 = 0.45 +0.45 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 57%. For captains who release prisoners, the probability of the prisoner's death is 21%. For captains who execute prisoners, the probability of the prisoner's death is 66%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.66 +0.57*0.66 - 0.43*0.21 = 0.46 +0.46 > 0",diamond,firing_squad,1,marginal,P(Y) +1094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 33%. For captains who execute prisoners, the probability of the prisoner's death is 81%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.81 +0.81 - 0.33 = 0.48 +0.48 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 24%. For captains who execute prisoners, the probability of the prisoner's death is 74%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.74 +0.74 - 0.24 = 0.50 +0.50 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 11%. For captains who execute prisoners, the probability of the prisoner's death is 55%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.55 +0.55 - 0.11 = 0.43 +0.43 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 7%. For captains who release prisoners, the probability of the prisoner's death is 11%. For captains who execute prisoners, the probability of the prisoner's death is 55%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.55 +0.07*0.55 - 0.93*0.11 = 0.15 +0.15 > 0",diamond,firing_squad,1,marginal,P(Y) +1151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look directly at how the captain correlates with prisoner in general. Method 2: We look at this correlation case by case according to the private.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +1154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 12%. For captains who execute prisoners, the probability of the prisoner's death is 61%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.61 +0.61 - 0.12 = 0.50 +0.50 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 12%. For captains who execute prisoners, the probability of the prisoner's death is 61%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.61 +0.61 - 0.12 = 0.50 +0.50 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 49%. The probability of the captain's order to release the prisoner and the prisoner's death is 6%. The probability of the captain's order to execute the prisoner and the prisoner's death is 30%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.30 +0.30/0.49 - 0.06/0.51 = 0.50 +0.50 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 36%. For captains who execute prisoners, the probability of the prisoner's death is 72%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.72 +0.72 - 0.36 = 0.36 +0.36 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 18%. For captains who release prisoners, the probability of the prisoner's death is 36%. For captains who execute prisoners, the probability of the prisoner's death is 72%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.72 +0.18*0.72 - 0.82*0.36 = 0.43 +0.43 > 0",diamond,firing_squad,1,marginal,P(Y) +1177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 20%. For captains who execute prisoners, the probability of the prisoner's death is 74%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.74 +0.74 - 0.20 = 0.53 +0.53 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 43%. The probability of the captain's order to release the prisoner and the prisoner's death is 12%. The probability of the captain's order to execute the prisoner and the prisoner's death is 31%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.31 +0.31/0.43 - 0.12/0.57 = 0.53 +0.53 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 43%. The probability of the captain's order to release the prisoner and the prisoner's death is 12%. The probability of the captain's order to execute the prisoner and the prisoner's death is 31%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.31 +0.31/0.43 - 0.12/0.57 = 0.53 +0.53 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 19%. For captains who release prisoners, the probability of the prisoner's death is 19%. For captains who execute prisoners, the probability of the prisoner's death is 73%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.73 +0.19*0.73 - 0.81*0.19 = 0.29 +0.29 > 0",diamond,firing_squad,1,marginal,P(Y) +1196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 19%. The probability of the captain's order to release the prisoner and the prisoner's death is 16%. The probability of the captain's order to execute the prisoner and the prisoner's death is 14%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.14 +0.14/0.19 - 0.16/0.81 = 0.54 +0.54 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look directly at how the captain correlates with prisoner in general. Method 2: We look at this correlation case by case according to the private.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +1200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 12%. For captains who execute prisoners, the probability of the prisoner's death is 57%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.57 +0.57 - 0.12 = 0.45 +0.45 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look at how the captain correlates with prisoner case by case according to the private. Method 2: We look directly at how the captain correlates with prisoner in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +1240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 33%. For captains who execute prisoners, the probability of the prisoner's death is 89%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.89 +0.89 - 0.33 = 0.56 +0.56 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look at how the captain correlates with prisoner case by case according to the private. Method 2: We look directly at how the captain correlates with prisoner in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +1250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 20%. For captains who execute prisoners, the probability of the prisoner's death is 60%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.60 +0.60 - 0.20 = 0.40 +0.40 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 20%. For captains who execute prisoners, the probability of the prisoner's death is 60%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.60 +0.60 - 0.20 = 0.40 +0.40 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 20%. For captains who execute prisoners, the probability of the prisoner's death is 60%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.60 +0.60 - 0.20 = 0.40 +0.40 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 8%. For captains who release prisoners, the probability of the prisoner's death is 32%. For captains who execute prisoners, the probability of the prisoner's death is 86%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.86 +0.08*0.86 - 0.92*0.32 = 0.36 +0.36 > 0",diamond,firing_squad,1,marginal,P(Y) +1270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look at how the captain correlates with prisoner case by case according to the private. Method 2: We look directly at how the captain correlates with prisoner in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +1310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 34%. For captains who execute prisoners, the probability of the prisoner's death is 79%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.79 +0.79 - 0.34 = 0.45 +0.45 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of the captain's order to execute the prisoner is 8%. The probability of the captain's order to release the prisoner and the prisoner's death is 27%. The probability of the captain's order to execute the prisoner and the prisoner's death is 6%.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.06 +0.06/0.08 - 0.27/0.92 = 0.44 +0.44 > 0",diamond,firing_squad,1,correlation,P(Y | X) +1344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 31%. For captains who execute prisoners, the probability of the prisoner's death is 72%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.72 +0.72 - 0.31 = 0.41 +0.41 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For captains who release prisoners, the probability of the prisoner's death is 37%. For captains who execute prisoners, the probability of the prisoner's death is 69%.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.69 +0.69 - 0.37 = 0.32 +0.32 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 62%. For in the rainy season, the probability of wet ground is 69%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.69 +0.69 - 0.62 = 0.07 +0.07 > 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 62%. For in the rainy season, the probability of wet ground is 69%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.69 +0.69 - 0.62 = 0.07 +0.07 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 93%. For people in the dry season, the probability of wet ground is 62%. For in the rainy season, the probability of wet ground is 69%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.69 +0.93*0.69 - 0.07*0.62 = 0.68 +0.68 > 0",diamond,floor_wet,1,marginal,P(Y) +1428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 41%. For in the rainy season, the probability of wet ground is 38%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.38 +0.38 - 0.41 = -0.03 +-0.03 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 41%. For in the rainy season, the probability of wet ground is 38%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.38 +0.38 - 0.41 = -0.03 +-0.03 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. Method 1: We look at how season correlates with ground case by case according to sprinkler. Method 2: We look directly at how season correlates with ground in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +1441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 46%. For in the rainy season, the probability of wet ground is 44%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.44 +0.44 - 0.46 = -0.02 +-0.02 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 86%. The probability of dry season and wet ground is 7%. The probability of rainy season and wet ground is 38%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.38 +0.38/0.86 - 0.07/0.14 = -0.02 +-0.02 < 0",diamond,floor_wet,1,correlation,P(Y | X) +1460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 87%. The probability of dry season and wet ground is 7%. The probability of rainy season and wet ground is 52%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.52 +0.52/0.87 - 0.07/0.13 = 0.05 +0.05 > 0",diamond,floor_wet,1,correlation,P(Y | X) +1483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 90%. For people in the dry season, the probability of wet ground is 51%. For in the rainy season, the probability of wet ground is 51%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.51 +0.90*0.51 - 0.10*0.51 = 0.51 +0.51 > 0",diamond,floor_wet,1,marginal,P(Y) +1484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 90%. The probability of dry season and wet ground is 5%. The probability of rainy season and wet ground is 46%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.46 +0.46/0.90 - 0.05/0.10 = 0.01 +0.01 > 0",diamond,floor_wet,1,correlation,P(Y | X) +1485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 90%. The probability of dry season and wet ground is 5%. The probability of rainy season and wet ground is 46%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.46 +0.46/0.90 - 0.05/0.10 = 0.01 +0.01 > 0",diamond,floor_wet,1,correlation,P(Y | X) +1517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 41%. For in the rainy season, the probability of wet ground is 40%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.40 +0.40 - 0.41 = -0.01 +-0.01 < 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 46%. For in the rainy season, the probability of wet ground is 47%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.47 - 0.46 = 0.01 +0.01 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. Method 1: We look at how season correlates with ground case by case according to sprinkler. Method 2: We look directly at how season correlates with ground in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +1551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 54%. For in the rainy season, the probability of wet ground is 43%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.43 +0.43 - 0.54 = -0.11 +-0.11 < 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 84%. For people in the dry season, the probability of wet ground is 54%. For in the rainy season, the probability of wet ground is 43%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.43 +0.84*0.43 - 0.16*0.54 = 0.45 +0.45 > 0",diamond,floor_wet,1,marginal,P(Y) +1562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 36%. For in the rainy season, the probability of wet ground is 35%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.35 +0.35 - 0.36 = -0.01 +-0.01 < 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. Method 1: We look at how season correlates with ground case by case according to sprinkler. Method 2: We look directly at how season correlates with ground in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +1588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 43%. For in the rainy season, the probability of wet ground is 53%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.53 +0.53 - 0.43 = 0.09 +0.09 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 99%. For people in the dry season, the probability of wet ground is 43%. For in the rainy season, the probability of wet ground is 53%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.53 +0.99*0.53 - 0.01*0.43 = 0.53 +0.53 > 0",diamond,floor_wet,1,marginal,P(Y) +1595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. Method 1: We look directly at how season correlates with ground in general. Method 2: We look at this correlation case by case according to sprinkler.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +1598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 46%. For in the rainy season, the probability of wet ground is 64%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.64 +0.64 - 0.46 = 0.18 +0.18 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 46%. For in the rainy season, the probability of wet ground is 64%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.64 +0.64 - 0.46 = 0.18 +0.18 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 46%. For in the rainy season, the probability of wet ground is 57%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.57 +0.57 - 0.46 = 0.11 +0.11 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 99%. For people in the dry season, the probability of wet ground is 46%. For in the rainy season, the probability of wet ground is 57%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.57 +0.99*0.57 - 0.01*0.46 = 0.57 +0.57 > 0",diamond,floor_wet,1,marginal,P(Y) +1636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 66%. For in the rainy season, the probability of wet ground is 62%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.62 +0.62 - 0.66 = -0.04 +-0.04 < 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 66%. For in the rainy season, the probability of wet ground is 62%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.62 +0.62 - 0.66 = -0.04 +-0.04 < 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +1657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. For people in the dry season, the probability of wet ground is 43%. For in the rainy season, the probability of wet ground is 39%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.39 +0.39 - 0.43 = -0.04 +-0.04 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 83%. For people in the dry season, the probability of wet ground is 50%. For in the rainy season, the probability of wet ground is 51%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.51 +0.83*0.51 - 0.17*0.50 = 0.51 +0.51 > 0",diamond,floor_wet,1,marginal,P(Y) +1722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 95%. For people in the dry season, the probability of wet ground is 49%. For in the rainy season, the probability of wet ground is 49%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.95*0.49 - 0.05*0.49 = 0.49 +0.49 > 0",diamond,floor_wet,1,marginal,P(Y) +1723,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 95%. For people in the dry season, the probability of wet ground is 49%. For in the rainy season, the probability of wet ground is 49%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.95*0.49 - 0.05*0.49 = 0.49 +0.49 > 0",diamond,floor_wet,1,marginal,P(Y) +1726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. Method 1: We look at how season correlates with ground case by case according to sprinkler. Method 2: We look directly at how season correlates with ground in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +1737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. The overall probability of rainy season is 85%. The probability of dry season and wet ground is 8%. The probability of rainy season and wet ground is 45%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.45 +0.45/0.85 - 0.08/0.15 = -0.01 +-0.01 < 0",diamond,floor_wet,1,correlation,P(Y | X) +1748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look at how the camper correlates with the forest case by case according to the smoker. Method 2: We look directly at how the camper correlates with the forest in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 90%. The probability of the camper not lighting a match and the forest on fire is 8%. The probability of the camper lighting a match and the forest on fire is 46%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.46 +0.46/0.90 - 0.08/0.10 = -0.32 +-0.32 < 0",fork,forest_fire,1,correlation,P(Y | X) +1759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look directly at how the camper correlates with the forest in general. Method 2: We look at this correlation case by case according to the smoker.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look directly at how the camper correlates with the forest in general. Method 2: We look at this correlation case by case according to the smoker.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 98%. The probability of the camper not lighting a match and the forest on fire is 2%. The probability of the camper lighting a match and the forest on fire is 48%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.48 +0.48/0.98 - 0.02/0.02 = -0.35 +-0.35 < 0",fork,forest_fire,1,correlation,P(Y | X) +1780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 69%. For campers who light a match, the probability of the forest on fire is 52%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.52 +0.52 - 0.69 = -0.17 +-0.17 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 94%. For campers who do not light a match, the probability of the forest on fire is 69%. For campers who light a match, the probability of the forest on fire is 52%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.52 +0.94*0.52 - 0.06*0.69 = 0.53 +0.53 > 0",fork,forest_fire,1,marginal,P(Y) +1795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 99%. For campers who do not light a match, the probability of the forest on fire is 95%. For campers who light a match, the probability of the forest on fire is 60%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.60 +0.99*0.60 - 0.01*0.95 = 0.60 +0.60 > 0",fork,forest_fire,1,marginal,P(Y) +1824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 94%. For campers who do not light a match, the probability of the forest on fire is 75%. For campers who light a match, the probability of the forest on fire is 59%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.59 +0.94*0.59 - 0.06*0.75 = 0.60 +0.60 > 0",fork,forest_fire,1,marginal,P(Y) +1826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 94%. The probability of the camper not lighting a match and the forest on fire is 5%. The probability of the camper lighting a match and the forest on fire is 56%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.56 +0.56/0.94 - 0.05/0.06 = -0.16 +-0.16 < 0",fork,forest_fire,1,correlation,P(Y | X) +1831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 83%. For campers who light a match, the probability of the forest on fire is 45%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.45 +0.45 - 0.83 = -0.39 +-0.39 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 73%. For campers who light a match, the probability of the forest on fire is 57%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.57 - 0.73 = -0.17 +-0.17 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 86%. For campers who light a match, the probability of the forest on fire is 72%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.72 +0.72 - 0.86 = -0.13 +-0.13 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 83%. For campers who light a match, the probability of the forest on fire is 48%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.48 +0.48 - 0.83 = -0.34 +-0.34 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 97%. The probability of the camper not lighting a match and the forest on fire is 2%. The probability of the camper lighting a match and the forest on fire is 52%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.52 +0.52/0.97 - 0.02/0.03 = -0.12 +-0.12 < 0",fork,forest_fire,1,correlation,P(Y | X) +1890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 80%. For campers who light a match, the probability of the forest on fire is 48%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.48 +0.48 - 0.80 = -0.33 +-0.33 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 95%. The probability of the camper not lighting a match and the forest on fire is 4%. The probability of the camper lighting a match and the forest on fire is 45%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.45 +0.45/0.95 - 0.04/0.05 = -0.33 +-0.33 < 0",fork,forest_fire,1,correlation,P(Y | X) +1900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 78%. For campers who light a match, the probability of the forest on fire is 60%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.60 +0.60 - 0.78 = -0.18 +-0.18 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 92%. The probability of the camper not lighting a match and the forest on fire is 6%. The probability of the camper lighting a match and the forest on fire is 55%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.55 +0.55/0.92 - 0.06/0.08 = -0.18 +-0.18 < 0",fork,forest_fire,1,correlation,P(Y | X) +1910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 79%. For campers who light a match, the probability of the forest on fire is 44%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.44 +0.44 - 0.79 = -0.35 +-0.35 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 79%. For campers who light a match, the probability of the forest on fire is 44%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.44 +0.44 - 0.79 = -0.35 +-0.35 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 99%. For campers who do not light a match, the probability of the forest on fire is 71%. For campers who light a match, the probability of the forest on fire is 59%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.59 +0.99*0.59 - 0.01*0.71 = 0.59 +0.59 > 0",fork,forest_fire,1,marginal,P(Y) +1929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look directly at how the camper correlates with the forest in general. Method 2: We look at this correlation case by case according to the smoker.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 80%. For campers who light a match, the probability of the forest on fire is 47%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.47 +0.47 - 0.80 = -0.34 +-0.34 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +1934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 98%. For campers who do not light a match, the probability of the forest on fire is 80%. For campers who light a match, the probability of the forest on fire is 47%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.47 +0.98*0.47 - 0.02*0.80 = 0.48 +0.48 > 0",fork,forest_fire,1,marginal,P(Y) +1937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 98%. The probability of the camper not lighting a match and the forest on fire is 2%. The probability of the camper lighting a match and the forest on fire is 46%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.46 +0.46/0.98 - 0.02/0.02 = -0.34 +-0.34 < 0",fork,forest_fire,1,correlation,P(Y | X) +1938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look at how the camper correlates with the forest case by case according to the smoker. Method 2: We look directly at how the camper correlates with the forest in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look directly at how the camper correlates with the forest in general. Method 2: We look at this correlation case by case according to the smoker.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 90%. The probability of the camper not lighting a match and the forest on fire is 8%. The probability of the camper lighting a match and the forest on fire is 57%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.57 +0.57/0.90 - 0.08/0.10 = -0.17 +-0.17 < 0",fork,forest_fire,1,correlation,P(Y | X) +1968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look at how the camper correlates with the forest case by case according to the smoker. Method 2: We look directly at how the camper correlates with the forest in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +1991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 97%. For campers who light a match, the probability of the forest on fire is 65%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.65 +0.65 - 0.97 = -0.32 +-0.32 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +1997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 96%. The probability of the camper not lighting a match and the forest on fire is 4%. The probability of the camper lighting a match and the forest on fire is 62%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.62 +0.62/0.96 - 0.04/0.04 = -0.32 +-0.32 < 0",fork,forest_fire,1,correlation,P(Y | X) +2000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 73%. For campers who light a match, the probability of the forest on fire is 57%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.57 - 0.73 = -0.16 +-0.16 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 99%. For campers who do not light a match, the probability of the forest on fire is 73%. For campers who light a match, the probability of the forest on fire is 57%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.99*0.57 - 0.01*0.73 = 0.57 +0.57 > 0",fork,forest_fire,1,marginal,P(Y) +2022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. For campers who do not light a match, the probability of the forest on fire is 78%. For campers who light a match, the probability of the forest on fire is 45%.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.45 +0.45 - 0.78 = -0.33 +-0.33 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of the camper lighting a match is 99%. The probability of the camper not lighting a match and the forest on fire is 0%. The probability of the camper lighting a match and the forest on fire is 45%.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.99 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.45 +0.45/0.99 - 0.00/0.01 = -0.33 +-0.33 < 0",fork,forest_fire,1,correlation,P(Y | X) +2028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look at how the camper correlates with the forest case by case according to the smoker. Method 2: We look directly at how the camper correlates with the forest in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +2040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 37%. For days when Alice wakes up late, the probability of arriving to school on time is 71%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.71 +0.71 - 0.37 = 0.34 +0.34 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. Method 1: We look at how Alice waking up correlates with Alice arriving to school case by case according to traffic. Method 2: We look directly at how Alice waking up correlates with Alice arriving to school in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +2054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 19%. For days when Alice wakes up on time, the probability of arriving to school on time is 44%. For days when Alice wakes up late, the probability of arriving to school on time is 78%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.78 +0.19*0.78 - 0.81*0.44 = 0.50 +0.50 > 0",fork,getting_late,1,marginal,P(Y) +2069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. Method 1: We look directly at how Alice waking up correlates with Alice arriving to school in general. Method 2: We look at this correlation case by case according to traffic.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +2077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 12%. The probability of waking up on time and arriving to school on time is 46%. The probability of waking up late and arriving to school on time is 10%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.10 +0.10/0.12 - 0.46/0.88 = 0.33 +0.33 > 0",fork,getting_late,1,correlation,P(Y | X) +2132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 42%. For days when Alice wakes up late, the probability of arriving to school on time is 76%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.76 +0.76 - 0.42 = 0.34 +0.34 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. Method 1: We look directly at how Alice waking up correlates with Alice arriving to school in general. Method 2: We look at this correlation case by case according to traffic.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +2141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 46%. For days when Alice wakes up late, the probability of arriving to school on time is 79%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.79 +0.79 - 0.46 = 0.34 +0.34 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 12%. The probability of waking up on time and arriving to school on time is 41%. The probability of waking up late and arriving to school on time is 9%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.09 +0.09/0.12 - 0.41/0.88 = 0.34 +0.34 > 0",fork,getting_late,1,correlation,P(Y | X) +2162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 43%. For days when Alice wakes up late, the probability of arriving to school on time is 76%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.76 +0.76 - 0.43 = 0.34 +0.34 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 12%. For days when Alice wakes up on time, the probability of arriving to school on time is 43%. For days when Alice wakes up late, the probability of arriving to school on time is 76%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.76 +0.12*0.76 - 0.88*0.43 = 0.47 +0.47 > 0",fork,getting_late,1,marginal,P(Y) +2182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 52%. For days when Alice wakes up late, the probability of arriving to school on time is 87%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.87 +0.87 - 0.52 = 0.35 +0.35 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 46%. For days when Alice wakes up late, the probability of arriving to school on time is 80%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.80 +0.80 - 0.46 = 0.34 +0.34 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. Method 1: We look directly at how Alice waking up correlates with Alice arriving to school in general. Method 2: We look at this correlation case by case according to traffic.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +2210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 52%. For days when Alice wakes up late, the probability of arriving to school on time is 84%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.84 +0.84 - 0.52 = 0.33 +0.33 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 11%. For days when Alice wakes up on time, the probability of arriving to school on time is 52%. For days when Alice wakes up late, the probability of arriving to school on time is 84%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.84 +0.11*0.84 - 0.89*0.52 = 0.56 +0.56 > 0",fork,getting_late,1,marginal,P(Y) +2217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 11%. The probability of waking up on time and arriving to school on time is 46%. The probability of waking up late and arriving to school on time is 10%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.10 +0.10/0.11 - 0.46/0.89 = 0.33 +0.33 > 0",fork,getting_late,1,correlation,P(Y | X) +2221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 52%. For days when Alice wakes up late, the probability of arriving to school on time is 83%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.83 +0.83 - 0.52 = 0.32 +0.32 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 52%. For days when Alice wakes up late, the probability of arriving to school on time is 83%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.83 +0.83 - 0.52 = 0.32 +0.32 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 46%. For days when Alice wakes up late, the probability of arriving to school on time is 78%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.78 +0.78 - 0.46 = 0.32 +0.32 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 14%. For days when Alice wakes up on time, the probability of arriving to school on time is 54%. For days when Alice wakes up late, the probability of arriving to school on time is 85%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.85 +0.14*0.85 - 0.86*0.54 = 0.59 +0.59 > 0",fork,getting_late,1,marginal,P(Y) +2245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 14%. For days when Alice wakes up on time, the probability of arriving to school on time is 54%. For days when Alice wakes up late, the probability of arriving to school on time is 85%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.85 +0.14*0.85 - 0.86*0.54 = 0.59 +0.59 > 0",fork,getting_late,1,marginal,P(Y) +2247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 14%. The probability of waking up on time and arriving to school on time is 46%. The probability of waking up late and arriving to school on time is 12%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.12 +0.12/0.14 - 0.46/0.86 = 0.31 +0.31 > 0",fork,getting_late,1,correlation,P(Y | X) +2262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. For days when Alice wakes up on time, the probability of arriving to school on time is 49%. For days when Alice wakes up late, the probability of arriving to school on time is 84%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.84 +0.84 - 0.49 = 0.35 +0.35 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 10%. For days when Alice wakes up on time, the probability of arriving to school on time is 51%. For days when Alice wakes up late, the probability of arriving to school on time is 82%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.82 +0.10*0.82 - 0.90*0.51 = 0.54 +0.54 > 0",fork,getting_late,1,marginal,P(Y) +2315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 6%. For days when Alice wakes up on time, the probability of arriving to school on time is 47%. For days when Alice wakes up late, the probability of arriving to school on time is 86%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.86 +0.06*0.86 - 0.94*0.47 = 0.49 +0.49 > 0",fork,getting_late,1,marginal,P(Y) +2325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 11%. For days when Alice wakes up on time, the probability of arriving to school on time is 39%. For days when Alice wakes up late, the probability of arriving to school on time is 70%.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.70 +0.11*0.70 - 0.89*0.39 = 0.43 +0.43 > 0",fork,getting_late,1,marginal,P(Y) +2337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. The overall probability of waking up late is 14%. The probability of waking up on time and arriving to school on time is 41%. The probability of waking up late and arriving to school on time is 12%.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.12 +0.12/0.14 - 0.41/0.86 = 0.32 +0.32 > 0",fork,getting_late,1,correlation,P(Y | X) +2339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. Method 1: We look directly at how Alice waking up correlates with Alice arriving to school in general. Method 2: We look at this correlation case by case according to traffic.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +2344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 89%. For people not using tanning salon treatments, the probability of tanned skin is 54%. For people who went to tanning salons, the probability of tanned skin is 16%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.16 +0.89*0.16 - 0.11*0.54 = 0.20 +0.20 > 0",fork,getting_tanned,1,marginal,P(Y) +2352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 62%. For people who went to tanning salons, the probability of tanned skin is 18%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.18 +0.18 - 0.62 = -0.44 +-0.44 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. Method 1: We look directly at how tanning salon treatment correlates with skin in general. Method 2: We look at this correlation case by case according to going to the beach.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +2389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. Method 1: We look directly at how tanning salon treatment correlates with skin in general. Method 2: We look at this correlation case by case according to going to the beach.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +2397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 91%. The probability of no tanning salon treatment and tanned skin is 6%. The probability of tanning salon treatment and tanned skin is 27%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.27 +0.27/0.91 - 0.06/0.09 = -0.44 +-0.44 < 0",fork,getting_tanned,1,correlation,P(Y | X) +2420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 70%. For people who went to tanning salons, the probability of tanned skin is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.28 +0.28 - 0.70 = -0.42 +-0.42 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 69%. For people who went to tanning salons, the probability of tanned skin is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.28 +0.28 - 0.69 = -0.41 +-0.41 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 69%. For people who went to tanning salons, the probability of tanned skin is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.28 +0.28 - 0.69 = -0.41 +-0.41 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 95%. For people not using tanning salon treatments, the probability of tanned skin is 69%. For people who went to tanning salons, the probability of tanned skin is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.28 +0.95*0.28 - 0.05*0.69 = 0.30 +0.30 > 0",fork,getting_tanned,1,marginal,P(Y) +2456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 95%. The probability of no tanning salon treatment and tanned skin is 3%. The probability of tanning salon treatment and tanned skin is 27%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.27 +0.27/0.95 - 0.03/0.05 = -0.41 +-0.41 < 0",fork,getting_tanned,1,correlation,P(Y | X) +2474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 88%. For people not using tanning salon treatments, the probability of tanned skin is 65%. For people who went to tanning salons, the probability of tanned skin is 29%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.29 +0.88*0.29 - 0.12*0.65 = 0.33 +0.33 > 0",fork,getting_tanned,1,marginal,P(Y) +2485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 92%. For people not using tanning salon treatments, the probability of tanned skin is 75%. For people who went to tanning salons, the probability of tanned skin is 34%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.34 +0.92*0.34 - 0.08*0.75 = 0.37 +0.37 > 0",fork,getting_tanned,1,marginal,P(Y) +2491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 83%. For people who went to tanning salons, the probability of tanned skin is 33%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.33 +0.33 - 0.83 = -0.50 +-0.50 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 83%. For people who went to tanning salons, the probability of tanned skin is 33%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.33 +0.33 - 0.83 = -0.50 +-0.50 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 91%. For people not using tanning salon treatments, the probability of tanned skin is 56%. For people who went to tanning salons, the probability of tanned skin is 20%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.20 +0.91*0.20 - 0.09*0.56 = 0.23 +0.23 > 0",fork,getting_tanned,1,marginal,P(Y) +2506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 91%. The probability of no tanning salon treatment and tanned skin is 5%. The probability of tanning salon treatment and tanned skin is 18%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.18 +0.18/0.91 - 0.05/0.09 = -0.36 +-0.36 < 0",fork,getting_tanned,1,correlation,P(Y | X) +2521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 56%. For people who went to tanning salons, the probability of tanned skin is 22%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.22 +0.22 - 0.56 = -0.35 +-0.35 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 96%. The probability of no tanning salon treatment and tanned skin is 2%. The probability of tanning salon treatment and tanned skin is 27%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.27 +0.27/0.96 - 0.02/0.04 = -0.35 +-0.35 < 0",fork,getting_tanned,1,correlation,P(Y | X) +2541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 75%. For people who went to tanning salons, the probability of tanned skin is 35%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.35 +0.35 - 0.75 = -0.40 +-0.40 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. Method 1: We look directly at how tanning salon treatment correlates with skin in general. Method 2: We look at this correlation case by case according to going to the beach.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +2556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 85%. The probability of no tanning salon treatment and tanned skin is 8%. The probability of tanning salon treatment and tanned skin is 16%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.16 +0.16/0.85 - 0.08/0.15 = -0.39 +-0.39 < 0",fork,getting_tanned,1,correlation,P(Y | X) +2561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. For people not using tanning salon treatments, the probability of tanned skin is 69%. For people who went to tanning salons, the probability of tanned skin is 23%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.23 +0.23 - 0.69 = -0.46 +-0.46 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 93%. For people not using tanning salon treatments, the probability of tanned skin is 71%. For people who went to tanning salons, the probability of tanned skin is 31%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.31 +0.93*0.31 - 0.07*0.71 = 0.34 +0.34 > 0",fork,getting_tanned,1,marginal,P(Y) +2587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 93%. The probability of no tanning salon treatment and tanned skin is 5%. The probability of tanning salon treatment and tanned skin is 29%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.29 +0.29/0.93 - 0.05/0.07 = -0.40 +-0.40 < 0",fork,getting_tanned,1,correlation,P(Y | X) +2615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. The overall probability of tanning salon treatment is 89%. For people not using tanning salon treatments, the probability of tanned skin is 77%. For people who went to tanning salons, the probability of tanned skin is 39%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.39 +0.89*0.39 - 0.11*0.77 = 0.43 +0.43 > 0",fork,getting_tanned,1,marginal,P(Y) +2618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. Method 1: We look at how tanning salon treatment correlates with skin case by case according to going to the beach. Method 2: We look directly at how tanning salon treatment correlates with skin in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +2619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. Method 1: We look directly at how tanning salon treatment correlates with skin in general. Method 2: We look at this correlation case by case according to going to the beach.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +2654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 63%. For those who choose to take the elevator, the probability of penguin death is 7%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.07 +0.07 - 0.63 = -0.55 +-0.55 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 63%. For those who choose to take the elevator, the probability of penguin death is 7%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.07 +0.07 - 0.63 = -0.55 +-0.55 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 70%. For those who choose to take the elevator, the probability of penguin death is 17%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.17 +0.17 - 0.70 = -0.53 +-0.53 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 72%. For those who choose to take the elevator, the probability of penguin death is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.24 - 0.72 = -0.49 +-0.49 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 72%. For those who choose to take the elevator, the probability of penguin death is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.24 - 0.72 = -0.49 +-0.49 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 76%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 64%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 18%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 25%. For those who choose to take the stairs, the probability of penguin happiness is 32%. For those who choose to take the elevator, the probability of penguin happiness is 80%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.76 +P(Y=1 | X=0, V2=1) = 0.64 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.25 +P(V2=1 | X=0) = 0.32 +P(V2=1 | X=1) = 0.80 +0.32 * (0.25 - 0.18) + 0.80 * (0.64 - 0.76) = -0.52 +-0.52 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +2719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 8%. For those who choose to take the stairs, the probability of penguin death is 48%. For those who choose to take the elevator, the probability of penguin death is 4%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.04 +0.08*0.04 - 0.92*0.48 = 0.45 +0.45 > 0",mediation,penguin,1,marginal,P(Y) +2720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 8%. The probability of taking the stairs and penguin death is 44%. The probability of taking the elevator and penguin death is 0%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.00 +0.00/0.08 - 0.44/0.92 = -0.43 +-0.43 < 0",mediation,penguin,1,correlation,P(Y | X) +2737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. Method 1: We look directly at how my decision correlates with penguin survival in general. Method 2: We look at this correlation case by case according to penguin mood.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +2753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 57%. For those who choose to take the elevator, the probability of penguin death is 2%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.02 +0.02 - 0.57 = -0.55 +-0.55 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. Method 1: We look directly at how my decision correlates with penguin survival in general. Method 2: We look at this correlation case by case according to penguin mood.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +2768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 78%. For those who choose to take the elevator, the probability of penguin death is 11%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.11 +0.11 - 0.78 = -0.67 +-0.67 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 14%. The probability of taking the stairs and penguin death is 46%. The probability of taking the elevator and penguin death is 1%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.01 +0.01/0.14 - 0.46/0.86 = -0.42 +-0.42 < 0",mediation,penguin,1,correlation,P(Y | X) +2809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 73%. For those who choose to take the elevator, the probability of penguin death is 23%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.23 +0.23 - 0.73 = -0.50 +-0.50 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 84%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 58%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 46%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 21%. For those who choose to take the stairs, the probability of penguin happiness is 41%. For those who choose to take the elevator, the probability of penguin happiness is 90%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.84 +P(Y=1 | X=0, V2=1) = 0.58 +P(Y=1 | X=1, V2=0) = 0.46 +P(Y=1 | X=1, V2=1) = 0.21 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.90 +0.41 * (0.21 - 0.46) + 0.90 * (0.58 - 0.84) = -0.37 +-0.37 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +2822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 94%. For those who choose to take the elevator, the probability of penguin death is 45%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.45 +0.45 - 0.94 = -0.49 +-0.49 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 99%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 83%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 33%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 50%. For those who choose to take the stairs, the probability of penguin happiness is 25%. For those who choose to take the elevator, the probability of penguin happiness is 73%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.99 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.33 +P(Y=1 | X=1, V2=1) = 0.50 +P(V2=1 | X=0) = 0.25 +P(V2=1 | X=1) = 0.73 +0.73 * (0.83 - 0.99)+ 0.25 * (0.50 - 0.33)= -0.08 +-0.08 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +2853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 70%. For those who choose to take the elevator, the probability of penguin death is 29%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.29 +0.29 - 0.70 = -0.41 +-0.41 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 6%. The probability of taking the stairs and penguin death is 66%. The probability of taking the elevator and penguin death is 2%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.66 +P(Y=1, X=1=1) = 0.02 +0.02/0.06 - 0.66/0.94 = -0.41 +-0.41 < 0",mediation,penguin,1,correlation,P(Y | X) +2867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 58%. For those who choose to take the elevator, the probability of penguin death is 3%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.03 +0.03 - 0.58 = -0.55 +-0.55 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +2905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. Method 1: We look directly at how my decision correlates with penguin survival in general. Method 2: We look at this correlation case by case according to penguin mood.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +2913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 66%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 59%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 19%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 28%. For those who choose to take the stairs, the probability of penguin happiness is 27%. For those who choose to take the elevator, the probability of penguin happiness is 66%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.66 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.19 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.27 +P(V2=1 | X=1) = 0.66 +0.27 * (0.28 - 0.19) + 0.66 * (0.59 - 0.66) = -0.43 +-0.43 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +2929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 15%. For those who choose to take the stairs, the probability of penguin death is 68%. For those who choose to take the elevator, the probability of penguin death is 21%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.21 +0.15*0.21 - 0.85*0.68 = 0.61 +0.61 > 0",mediation,penguin,1,marginal,P(Y) +2940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 75%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 73%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 16%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 32%. For those who choose to take the stairs, the probability of penguin happiness is 20%. For those who choose to take the elevator, the probability of penguin happiness is 100%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.73 +P(Y=1 | X=1, V2=0) = 0.16 +P(Y=1 | X=1, V2=1) = 0.32 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 1.00 +0.20 * (0.32 - 0.16) + 1.00 * (0.73 - 0.75) = -0.56 +-0.56 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +2949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 72%. For those who choose to take the elevator, the probability of penguin death is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.24 - 0.72 = -0.48 +-0.48 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +2956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 8%. For those who choose to take the stairs, the probability of penguin death is 72%. For those who choose to take the elevator, the probability of penguin death is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.08*0.24 - 0.92*0.72 = 0.68 +0.68 > 0",mediation,penguin,1,marginal,P(Y) +2957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 8%. For those who choose to take the stairs, the probability of penguin death is 72%. For those who choose to take the elevator, the probability of penguin death is 24%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.08*0.24 - 0.92*0.72 = 0.68 +0.68 > 0",mediation,penguin,1,marginal,P(Y) +3004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 75%. For those who choose to take the elevator, the probability of penguin death is 30%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.30 +0.30 - 0.75 = -0.44 +-0.44 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 85%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 59%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 45%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 23%. For those who choose to take the stairs, the probability of penguin happiness is 40%. For those who choose to take the elevator, the probability of penguin happiness is 68%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.85 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.40 +P(V2=1 | X=1) = 0.68 +0.68 * (0.59 - 0.85)+ 0.40 * (0.23 - 0.45)= -0.07 +-0.07 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3012,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 1%. For those who choose to take the stairs, the probability of penguin death is 75%. For those who choose to take the elevator, the probability of penguin death is 30%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.30 +0.01*0.30 - 0.99*0.75 = 0.74 +0.74 > 0",mediation,penguin,1,marginal,P(Y) +3017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. Method 1: We look directly at how my decision correlates with penguin survival in general. Method 2: We look at this correlation case by case according to penguin mood.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +3022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 90%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 91%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 48%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 54%. For those who choose to take the stairs, the probability of penguin happiness is 33%. For those who choose to take the elevator, the probability of penguin happiness is 75%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.90 +P(Y=1 | X=0, V2=1) = 0.91 +P(Y=1 | X=1, V2=0) = 0.48 +P(Y=1 | X=1, V2=1) = 0.54 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.75 +0.75 * (0.91 - 0.90)+ 0.33 * (0.54 - 0.48)= 0.00 +0.00 = 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 16%. The probability of taking the stairs and penguin death is 76%. The probability of taking the elevator and penguin death is 9%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.76 +P(Y=1, X=1=1) = 0.09 +0.09/0.16 - 0.76/0.84 = -0.38 +-0.38 < 0",mediation,penguin,1,correlation,P(Y | X) +3029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. The overall probability of taking the elevator is 16%. The probability of taking the stairs and penguin death is 76%. The probability of taking the elevator and penguin death is 9%.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.76 +P(Y=1, X=1=1) = 0.09 +0.09/0.16 - 0.76/0.84 = -0.38 +-0.38 < 0",mediation,penguin,1,correlation,P(Y | X) +3038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 73%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 69%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 36%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 25%. For those who choose to take the stairs, the probability of penguin happiness is 10%. For those who choose to take the elevator, the probability of penguin happiness is 71%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.69 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.25 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.71 +0.10 * (0.25 - 0.36) + 0.71 * (0.69 - 0.73) = -0.38 +-0.38 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs, the probability of penguin death is 87%. For those who choose to take the elevator, the probability of penguin death is 29%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.29 +0.29 - 0.87 = -0.58 +-0.58 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3052,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. For those who choose to take the stairs and penguins who are sad, the probability of penguin death is 87%. For those who choose to take the stairs and penguins who are happy, the probability of penguin death is 60%. For those who choose to take the elevator and penguins who are sad, the probability of penguin death is 38%. For those who choose to take the elevator and penguins who are happy, the probability of penguin death is 14%. For those who choose to take the stairs, the probability of penguin happiness is 2%. For those who choose to take the elevator, the probability of penguin happiness is 40%.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.87 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.38 +P(Y=1 | X=1, V2=1) = 0.14 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.40 +0.02 * (0.14 - 0.38) + 0.40 * (0.60 - 0.87) = -0.49 +-0.49 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 54%. For vaccinated individuals, the probability of smallpox survival is 48%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.48 +0.48 - 0.54 = -0.06 +-0.06 < 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. Method 1: We look directly at how vaccination status correlates with smallpox survival in general. Method 2: We look at this correlation case by case according to vaccination reaction.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +3088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 57%. For vaccinated individuals, the probability of smallpox survival is 66%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.66 +0.66 - 0.57 = 0.09 +0.09 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 43%. For vaccinated individuals, the probability of smallpox survival is 54%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.54 +0.54 - 0.43 = 0.11 +0.11 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 43%. For vaccinated individuals, the probability of smallpox survival is 54%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.54 +0.54 - 0.43 = 0.11 +0.11 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 35%. For vaccinated individuals, the probability of smallpox survival is 40%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.40 +0.40 - 0.35 = 0.05 +0.05 > 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 28%. For vaccinated individuals, the probability of smallpox survival is 42%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.42 +0.42 - 0.28 = 0.13 +0.13 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 2%. The probability of lack of vaccination and smallpox survival is 28%. The probability of vaccination and smallpox survival is 1%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.28/0.98 = 0.13 +0.13 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +3147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 49%. For vaccinated individuals, the probability of smallpox survival is 49%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.49 - 0.49 = -0.00 +0.00 = 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 51%. For vaccinated individuals, the probability of smallpox survival is 40%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.40 +0.40 - 0.51 = -0.12 +-0.12 < 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 8%. For unvaccinated individuals, the probability of smallpox survival is 51%. For vaccinated individuals, the probability of smallpox survival is 40%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.40 +0.08*0.40 - 0.92*0.51 = 0.50 +0.50 > 0",diamond,vaccine_kills,1,marginal,P(Y) +3166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. Method 1: We look at how vaccination status correlates with smallpox survival case by case according to vaccination reaction. Method 2: We look directly at how vaccination status correlates with smallpox survival in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +3169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 56%. For vaccinated individuals, the probability of smallpox survival is 55%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.55 +0.55 - 0.56 = -0.01 +-0.01 < 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 13%. For unvaccinated individuals, the probability of smallpox survival is 43%. For vaccinated individuals, the probability of smallpox survival is 41%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.41 +0.13*0.41 - 0.87*0.43 = 0.43 +0.43 > 0",diamond,vaccine_kills,1,marginal,P(Y) +3202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. Method 1: We look at how vaccination status correlates with smallpox survival case by case according to vaccination reaction. Method 2: We look directly at how vaccination status correlates with smallpox survival in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +3211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 2%. For unvaccinated individuals, the probability of smallpox survival is 41%. For vaccinated individuals, the probability of smallpox survival is 51%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.51 +0.02*0.51 - 0.98*0.41 = 0.41 +0.41 > 0",diamond,vaccine_kills,1,marginal,P(Y) +3218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 47%. For vaccinated individuals, the probability of smallpox survival is 52%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.52 +0.52 - 0.47 = 0.06 +0.06 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 16%. For unvaccinated individuals, the probability of smallpox survival is 47%. For vaccinated individuals, the probability of smallpox survival is 52%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.52 +0.16*0.52 - 0.84*0.47 = 0.48 +0.48 > 0",diamond,vaccine_kills,1,marginal,P(Y) +3233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 32%. For vaccinated individuals, the probability of smallpox survival is 38%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.38 +0.38 - 0.32 = 0.06 +0.06 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 4%. For unvaccinated individuals, the probability of smallpox survival is 32%. For vaccinated individuals, the probability of smallpox survival is 38%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.38 +0.04*0.38 - 0.96*0.32 = 0.32 +0.32 > 0",diamond,vaccine_kills,1,marginal,P(Y) +3237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 4%. The probability of lack of vaccination and smallpox survival is 31%. The probability of vaccination and smallpox survival is 2%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.02 +0.02/0.04 - 0.31/0.96 = 0.06 +0.06 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +3250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. Method 1: We look at how vaccination status correlates with smallpox survival case by case according to vaccination reaction. Method 2: We look directly at how vaccination status correlates with smallpox survival in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +3280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 40%. For vaccinated individuals, the probability of smallpox survival is 38%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.38 +0.38 - 0.40 = -0.03 +-0.03 < 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 18%. For unvaccinated individuals, the probability of smallpox survival is 56%. For vaccinated individuals, the probability of smallpox survival is 52%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.52 +0.18*0.52 - 0.82*0.56 = 0.56 +0.56 > 0",diamond,vaccine_kills,1,marginal,P(Y) +3304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 59%. For vaccinated individuals, the probability of smallpox survival is 53%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.53 +0.53 - 0.59 = -0.06 +-0.06 < 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 59%. For vaccinated individuals, the probability of smallpox survival is 53%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.53 +0.53 - 0.59 = -0.06 +-0.06 < 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 12%. The probability of lack of vaccination and smallpox survival is 38%. The probability of vaccination and smallpox survival is 4%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.04 +0.04/0.12 - 0.38/0.88 = -0.10 +-0.10 < 0",diamond,vaccine_kills,1,correlation,P(Y | X) +3339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 27%. For vaccinated individuals, the probability of smallpox survival is 37%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.37 +0.37 - 0.27 = 0.10 +0.10 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 5%. The probability of lack of vaccination and smallpox survival is 26%. The probability of vaccination and smallpox survival is 2%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.26/0.95 = 0.10 +0.10 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +3413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. For unvaccinated individuals, the probability of smallpox survival is 61%. For vaccinated individuals, the probability of smallpox survival is 50%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.50 +0.50 - 0.61 = -0.11 +-0.11 < 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +3417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. The overall probability of vaccination is 8%. The probability of lack of vaccination and smallpox survival is 56%. The probability of vaccination and smallpox survival is 4%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.04 +0.04/0.08 - 0.56/0.92 = -0.11 +-0.11 < 0",diamond,vaccine_kills,1,correlation,P(Y | X) +3424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 48%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 76%. For people taking medication and with low blood pressure, the probability of healthy heart is 19%. For people taking medication and with high blood pressure, the probability of healthy heart is 47%. For people not taking any medication, the probability of high blood pressure is 50%. For people taking medication, the probability of high blood pressure is 92%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.48 +P(Y=1 | X=0, V2=1) = 0.76 +P(Y=1 | X=1, V2=0) = 0.19 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.50 +P(V2=1 | X=1) = 0.92 +0.92 * (0.76 - 0.48)+ 0.50 * (0.47 - 0.19)= 0.12 +0.12 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look directly at how medication correlates with heart condition in general. Method 2: We look at this correlation case by case according to blood pressure.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3436,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 89%. For people taking medication, the probability of healthy heart is 50%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.50 +0.50 - 0.89 = -0.40 +-0.40 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look directly at how medication correlates with heart condition in general. Method 2: We look at this correlation case by case according to blood pressure.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 55%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 80%. For people taking medication and with low blood pressure, the probability of healthy heart is 26%. For people taking medication and with high blood pressure, the probability of healthy heart is 46%. For people not taking any medication, the probability of high blood pressure is 5%. For people taking medication, the probability of high blood pressure is 62%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.80 +P(Y=1 | X=1, V2=0) = 0.26 +P(Y=1 | X=1, V2=1) = 0.46 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.62 +0.05 * (0.46 - 0.26) + 0.62 * (0.80 - 0.55) = -0.30 +-0.30 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look at how medication correlates with heart condition case by case according to blood pressure. Method 2: We look directly at how medication correlates with heart condition in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look directly at how medication correlates with heart condition in general. Method 2: We look at this correlation case by case according to blood pressure.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 80%. For people taking medication, the probability of healthy heart is 22%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.22 +0.22 - 0.80 = -0.58 +-0.58 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 6%. For people not taking any medication, the probability of healthy heart is 80%. For people taking medication, the probability of healthy heart is 22%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.22 +0.06*0.22 - 0.94*0.80 = 0.76 +0.76 > 0",mediation,blood_pressure,1,marginal,P(Y) +3478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 69%. For people taking medication, the probability of healthy heart is 51%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.51 +0.51 - 0.69 = -0.18 +-0.18 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look at how medication correlates with heart condition case by case according to blood pressure. Method 2: We look directly at how medication correlates with heart condition in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 45%. For people taking medication, the probability of healthy heart is 28%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.28 +0.28 - 0.45 = -0.18 +-0.18 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 5%. The probability of not taking medication and healthy heart is 43%. The probability of taking medication and healthy heart is 1%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.01 +0.01/0.05 - 0.43/0.95 = -0.18 +-0.18 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 19%. The probability of not taking medication and healthy heart is 44%. The probability of taking medication and healthy heart is 6%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.06 +0.06/0.19 - 0.44/0.81 = -0.25 +-0.25 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look at how medication correlates with heart condition case by case according to blood pressure. Method 2: We look directly at how medication correlates with heart condition in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 57%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 89%. For people taking medication and with low blood pressure, the probability of healthy heart is 31%. For people taking medication and with high blood pressure, the probability of healthy heart is 65%. For people not taking any medication, the probability of high blood pressure is 17%. For people taking medication, the probability of high blood pressure is 71%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.57 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.31 +P(Y=1 | X=1, V2=1) = 0.65 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.71 +0.17 * (0.65 - 0.31) + 0.71 * (0.89 - 0.57) = -0.25 +-0.25 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look directly at how medication correlates with heart condition in general. Method 2: We look at this correlation case by case according to blood pressure.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 48%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 80%. For people taking medication and with low blood pressure, the probability of healthy heart is 7%. For people taking medication and with high blood pressure, the probability of healthy heart is 49%. For people not taking any medication, the probability of high blood pressure is 51%. For people taking medication, the probability of high blood pressure is 33%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.48 +P(Y=1 | X=0, V2=1) = 0.80 +P(Y=1 | X=1, V2=0) = 0.07 +P(Y=1 | X=1, V2=1) = 0.49 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.33 +0.33 * (0.80 - 0.48)+ 0.51 * (0.49 - 0.07)= -0.06 +-0.06 < 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 35%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 70%. For people taking medication and with low blood pressure, the probability of healthy heart is 7%. For people taking medication and with high blood pressure, the probability of healthy heart is 44%. For people not taking any medication, the probability of high blood pressure is 7%. For people taking medication, the probability of high blood pressure is 82%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.70 +P(Y=1 | X=1, V2=0) = 0.07 +P(Y=1 | X=1, V2=1) = 0.44 +P(V2=1 | X=0) = 0.07 +P(V2=1 | X=1) = 0.82 +0.82 * (0.70 - 0.35)+ 0.07 * (0.44 - 0.07)= 0.26 +0.26 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 35%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 70%. For people taking medication and with low blood pressure, the probability of healthy heart is 7%. For people taking medication and with high blood pressure, the probability of healthy heart is 44%. For people not taking any medication, the probability of high blood pressure is 7%. For people taking medication, the probability of high blood pressure is 82%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.70 +P(Y=1 | X=1, V2=0) = 0.07 +P(Y=1 | X=1, V2=1) = 0.44 +P(V2=1 | X=0) = 0.07 +P(V2=1 | X=1) = 0.82 +0.07 * (0.44 - 0.07) + 0.82 * (0.70 - 0.35) = -0.27 +-0.27 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 6%. For people not taking any medication, the probability of healthy heart is 37%. For people taking medication, the probability of healthy heart is 37%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.37 +0.06*0.37 - 0.94*0.37 = 0.37 +0.37 > 0",mediation,blood_pressure,1,marginal,P(Y) +3627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 6%. The probability of not taking medication and healthy heart is 35%. The probability of taking medication and healthy heart is 2%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.02 +0.02/0.06 - 0.35/0.94 = -0.00 +0.00 = 0",mediation,blood_pressure,1,correlation,P(Y | X) +3636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 58%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 83%. For people taking medication and with low blood pressure, the probability of healthy heart is 13%. For people taking medication and with high blood pressure, the probability of healthy heart is 47%. For people not taking any medication, the probability of high blood pressure is 34%. For people taking medication, the probability of high blood pressure is 76%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.58 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.13 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.34 +P(V2=1 | X=1) = 0.76 +0.34 * (0.47 - 0.13) + 0.76 * (0.83 - 0.58) = -0.42 +-0.42 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 57%. For people taking medication, the probability of healthy heart is 39%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 9%. For people not taking any medication, the probability of healthy heart is 57%. For people taking medication, the probability of healthy heart is 39%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.09*0.39 - 0.91*0.57 = 0.55 +0.55 > 0",mediation,blood_pressure,1,marginal,P(Y) +3655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 9%. The probability of not taking medication and healthy heart is 52%. The probability of taking medication and healthy heart is 4%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.04 +0.04/0.09 - 0.52/0.91 = -0.18 +-0.18 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 95%. For people taking medication, the probability of healthy heart is 28%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.28 +0.28 - 0.95 = -0.67 +-0.67 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 9%. For people not taking any medication, the probability of healthy heart is 95%. For people taking medication, the probability of healthy heart is 28%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.28 +0.09*0.28 - 0.91*0.95 = 0.88 +0.88 > 0",mediation,blood_pressure,1,marginal,P(Y) +3670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look at how medication correlates with heart condition case by case according to blood pressure. Method 2: We look directly at how medication correlates with heart condition in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +3676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 46%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 79%. For people taking medication and with low blood pressure, the probability of healthy heart is 18%. For people taking medication and with high blood pressure, the probability of healthy heart is 47%. For people not taking any medication, the probability of high blood pressure is 16%. For people taking medication, the probability of high blood pressure is 81%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.46 +P(Y=1 | X=0, V2=1) = 0.79 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.16 +P(V2=1 | X=1) = 0.81 +0.81 * (0.79 - 0.46)+ 0.16 * (0.47 - 0.18)= 0.21 +0.21 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 48%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 83%. For people taking medication and with low blood pressure, the probability of healthy heart is 1%. For people taking medication and with high blood pressure, the probability of healthy heart is 54%. For people not taking any medication, the probability of high blood pressure is 46%. For people taking medication, the probability of high blood pressure is 97%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.48 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.01 +P(Y=1 | X=1, V2=1) = 0.54 +P(V2=1 | X=0) = 0.46 +P(V2=1 | X=1) = 0.97 +0.46 * (0.54 - 0.01) + 0.97 * (0.83 - 0.48) = -0.39 +-0.39 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 43%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 72%. For people taking medication and with low blood pressure, the probability of healthy heart is 14%. For people taking medication and with high blood pressure, the probability of healthy heart is 49%. For people not taking any medication, the probability of high blood pressure is 20%. For people taking medication, the probability of high blood pressure is 70%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.72 +P(Y=1 | X=1, V2=0) = 0.14 +P(Y=1 | X=1, V2=1) = 0.49 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.70 +0.20 * (0.49 - 0.14) + 0.70 * (0.72 - 0.43) = -0.28 +-0.28 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 2%. The probability of not taking medication and healthy heart is 47%. The probability of taking medication and healthy heart is 1%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.47/0.98 = -0.10 +-0.10 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 45%. For people taking medication, the probability of healthy heart is 31%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.31 +0.31 - 0.45 = -0.15 +-0.15 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 45%. For people taking medication, the probability of healthy heart is 31%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.31 +0.31 - 0.45 = -0.15 +-0.15 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 71%. For people taking medication, the probability of healthy heart is 43%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.43 +0.43 - 0.71 = -0.28 +-0.28 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 58%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 84%. For people taking medication and with low blood pressure, the probability of healthy heart is 24%. For people taking medication and with high blood pressure, the probability of healthy heart is 51%. For people not taking any medication, the probability of high blood pressure is 50%. For people taking medication, the probability of high blood pressure is 70%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.58 +P(Y=1 | X=0, V2=1) = 0.84 +P(Y=1 | X=1, V2=0) = 0.24 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.50 +P(V2=1 | X=1) = 0.70 +0.70 * (0.84 - 0.58)+ 0.50 * (0.51 - 0.24)= 0.05 +0.05 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 56%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 83%. For people taking medication and with low blood pressure, the probability of healthy heart is 27%. For people taking medication and with high blood pressure, the probability of healthy heart is 51%. For people not taking any medication, the probability of high blood pressure is 41%. For people taking medication, the probability of high blood pressure is 71%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.27 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.71 +0.71 * (0.83 - 0.56)+ 0.41 * (0.51 - 0.27)= 0.08 +0.08 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +3771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 62%. For people taking medication, the probability of healthy heart is 35%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.35 +0.35 - 0.62 = -0.27 +-0.27 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 62%. For people taking medication, the probability of healthy heart is 35%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.35 +0.35 - 0.62 = -0.27 +-0.27 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication and with low blood pressure, the probability of healthy heart is 44%. For people not taking any medication and with high blood pressure, the probability of healthy heart is 71%. For people taking medication and with low blood pressure, the probability of healthy heart is 9%. For people taking medication and with high blood pressure, the probability of healthy heart is 35%. For people not taking any medication, the probability of high blood pressure is 47%. For people taking medication, the probability of high blood pressure is 73%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.44 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.09 +P(Y=1 | X=1, V2=1) = 0.35 +P(V2=1 | X=0) = 0.47 +P(V2=1 | X=1) = 0.73 +0.47 * (0.35 - 0.09) + 0.73 * (0.71 - 0.44) = -0.35 +-0.35 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +3793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 12%. For people not taking any medication, the probability of healthy heart is 56%. For people taking medication, the probability of healthy heart is 28%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.28 +0.12*0.28 - 0.88*0.56 = 0.53 +0.53 > 0",mediation,blood_pressure,1,marginal,P(Y) +3800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 73%. For people taking medication, the probability of healthy heart is 37%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.37 +0.37 - 0.73 = -0.36 +-0.36 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 10%. The probability of not taking medication and healthy heart is 66%. The probability of taking medication and healthy heart is 4%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.66 +P(Y=1, X=1=1) = 0.04 +0.04/0.10 - 0.66/0.90 = -0.36 +-0.36 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 10%. The probability of not taking medication and healthy heart is 66%. The probability of taking medication and healthy heart is 4%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.66 +P(Y=1, X=1=1) = 0.04 +0.04/0.10 - 0.66/0.90 = -0.36 +-0.36 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 56%. For people taking medication, the probability of healthy heart is 17%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.17 +0.17 - 0.56 = -0.38 +-0.38 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +3821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 19%. For people not taking any medication, the probability of healthy heart is 56%. For people taking medication, the probability of healthy heart is 17%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.17 +0.19*0.17 - 0.81*0.56 = 0.49 +0.49 > 0",mediation,blood_pressure,1,marginal,P(Y) +3829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people not taking any medication, the probability of healthy heart is 69%. For people taking medication, the probability of healthy heart is 47%.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.47 +0.47 - 0.69 = -0.22 +-0.22 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +3837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of taking medication is 20%. The probability of not taking medication and healthy heart is 55%. The probability of taking medication and healthy heart is 9%.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.09 +0.09/0.20 - 0.55/0.80 = -0.22 +-0.22 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +3857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between attractive appearance and talent is -0.01.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +3868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 97%. For people considered unattractive and are not famous, the probability of talent is 95%. For people considered unattractive and are famous, the probability of talent is 82%. For people considered attractive and are not famous, the probability of talent is 93%. For people considered attractive and are famous, the probability of talent is 76%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.97 +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.76 +0.76 - (0.97*0.76 + 0.03*0.82) = -0.00 +0.00 = 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +3870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 93%. For people considered unattractive, the probability of talent is 80%. For people considered attractive, the probability of talent is 80%.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.80 +0.93*0.80 - 0.07*0.80 = 0.80 +0.80 > 0",collision,celebrity,1,marginal,P(Y) +3877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between attractive appearance and talent is -0.03.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +3879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 93%. For people considered unattractive and are not famous, the probability of talent is 88%. For people considered unattractive and are famous, the probability of talent is 74%. For people considered attractive and are not famous, the probability of talent is 85%. For people considered attractive and are famous, the probability of talent is 69%.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.93 +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.69 +0.69 - (0.93*0.69 + 0.07*0.74) = -0.00 +0.00 = 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +3886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between attractive appearance and talent is -0.18.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +3891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 81%. For people considered unattractive, the probability of talent is 92%. For people considered attractive, the probability of talent is 92%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.81*0.92 - 0.19*0.92 = 0.92 +0.92 > 0",collision,celebrity,1,marginal,P(Y) +3898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 81%. For people considered unattractive and are not famous, the probability of talent is 97%. For people considered unattractive and are famous, the probability of talent is 89%. For people considered attractive and are not famous, the probability of talent is 95%. For people considered attractive and are famous, the probability of talent is 85%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.81 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.85 +0.85 - (0.81*0.85 + 0.19*0.89) = -0.02 +-0.02 < 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +3901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 84%. For people considered unattractive, the probability of talent is 80%. For people considered attractive, the probability of talent is 80%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.80 +0.84*0.80 - 0.16*0.80 = 0.80 +0.80 > 0",collision,celebrity,1,marginal,P(Y) +3916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between attractive appearance and talent is -0.01.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +3918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 95%. For people considered unattractive and are not famous, the probability of talent is 99%. For people considered unattractive and are famous, the probability of talent is 91%. For people considered attractive and are not famous, the probability of talent is 96%. For people considered attractive and are famous, the probability of talent is 89%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.89 +0.89 - (0.95*0.89 + 0.05*0.91) = -0.00 +0.00 = 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +3934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look at how appearance correlates with talent case by case according to fame. Method 2: We look directly at how appearance correlates with talent in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +3940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 84%. For people considered unattractive, the probability of talent is 88%. For people considered attractive, the probability of talent is 88%.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.84*0.88 - 0.16*0.88 = 0.88 +0.88 > 0",collision,celebrity,1,marginal,P(Y) +3945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look directly at how appearance correlates with talent in general. Method 2: We look at this correlation case by case according to fame.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +3955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look directly at how appearance correlates with talent in general. Method 2: We look at this correlation case by case according to fame.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +3961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 94%. For people considered unattractive, the probability of talent is 83%. For people considered attractive, the probability of talent is 83%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.83 +0.94*0.83 - 0.06*0.83 = 0.83 +0.83 > 0",collision,celebrity,1,marginal,P(Y) +3971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 92%. For people considered unattractive, the probability of talent is 84%. For people considered attractive, the probability of talent is 84%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.84 +0.92*0.84 - 0.08*0.84 = 0.84 +0.84 > 0",collision,celebrity,1,marginal,P(Y) +4008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 96%. For people considered unattractive and are not famous, the probability of talent is 98%. For people considered unattractive and are famous, the probability of talent is 95%. For people considered attractive and are not famous, the probability of talent is 98%. For people considered attractive and are famous, the probability of talent is 93%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.95 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.93 +0.93 - (0.96*0.93 + 0.04*0.95) = -0.00 +0.00 = 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +4019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 89%. For people considered unattractive and are not famous, the probability of talent is 99%. For people considered unattractive and are famous, the probability of talent is 97%. For people considered attractive and are not famous, the probability of talent is 99%. For people considered attractive and are famous, the probability of talent is 57%.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.89 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.57 +0.57 - (0.89*0.57 + 0.11*0.97) = -0.29 +-0.29 < 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +4055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look directly at how appearance correlates with talent in general. Method 2: We look at this correlation case by case according to fame.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +4060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 90%. For people considered unattractive, the probability of talent is 92%. For people considered attractive, the probability of talent is 92%.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.90*0.92 - 0.10*0.92 = 0.92 +0.92 > 0",collision,celebrity,1,marginal,P(Y) +4074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look at how appearance correlates with talent case by case according to fame. Method 2: We look directly at how appearance correlates with talent in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +4097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between attractive appearance and talent is -0.01.",yes,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +4104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look at how appearance correlates with talent case by case according to fame. Method 2: We look directly at how appearance correlates with talent in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +4121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. The overall probability of attractive appearance is 84%. For people considered unattractive, the probability of talent is 88%. For people considered attractive, the probability of talent is 88%.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.84*0.88 - 0.16*0.88 = 0.88 +0.88 > 0",collision,celebrity,1,marginal,P(Y) +4136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Appearance has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between attractive appearance and talent is -0.10.",no,"Let Y = talent; X = appearance; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +4147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look at how drug taken correlates with cholesterol level case by case according to unobserved confounders. Method 2: We look directly at how drug taken correlates with cholesterol level in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 44%. For patients that have not taken any drugs, the probability of low cholesterol is 45%. For patients that have taken all assigned drugs, the probability of low cholesterol is 46%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.46 +0.44*0.46 - 0.56*0.45 = 0.46 +0.46 > 0",IV,cholesterol,1,marginal,P(Y) +4198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 37%. For patients that have not taken any drugs, the probability of low cholesterol is 66%. For patients that have taken all assigned drugs, the probability of low cholesterol is 43%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.43 +0.37*0.43 - 0.63*0.66 = 0.57 +0.57 > 0",IV,cholesterol,1,marginal,P(Y) +4202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look directly at how drug taken correlates with cholesterol level in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 31%. For patients assigned the drug treatment, the probability of low cholesterol is 30%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 89%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 36%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.31 +P(Y=1 | V2=1) = 0.30 +P(X=1 | V2=0) = 0.89 +P(X=1 | V2=1) = 0.36 +(0.30 - 0.31) / (0.36 - 0.89) = 0.01 +0.01 > 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look at how drug taken correlates with cholesterol level case by case according to unobserved confounders. Method 2: We look directly at how drug taken correlates with cholesterol level in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 54%. For patients assigned the drug treatment, the probability of low cholesterol is 52%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 79%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 43%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.79 +P(X=1 | V2=1) = 0.43 +(0.52 - 0.54) / (0.43 - 0.79) = 0.05 +0.05 > 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 39%. The probability of not taking of any assigned drugs and low cholesterol is 30%. The probability of taking of all assigned drugs and low cholesterol is 17%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.17 +0.17/0.39 - 0.30/0.61 = -0.05 +-0.05 < 0",IV,cholesterol,1,correlation,P(Y | X) +4290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look directly at how drug taken correlates with cholesterol level in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look at how drug taken correlates with cholesterol level case by case according to unobserved confounders. Method 2: We look directly at how drug taken correlates with cholesterol level in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 21%. For patients that have not taken any drugs, the probability of low cholesterol is 68%. For patients that have taken all assigned drugs, the probability of low cholesterol is 78%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.78 +0.21*0.78 - 0.79*0.68 = 0.70 +0.70 > 0",IV,cholesterol,1,marginal,P(Y) +4304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 21%. The probability of not taking of any assigned drugs and low cholesterol is 54%. The probability of taking of all assigned drugs and low cholesterol is 16%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.16 +0.16/0.21 - 0.54/0.79 = 0.10 +0.10 > 0",IV,cholesterol,1,correlation,P(Y | X) +4308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 29%. For patients assigned the drug treatment, the probability of low cholesterol is 35%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 82%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 44%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.29 +P(Y=1 | V2=1) = 0.35 +P(X=1 | V2=0) = 0.82 +P(X=1 | V2=1) = 0.44 +(0.35 - 0.29) / (0.44 - 0.82) = -0.17 +-0.17 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look at how drug taken correlates with cholesterol level case by case according to unobserved confounders. Method 2: We look directly at how drug taken correlates with cholesterol level in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 40%. For patients assigned the drug treatment, the probability of low cholesterol is 37%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 50%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 10%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.40 +P(Y=1 | V2=1) = 0.37 +P(X=1 | V2=0) = 0.50 +P(X=1 | V2=1) = 0.10 +(0.37 - 0.40) / (0.10 - 0.50) = 0.07 +0.07 > 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 40%. For patients assigned the drug treatment, the probability of low cholesterol is 37%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 50%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 10%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.40 +P(Y=1 | V2=1) = 0.37 +P(X=1 | V2=0) = 0.50 +P(X=1 | V2=1) = 0.10 +(0.37 - 0.40) / (0.10 - 0.50) = 0.07 +0.07 > 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 51%. For patients assigned the drug treatment, the probability of low cholesterol is 64%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 67%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 30%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.51 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.67 +P(X=1 | V2=1) = 0.30 +(0.64 - 0.51) / (0.30 - 0.67) = -0.38 +-0.38 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 36%. The probability of not taking of any assigned drugs and low cholesterol is 49%. The probability of taking of all assigned drugs and low cholesterol is 14%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.14 +0.14/0.36 - 0.49/0.64 = -0.38 +-0.38 < 0",IV,cholesterol,1,correlation,P(Y | X) +4329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 36%. The probability of not taking of any assigned drugs and low cholesterol is 49%. The probability of taking of all assigned drugs and low cholesterol is 14%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.14 +0.14/0.36 - 0.49/0.64 = -0.38 +-0.38 < 0",IV,cholesterol,1,correlation,P(Y | X) +4333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 50%. For patients assigned the drug treatment, the probability of low cholesterol is 57%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 66%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 6%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.57 +P(X=1 | V2=0) = 0.66 +P(X=1 | V2=1) = 0.06 +(0.57 - 0.50) / (0.06 - 0.66) = -0.13 +-0.13 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 63%. For patients assigned the drug treatment, the probability of low cholesterol is 64%. For patients not assigned the drug treatment, the probability of taking of all assigned drugs is 50%. For patients assigned the drug treatment, the probability of taking of all assigned drugs is 18%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.50 +P(X=1 | V2=1) = 0.18 +(0.64 - 0.63) / (0.18 - 0.50) = -0.01 +-0.01 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 24%. The probability of not taking of any assigned drugs and low cholesterol is 48%. The probability of taking of all assigned drugs and low cholesterol is 16%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.16 +0.16/0.24 - 0.48/0.76 = 0.03 +0.03 > 0",IV,cholesterol,1,correlation,P(Y | X) +4353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 45%. The probability of not taking of any assigned drugs and low cholesterol is 45%. The probability of taking of all assigned drugs and low cholesterol is 40%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.40 +0.40/0.45 - 0.45/0.55 = 0.07 +0.07 > 0",IV,cholesterol,1,correlation,P(Y | X) +4362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look directly at how drug taken correlates with cholesterol level in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +4368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of taking of all assigned drugs is 24%. The probability of not taking of any assigned drugs and low cholesterol is 69%. The probability of taking of all assigned drugs and low cholesterol is 15%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.69 +P(Y=1, X=1=1) = 0.15 +0.15/0.24 - 0.69/0.76 = -0.27 +-0.27 < 0",IV,cholesterol,1,correlation,P(Y | X) +4384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 22%. For people with a college degree or higher, the probability of high salary is 51%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.51 +0.51 - 0.22 = 0.29 +0.29 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 55%. For people with a college degree or higher, the probability of high salary is 64%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.64 +0.64 - 0.55 = 0.09 +0.09 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 55%. For people with a college degree or higher, the probability of high salary is 64%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.64 +0.64 - 0.55 = 0.09 +0.09 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 96%. For people without a college degree, the probability of high salary is 55%. For people with a college degree or higher, the probability of high salary is 64%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.64 +0.96*0.64 - 0.04*0.55 = 0.64 +0.64 > 0",chain,college_salary,1,marginal,P(Y) +4419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 24%. For people with a college degree or higher, the probability of high salary is 47%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.47 +0.47 - 0.24 = 0.23 +0.23 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 82%. For people without a college degree, the probability of high salary is 24%. For people with a college degree or higher, the probability of high salary is 47%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.47 +0.82*0.47 - 0.18*0.24 = 0.43 +0.43 > 0",chain,college_salary,1,marginal,P(Y) +4446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 87%. For people without a college degree, the probability of high salary is 54%. For people with a college degree or higher, the probability of high salary is 74%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.74 +0.87*0.74 - 0.13*0.54 = 0.72 +0.72 > 0",chain,college_salary,1,marginal,P(Y) +4453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 37%. For people with a college degree or higher, the probability of high salary is 46%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.46 +0.46 - 0.37 = 0.09 +0.09 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 37%. For people with a college degree or higher, the probability of high salary is 46%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.46 +0.46 - 0.37 = 0.09 +0.09 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 43%. For people with a college degree or higher, the probability of high salary is 72%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.72 +0.72 - 0.43 = 0.29 +0.29 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 27%. For people with a college degree or higher, the probability of high salary is 41%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.41 +0.41 - 0.27 = 0.13 +0.13 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 92%. For people without a college degree, the probability of high salary is 27%. For people with a college degree or higher, the probability of high salary is 41%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.41 +0.92*0.41 - 0.08*0.27 = 0.40 +0.40 > 0",chain,college_salary,1,marginal,P(Y) +4506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 89%. For people without a college degree, the probability of high salary is 29%. For people with a college degree or higher, the probability of high salary is 52%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.52 +0.89*0.52 - 0.11*0.29 = 0.49 +0.49 > 0",chain,college_salary,1,marginal,P(Y) +4512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 12%. For people with a college degree or higher, the probability of high salary is 26%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.26 +0.26 - 0.12 = 0.14 +0.14 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 12%. For people with a college degree or higher, the probability of high salary is 26%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.26 +0.26 - 0.12 = 0.14 +0.14 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look directly at how education level correlates with salary in general. Method 2: We look at this correlation case by case according to skill.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +4528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 67%. For people with a college degree or higher, the probability of high salary is 80%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.80 +0.80 - 0.67 = 0.13 +0.13 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 67%. For people with a college degree or higher, the probability of high salary is 80%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.80 +0.80 - 0.67 = 0.13 +0.13 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 89%. The probability of high school degree or lower and high salary is 3%. The probability of college degree or higher and high salary is 58%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.58 +0.58/0.89 - 0.03/0.11 = 0.38 +0.38 > 0",chain,college_salary,1,correlation,P(Y | X) +4553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 51%. For people with a college degree or higher, the probability of high salary is 86%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.86 +0.86 - 0.51 = 0.34 +0.34 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 97%. For people without a college degree, the probability of high salary is 51%. For people with a college degree or higher, the probability of high salary is 86%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.86 +0.97*0.86 - 0.03*0.51 = 0.85 +0.85 > 0",chain,college_salary,1,marginal,P(Y) +4560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 37%. For people with a college degree or higher, the probability of high salary is 46%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.46 +0.46 - 0.37 = 0.09 +0.09 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 29%. For people with a college degree or higher, the probability of high salary is 56%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.56 +0.56 - 0.29 = 0.28 +0.28 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 92%. The probability of high school degree or lower and high salary is 2%. The probability of college degree or higher and high salary is 52%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.52 +0.52/0.92 - 0.02/0.08 = 0.28 +0.28 > 0",chain,college_salary,1,correlation,P(Y | X) +4586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 18%. For people with a college degree or higher, the probability of high salary is 38%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.38 +0.38 - 0.18 = 0.20 +0.20 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look at how education level correlates with salary case by case according to skill. Method 2: We look directly at how education level correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +4601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 19%. For people with a college degree or higher, the probability of high salary is 69%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.69 +0.69 - 0.19 = 0.50 +0.50 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +4616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 82%. The probability of high school degree or lower and high salary is 8%. The probability of college degree or higher and high salary is 50%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.50 +0.50/0.82 - 0.08/0.18 = 0.17 +0.17 > 0",chain,college_salary,1,correlation,P(Y | X) +4620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 24%. For people with a college degree or higher, the probability of high salary is 50%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.50 +0.50 - 0.24 = 0.26 +0.26 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4643,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look directly at how education level correlates with salary in general. Method 2: We look at this correlation case by case according to skill.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +4658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 57%. For people with a college degree or higher, the probability of high salary is 84%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.84 +0.84 - 0.57 = 0.27 +0.27 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +4669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 61%. For people with a college degree or higher, the probability of high salary is 81%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.81 +0.81 - 0.61 = 0.20 +0.20 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 80%. The probability of high school degree or lower and high salary is 12%. The probability of college degree or higher and high salary is 65%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.65 +0.65/0.80 - 0.12/0.20 = 0.20 +0.20 > 0",chain,college_salary,1,correlation,P(Y | X) +4678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look at how education level correlates with salary case by case according to skill. Method 2: We look directly at how education level correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +4679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look directly at how education level correlates with salary in general. Method 2: We look at this correlation case by case according to skill.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +4688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 91%. The probability of high school degree or lower and high salary is 3%. The probability of college degree or higher and high salary is 52%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.52 +0.52/0.91 - 0.03/0.09 = 0.18 +0.18 > 0",chain,college_salary,1,correlation,P(Y | X) +4701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 83%. The probability of high school degree or lower and high salary is 9%. The probability of college degree or higher and high salary is 62%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.62 +0.62/0.83 - 0.09/0.17 = 0.24 +0.24 > 0",chain,college_salary,1,correlation,P(Y | X) +4717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 37%. For people with a college degree or higher, the probability of high salary is 54%.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.54 +0.54 - 0.37 = 0.17 +0.17 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. The overall probability of college degree or higher is 84%. The probability of high school degree or lower and high salary is 6%. The probability of college degree or higher and high salary is 46%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.84 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.46 +0.46/0.84 - 0.06/0.16 = 0.17 +0.17 > 0",chain,college_salary,1,correlation,P(Y | X) +4726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look at how education level correlates with salary case by case according to skill. Method 2: We look directly at how education level correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +4728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. For people without a college degree, the probability of high salary is 60%. For people with a college degree or higher, the probability of high salary is 66%.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.66 +0.66 - 0.60 = 0.07 +0.07 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 31%. For people living close to a college, the probability of high salary is 45%. For people living far from a college, the probability of college degree or higher is 53%. For people living close to a college, the probability of college degree or higher is 17%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.31 +P(Y=1 | V2=1) = 0.45 +P(X=1 | V2=0) = 0.53 +P(X=1 | V2=1) = 0.17 +(0.45 - 0.31) / (0.17 - 0.53) = -0.39 +-0.39 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 49%. The probability of high school degree or lower and high salary is 26%. The probability of college degree or higher and high salary is 7%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.07 +0.07/0.49 - 0.26/0.51 = -0.37 +-0.37 < 0",IV,college_wage,1,correlation,P(Y | X) +4769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 59%. The probability of high school degree or lower and high salary is 31%. The probability of college degree or higher and high salary is 6%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.06 +0.06/0.59 - 0.31/0.41 = -0.66 +-0.66 < 0",IV,college_wage,1,correlation,P(Y | X) +4795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. Method 1: We look at how education level correlates with salary case by case according to unobserved confounders. Method 2: We look directly at how education level correlates with salary in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +4810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. Method 1: We look directly at how education level correlates with salary in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +4818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. Method 1: We look directly at how education level correlates with salary in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +4842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. Method 1: We look directly at how education level correlates with salary in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +4847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 46%. For people without a college degree, the probability of high salary is 88%. For people with a college degree or higher, the probability of high salary is 43%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.43 +0.46*0.43 - 0.54*0.88 = 0.68 +0.68 > 0",IV,college_wage,1,marginal,P(Y) +4853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 22%. For people living close to a college, the probability of high salary is 39%. For people living far from a college, the probability of college degree or higher is 84%. For people living close to a college, the probability of college degree or higher is 47%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.22 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.84 +P(X=1 | V2=1) = 0.47 +(0.39 - 0.22) / (0.47 - 0.84) = -0.46 +-0.46 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 41%. For people living close to a college, the probability of high salary is 59%. For people living far from a college, the probability of college degree or higher is 49%. For people living close to a college, the probability of college degree or higher is 9%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.41 +P(Y=1 | V2=1) = 0.59 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.09 +(0.59 - 0.41) / (0.09 - 0.49) = -0.44 +-0.44 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 45%. For people without a college degree, the probability of high salary is 63%. For people with a college degree or higher, the probability of high salary is 20%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.20 +0.45*0.20 - 0.55*0.63 = 0.43 +0.43 > 0",IV,college_wage,1,marginal,P(Y) +4868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 45%. For people living close to a college, the probability of high salary is 69%. For people living far from a college, the probability of college degree or higher is 67%. For people living close to a college, the probability of college degree or higher is 20%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.45 +P(Y=1 | V2=1) = 0.69 +P(X=1 | V2=0) = 0.67 +P(X=1 | V2=1) = 0.20 +(0.69 - 0.45) / (0.20 - 0.67) = -0.50 +-0.50 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 11%. For people living close to a college, the probability of high salary is 27%. For people living far from a college, the probability of college degree or higher is 93%. For people living close to a college, the probability of college degree or higher is 52%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.11 +P(Y=1 | V2=1) = 0.27 +P(X=1 | V2=0) = 0.93 +P(X=1 | V2=1) = 0.52 +(0.27 - 0.11) / (0.52 - 0.93) = -0.38 +-0.38 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 47%. For people living close to a college, the probability of high salary is 64%. For people living far from a college, the probability of college degree or higher is 51%. For people living close to a college, the probability of college degree or higher is 7%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.47 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.51 +P(X=1 | V2=1) = 0.07 +(0.64 - 0.47) / (0.07 - 0.51) = -0.39 +-0.39 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 81%. The probability of high school degree or lower and high salary is 14%. The probability of college degree or higher and high salary is 32%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.32 +0.32/0.81 - 0.14/0.19 = -0.36 +-0.36 < 0",IV,college_wage,1,correlation,P(Y | X) +4936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 31%. The probability of high school degree or lower and high salary is 42%. The probability of college degree or higher and high salary is 10%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.10 +0.10/0.31 - 0.42/0.69 = -0.28 +-0.28 < 0",IV,college_wage,1,correlation,P(Y | X) +4937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 31%. The probability of high school degree or lower and high salary is 42%. The probability of college degree or higher and high salary is 10%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.10 +0.10/0.31 - 0.42/0.69 = -0.28 +-0.28 < 0",IV,college_wage,1,correlation,P(Y | X) +4944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 66%. The probability of high school degree or lower and high salary is 19%. The probability of college degree or higher and high salary is 11%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.11 +0.11/0.66 - 0.19/0.34 = -0.39 +-0.39 < 0",IV,college_wage,1,correlation,P(Y | X) +4947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. Method 1: We look at how education level correlates with salary case by case according to unobserved confounders. Method 2: We look directly at how education level correlates with salary in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +4952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 44%. The probability of high school degree or lower and high salary is 47%. The probability of college degree or higher and high salary is 12%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.12 +0.12/0.44 - 0.47/0.56 = -0.59 +-0.59 < 0",IV,college_wage,1,correlation,P(Y | X) +4959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 80%. For people without a college degree, the probability of high salary is 69%. For people with a college degree or higher, the probability of high salary is 35%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.35 +0.80*0.35 - 0.20*0.69 = 0.42 +0.42 > 0",IV,college_wage,1,marginal,P(Y) +4960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. The overall probability of college degree or higher is 80%. The probability of high school degree or lower and high salary is 14%. The probability of college degree or higher and high salary is 28%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.28 +0.28/0.80 - 0.14/0.20 = -0.34 +-0.34 < 0",IV,college_wage,1,correlation,P(Y | X) +4972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. For people living far from a college, the probability of high salary is 34%. For people living close to a college, the probability of high salary is 52%. For people living far from a college, the probability of college degree or higher is 74%. For people living close to a college, the probability of college degree or higher is 37%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.34 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.74 +P(X=1 | V2=1) = 0.37 +(0.52 - 0.34) / (0.37 - 0.74) = -0.48 +-0.48 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +4980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 99%. For students who are not talented, the probability of being hard-working is 87%. For students who are talented, the probability of being hard-working is 87%.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.99*0.87 - 0.01*0.87 = 0.87 +0.87 > 0",collision,elite_students,1,marginal,P(Y) +4985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. Method 1: We look directly at how talent correlates with effort in general. Method 2: We look at this correlation case by case according to elite institution admission status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +4987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.02.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +4988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 99%. For students who are not talented and rejected from elite institutions, the probability of being hard-working is 95%. For students who are not talented and accepted to elite institutions, the probability of being hard-working is 81%. For students who are talented and rejected from elite institutions, the probability of being hard-working is 93%. For students who are talented and accepted to elite institutions, the probability of being hard-working is 74%.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.99 +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.81 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.99*0.74 + 0.01*0.81) = -0.00 +0.00 = 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +4995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. Method 1: We look directly at how talent correlates with effort in general. Method 2: We look at this correlation case by case according to elite institution admission status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +4999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 94%. For students who are not talented and rejected from elite institutions, the probability of being hard-working is 94%. For students who are not talented and accepted to elite institutions, the probability of being hard-working is 87%. For students who are talented and rejected from elite institutions, the probability of being hard-working is 93%. For students who are talented and accepted to elite institutions, the probability of being hard-working is 79%.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.94 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.79 +0.79 - (0.94*0.79 + 0.06*0.87) = -0.01 +-0.01 < 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +5048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 89%. For students who are not talented and rejected from elite institutions, the probability of being hard-working is 93%. For students who are not talented and accepted to elite institutions, the probability of being hard-working is 73%. For students who are talented and rejected from elite institutions, the probability of being hard-working is 87%. For students who are talented and accepted to elite institutions, the probability of being hard-working is 72%.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.89 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.72 +0.72 - (0.89*0.72 + 0.11*0.73) = -0.00 +0.00 = 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +5056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.04.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 95%. For students who are not talented and rejected from elite institutions, the probability of being hard-working is 98%. For students who are not talented and accepted to elite institutions, the probability of being hard-working is 91%. For students who are talented and rejected from elite institutions, the probability of being hard-working is 96%. For students who are talented and accepted to elite institutions, the probability of being hard-working is 84%.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.84 +0.84 - (0.95*0.84 + 0.05*0.91) = -0.01 +-0.01 < 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +5080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 97%. For students who are not talented, the probability of being hard-working is 90%. For students who are talented, the probability of being hard-working is 90%.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.90 +0.97*0.90 - 0.03*0.90 = 0.90 +0.90 > 0",collision,elite_students,1,marginal,P(Y) +5091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 95%. For students who are not talented, the probability of being hard-working is 82%. For students who are talented, the probability of being hard-working is 82%.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.82 +0.95*0.82 - 0.05*0.82 = 0.82 +0.82 > 0",collision,elite_students,1,marginal,P(Y) +5100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 91%. For students who are not talented, the probability of being hard-working is 98%. For students who are talented, the probability of being hard-working is 98%.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.98 +P(Y=1 | X=1) = 0.98 +0.91*0.98 - 0.09*0.98 = 0.98 +0.98 > 0",collision,elite_students,1,marginal,P(Y) +5109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 91%. For students who are not talented and rejected from elite institutions, the probability of being hard-working is 99%. For students who are not talented and accepted to elite institutions, the probability of being hard-working is 97%. For students who are talented and rejected from elite institutions, the probability of being hard-working is 99%. For students who are talented and accepted to elite institutions, the probability of being hard-working is 96%.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.91 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.96 +0.96 - (0.91*0.96 + 0.09*0.97) = -0.00 +0.00 = 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +5126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.01.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.14.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. Method 1: We look directly at how talent correlates with effort in general. Method 2: We look at this correlation case by case according to elite institution admission status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +5176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.01.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.06.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.04.",yes,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5214,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. Method 1: We look at how talent correlates with effort case by case according to elite institution admission status. Method 2: We look directly at how talent correlates with effort in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +5248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. The overall probability of talent is 82%. For students who are not talented and rejected from elite institutions, the probability of being hard-working is 99%. For students who are not talented and accepted to elite institutions, the probability of being hard-working is 82%. For students who are talented and rejected from elite institutions, the probability of being hard-working is 96%. For students who are talented and accepted to elite institutions, the probability of being hard-working is 53%.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.82 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.53 +0.53 - (0.82*0.53 + 0.18*0.82) = -0.12 +-0.12 < 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +5255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. Method 1: We look directly at how talent correlates with effort in general. Method 2: We look at this correlation case by case according to elite institution admission status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +5264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. Method 1: We look at how talent correlates with effort case by case according to elite institution admission status. Method 2: We look directly at how talent correlates with effort in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +5276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Effort has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and being hard-working is -0.03.",no,"Let Y = effort; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +5283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 58%. For students who are encouraged, the probability of high exam score is 34%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.34 +0.34 - 0.58 = -0.24 +-0.24 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 67%. For students who are not encouraged and study hard, the probability of high exam score is 42%. For students who are encouraged and do not study hard, the probability of high exam score is 35%. For students who are encouraged and study hard, the probability of high exam score is 5%. For students who are not encouraged, the probability of studying hard is 35%. For students who are encouraged, the probability of studying hard is 5%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.67 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.35 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.35 +P(V2=1 | X=1) = 0.05 +0.35 * (0.05 - 0.35) + 0.05 * (0.42 - 0.67) = -0.34 +-0.34 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 90%. The probability of discouragement and high exam score is 6%. The probability of encouragement and high exam score is 31%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.31 +0.31/0.90 - 0.06/0.10 = -0.24 +-0.24 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +5309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 57%. For students who are encouraged, the probability of high exam score is 34%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.34 +0.34 - 0.57 = -0.23 +-0.23 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 57%. For students who are encouraged, the probability of high exam score is 34%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.34 +0.34 - 0.57 = -0.23 +-0.23 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 69%. For students who are encouraged, the probability of high exam score is 47%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.47 +0.47 - 0.69 = -0.22 +-0.22 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look directly at how encouragement level correlates with exam score in general. Method 2: We look at this correlation case by case according to studying habit.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 59%. For students who are encouraged, the probability of high exam score is 47%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.47 +0.47 - 0.59 = -0.11 +-0.11 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 59%. For students who are encouraged, the probability of high exam score is 47%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.47 +0.47 - 0.59 = -0.11 +-0.11 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 59%. For students who are encouraged, the probability of high exam score is 47%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.47 +0.47 - 0.59 = -0.11 +-0.11 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 84%. For students who are not encouraged and study hard, the probability of high exam score is 50%. For students who are encouraged and do not study hard, the probability of high exam score is 53%. For students who are encouraged and study hard, the probability of high exam score is 23%. For students who are not encouraged, the probability of studying hard is 74%. For students who are encouraged, the probability of studying hard is 19%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.84 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.53 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.19 +0.74 * (0.23 - 0.53) + 0.19 * (0.50 - 0.84) = -0.28 +-0.28 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 62%. For students who are encouraged, the probability of high exam score is 59%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.59 +0.59 - 0.62 = -0.03 +-0.03 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 90%. For students who are not encouraged and study hard, the probability of high exam score is 54%. For students who are encouraged and do not study hard, the probability of high exam score is 67%. For students who are encouraged and study hard, the probability of high exam score is 33%. For students who are not encouraged, the probability of studying hard is 78%. For students who are encouraged, the probability of studying hard is 23%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.90 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.33 +P(V2=1 | X=0) = 0.78 +P(V2=1 | X=1) = 0.23 +0.23 * (0.54 - 0.90)+ 0.78 * (0.33 - 0.67)= 0.19 +0.19 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look at how encouragement level correlates with exam score case by case according to studying habit. Method 2: We look directly at how encouragement level correlates with exam score in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 72%. For students who are encouraged, the probability of high exam score is 52%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.52 +0.52 - 0.72 = -0.20 +-0.20 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged, the probability of high exam score is 36%. For students who are encouraged, the probability of high exam score is 26%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.26 +0.26 - 0.36 = -0.10 +-0.10 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 74%. For students who are not encouraged and study hard, the probability of high exam score is 36%. For students who are encouraged and do not study hard, the probability of high exam score is 43%. For students who are encouraged and study hard, the probability of high exam score is 9%. For students who are not encouraged, the probability of studying hard is 99%. For students who are encouraged, the probability of studying hard is 50%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.74 +P(Y=1 | X=0, V2=1) = 0.36 +P(Y=1 | X=1, V2=0) = 0.43 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.99 +P(V2=1 | X=1) = 0.50 +0.50 * (0.36 - 0.74)+ 0.99 * (0.09 - 0.43)= 0.19 +0.19 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 85%. For students who are not encouraged, the probability of high exam score is 36%. For students who are encouraged, the probability of high exam score is 26%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.26 +0.85*0.26 - 0.15*0.36 = 0.28 +0.28 > 0",mediation,encouagement_program,1,marginal,P(Y) +5389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 85%. The probability of discouragement and high exam score is 5%. The probability of encouragement and high exam score is 22%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.22 +0.22/0.85 - 0.05/0.15 = -0.10 +-0.10 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +5412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 86%. For students who are not encouraged and study hard, the probability of high exam score is 58%. For students who are encouraged and do not study hard, the probability of high exam score is 60%. For students who are encouraged and study hard, the probability of high exam score is 31%. For students who are not encouraged, the probability of studying hard is 92%. For students who are encouraged, the probability of studying hard is 54%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.86 +P(Y=1 | X=0, V2=1) = 0.58 +P(Y=1 | X=1, V2=0) = 0.60 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.92 +P(V2=1 | X=1) = 0.54 +0.92 * (0.31 - 0.60) + 0.54 * (0.58 - 0.86) = -0.27 +-0.27 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look at how encouragement level correlates with exam score case by case according to studying habit. Method 2: We look directly at how encouragement level correlates with exam score in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 90%. For students who are not encouraged, the probability of high exam score is 82%. For students who are encouraged, the probability of high exam score is 64%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.64 +0.90*0.64 - 0.10*0.82 = 0.66 +0.66 > 0",mediation,encouagement_program,1,marginal,P(Y) +5429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 90%. For students who are not encouraged, the probability of high exam score is 82%. For students who are encouraged, the probability of high exam score is 64%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.64 +0.90*0.64 - 0.10*0.82 = 0.66 +0.66 > 0",mediation,encouagement_program,1,marginal,P(Y) +5447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look directly at how encouragement level correlates with exam score in general. Method 2: We look at this correlation case by case according to studying habit.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 78%. For students who are not encouraged and study hard, the probability of high exam score is 44%. For students who are encouraged and do not study hard, the probability of high exam score is 54%. For students who are encouraged and study hard, the probability of high exam score is 22%. For students who are not encouraged, the probability of studying hard is 59%. For students who are encouraged, the probability of studying hard is 33%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.78 +P(Y=1 | X=0, V2=1) = 0.44 +P(Y=1 | X=1, V2=0) = 0.54 +P(Y=1 | X=1, V2=1) = 0.22 +P(V2=1 | X=0) = 0.59 +P(V2=1 | X=1) = 0.33 +0.33 * (0.44 - 0.78)+ 0.59 * (0.22 - 0.54)= 0.09 +0.09 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5471,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 95%. For students who are not encouraged, the probability of high exam score is 55%. For students who are encouraged, the probability of high exam score is 33%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.33 +0.95*0.33 - 0.05*0.55 = 0.34 +0.34 > 0",mediation,encouagement_program,1,marginal,P(Y) +5481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 89%. For students who are not encouraged and study hard, the probability of high exam score is 47%. For students who are encouraged and do not study hard, the probability of high exam score is 65%. For students who are encouraged and study hard, the probability of high exam score is 16%. For students who are not encouraged, the probability of studying hard is 57%. For students who are encouraged, the probability of studying hard is 6%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.16 +P(V2=1 | X=0) = 0.57 +P(V2=1 | X=1) = 0.06 +0.06 * (0.47 - 0.89)+ 0.57 * (0.16 - 0.65)= 0.21 +0.21 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 89%. For students who are not encouraged and study hard, the probability of high exam score is 47%. For students who are encouraged and do not study hard, the probability of high exam score is 65%. For students who are encouraged and study hard, the probability of high exam score is 16%. For students who are not encouraged, the probability of studying hard is 57%. For students who are encouraged, the probability of studying hard is 6%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.16 +P(V2=1 | X=0) = 0.57 +P(V2=1 | X=1) = 0.06 +0.57 * (0.16 - 0.65) + 0.06 * (0.47 - 0.89) = -0.28 +-0.28 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 68%. For students who are not encouraged and study hard, the probability of high exam score is 46%. For students who are encouraged and do not study hard, the probability of high exam score is 33%. For students who are encouraged and study hard, the probability of high exam score is 2%. For students who are not encouraged, the probability of studying hard is 35%. For students who are encouraged, the probability of studying hard is 6%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.68 +P(Y=1 | X=0, V2=1) = 0.46 +P(Y=1 | X=1, V2=0) = 0.33 +P(Y=1 | X=1, V2=1) = 0.02 +P(V2=1 | X=0) = 0.35 +P(V2=1 | X=1) = 0.06 +0.35 * (0.02 - 0.33) + 0.06 * (0.46 - 0.68) = -0.39 +-0.39 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 89%. The probability of discouragement and high exam score is 7%. The probability of encouragement and high exam score is 27%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.27 +0.27/0.89 - 0.07/0.11 = -0.30 +-0.30 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +5540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 98%. For students who are not encouraged, the probability of high exam score is 50%. For students who are encouraged, the probability of high exam score is 39%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.39 +0.98*0.39 - 0.02*0.50 = 0.40 +0.40 > 0",mediation,encouagement_program,1,marginal,P(Y) +5551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 74%. For students who are not encouraged and study hard, the probability of high exam score is 36%. For students who are encouraged and do not study hard, the probability of high exam score is 50%. For students who are encouraged and study hard, the probability of high exam score is 15%. For students who are not encouraged, the probability of studying hard is 76%. For students who are encouraged, the probability of studying hard is 28%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.74 +P(Y=1 | X=0, V2=1) = 0.36 +P(Y=1 | X=1, V2=0) = 0.50 +P(Y=1 | X=1, V2=1) = 0.15 +P(V2=1 | X=0) = 0.76 +P(V2=1 | X=1) = 0.28 +0.28 * (0.36 - 0.74)+ 0.76 * (0.15 - 0.50)= 0.18 +0.18 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 80%. For students who are not encouraged and study hard, the probability of high exam score is 55%. For students who are encouraged and do not study hard, the probability of high exam score is 48%. For students who are encouraged and study hard, the probability of high exam score is 25%. For students who are not encouraged, the probability of studying hard is 79%. For students who are encouraged, the probability of studying hard is 40%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.80 +P(Y=1 | X=0, V2=1) = 0.55 +P(Y=1 | X=1, V2=0) = 0.48 +P(Y=1 | X=1, V2=1) = 0.25 +P(V2=1 | X=0) = 0.79 +P(V2=1 | X=1) = 0.40 +0.79 * (0.25 - 0.48) + 0.40 * (0.55 - 0.80) = -0.30 +-0.30 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 89%. For students who are not encouraged and study hard, the probability of high exam score is 65%. For students who are encouraged and do not study hard, the probability of high exam score is 54%. For students who are encouraged and study hard, the probability of high exam score is 24%. For students who are not encouraged, the probability of studying hard is 71%. For students who are encouraged, the probability of studying hard is 28%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.65 +P(Y=1 | X=1, V2=0) = 0.54 +P(Y=1 | X=1, V2=1) = 0.24 +P(V2=1 | X=0) = 0.71 +P(V2=1 | X=1) = 0.28 +0.28 * (0.65 - 0.89)+ 0.71 * (0.24 - 0.54)= 0.10 +0.10 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5583,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 98%. For students who are not encouraged, the probability of high exam score is 72%. For students who are encouraged, the probability of high exam score is 46%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.46 +0.98*0.46 - 0.02*0.72 = 0.46 +0.46 > 0",mediation,encouagement_program,1,marginal,P(Y) +5640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. The overall probability of encouragement is 98%. The probability of discouragement and high exam score is 2%. The probability of encouragement and high exam score is 46%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.46 +0.46/0.98 - 0.02/0.02 = -0.27 +-0.27 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +5649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 94%. For students who are not encouraged and study hard, the probability of high exam score is 64%. For students who are encouraged and do not study hard, the probability of high exam score is 70%. For students who are encouraged and study hard, the probability of high exam score is 31%. For students who are not encouraged, the probability of studying hard is 91%. For students who are encouraged, the probability of studying hard is 25%.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.94 +P(Y=1 | X=0, V2=1) = 0.64 +P(Y=1 | X=1, V2=0) = 0.70 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.25 +0.25 * (0.64 - 0.94)+ 0.91 * (0.31 - 0.70)= 0.20 +0.20 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look directly at how encouragement level correlates with exam score in general. Method 2: We look at this correlation case by case according to studying habit.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 95%. For students who are not encouraged and study hard, the probability of high exam score is 63%. For students who are encouraged and do not study hard, the probability of high exam score is 59%. For students who are encouraged and study hard, the probability of high exam score is 29%. For students who are not encouraged, the probability of studying hard is 62%. For students who are encouraged, the probability of studying hard is 11%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.63 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.29 +P(V2=1 | X=0) = 0.62 +P(V2=1 | X=1) = 0.11 +0.11 * (0.63 - 0.95)+ 0.62 * (0.29 - 0.59)= 0.16 +0.16 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. For students who are not encouraged and do not study hard, the probability of high exam score is 95%. For students who are not encouraged and study hard, the probability of high exam score is 74%. For students who are encouraged and do not study hard, the probability of high exam score is 72%. For students who are encouraged and study hard, the probability of high exam score is 45%. For students who are not encouraged, the probability of studying hard is 60%. For students who are encouraged, the probability of studying hard is 31%.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.74 +P(Y=1 | X=1, V2=0) = 0.72 +P(Y=1 | X=1, V2=1) = 0.45 +P(V2=1 | X=0) = 0.60 +P(V2=1 | X=1) = 0.31 +0.31 * (0.74 - 0.95)+ 0.60 * (0.45 - 0.72)= 0.06 +0.06 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look at how encouragement level correlates with exam score case by case according to studying habit. Method 2: We look directly at how encouragement level correlates with exam score in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. Method 1: We look directly at how encouragement level correlates with exam score in general. Method 2: We look at this correlation case by case according to studying habit.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +5703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 85%. For individuals who are male, the probability of admission acceptance is 41%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.41 +0.41 - 0.85 = -0.45 +-0.45 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 8%. The probability of non-male gender and admission acceptance is 78%. The probability of male gender and admission acceptance is 3%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.78 +P(Y=1, X=1=1) = 0.03 +0.03/0.08 - 0.78/0.92 = -0.45 +-0.45 < 0",mediation,gender_admission,1,correlation,P(Y | X) +5712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Method 1: We look at how gender correlates with admission status case by case according to department competitiveness. Method 2: We look directly at how gender correlates with admission status in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +5731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 90%. For individuals who are male, the probability of admission acceptance is 44%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.44 +0.44 - 0.90 = -0.46 +-0.46 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +5770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 37%. For individuals who are male, the probability of admission acceptance is 18%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.18 +0.18 - 0.37 = -0.20 +-0.20 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 6%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 44%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 12%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 55%. For individuals who are not male, the probability of competitive department is 83%. For individuals who are male, the probability of competitive department is 13%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.44 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.55 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.13 +0.13 * (0.44 - 0.06)+ 0.83 * (0.55 - 0.12)= -0.27 +-0.27 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 6%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 44%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 12%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 55%. For individuals who are not male, the probability of competitive department is 83%. For individuals who are male, the probability of competitive department is 13%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.44 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.55 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.13 +0.83 * (0.55 - 0.12) + 0.13 * (0.44 - 0.06) = 0.11 +0.11 > 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 11%. The probability of non-male gender and admission acceptance is 33%. The probability of male gender and admission acceptance is 2%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.02 +0.02/0.11 - 0.33/0.89 = -0.20 +-0.20 < 0",mediation,gender_admission,1,correlation,P(Y | X) +5783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +5807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 14%. For individuals who are not male, the probability of admission acceptance is 59%. For individuals who are male, the probability of admission acceptance is 44%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.44 +0.14*0.44 - 0.86*0.59 = 0.57 +0.57 > 0",mediation,gender_admission,1,marginal,P(Y) +5809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 14%. The probability of non-male gender and admission acceptance is 51%. The probability of male gender and admission acceptance is 6%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.06 +0.06/0.14 - 0.51/0.86 = -0.15 +-0.15 < 0",mediation,gender_admission,1,correlation,P(Y | X) +5813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 78%. For individuals who are male, the probability of admission acceptance is 42%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.42 +0.42 - 0.78 = -0.37 +-0.37 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 58%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 89%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 32%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 65%. For individuals who are not male, the probability of competitive department is 65%. For individuals who are male, the probability of competitive department is 29%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.58 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.32 +P(Y=1 | X=1, V2=1) = 0.65 +P(V2=1 | X=0) = 0.65 +P(V2=1 | X=1) = 0.29 +0.29 * (0.89 - 0.58)+ 0.65 * (0.65 - 0.32)= -0.11 +-0.11 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 15%. The probability of non-male gender and admission acceptance is 80%. The probability of male gender and admission acceptance is 8%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.80 +P(Y=1, X=1=1) = 0.08 +0.08/0.15 - 0.80/0.85 = -0.43 +-0.43 < 0",mediation,gender_admission,1,correlation,P(Y | X) +5867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +5869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 60%. For individuals who are male, the probability of admission acceptance is 24%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.24 +0.24 - 0.60 = -0.37 +-0.37 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 35%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 67%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 15%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 41%. For individuals who are not male, the probability of competitive department is 80%. For individuals who are male, the probability of competitive department is 34%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.67 +P(Y=1 | X=1, V2=0) = 0.15 +P(Y=1 | X=1, V2=1) = 0.41 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.34 +0.34 * (0.67 - 0.35)+ 0.80 * (0.41 - 0.15)= -0.14 +-0.14 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5875,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 35%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 67%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 15%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 41%. For individuals who are not male, the probability of competitive department is 80%. For individuals who are male, the probability of competitive department is 34%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.67 +P(Y=1 | X=1, V2=0) = 0.15 +P(Y=1 | X=1, V2=1) = 0.41 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.34 +0.80 * (0.41 - 0.15) + 0.34 * (0.67 - 0.35) = -0.25 +-0.25 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 14%. The probability of non-male gender and admission acceptance is 46%. The probability of male gender and admission acceptance is 6%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.06 +0.06/0.14 - 0.46/0.86 = -0.12 +-0.12 < 0",mediation,gender_admission,1,correlation,P(Y | X) +5903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 63%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 95%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 37%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 67%. For individuals who are not male, the probability of competitive department is 94%. For individuals who are male, the probability of competitive department is 48%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.63 +P(Y=1 | X=0, V2=1) = 0.95 +P(Y=1 | X=1, V2=0) = 0.37 +P(Y=1 | X=1, V2=1) = 0.67 +P(V2=1 | X=0) = 0.94 +P(V2=1 | X=1) = 0.48 +0.94 * (0.67 - 0.37) + 0.48 * (0.95 - 0.63) = -0.28 +-0.28 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 7%. For individuals who are not male, the probability of admission acceptance is 93%. For individuals who are male, the probability of admission acceptance is 51%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.51 +0.07*0.51 - 0.93*0.93 = 0.90 +0.90 > 0",mediation,gender_admission,1,marginal,P(Y) +5908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Method 1: We look at how gender correlates with admission status case by case according to department competitiveness. Method 2: We look directly at how gender correlates with admission status in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +5915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 23%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 67%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 30%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 56%. For individuals who are not male, the probability of competitive department is 87%. For individuals who are male, the probability of competitive department is 2%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.23 +P(Y=1 | X=0, V2=1) = 0.67 +P(Y=1 | X=1, V2=0) = 0.30 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.02 +0.02 * (0.67 - 0.23)+ 0.87 * (0.56 - 0.30)= -0.38 +-0.38 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +5940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 40%. For individuals who are male, the probability of admission acceptance is 31%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.31 +0.31 - 0.40 = -0.09 +-0.09 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +5952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 74%. For individuals who are male, the probability of admission acceptance is 34%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.34 +0.34 - 0.74 = -0.40 +-0.40 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +5958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 59%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 88%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 28%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 57%. For individuals who are not male, the probability of competitive department is 52%. For individuals who are male, the probability of competitive department is 22%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.28 +P(Y=1 | X=1, V2=1) = 0.57 +P(V2=1 | X=0) = 0.52 +P(V2=1 | X=1) = 0.22 +0.52 * (0.57 - 0.28) + 0.22 * (0.88 - 0.59) = -0.31 +-0.31 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +5962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 12%. The probability of non-male gender and admission acceptance is 65%. The probability of male gender and admission acceptance is 4%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.65 +P(Y=1, X=1=1) = 0.04 +0.04/0.12 - 0.65/0.88 = -0.40 +-0.40 < 0",mediation,gender_admission,1,correlation,P(Y | X) +5974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 8%. For individuals who are not male, the probability of admission acceptance is 68%. For individuals who are male, the probability of admission acceptance is 59%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.59 +0.08*0.59 - 0.92*0.68 = 0.67 +0.67 > 0",mediation,gender_admission,1,marginal,P(Y) +6003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 19%. For individuals who are not male, the probability of admission acceptance is 52%. For individuals who are male, the probability of admission acceptance is 51%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.51 +0.19*0.51 - 0.81*0.52 = 0.51 +0.51 > 0",mediation,gender_admission,1,marginal,P(Y) +6015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 41%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 70%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 4%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 38%. For individuals who are not male, the probability of competitive department is 65%. For individuals who are male, the probability of competitive department is 8%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.41 +P(Y=1 | X=0, V2=1) = 0.70 +P(Y=1 | X=1, V2=0) = 0.04 +P(Y=1 | X=1, V2=1) = 0.38 +P(V2=1 | X=0) = 0.65 +P(V2=1 | X=1) = 0.08 +0.65 * (0.38 - 0.04) + 0.08 * (0.70 - 0.41) = -0.34 +-0.34 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +6030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 3%. For individuals who are not male, the probability of admission acceptance is 42%. For individuals who are male, the probability of admission acceptance is 29%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.29 +0.03*0.29 - 0.97*0.42 = 0.41 +0.41 > 0",mediation,gender_admission,1,marginal,P(Y) +6041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 55%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 80%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 19%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 47%. For individuals who are not male, the probability of competitive department is 77%. For individuals who are male, the probability of competitive department is 9%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.80 +P(Y=1 | X=1, V2=0) = 0.19 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.09 +0.09 * (0.80 - 0.55)+ 0.77 * (0.47 - 0.19)= -0.17 +-0.17 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +6042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 55%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 80%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 19%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 47%. For individuals who are not male, the probability of competitive department is 77%. For individuals who are male, the probability of competitive department is 9%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.80 +P(Y=1 | X=1, V2=0) = 0.19 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.09 +0.77 * (0.47 - 0.19) + 0.09 * (0.80 - 0.55) = -0.33 +-0.33 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +6043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 55%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 80%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 19%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 47%. For individuals who are not male, the probability of competitive department is 77%. For individuals who are male, the probability of competitive department is 9%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.80 +P(Y=1 | X=1, V2=0) = 0.19 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.09 +0.77 * (0.47 - 0.19) + 0.09 * (0.80 - 0.55) = -0.33 +-0.33 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +6046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 15%. The probability of non-male gender and admission acceptance is 63%. The probability of male gender and admission acceptance is 3%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.03 +0.03/0.15 - 0.63/0.85 = -0.53 +-0.53 < 0",mediation,gender_admission,1,correlation,P(Y | X) +6051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male, the probability of admission acceptance is 57%. For individuals who are male, the probability of admission acceptance is 14%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.14 +0.14 - 0.57 = -0.42 +-0.42 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +6086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. The overall probability of male gender is 4%. For individuals who are not male, the probability of admission acceptance is 58%. For individuals who are male, the probability of admission acceptance is 45%.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.45 +0.04*0.45 - 0.96*0.58 = 0.58 +0.58 > 0",mediation,gender_admission,1,marginal,P(Y) +6096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 54%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 93%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 33%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 67%. For individuals who are not male, the probability of competitive department is 70%. For individuals who are male, the probability of competitive department is 25%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.54 +P(Y=1 | X=0, V2=1) = 0.93 +P(Y=1 | X=1, V2=0) = 0.33 +P(Y=1 | X=1, V2=1) = 0.67 +P(V2=1 | X=0) = 0.70 +P(V2=1 | X=1) = 0.25 +0.25 * (0.93 - 0.54)+ 0.70 * (0.67 - 0.33)= -0.17 +-0.17 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +6112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 19%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 62%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 8%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 59%. For individuals who are not male, the probability of competitive department is 87%. For individuals who are male, the probability of competitive department is 40%.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.19 +P(Y=1 | X=0, V2=1) = 0.62 +P(Y=1 | X=1, V2=0) = 0.08 +P(Y=1 | X=1, V2=1) = 0.59 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.40 +0.87 * (0.59 - 0.08) + 0.40 * (0.62 - 0.19) = -0.05 +-0.05 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +6124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 47%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 65%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 51%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 70%. For individuals who are not male and out-of-state residents, the probability of competitive department is 14%. For individuals who are not male and in-state residents, the probability of competitive department is 60%. For individuals who are male and out-of-state residents, the probability of competitive department is 28%. For individuals who are male and in-state residents, the probability of competitive department is 68%. The overall probability of in-state residency is 12%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.14 +P(V3=1 | X=0, V2=1) = 0.60 +P(V3=1 | X=1, V2=0) = 0.28 +P(V3=1 | X=1, V2=1) = 0.68 +P(V2=1) = 0.12 +0.12 * 0.65 * (0.68 - 0.28)+ 0.88 * 0.65 * (0.60 - 0.14)= 0.03 +0.03 > 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 77%. For individuals who are male, the probability of admission acceptance is 45%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.45 +0.45 - 0.77 = -0.32 +-0.32 < 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 89%. The probability of non-male gender and admission acceptance is 9%. The probability of male gender and admission acceptance is 40%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.40 +0.40/0.89 - 0.09/0.11 = -0.32 +-0.32 < 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +6173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 12%. The probability of non-male gender and admission acceptance is 36%. The probability of male gender and admission acceptance is 4%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.04 +0.04/0.12 - 0.36/0.88 = -0.10 +-0.10 < 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +6177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 43%. For individuals who are male, the probability of admission acceptance is 74%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.74 +0.74 - 0.43 = 0.31 +0.31 > 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 11%. For individuals who are not male, the probability of admission acceptance is 43%. For individuals who are male, the probability of admission acceptance is 74%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.74 +0.11*0.74 - 0.89*0.43 = 0.46 +0.46 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +6207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 38%. For individuals who are male, the probability of admission acceptance is 40%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.40 - 0.38 = 0.02 +0.02 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 12%. For individuals who are not male, the probability of admission acceptance is 39%. For individuals who are male, the probability of admission acceptance is 68%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.68 +0.12*0.68 - 0.88*0.39 = 0.43 +0.43 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +6236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 66%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 89%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 43%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 58%. For individuals who are not male and out-of-state residents, the probability of competitive department is 44%. For individuals who are not male and in-state residents, the probability of competitive department is 78%. For individuals who are male and out-of-state residents, the probability of competitive department is 4%. For individuals who are male and in-state residents, the probability of competitive department is 55%. The overall probability of in-state residency is 4%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0, V2=0) = 0.44 +P(V3=1 | X=0, V2=1) = 0.78 +P(V3=1 | X=1, V2=0) = 0.04 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.04 +0.04 * 0.89 * (0.55 - 0.04)+ 0.96 * 0.89 * (0.78 - 0.44)= -0.10 +-0.10 < 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 66%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 89%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 43%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 58%. For individuals who are not male and out-of-state residents, the probability of competitive department is 44%. For individuals who are not male and in-state residents, the probability of competitive department is 78%. For individuals who are male and out-of-state residents, the probability of competitive department is 4%. For individuals who are male and in-state residents, the probability of competitive department is 55%. The overall probability of in-state residency is 4%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0, V2=0) = 0.44 +P(V3=1 | X=0, V2=1) = 0.78 +P(V3=1 | X=1, V2=0) = 0.04 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.04 +0.04 * (0.58 - 0.43) * 0.78 + 0.96 * (0.89 - 0.66) * 0.04 = -0.23 +-0.23 < 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 56%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 78%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 53%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 76%. For individuals who are not male and out-of-state residents, the probability of competitive department is 39%. For individuals who are not male and in-state residents, the probability of competitive department is 82%. For individuals who are male and out-of-state residents, the probability of competitive department is 51%. For individuals who are male and in-state residents, the probability of competitive department is 77%. The overall probability of in-state residency is 7%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.76 +P(V3=1 | X=0, V2=0) = 0.39 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.51 +P(V3=1 | X=1, V2=1) = 0.77 +P(V2=1) = 0.07 +0.07 * (0.76 - 0.53) * 0.82 + 0.93 * (0.78 - 0.56) * 0.51 = -0.03 +-0.03 < 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +6266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 34%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 59%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 60%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 84%. For individuals who are not male and out-of-state residents, the probability of competitive department is 31%. For individuals who are not male and in-state residents, the probability of competitive department is 52%. For individuals who are male and out-of-state residents, the probability of competitive department is 59%. For individuals who are male and in-state residents, the probability of competitive department is 92%. The overall probability of in-state residency is 1%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.52 +P(V3=1 | X=1, V2=0) = 0.59 +P(V3=1 | X=1, V2=1) = 0.92 +P(V2=1) = 0.01 +0.01 * (0.84 - 0.60) * 0.52 + 0.99 * (0.59 - 0.34) * 0.59 = 0.25 +0.25 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 34%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 59%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 60%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 84%. For individuals who are not male and out-of-state residents, the probability of competitive department is 31%. For individuals who are not male and in-state residents, the probability of competitive department is 52%. For individuals who are male and out-of-state residents, the probability of competitive department is 59%. For individuals who are male and in-state residents, the probability of competitive department is 92%. The overall probability of in-state residency is 1%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.52 +P(V3=1 | X=1, V2=0) = 0.59 +P(V3=1 | X=1, V2=1) = 0.92 +P(V2=1) = 0.01 +0.01 * (0.84 - 0.60) * 0.52 + 0.99 * (0.59 - 0.34) * 0.59 = 0.25 +0.25 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 16%. The probability of non-male gender and admission acceptance is 35%. The probability of male gender and admission acceptance is 12%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.12 +0.12/0.16 - 0.35/0.84 = 0.32 +0.32 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +6274,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 68%. For individuals who are male, the probability of admission acceptance is 38%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.38 - 0.68 = -0.30 +-0.30 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 68%. For individuals who are male, the probability of admission acceptance is 38%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.38 - 0.68 = -0.30 +-0.30 < 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 97%. For individuals who are not male, the probability of admission acceptance is 68%. For individuals who are male, the probability of admission acceptance is 38%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.97*0.38 - 0.03*0.68 = 0.39 +0.39 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +6292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 49%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 74%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 52%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 66%. For individuals who are not male and out-of-state residents, the probability of competitive department is 18%. For individuals who are not male and in-state residents, the probability of competitive department is 50%. For individuals who are male and out-of-state residents, the probability of competitive department is 8%. For individuals who are male and in-state residents, the probability of competitive department is 66%. The overall probability of in-state residency is 13%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.08 +P(V3=1 | X=1, V2=1) = 0.66 +P(V2=1) = 0.13 +0.13 * 0.74 * (0.66 - 0.08)+ 0.87 * 0.74 * (0.50 - 0.18)= -0.02 +-0.02 < 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 49%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 74%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 52%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 66%. For individuals who are not male and out-of-state residents, the probability of competitive department is 18%. For individuals who are not male and in-state residents, the probability of competitive department is 50%. For individuals who are male and out-of-state residents, the probability of competitive department is 8%. For individuals who are male and in-state residents, the probability of competitive department is 66%. The overall probability of in-state residency is 13%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.08 +P(V3=1 | X=1, V2=1) = 0.66 +P(V2=1) = 0.13 +0.13 * 0.74 * (0.66 - 0.08)+ 0.87 * 0.74 * (0.50 - 0.18)= -0.02 +-0.02 < 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +6304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 56%. For individuals who are male, the probability of admission acceptance is 88%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.88 +0.88 - 0.56 = 0.32 +0.32 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 56%. For individuals who are male, the probability of admission acceptance is 88%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.88 +0.88 - 0.56 = 0.32 +0.32 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 71%. For individuals who are male, the probability of admission acceptance is 37%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.37 +0.37 - 0.71 = -0.34 +-0.34 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 71%. For individuals who are male, the probability of admission acceptance is 37%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.37 +0.37 - 0.71 = -0.34 +-0.34 < 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 93%. The probability of non-male gender and admission acceptance is 5%. The probability of male gender and admission acceptance is 34%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.34 +0.34/0.93 - 0.05/0.07 = -0.34 +-0.34 < 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +6330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 50%. For individuals who are male, the probability of admission acceptance is 48%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.48 +0.48 - 0.50 = -0.02 +-0.02 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 48%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 61%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 47%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 56%. For individuals who are not male and out-of-state residents, the probability of competitive department is 11%. For individuals who are not male and in-state residents, the probability of competitive department is 55%. For individuals who are male and out-of-state residents, the probability of competitive department is 3%. For individuals who are male and in-state residents, the probability of competitive department is 45%. The overall probability of in-state residency is 17%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.61 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.56 +P(V3=1 | X=0, V2=0) = 0.11 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.45 +P(V2=1) = 0.17 +0.17 * (0.56 - 0.47) * 0.55 + 0.83 * (0.61 - 0.48) * 0.03 = 0.01 +0.01 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 26%. For individuals who are male, the probability of admission acceptance is 64%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.64 +0.64 - 0.26 = 0.37 +0.37 > 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 21%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 42%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 51%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 74%. For individuals who are not male and out-of-state residents, the probability of competitive department is 21%. For individuals who are not male and in-state residents, the probability of competitive department is 73%. For individuals who are male and out-of-state residents, the probability of competitive department is 51%. For individuals who are male and in-state residents, the probability of competitive department is 94%. The overall probability of in-state residency is 11%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.21 +P(V3=1 | X=0, V2=1) = 0.73 +P(V3=1 | X=1, V2=0) = 0.51 +P(V3=1 | X=1, V2=1) = 0.94 +P(V2=1) = 0.11 +0.11 * 0.42 * (0.94 - 0.51)+ 0.89 * 0.42 * (0.73 - 0.21)= 0.08 +0.08 > 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 82%. For individuals who are male, the probability of admission acceptance is 49%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.49 +0.49 - 0.82 = -0.32 +-0.32 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 82%. For individuals who are male, the probability of admission acceptance is 49%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.49 +0.49 - 0.82 = -0.32 +-0.32 < 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. Method 1: We look directly at how gender correlates with admission status in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +6392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 45%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 66%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 69%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 88%. For individuals who are not male and out-of-state residents, the probability of competitive department is 17%. For individuals who are not male and in-state residents, the probability of competitive department is 57%. For individuals who are male and out-of-state residents, the probability of competitive department is 49%. For individuals who are male and in-state residents, the probability of competitive department is 78%. The overall probability of in-state residency is 3%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.69 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0, V2=0) = 0.17 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.78 +P(V2=1) = 0.03 +0.03 * (0.88 - 0.69) * 0.57 + 0.97 * (0.66 - 0.45) * 0.49 = 0.23 +0.23 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 60%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 90%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 34%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 58%. For individuals who are not male and out-of-state residents, the probability of competitive department is 61%. For individuals who are not male and in-state residents, the probability of competitive department is 91%. For individuals who are male and out-of-state residents, the probability of competitive department is 19%. For individuals who are male and in-state residents, the probability of competitive department is 48%. The overall probability of in-state residency is 6%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.34 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0, V2=0) = 0.61 +P(V3=1 | X=0, V2=1) = 0.91 +P(V3=1 | X=1, V2=0) = 0.19 +P(V3=1 | X=1, V2=1) = 0.48 +P(V2=1) = 0.06 +0.06 * 0.90 * (0.48 - 0.19)+ 0.94 * 0.90 * (0.91 - 0.61)= -0.13 +-0.13 < 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. The overall probability of male gender is 11%. The probability of non-male gender and admission acceptance is 43%. The probability of male gender and admission acceptance is 9%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.09 +0.09/0.11 - 0.43/0.89 = 0.31 +0.31 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +6488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 66%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 89%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 42%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 43%. For individuals who are not male and out-of-state residents, the probability of competitive department is 33%. For individuals who are not male and in-state residents, the probability of competitive department is 66%. For individuals who are male and out-of-state residents, the probability of competitive department is 0%. For individuals who are male and in-state residents, the probability of competitive department is 33%. The overall probability of in-state residency is 6%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.43 +P(V3=1 | X=0, V2=0) = 0.33 +P(V3=1 | X=0, V2=1) = 0.66 +P(V3=1 | X=1, V2=0) = 0.00 +P(V3=1 | X=1, V2=1) = 0.33 +P(V2=1) = 0.06 +0.06 * 0.89 * (0.33 - 0.00)+ 0.94 * 0.89 * (0.66 - 0.33)= -0.08 +-0.08 < 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 66%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 89%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 42%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 43%. For individuals who are not male and out-of-state residents, the probability of competitive department is 33%. For individuals who are not male and in-state residents, the probability of competitive department is 66%. For individuals who are male and out-of-state residents, the probability of competitive department is 0%. For individuals who are male and in-state residents, the probability of competitive department is 33%. The overall probability of in-state residency is 6%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.43 +P(V3=1 | X=0, V2=0) = 0.33 +P(V3=1 | X=0, V2=1) = 0.66 +P(V3=1 | X=1, V2=0) = 0.00 +P(V3=1 | X=1, V2=1) = 0.33 +P(V2=1) = 0.06 +0.06 * (0.43 - 0.42) * 0.66 + 0.94 * (0.89 - 0.66) * 0.00 = -0.25 +-0.25 < 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. Method 1: We look at how gender correlates with admission status case by case according to department competitiveness. Method 2: We look directly at how gender correlates with admission status in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +6498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 61%. For individuals who are male, the probability of admission acceptance is 65%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.65 +0.65 - 0.61 = 0.04 +0.04 > 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 54%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 77%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 57%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 79%. For individuals who are not male and out-of-state residents, the probability of competitive department is 25%. For individuals who are not male and in-state residents, the probability of competitive department is 62%. For individuals who are male and out-of-state residents, the probability of competitive department is 27%. For individuals who are male and in-state residents, the probability of competitive department is 98%. The overall probability of in-state residency is 11%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.77 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.79 +P(V3=1 | X=0, V2=0) = 0.25 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.27 +P(V3=1 | X=1, V2=1) = 0.98 +P(V2=1) = 0.11 +0.11 * 0.77 * (0.98 - 0.27)+ 0.89 * 0.77 * (0.62 - 0.25)= 0.02 +0.02 > 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 68%. For individuals who are male, the probability of admission acceptance is 38%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.38 - 0.68 = -0.29 +-0.29 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 68%. For individuals who are male, the probability of admission acceptance is 38%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.38 - 0.68 = -0.29 +-0.29 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of admission acceptance is 59%. For individuals who are not male and applicants to a competitive department, the probability of admission acceptance is 76%. For individuals who are male and applicants to a non-competitive department, the probability of admission acceptance is 36%. For individuals who are male and applicants to a competitive department, the probability of admission acceptance is 49%. For individuals who are not male and out-of-state residents, the probability of competitive department is 42%. For individuals who are not male and in-state residents, the probability of competitive department is 79%. For individuals who are male and out-of-state residents, the probability of competitive department is 10%. For individuals who are male and in-state residents, the probability of competitive department is 48%. The overall probability of in-state residency is 20%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.42 +P(V3=1 | X=0, V2=1) = 0.79 +P(V3=1 | X=1, V2=0) = 0.10 +P(V3=1 | X=1, V2=1) = 0.48 +P(V2=1) = 0.20 +0.20 * 0.76 * (0.48 - 0.10)+ 0.80 * 0.76 * (0.79 - 0.42)= -0.07 +-0.07 < 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. For individuals who are not male, the probability of admission acceptance is 37%. For individuals who are male, the probability of admission acceptance is 68%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.68 +0.68 - 0.37 = 0.31 +0.31 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 70%. For individuals who are not male and white-collar workers, the probability of high salary is 48%. For individuals who are male and blue-collar workers, the probability of high salary is 44%. For individuals who are male and white-collar workers, the probability of high salary is 17%. For individuals who are not male and with low skill levels, the probability of white-collar job is 74%. For individuals who are not male and with high skill levels, the probability of white-collar job is 45%. For individuals who are male and with low skill levels, the probability of white-collar job is 49%. For individuals who are male and with high skill levels, the probability of white-collar job is 18%. The overall probability of high skill level is 95%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.74 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.18 +P(V2=1) = 0.95 +0.95 * (0.17 - 0.44) * 0.45 + 0.05 * (0.48 - 0.70) * 0.49 = -0.29 +-0.29 < 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 5%. The probability of non-male gender and high salary is 34%. The probability of male gender and high salary is 2%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.34/0.95 = -0.04 +-0.04 < 0",arrowhead,gender_pay,1,correlation,P(Y | X) +6567,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look directly at how gender correlates with salary in general. Method 2: We look at this correlation case by case according to occupation.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +6613,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 17%. For individuals who are male, the probability of high salary is 31%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.31 +0.31 - 0.17 = 0.14 +0.14 > 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 93%. The probability of non-male gender and high salary is 1%. The probability of male gender and high salary is 29%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.29 +0.29/0.93 - 0.01/0.07 = 0.14 +0.14 > 0",arrowhead,gender_pay,1,correlation,P(Y | X) +6659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 49%. For individuals who are not male and white-collar workers, the probability of high salary is 27%. For individuals who are male and blue-collar workers, the probability of high salary is 74%. For individuals who are male and white-collar workers, the probability of high salary is 54%. For individuals who are not male and with low skill levels, the probability of white-collar job is 52%. For individuals who are not male and with high skill levels, the probability of white-collar job is 28%. For individuals who are male and with low skill levels, the probability of white-collar job is 89%. For individuals who are male and with high skill levels, the probability of white-collar job is 54%. The overall probability of high skill level is 96%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.28 +P(V3=1 | X=1, V2=0) = 0.89 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.96 +0.96 * (0.54 - 0.74) * 0.28 + 0.04 * (0.27 - 0.49) * 0.89 = 0.25 +0.25 > 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 52%. For individuals who are male, the probability of high salary is 37%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.37 +0.37 - 0.52 = -0.15 +-0.15 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 50%. For individuals who are male, the probability of high salary is 51%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.51 +0.51 - 0.50 = 0.01 +0.01 > 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 50%. For individuals who are male, the probability of high salary is 51%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.51 +0.51 - 0.50 = 0.01 +0.01 > 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look at how gender correlates with salary case by case according to occupation. Method 2: We look directly at how gender correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +6708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 52%. For individuals who are male, the probability of high salary is 35%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.35 - 0.52 = -0.17 +-0.17 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 52%. For individuals who are male, the probability of high salary is 35%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.35 - 0.52 = -0.17 +-0.17 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 52%. For individuals who are male, the probability of high salary is 35%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.35 - 0.52 = -0.17 +-0.17 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 40%. For individuals who are not male and white-collar workers, the probability of high salary is 20%. For individuals who are male and blue-collar workers, the probability of high salary is 61%. For individuals who are male and white-collar workers, the probability of high salary is 39%. For individuals who are not male and with low skill levels, the probability of white-collar job is 42%. For individuals who are not male and with high skill levels, the probability of white-collar job is 9%. For individuals who are male and with low skill levels, the probability of white-collar job is 89%. For individuals who are male and with high skill levels, the probability of white-collar job is 58%. The overall probability of high skill level is 93%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.42 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.89 +P(V3=1 | X=1, V2=1) = 0.58 +P(V2=1) = 0.93 +0.93 * 0.20 * (0.58 - 0.89)+ 0.07 * 0.20 * (0.09 - 0.42)= -0.12 +-0.12 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 40%. For individuals who are not male and white-collar workers, the probability of high salary is 20%. For individuals who are male and blue-collar workers, the probability of high salary is 61%. For individuals who are male and white-collar workers, the probability of high salary is 39%. For individuals who are not male and with low skill levels, the probability of white-collar job is 42%. For individuals who are not male and with high skill levels, the probability of white-collar job is 9%. For individuals who are male and with low skill levels, the probability of white-collar job is 89%. For individuals who are male and with high skill levels, the probability of white-collar job is 58%. The overall probability of high skill level is 93%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.42 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.89 +P(V3=1 | X=1, V2=1) = 0.58 +P(V2=1) = 0.93 +0.93 * 0.20 * (0.58 - 0.89)+ 0.07 * 0.20 * (0.09 - 0.42)= -0.12 +-0.12 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look directly at how gender correlates with salary in general. Method 2: We look at this correlation case by case according to occupation.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +6784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 35%. For individuals who are not male and white-collar workers, the probability of high salary is 13%. For individuals who are male and blue-collar workers, the probability of high salary is 63%. For individuals who are male and white-collar workers, the probability of high salary is 42%. For individuals who are not male and with low skill levels, the probability of white-collar job is 55%. For individuals who are not male and with high skill levels, the probability of white-collar job is 33%. For individuals who are male and with low skill levels, the probability of white-collar job is 93%. For individuals who are male and with high skill levels, the probability of white-collar job is 53%. The overall probability of high skill level is 92%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.55 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.93 +P(V3=1 | X=1, V2=1) = 0.53 +P(V2=1) = 0.92 +0.92 * (0.42 - 0.63) * 0.33 + 0.08 * (0.13 - 0.35) * 0.93 = 0.28 +0.28 > 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 96%. For individuals who are not male, the probability of high salary is 28%. For individuals who are male, the probability of high salary is 51%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.51 +0.96*0.51 - 0.04*0.28 = 0.50 +0.50 > 0",arrowhead,gender_pay,1,marginal,P(Y) +6788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 96%. The probability of non-male gender and high salary is 1%. The probability of male gender and high salary is 49%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.49 +0.49/0.96 - 0.01/0.04 = 0.23 +0.23 > 0",arrowhead,gender_pay,1,correlation,P(Y | X) +6794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 56%. For individuals who are male, the probability of high salary is 39%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.39 +0.39 - 0.56 = -0.17 +-0.17 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 67%. For individuals who are not male and white-collar workers, the probability of high salary is 45%. For individuals who are male and blue-collar workers, the probability of high salary is 42%. For individuals who are male and white-collar workers, the probability of high salary is 25%. For individuals who are not male and with low skill levels, the probability of white-collar job is 66%. For individuals who are not male and with high skill levels, the probability of white-collar job is 44%. For individuals who are male and with low skill levels, the probability of white-collar job is 39%. For individuals who are male and with high skill levels, the probability of white-collar job is 9%. The overall probability of high skill level is 80%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.66 +P(V3=1 | X=0, V2=1) = 0.44 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.80 +0.80 * 0.45 * (0.09 - 0.39)+ 0.20 * 0.45 * (0.44 - 0.66)= 0.08 +0.08 > 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 7%. The probability of non-male gender and high salary is 52%. The probability of male gender and high salary is 3%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.07 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.03 +0.03/0.07 - 0.52/0.93 = -0.17 +-0.17 < 0",arrowhead,gender_pay,1,correlation,P(Y | X) +6809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 49%. For individuals who are male, the probability of high salary is 36%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.36 - 0.49 = -0.13 +-0.13 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 51%. For individuals who are not male and white-collar workers, the probability of high salary is 35%. For individuals who are male and blue-collar workers, the probability of high salary is 43%. For individuals who are male and white-collar workers, the probability of high salary is 20%. For individuals who are not male and with low skill levels, the probability of white-collar job is 50%. For individuals who are not male and with high skill levels, the probability of white-collar job is 5%. For individuals who are male and with low skill levels, the probability of white-collar job is 61%. For individuals who are male and with high skill levels, the probability of white-collar job is 29%. The overall probability of high skill level is 87%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.35 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.05 +P(V3=1 | X=1, V2=0) = 0.61 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.87 +0.87 * 0.35 * (0.29 - 0.61)+ 0.13 * 0.35 * (0.05 - 0.50)= -0.07 +-0.07 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 2%. For individuals who are not male, the probability of high salary is 49%. For individuals who are male, the probability of high salary is 36%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.02*0.36 - 0.98*0.49 = 0.49 +0.49 > 0",arrowhead,gender_pay,1,marginal,P(Y) +6828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 96%. For individuals who are not male, the probability of high salary is 25%. For individuals who are male, the probability of high salary is 44%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.44 +0.96*0.44 - 0.04*0.25 = 0.43 +0.43 > 0",arrowhead,gender_pay,1,marginal,P(Y) +6843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 8%. For individuals who are not male, the probability of high salary is 50%. For individuals who are male, the probability of high salary is 32%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.32 +0.08*0.32 - 0.92*0.50 = 0.49 +0.49 > 0",arrowhead,gender_pay,1,marginal,P(Y) +6861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look directly at how gender correlates with salary in general. Method 2: We look at this correlation case by case according to occupation.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +6878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 46%. For individuals who are male, the probability of high salary is 35%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.35 +0.35 - 0.46 = -0.11 +-0.11 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 46%. For individuals who are not male and white-collar workers, the probability of high salary is 27%. For individuals who are male and blue-collar workers, the probability of high salary is 47%. For individuals who are male and white-collar workers, the probability of high salary is 23%. For individuals who are not male and with low skill levels, the probability of white-collar job is 84%. For individuals who are not male and with high skill levels, the probability of white-collar job is 33%. For individuals who are male and with low skill levels, the probability of white-collar job is 84%. For individuals who are male and with high skill levels, the probability of white-collar job is 51%. The overall probability of high skill level is 84%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.84 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.84 +P(V3=1 | X=1, V2=1) = 0.51 +P(V2=1) = 0.84 +0.84 * (0.23 - 0.47) * 0.33 + 0.16 * (0.27 - 0.46) * 0.84 = -0.00 +0.00 = 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +6909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 40%. For individuals who are not male and white-collar workers, the probability of high salary is 18%. For individuals who are male and blue-collar workers, the probability of high salary is 62%. For individuals who are male and white-collar workers, the probability of high salary is 40%. For individuals who are not male and with low skill levels, the probability of white-collar job is 58%. For individuals who are not male and with high skill levels, the probability of white-collar job is 18%. For individuals who are male and with low skill levels, the probability of white-collar job is 79%. For individuals who are male and with high skill levels, the probability of white-collar job is 51%. The overall probability of high skill level is 97%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.40 +P(V3=1 | X=0, V2=0) = 0.58 +P(V3=1 | X=0, V2=1) = 0.18 +P(V3=1 | X=1, V2=0) = 0.79 +P(V3=1 | X=1, V2=1) = 0.51 +P(V2=1) = 0.97 +0.97 * 0.18 * (0.51 - 0.79)+ 0.03 * 0.18 * (0.18 - 0.58)= -0.08 +-0.08 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male and blue-collar workers, the probability of high salary is 42%. For individuals who are not male and white-collar workers, the probability of high salary is 23%. For individuals who are male and blue-collar workers, the probability of high salary is 65%. For individuals who are male and white-collar workers, the probability of high salary is 47%. For individuals who are not male and with low skill levels, the probability of white-collar job is 56%. For individuals who are not male and with high skill levels, the probability of white-collar job is 12%. For individuals who are male and with low skill levels, the probability of white-collar job is 90%. For individuals who are male and with high skill levels, the probability of white-collar job is 44%. The overall probability of high skill level is 93%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0, V2=0) = 0.56 +P(V3=1 | X=0, V2=1) = 0.12 +P(V3=1 | X=1, V2=0) = 0.90 +P(V3=1 | X=1, V2=1) = 0.44 +P(V2=1) = 0.93 +0.93 * 0.23 * (0.44 - 0.90)+ 0.07 * 0.23 * (0.12 - 0.56)= -0.08 +-0.08 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +6932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 43%. For individuals who are male, the probability of high salary is 47%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.47 +0.47 - 0.43 = 0.05 +0.05 > 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of male gender is 18%. The probability of non-male gender and high salary is 35%. The probability of male gender and high salary is 8%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.08 +0.08/0.18 - 0.35/0.82 = 0.04 +0.04 > 0",arrowhead,gender_pay,1,correlation,P(Y | X) +6945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look directly at how gender correlates with salary in general. Method 2: We look at this correlation case by case according to occupation.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +6947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 46%. For individuals who are male, the probability of high salary is 31%.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.31 +0.31 - 0.46 = -0.15 +-0.15 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +6949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who are not male, the probability of high salary is 46%. For individuals who are male, the probability of high salary is 31%.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.31 +0.31 - 0.46 = -0.15 +-0.15 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +6958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look at how gender correlates with salary case by case according to occupation. Method 2: We look directly at how gender correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +6979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 95%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 99%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 98%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 100%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 96%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.98 +P(Y=1 | X=1, V3=0) = 1.00 +P(Y=1 | X=1, V3=1) = 0.96 +0.96 - (0.95*0.96 + 0.05*0.98) = -0.00 +0.00 = 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +6980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 59%. For people with no respiratory issues, the probability of broken bones is 85%. For people with respiratory issues, the probability of broken bones is 85%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.85 +0.59*0.85 - 0.41*0.85 = 0.85 +0.85 > 0",collision,hospitalization,1,marginal,P(Y) +6987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between respiratory issues and broken bones is -0.11.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +6994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look at how respiratory issues correlates with broken bones case by case according to hospitalization status. Method 2: We look directly at how respiratory issues correlates with broken bones in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +6999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 41%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 93%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 69%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 93%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 75%.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.41 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.75 +0.75 - (0.41*0.75 + 0.59*0.69) = 0.03 +0.03 > 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look directly at how respiratory issues correlates with broken bones in general. Method 2: We look at this correlation case by case according to hospitalization status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +7039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 50%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 93%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 54%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 90%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 64%.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.50 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.90 +P(Y=1 | X=1, V3=1) = 0.64 +0.64 - (0.50*0.64 + 0.50*0.54) = 0.05 +0.05 > 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look at how respiratory issues correlates with broken bones case by case according to hospitalization status. Method 2: We look directly at how respiratory issues correlates with broken bones in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +7080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 93%. For people with no respiratory issues, the probability of broken bones is 81%. For people with respiratory issues, the probability of broken bones is 81%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.81 +0.93*0.81 - 0.07*0.81 = 0.81 +0.81 > 0",collision,hospitalization,1,marginal,P(Y) +7090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 89%. For people with no respiratory issues, the probability of broken bones is 85%. For people with respiratory issues, the probability of broken bones is 85%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.85 +0.89*0.85 - 0.11*0.85 = 0.85 +0.85 > 0",collision,hospitalization,1,marginal,P(Y) +7111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 59%. For people with no respiratory issues, the probability of broken bones is 86%. For people with respiratory issues, the probability of broken bones is 86%.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.59*0.86 - 0.41*0.86 = 0.86 +0.86 > 0",collision,hospitalization,1,marginal,P(Y) +7125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look directly at how respiratory issues correlates with broken bones in general. Method 2: We look at this correlation case by case according to hospitalization status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +7127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between respiratory issues and broken bones is -0.15.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +7130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 89%. For people with no respiratory issues, the probability of broken bones is 85%. For people with respiratory issues, the probability of broken bones is 85%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.85 +0.89*0.85 - 0.11*0.85 = 0.85 +0.85 > 0",collision,hospitalization,1,marginal,P(Y) +7141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 53%. For people with no respiratory issues, the probability of broken bones is 91%. For people with respiratory issues, the probability of broken bones is 91%.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.91 +0.53*0.91 - 0.47*0.91 = 0.91 +0.91 > 0",collision,hospitalization,1,marginal,P(Y) +7149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 53%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 95%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 85%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 94%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 71%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.53 +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.71 +0.71 - (0.53*0.71 + 0.47*0.85) = -0.10 +-0.10 < 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look at how respiratory issues correlates with broken bones case by case according to hospitalization status. Method 2: We look directly at how respiratory issues correlates with broken bones in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +7209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 84%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 92%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 71%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 88%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 58%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.84 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.58 +0.58 - (0.84*0.58 + 0.16*0.71) = -0.04 +-0.04 < 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 82%. For people with no respiratory issues, the probability of broken bones is 85%. For people with respiratory issues, the probability of broken bones is 85%.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.85 +0.82*0.85 - 0.18*0.85 = 0.85 +0.85 > 0",collision,hospitalization,1,marginal,P(Y) +7215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look directly at how respiratory issues correlates with broken bones in general. Method 2: We look at this correlation case by case according to hospitalization status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +7229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 57%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 99%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 95%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 99%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 87%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.95 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.87 +0.87 - (0.57*0.87 + 0.43*0.95) = -0.06 +-0.06 < 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 52%. For people with no respiratory issues, the probability of broken bones is 83%. For people with respiratory issues, the probability of broken bones is 83%.",yes,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.83 +0.52*0.83 - 0.48*0.83 = 0.83 +0.83 > 0",collision,hospitalization,1,marginal,P(Y) +7256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between respiratory issues and broken bones is -0.18.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +7258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Respiratory issues has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of respiratory issues is 52%. For people with no respiratory issues and non-hospitalized individuals, the probability of broken bones is 92%. For people with no respiratory issues and hospitalized individuals, the probability of broken bones is 75%. For people with respiratory issues and non-hospitalized individuals, the probability of broken bones is 89%. For people with respiratory issues and hospitalized individuals, the probability of broken bones is 56%.",no,"Let Y = broken bones; X = respiratory issues; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.52 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.89 +P(Y=1 | X=1, V3=1) = 0.56 +0.56 - (0.52*0.56 + 0.48*0.75) = -0.13 +-0.13 < 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look directly at how personality correlates with appearance in general. Method 2: We look at this correlation case by case according to relationship status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +7298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 5%. For people with mean personalities and single people, the probability of attractive appearance is 93%. For people with mean personalities and in a relationship, the probability of attractive appearance is 81%. For people with kind personalities and single people, the probability of attractive appearance is 95%. For people with kind personalities and in a relationship, the probability of attractive appearance is 73%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.81 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.73 +0.73 - (0.05*0.73 + 0.95*0.81) = -0.07 +-0.07 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look directly at how personality correlates with appearance in general. Method 2: We look at this correlation case by case according to relationship status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +7334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look at how personality correlates with appearance case by case according to relationship status. Method 2: We look directly at how personality correlates with appearance in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +7337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between kindness and attractive appearance is 0.33.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +7340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 8%. For people with mean personalities, the probability of attractive appearance is 17%. For people with kind personalities, the probability of attractive appearance is 17%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.17 +0.08*0.17 - 0.92*0.17 = 0.17 +0.17 > 0",collision,man_in_relationship,1,marginal,P(Y) +7341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 8%. For people with mean personalities, the probability of attractive appearance is 17%. For people with kind personalities, the probability of attractive appearance is 17%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.17 +0.08*0.17 - 0.92*0.17 = 0.17 +0.17 > 0",collision,man_in_relationship,1,marginal,P(Y) +7370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 1%. For people with mean personalities, the probability of attractive appearance is 84%. For people with kind personalities, the probability of attractive appearance is 84%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.84 +0.01*0.84 - 0.99*0.84 = 0.84 +0.84 > 0",collision,man_in_relationship,1,marginal,P(Y) +7381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 11%. For people with mean personalities, the probability of attractive appearance is 11%. For people with kind personalities, the probability of attractive appearance is 11%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.11 +0.11*0.11 - 0.89*0.11 = 0.11 +0.11 > 0",collision,man_in_relationship,1,marginal,P(Y) +7386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between kindness and attractive appearance is -0.03.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +7394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look at how personality correlates with appearance case by case according to relationship status. Method 2: We look directly at how personality correlates with appearance in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +7406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between kindness and attractive appearance is -0.07.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +7407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between kindness and attractive appearance is -0.07.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +7430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 16%. For people with mean personalities, the probability of attractive appearance is 92%. For people with kind personalities, the probability of attractive appearance is 92%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.16*0.92 - 0.84*0.92 = 0.92 +0.92 > 0",collision,man_in_relationship,1,marginal,P(Y) +7439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 16%. For people with mean personalities and single people, the probability of attractive appearance is 99%. For people with mean personalities and in a relationship, the probability of attractive appearance is 88%. For people with kind personalities and single people, the probability of attractive appearance is 96%. For people with kind personalities and in a relationship, the probability of attractive appearance is 87%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.16 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.87 +0.87 - (0.16*0.87 + 0.84*0.88) = -0.01 +-0.01 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 96%. For people with mean personalities, the probability of attractive appearance is 88%. For people with kind personalities, the probability of attractive appearance is 88%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.96*0.88 - 0.04*0.88 = 0.88 +0.88 > 0",collision,man_in_relationship,1,marginal,P(Y) +7448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 96%. For people with mean personalities and single people, the probability of attractive appearance is 96%. For people with mean personalities and in a relationship, the probability of attractive appearance is 78%. For people with kind personalities and single people, the probability of attractive appearance is 93%. For people with kind personalities and in a relationship, the probability of attractive appearance is 48%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.48 +0.48 - (0.96*0.48 + 0.04*0.78) = -0.04 +-0.04 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 20%. For people with mean personalities and single people, the probability of attractive appearance is 99%. For people with mean personalities and in a relationship, the probability of attractive appearance is 95%. For people with kind personalities and single people, the probability of attractive appearance is 99%. For people with kind personalities and in a relationship, the probability of attractive appearance is 93%.",yes,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.20 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.95 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.93 +0.93 - (0.20*0.93 + 0.80*0.95) = -0.01 +-0.01 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 95%. For people with mean personalities, the probability of attractive appearance is 89%. For people with kind personalities, the probability of attractive appearance is 89%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.89 +0.95*0.89 - 0.05*0.89 = 0.89 +0.89 > 0",collision,man_in_relationship,1,marginal,P(Y) +7531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 19%. For people with mean personalities, the probability of attractive appearance is 88%. For people with kind personalities, the probability of attractive appearance is 88%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.19*0.88 - 0.81*0.88 = 0.88 +0.88 > 0",collision,man_in_relationship,1,marginal,P(Y) +7539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 19%. For people with mean personalities and single people, the probability of attractive appearance is 94%. For people with mean personalities and in a relationship, the probability of attractive appearance is 74%. For people with kind personalities and single people, the probability of attractive appearance is 95%. For people with kind personalities and in a relationship, the probability of attractive appearance is 76%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.76 +0.76 - (0.19*0.76 + 0.81*0.74) = 0.02 +0.02 > 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 15%. For people with mean personalities and single people, the probability of attractive appearance is 92%. For people with mean personalities and in a relationship, the probability of attractive appearance is 75%. For people with kind personalities and single people, the probability of attractive appearance is 92%. For people with kind personalities and in a relationship, the probability of attractive appearance is 77%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.77 +0.77 - (0.15*0.77 + 0.85*0.75) = 0.02 +0.02 > 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +7551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Personality has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of kindness is 4%. For people with mean personalities, the probability of attractive appearance is 88%. For people with kind personalities, the probability of attractive appearance is 88%.",no,"Let Y = appearance; X = personality; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.04*0.88 - 0.96*0.88 = 0.88 +0.88 > 0",collision,man_in_relationship,1,marginal,P(Y) +7572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look at how parents' intelligence correlates with child's intelligence case by case according to parents' social status. Method 2: We look directly at how parents' intelligence correlates with child's intelligence in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 62%. For children with intelligent parents, the probability of intelligent child is 47%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.47 +0.47 - 0.62 = -0.14 +-0.14 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +7587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look directly at how parents' intelligence correlates with child's intelligence in general. Method 2: We look at this correlation case by case according to parents' social status.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 65%. For children with intelligent parents, the probability of intelligent child is 42%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.42 +0.42 - 0.65 = -0.22 +-0.22 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +7589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 65%. For children with intelligent parents, the probability of intelligent child is 42%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.42 +0.42 - 0.65 = -0.22 +-0.22 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +7591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 65%. For children with intelligent parents, the probability of intelligent child is 42%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.42 +0.42 - 0.65 = -0.22 +-0.22 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +7600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look at how parents' intelligence correlates with child's intelligence case by case according to parents' social status. Method 2: We look directly at how parents' intelligence correlates with child's intelligence in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 50%. For children with intelligent parents, the probability of intelligent child is 11%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.11 +0.11 - 0.50 = -0.38 +-0.38 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +7609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 55%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 47%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 13%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 7%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 77%. For children with unintelligent parents and confounder active, the probability of high parental social status is 54%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 43%. For children with intelligent parents and confounder active, the probability of high parental social status is 20%. The overall probability of confounder active is 48%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.13 +P(Y=1 | X=1, V3=1) = 0.07 +P(V3=1 | X=0, V2=0) = 0.77 +P(V3=1 | X=0, V2=1) = 0.54 +P(V3=1 | X=1, V2=0) = 0.43 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.48 +0.48 * (0.07 - 0.13) * 0.54 + 0.52 * (0.47 - 0.55) * 0.43 = -0.41 +-0.41 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 82%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 46%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 48%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 14%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 63%. For children with unintelligent parents and confounder active, the probability of high parental social status is 68%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 16%. For children with intelligent parents and confounder active, the probability of high parental social status is 30%. The overall probability of confounder active is 53%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.82 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0, V2=0) = 0.63 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.53 +0.53 * (0.14 - 0.48) * 0.68 + 0.47 * (0.46 - 0.82) * 0.16 = -0.33 +-0.33 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 85%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 89%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 47%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 55%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 73%. For children with unintelligent parents and confounder active, the probability of high parental social status is 36%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 45%. For children with intelligent parents and confounder active, the probability of high parental social status is 6%. The overall probability of confounder active is 42%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.73 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.45 +P(V3=1 | X=1, V2=1) = 0.06 +P(V2=1) = 0.42 +0.42 * (0.55 - 0.47) * 0.36 + 0.58 * (0.89 - 0.85) * 0.45 = -0.37 +-0.37 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 9%. The probability of unintelligent parents and intelligent child is 79%. The probability of intelligent parents and intelligent child is 5%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.05 +0.05/0.09 - 0.79/0.91 = -0.38 +-0.38 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +7661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 73%. For children with intelligent parents, the probability of intelligent child is 46%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.46 +0.46 - 0.73 = -0.27 +-0.27 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +7662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 95%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 70%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 59%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 33%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 91%. For children with unintelligent parents and confounder active, the probability of high parental social status is 88%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 59%. For children with intelligent parents and confounder active, the probability of high parental social status is 46%. The overall probability of confounder active is 55%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0, V2=0) = 0.91 +P(V3=1 | X=0, V2=1) = 0.88 +P(V3=1 | X=1, V2=0) = 0.59 +P(V3=1 | X=1, V2=1) = 0.46 +P(V2=1) = 0.55 +0.55 * 0.70 * (0.46 - 0.59)+ 0.45 * 0.70 * (0.88 - 0.91)= 0.09 +0.09 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +7668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. The probability of unintelligent parents and intelligent child is 63%. The probability of intelligent parents and intelligent child is 6%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.06 +0.06/0.14 - 0.63/0.86 = -0.27 +-0.27 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +7677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 87%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 57%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 62%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 31%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 47%. For children with unintelligent parents and confounder active, the probability of high parental social status is 14%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 36%. For children with intelligent parents and confounder active, the probability of high parental social status is 16%. The overall probability of confounder active is 53%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0, V2=0) = 0.47 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.36 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.53 +0.53 * 0.57 * (0.16 - 0.36)+ 0.47 * 0.57 * (0.14 - 0.47)= 0.01 +0.01 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +7679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 87%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 57%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 62%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 31%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 47%. For children with unintelligent parents and confounder active, the probability of high parental social status is 14%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 36%. For children with intelligent parents and confounder active, the probability of high parental social status is 16%. The overall probability of confounder active is 53%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0, V2=0) = 0.47 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.36 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.53 +0.53 * (0.31 - 0.62) * 0.14 + 0.47 * (0.57 - 0.87) * 0.36 = -0.25 +-0.25 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. The probability of unintelligent parents and intelligent child is 58%. The probability of intelligent parents and intelligent child is 3%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.03 +0.03/0.14 - 0.58/0.86 = -0.44 +-0.44 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +7699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look directly at how parents' intelligence correlates with child's intelligence in general. Method 2: We look at this correlation case by case according to parents' social status.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 95%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 54%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 48%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 20%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 56%. For children with unintelligent parents and confounder active, the probability of high parental social status is 62%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 31%. For children with intelligent parents and confounder active, the probability of high parental social status is 22%. The overall probability of confounder active is 49%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0, V2=0) = 0.56 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.22 +P(V2=1) = 0.49 +0.49 * 0.54 * (0.22 - 0.31)+ 0.51 * 0.54 * (0.62 - 0.56)= 0.13 +0.13 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +7706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 95%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 54%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 48%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 20%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 56%. For children with unintelligent parents and confounder active, the probability of high parental social status is 62%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 31%. For children with intelligent parents and confounder active, the probability of high parental social status is 22%. The overall probability of confounder active is 49%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0, V2=0) = 0.56 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.22 +P(V2=1) = 0.49 +0.49 * (0.20 - 0.48) * 0.62 + 0.51 * (0.54 - 0.95) * 0.31 = -0.40 +-0.40 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 58%. For children with intelligent parents, the probability of intelligent child is 33%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.33 +0.33 - 0.58 = -0.25 +-0.25 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +7726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look at how parents' intelligence correlates with child's intelligence case by case according to parents' social status. Method 2: We look directly at how parents' intelligence correlates with child's intelligence in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 17%. The probability of unintelligent parents and intelligent child is 73%. The probability of intelligent parents and intelligent child is 8%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.73 +P(Y=1, X=1=1) = 0.08 +0.08/0.17 - 0.73/0.83 = -0.39 +-0.39 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +7749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 68%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 43%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 43%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 20%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 67%. For children with unintelligent parents and confounder active, the probability of high parental social status is 56%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 36%. For children with intelligent parents and confounder active, the probability of high parental social status is 26%. The overall probability of confounder active is 47%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0, V2=0) = 0.67 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.36 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.47 +0.47 * (0.20 - 0.43) * 0.56 + 0.53 * (0.43 - 0.68) * 0.36 = -0.24 +-0.24 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 4%. For children with unintelligent parents, the probability of intelligent child is 55%. For children with intelligent parents, the probability of intelligent child is 17%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.17 +0.04*0.17 - 0.96*0.55 = 0.53 +0.53 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +7818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 91%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 90%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 45%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 59%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 63%. For children with unintelligent parents and confounder active, the probability of high parental social status is 42%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 31%. For children with intelligent parents and confounder active, the probability of high parental social status is 9%. The overall probability of confounder active is 56%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.59 +P(V3=1 | X=0, V2=0) = 0.63 +P(V3=1 | X=0, V2=1) = 0.42 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.56 +0.56 * (0.59 - 0.45) * 0.42 + 0.44 * (0.90 - 0.91) * 0.31 = -0.38 +-0.38 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 12%. For children with unintelligent parents, the probability of intelligent child is 90%. For children with intelligent parents, the probability of intelligent child is 47%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.47 +0.12*0.47 - 0.88*0.90 = 0.85 +0.85 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +7850,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. The probability of unintelligent parents and intelligent child is 66%. The probability of intelligent parents and intelligent child is 5%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.66 +P(Y=1, X=1=1) = 0.05 +0.05/0.14 - 0.66/0.86 = -0.39 +-0.39 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +7881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look directly at how parents' intelligence correlates with child's intelligence in general. Method 2: We look at this correlation case by case according to parents' social status.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. Method 1: We look at how parents' intelligence correlates with child's intelligence case by case according to parents' social status. Method 2: We look directly at how parents' intelligence correlates with child's intelligence in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +7902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 60%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 65%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 29%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 22%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 72%. For children with unintelligent parents and confounder active, the probability of high parental social status is 41%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 35%. For children with intelligent parents and confounder active, the probability of high parental social status is 12%. The overall probability of confounder active is 52%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.22 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.35 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.52 +0.52 * (0.22 - 0.29) * 0.41 + 0.48 * (0.65 - 0.60) * 0.35 = -0.36 +-0.36 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +7911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 52%. For children with intelligent parents, the probability of intelligent child is 35%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.35 - 0.52 = -0.17 +-0.17 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +7929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 66%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 42%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 43%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 17%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 70%. For children with unintelligent parents and confounder active, the probability of high parental social status is 71%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 58%. For children with intelligent parents and confounder active, the probability of high parental social status is 82%. The overall probability of confounder active is 57%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.70 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.57 +0.57 * 0.42 * (0.82 - 0.58)+ 0.43 * 0.42 * (0.71 - 0.70)= -0.00 +0.00 = 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +7938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of intelligent child is 50%. For children with intelligent parents, the probability of intelligent child is 28%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.28 +0.28 - 0.50 = -0.22 +-0.22 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +7957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of intelligent child is 63%. For children with unintelligent parents and with high parental social status, the probability of intelligent child is 40%. For children with intelligent parents and with low parental social status, the probability of intelligent child is 39%. For children with intelligent parents and with high parental social status, the probability of intelligent child is 13%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 37%. For children with unintelligent parents and confounder active, the probability of high parental social status is 53%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 31%. For children with intelligent parents and confounder active, the probability of high parental social status is 60%. The overall probability of confounder active is 50%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.13 +P(V3=1 | X=0, V2=0) = 0.37 +P(V3=1 | X=0, V2=1) = 0.53 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.60 +P(V2=1) = 0.50 +0.50 * 0.40 * (0.60 - 0.31)+ 0.50 * 0.40 * (0.53 - 0.37)= -0.00 +0.00 = 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +7963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. The overall probability of intelligent parents is 19%. The probability of unintelligent parents and intelligent child is 42%. The probability of intelligent parents and intelligent child is 5%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.05 +0.05/0.19 - 0.42/0.81 = -0.25 +-0.25 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +7997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 41%. For smokers, the probability of college admission is 31%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.31 +0.31 - 0.41 = -0.10 +-0.10 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 85%. The probability of nonsmoking and college admission is 6%. The probability of smoking and college admission is 26%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.26 +0.26/0.85 - 0.06/0.15 = -0.10 +-0.10 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +8017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 92%. For nonsmokers, the probability of college admission is 47%. For smokers, the probability of college admission is 45%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.45 +0.92*0.45 - 0.08*0.47 = 0.45 +0.45 > 0",mediation,neg_mediation,1,marginal,P(Y) +8022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 54%. For smokers, the probability of college admission is 68%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.68 +0.68 - 0.54 = 0.14 +0.14 > 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 55%. For nonsmokers and are hard-working, the probability of college admission is 24%. For smokers and are lazy, the probability of college admission is 81%. For smokers and are hard-working, the probability of college admission is 59%. For nonsmokers, the probability of being hard-working is 2%. For smokers, the probability of being hard-working is 59%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.24 +P(Y=1 | X=1, V2=0) = 0.81 +P(Y=1 | X=1, V2=1) = 0.59 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.59 +0.59 * (0.24 - 0.55)+ 0.02 * (0.59 - 0.81)= -0.18 +-0.18 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +8032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 91%. The probability of nonsmoking and college admission is 5%. The probability of smoking and college admission is 62%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.62 +0.62/0.91 - 0.05/0.09 = 0.14 +0.14 > 0",mediation,neg_mediation,1,correlation,P(Y | X) +8035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look directly at how smoking correlates with college admission in general. Method 2: We look at this correlation case by case according to effort.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 51%. For smokers, the probability of college admission is 37%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.37 +0.37 - 0.51 = -0.14 +-0.14 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 61%. For nonsmokers and are hard-working, the probability of college admission is 41%. For smokers and are lazy, the probability of college admission is 74%. For smokers and are hard-working, the probability of college admission is 31%. For nonsmokers, the probability of being hard-working is 50%. For smokers, the probability of being hard-working is 86%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.61 +P(Y=1 | X=0, V2=1) = 0.41 +P(Y=1 | X=1, V2=0) = 0.74 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.50 +P(V2=1 | X=1) = 0.86 +0.50 * (0.31 - 0.74) + 0.86 * (0.41 - 0.61) = 0.01 +0.01 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +8073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 90%. For nonsmokers, the probability of college admission is 51%. For smokers, the probability of college admission is 64%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.64 +0.90*0.64 - 0.10*0.51 = 0.62 +0.62 > 0",mediation,neg_mediation,1,marginal,P(Y) +8076,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look at how smoking correlates with college admission case by case according to effort. Method 2: We look directly at how smoking correlates with college admission in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 92%. For nonsmokers and are hard-working, the probability of college admission is 50%. For smokers and are lazy, the probability of college admission is 80%. For smokers and are hard-working, the probability of college admission is 36%. For nonsmokers, the probability of being hard-working is 17%. For smokers, the probability of being hard-working is 74%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.92 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.74 +0.17 * (0.36 - 0.80) + 0.74 * (0.50 - 0.92) = -0.12 +-0.12 < 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +8119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look directly at how smoking correlates with college admission in general. Method 2: We look at this correlation case by case according to effort.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 84%. For nonsmokers, the probability of college admission is 56%. For smokers, the probability of college admission is 26%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.26 +0.84*0.26 - 0.16*0.56 = 0.32 +0.32 > 0",mediation,neg_mediation,1,marginal,P(Y) +8129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 84%. For nonsmokers, the probability of college admission is 56%. For smokers, the probability of college admission is 26%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.26 +0.84*0.26 - 0.16*0.56 = 0.32 +0.32 > 0",mediation,neg_mediation,1,marginal,P(Y) +8136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 53%. For smokers, the probability of college admission is 29%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.29 +0.29 - 0.53 = -0.24 +-0.24 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 67%. For smokers, the probability of college admission is 41%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.41 +0.41 - 0.67 = -0.25 +-0.25 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 78%. For nonsmokers and are hard-working, the probability of college admission is 28%. For smokers and are lazy, the probability of college admission is 75%. For smokers and are hard-working, the probability of college admission is 39%. For nonsmokers, the probability of being hard-working is 14%. For smokers, the probability of being hard-working is 47%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.78 +P(Y=1 | X=0, V2=1) = 0.28 +P(Y=1 | X=1, V2=0) = 0.75 +P(Y=1 | X=1, V2=1) = 0.39 +P(V2=1 | X=0) = 0.14 +P(V2=1 | X=1) = 0.47 +0.14 * (0.39 - 0.75) + 0.47 * (0.28 - 0.78) = -0.01 +-0.01 < 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +8202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look at how smoking correlates with college admission case by case according to effort. Method 2: We look directly at how smoking correlates with college admission in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 88%. For smokers, the probability of college admission is 67%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.67 +0.67 - 0.88 = -0.21 +-0.21 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 98%. For nonsmokers and are hard-working, the probability of college admission is 62%. For smokers and are lazy, the probability of college admission is 85%. For smokers and are hard-working, the probability of college admission is 59%. For nonsmokers, the probability of being hard-working is 28%. For smokers, the probability of being hard-working is 69%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.98 +P(Y=1 | X=0, V2=1) = 0.62 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.59 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.69 +0.69 * (0.62 - 0.98)+ 0.28 * (0.59 - 0.85)= -0.15 +-0.15 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +8221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 42%. For smokers, the probability of college admission is 32%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.32 +0.32 - 0.42 = -0.10 +-0.10 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 47%. For nonsmokers and are hard-working, the probability of college admission is 23%. For smokers and are lazy, the probability of college admission is 60%. For smokers and are hard-working, the probability of college admission is 18%. For nonsmokers, the probability of being hard-working is 22%. For smokers, the probability of being hard-working is 66%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.47 +P(Y=1 | X=0, V2=1) = 0.23 +P(Y=1 | X=1, V2=0) = 0.60 +P(Y=1 | X=1, V2=1) = 0.18 +P(V2=1 | X=0) = 0.22 +P(V2=1 | X=1) = 0.66 +0.66 * (0.23 - 0.47)+ 0.22 * (0.18 - 0.60)= -0.10 +-0.10 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +8226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 87%. For nonsmokers, the probability of college admission is 42%. For smokers, the probability of college admission is 32%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.32 +0.87*0.32 - 0.13*0.42 = 0.34 +0.34 > 0",mediation,neg_mediation,1,marginal,P(Y) +8234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 49%. For smokers, the probability of college admission is 61%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.61 +0.61 - 0.49 = 0.12 +0.12 > 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 82%. The probability of nonsmoking and college admission is 9%. The probability of smoking and college admission is 50%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.50 +0.50/0.82 - 0.09/0.18 = 0.12 +0.12 > 0",mediation,neg_mediation,1,correlation,P(Y | X) +8243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 82%. The probability of nonsmoking and college admission is 9%. The probability of smoking and college admission is 50%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.50 +0.50/0.82 - 0.09/0.18 = 0.12 +0.12 > 0",mediation,neg_mediation,1,correlation,P(Y | X) +8244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look at how smoking correlates with college admission case by case according to effort. Method 2: We look directly at how smoking correlates with college admission in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 64%. For smokers, the probability of college admission is 37%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.37 +0.37 - 0.64 = -0.28 +-0.28 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look directly at how smoking correlates with college admission in general. Method 2: We look at this correlation case by case according to effort.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 86%. For smokers, the probability of college admission is 58%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.58 +0.58 - 0.86 = -0.28 +-0.28 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 89%. For nonsmokers and are hard-working, the probability of college admission is 37%. For smokers and are lazy, the probability of college admission is 81%. For smokers and are hard-working, the probability of college admission is 46%. For nonsmokers, the probability of being hard-working is 5%. For smokers, the probability of being hard-working is 65%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.37 +P(Y=1 | X=1, V2=0) = 0.81 +P(Y=1 | X=1, V2=1) = 0.46 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.65 +0.05 * (0.46 - 0.81) + 0.65 * (0.37 - 0.89) = -0.07 +-0.07 < 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +8270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 93%. The probability of nonsmoking and college admission is 6%. The probability of smoking and college admission is 54%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.54 +0.54/0.93 - 0.06/0.07 = -0.28 +-0.28 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +8288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 49%. For smokers, the probability of college admission is 39%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.39 - 0.49 = -0.11 +-0.11 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 91%. For smokers, the probability of college admission is 65%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.65 +0.65 - 0.91 = -0.27 +-0.27 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 91%. For smokers, the probability of college admission is 65%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.65 +0.65 - 0.91 = -0.27 +-0.27 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 100%. For nonsmokers and are hard-working, the probability of college admission is 63%. For smokers and are lazy, the probability of college admission is 93%. For smokers and are hard-working, the probability of college admission is 45%. For nonsmokers, the probability of being hard-working is 23%. For smokers, the probability of being hard-working is 60%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 1.00 +P(Y=1 | X=0, V2=1) = 0.63 +P(Y=1 | X=1, V2=0) = 0.93 +P(Y=1 | X=1, V2=1) = 0.45 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.60 +0.23 * (0.45 - 0.93) + 0.60 * (0.63 - 1.00) = -0.09 +-0.09 < 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +8333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers, the probability of college admission is 67%. For smokers, the probability of college admission is 55%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.55 +0.55 - 0.67 = -0.12 +-0.12 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. The overall probability of smoking is 90%. The probability of nonsmoking and college admission is 6%. The probability of smoking and college admission is 50%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.50 +0.50/0.90 - 0.06/0.10 = -0.12 +-0.12 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +8349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 53%. For nonsmokers and are hard-working, the probability of college admission is 32%. For smokers and are lazy, the probability of college admission is 58%. For smokers and are hard-working, the probability of college admission is 23%. For nonsmokers, the probability of being hard-working is 2%. For smokers, the probability of being hard-working is 56%.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.53 +P(Y=1 | X=0, V2=1) = 0.32 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.56 +0.56 * (0.32 - 0.53)+ 0.02 * (0.23 - 0.58)= -0.11 +-0.11 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +8371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. Method 1: We look directly at how smoking correlates with college admission in general. Method 2: We look at this correlation case by case according to effort.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +8376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 74%. For nonsmokers and are hard-working, the probability of college admission is 40%. For smokers and are lazy, the probability of college admission is 77%. For smokers and are hard-working, the probability of college admission is 51%. For nonsmokers, the probability of being hard-working is 34%. For smokers, the probability of being hard-working is 77%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.74 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.34 +P(V2=1 | X=1) = 0.77 +0.77 * (0.40 - 0.74)+ 0.34 * (0.51 - 0.77)= -0.15 +-0.15 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +8379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. For nonsmokers and are lazy, the probability of college admission is 74%. For nonsmokers and are hard-working, the probability of college admission is 40%. For smokers and are lazy, the probability of college admission is 77%. For smokers and are hard-working, the probability of college admission is 51%. For nonsmokers, the probability of being hard-working is 34%. For smokers, the probability of being hard-working is 77%.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.74 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.34 +P(V2=1 | X=1) = 0.77 +0.34 * (0.51 - 0.77) + 0.77 * (0.40 - 0.74) = 0.05 +0.05 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +8410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 83%. The probability of normal weight and long lifespan is 10%. The probability of obesity and long lifespan is 66%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.66 +0.66/0.83 - 0.10/0.17 = 0.20 +0.20 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 51%. For obese people, the probability of long lifespan is 66%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.66 +0.66 - 0.51 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 32%. For normal weight people and with diabetes, the probability of long lifespan is 60%. For obese people and without diabetes, the probability of long lifespan is 62%. For obese people and with diabetes, the probability of long lifespan is 81%. For normal weight people and nonsmokers, the probability of having diabetes is 57%. For normal weight people and smokers, the probability of having diabetes is 68%. For obese people and nonsmokers, the probability of having diabetes is 31%. For obese people and smokers, the probability of having diabetes is 19%. The overall probability of smoker is 88%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.19 +P(V2=1) = 0.88 +0.88 * 0.60 * (0.19 - 0.31)+ 0.12 * 0.60 * (0.68 - 0.57)= -0.12 +-0.12 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 84%. The probability of normal weight and long lifespan is 8%. The probability of obesity and long lifespan is 55%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.84 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.55 +0.55/0.84 - 0.08/0.16 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8442,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 58%. For obese people, the probability of long lifespan is 76%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.76 +0.76 - 0.58 = 0.18 +0.18 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 42%. For normal weight people and with diabetes, the probability of long lifespan is 66%. For obese people and without diabetes, the probability of long lifespan is 66%. For obese people and with diabetes, the probability of long lifespan is 89%. For normal weight people and nonsmokers, the probability of having diabetes is 100%. For normal weight people and smokers, the probability of having diabetes is 62%. For obese people and nonsmokers, the probability of having diabetes is 71%. For obese people and smokers, the probability of having diabetes is 41%. The overall probability of smoker is 89%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.89 +P(V3=1 | X=0, V2=0) = 1.00 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.41 +P(V2=1) = 0.89 +0.89 * (0.89 - 0.66) * 0.62 + 0.11 * (0.66 - 0.42) * 0.71 = 0.24 +0.24 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +8460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 33%. For normal weight people and with diabetes, the probability of long lifespan is 52%. For obese people and without diabetes, the probability of long lifespan is 54%. For obese people and with diabetes, the probability of long lifespan is 79%. For normal weight people and nonsmokers, the probability of having diabetes is 69%. For normal weight people and smokers, the probability of having diabetes is 56%. For obese people and nonsmokers, the probability of having diabetes is 21%. For obese people and smokers, the probability of having diabetes is 25%. The overall probability of smoker is 83%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.33 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.79 +P(V3=1 | X=0, V2=0) = 0.69 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.21 +P(V3=1 | X=1, V2=1) = 0.25 +P(V2=1) = 0.83 +0.83 * 0.52 * (0.25 - 0.21)+ 0.17 * 0.52 * (0.56 - 0.69)= -0.07 +-0.07 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 91%. For normal weight people, the probability of long lifespan is 44%. For obese people, the probability of long lifespan is 60%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.60 +0.91*0.60 - 0.09*0.44 = 0.59 +0.59 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 91%. The probability of normal weight and long lifespan is 4%. The probability of obesity and long lifespan is 55%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.55 +0.55/0.91 - 0.04/0.09 = 0.16 +0.16 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 23%. For normal weight people and with diabetes, the probability of long lifespan is 51%. For obese people and without diabetes, the probability of long lifespan is 52%. For obese people and with diabetes, the probability of long lifespan is 75%. For normal weight people and nonsmokers, the probability of having diabetes is 80%. For normal weight people and smokers, the probability of having diabetes is 58%. For obese people and nonsmokers, the probability of having diabetes is 51%. For obese people and smokers, the probability of having diabetes is 22%. The overall probability of smoker is 88%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.58 +P(V3=1 | X=1, V2=0) = 0.51 +P(V3=1 | X=1, V2=1) = 0.22 +P(V2=1) = 0.88 +0.88 * 0.51 * (0.22 - 0.51)+ 0.12 * 0.51 * (0.58 - 0.80)= -0.11 +-0.11 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 23%. For normal weight people and with diabetes, the probability of long lifespan is 51%. For obese people and without diabetes, the probability of long lifespan is 52%. For obese people and with diabetes, the probability of long lifespan is 75%. For normal weight people and nonsmokers, the probability of having diabetes is 80%. For normal weight people and smokers, the probability of having diabetes is 58%. For obese people and nonsmokers, the probability of having diabetes is 51%. For obese people and smokers, the probability of having diabetes is 22%. The overall probability of smoker is 88%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.58 +P(V3=1 | X=1, V2=0) = 0.51 +P(V3=1 | X=1, V2=1) = 0.22 +P(V2=1) = 0.88 +0.88 * (0.75 - 0.52) * 0.58 + 0.12 * (0.51 - 0.23) * 0.51 = 0.27 +0.27 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +8506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 82%. For normal weight people, the probability of long lifespan is 50%. For obese people, the probability of long lifespan is 64%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.64 +0.82*0.64 - 0.18*0.50 = 0.61 +0.61 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 43%. For normal weight people and with diabetes, the probability of long lifespan is 74%. For obese people and without diabetes, the probability of long lifespan is 48%. For obese people and with diabetes, the probability of long lifespan is 72%. For normal weight people and nonsmokers, the probability of having diabetes is 76%. For normal weight people and smokers, the probability of having diabetes is 74%. For obese people and nonsmokers, the probability of having diabetes is 39%. For obese people and smokers, the probability of having diabetes is 31%. The overall probability of smoker is 92%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.72 +P(V3=1 | X=0, V2=0) = 0.76 +P(V3=1 | X=0, V2=1) = 0.74 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.92 +0.92 * 0.74 * (0.31 - 0.39)+ 0.08 * 0.74 * (0.74 - 0.76)= -0.13 +-0.13 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look directly at how obesity correlates with lifespan in general. Method 2: We look at this correlation case by case according to diabetes.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +8529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 36%. For obese people, the probability of long lifespan is 58%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.58 +0.58 - 0.36 = 0.22 +0.22 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 23%. For normal weight people and with diabetes, the probability of long lifespan is 45%. For obese people and without diabetes, the probability of long lifespan is 53%. For obese people and with diabetes, the probability of long lifespan is 71%. For normal weight people and nonsmokers, the probability of having diabetes is 97%. For normal weight people and smokers, the probability of having diabetes is 53%. For obese people and nonsmokers, the probability of having diabetes is 61%. For obese people and smokers, the probability of having diabetes is 26%. The overall probability of smoker is 92%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.53 +P(V3=1 | X=1, V2=0) = 0.61 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.92 +0.92 * 0.45 * (0.26 - 0.61)+ 0.08 * 0.45 * (0.53 - 0.97)= -0.07 +-0.07 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 93%. For normal weight people, the probability of long lifespan is 49%. For obese people, the probability of long lifespan is 64%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.64 +0.93*0.64 - 0.07*0.49 = 0.63 +0.63 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 56%. For normal weight people and with diabetes, the probability of long lifespan is 91%. For obese people and without diabetes, the probability of long lifespan is 55%. For obese people and with diabetes, the probability of long lifespan is 84%. For normal weight people and nonsmokers, the probability of having diabetes is 77%. For normal weight people and smokers, the probability of having diabetes is 88%. For obese people and nonsmokers, the probability of having diabetes is 45%. For obese people and smokers, the probability of having diabetes is 28%. The overall probability of smoker is 91%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0, V2=0) = 0.77 +P(V3=1 | X=0, V2=1) = 0.88 +P(V3=1 | X=1, V2=0) = 0.45 +P(V3=1 | X=1, V2=1) = 0.28 +P(V2=1) = 0.91 +0.91 * 0.91 * (0.28 - 0.45)+ 0.09 * 0.91 * (0.88 - 0.77)= -0.19 +-0.19 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 86%. The probability of normal weight and long lifespan is 12%. The probability of obesity and long lifespan is 55%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.55 +0.55/0.86 - 0.12/0.14 = -0.23 +-0.23 < 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 65%. For obese people, the probability of long lifespan is 83%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.83 +0.83 - 0.65 = 0.18 +0.18 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 98%. For normal weight people, the probability of long lifespan is 65%. For obese people, the probability of long lifespan is 83%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.83 +0.98*0.83 - 0.02*0.65 = 0.82 +0.82 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 86%. The probability of normal weight and long lifespan is 10%. The probability of obesity and long lifespan is 54%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.54 +0.54/0.86 - 0.10/0.14 = -0.10 +-0.10 < 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 94%. The probability of normal weight and long lifespan is 3%. The probability of obesity and long lifespan is 64%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.64 +0.64/0.94 - 0.03/0.06 = 0.18 +0.18 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look directly at how obesity correlates with lifespan in general. Method 2: We look at this correlation case by case according to diabetes.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +8731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 91%. For normal weight people, the probability of long lifespan is 85%. For obese people, the probability of long lifespan is 64%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.64 +0.91*0.64 - 0.09*0.85 = 0.66 +0.66 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look at how obesity correlates with lifespan case by case according to diabetes. Method 2: We look directly at how obesity correlates with lifespan in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +8736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 47%. For obese people, the probability of long lifespan is 63%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.63 +0.63 - 0.47 = 0.16 +0.16 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 35%. For normal weight people and with diabetes, the probability of long lifespan is 58%. For obese people and without diabetes, the probability of long lifespan is 58%. For obese people and with diabetes, the probability of long lifespan is 83%. For normal weight people and nonsmokers, the probability of having diabetes is 80%. For normal weight people and smokers, the probability of having diabetes is 50%. For obese people and nonsmokers, the probability of having diabetes is 53%. For obese people and smokers, the probability of having diabetes is 17%. The overall probability of smoker is 96%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.96 +0.96 * 0.58 * (0.17 - 0.53)+ 0.04 * 0.58 * (0.50 - 0.80)= -0.08 +-0.08 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 35%. For normal weight people and with diabetes, the probability of long lifespan is 58%. For obese people and without diabetes, the probability of long lifespan is 58%. For obese people and with diabetes, the probability of long lifespan is 83%. For normal weight people and nonsmokers, the probability of having diabetes is 80%. For normal weight people and smokers, the probability of having diabetes is 50%. For obese people and nonsmokers, the probability of having diabetes is 53%. For obese people and smokers, the probability of having diabetes is 17%. The overall probability of smoker is 96%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.96 +0.96 * (0.83 - 0.58) * 0.50 + 0.04 * (0.58 - 0.35) * 0.53 = 0.25 +0.25 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +8744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 84%. For normal weight people, the probability of long lifespan is 47%. For obese people, the probability of long lifespan is 63%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.63 +0.84*0.63 - 0.16*0.47 = 0.60 +0.60 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 59%. For obese people, the probability of long lifespan is 74%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.74 +0.74 - 0.59 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 59%. For obese people, the probability of long lifespan is 74%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.74 +0.74 - 0.59 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 59%. For obese people, the probability of long lifespan is 74%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.74 +0.74 - 0.59 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 91%. The probability of normal weight and long lifespan is 6%. The probability of obesity and long lifespan is 67%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.67 +0.67/0.91 - 0.06/0.09 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 62%. For obese people, the probability of long lifespan is 55%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.55 +0.55 - 0.62 = -0.06 +-0.06 < 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 43%. For normal weight people and with diabetes, the probability of long lifespan is 78%. For obese people and without diabetes, the probability of long lifespan is 48%. For obese people and with diabetes, the probability of long lifespan is 77%. For normal weight people and nonsmokers, the probability of having diabetes is 66%. For normal weight people and smokers, the probability of having diabetes is 52%. For obese people and nonsmokers, the probability of having diabetes is 10%. For obese people and smokers, the probability of having diabetes is 26%. The overall probability of smoker is 95%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.66 +P(V3=1 | X=0, V2=1) = 0.52 +P(V3=1 | X=1, V2=0) = 0.10 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.95 +0.95 * (0.77 - 0.48) * 0.52 + 0.05 * (0.78 - 0.43) * 0.10 = 0.01 +0.01 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +8786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 81%. For normal weight people, the probability of long lifespan is 62%. For obese people, the probability of long lifespan is 55%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.55 +0.81*0.55 - 0.19*0.62 = 0.56 +0.56 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +8789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of obesity is 81%. The probability of normal weight and long lifespan is 12%. The probability of obesity and long lifespan is 45%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.45 +0.45/0.81 - 0.12/0.19 = -0.06 +-0.06 < 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +8792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 53%. For obese people, the probability of long lifespan is 74%.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.74 +0.74 - 0.53 = 0.21 +0.21 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people, the probability of long lifespan is 53%. For obese people, the probability of long lifespan is 74%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.74 +0.74 - 0.53 = 0.21 +0.21 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For normal weight people and without diabetes, the probability of long lifespan is 34%. For normal weight people and with diabetes, the probability of long lifespan is 64%. For obese people and without diabetes, the probability of long lifespan is 68%. For obese people and with diabetes, the probability of long lifespan is 92%. For normal weight people and nonsmokers, the probability of having diabetes is 95%. For normal weight people and smokers, the probability of having diabetes is 99%. For obese people and nonsmokers, the probability of having diabetes is 58%. For obese people and smokers, the probability of having diabetes is 46%. The overall probability of smoker is 95%.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.92 +P(V3=1 | X=0, V2=0) = 0.95 +P(V3=1 | X=0, V2=1) = 0.99 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.46 +P(V2=1) = 0.95 +0.95 * 0.64 * (0.46 - 0.58)+ 0.05 * 0.64 * (0.99 - 0.95)= -0.13 +-0.13 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +8831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look directly at how eating citrus correlates with scurvy in general. Method 2: We look at this correlation case by case according to vitmain C.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +8842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look at how eating citrus correlates with scurvy case by case according to vitmain C. Method 2: We look directly at how eating citrus correlates with scurvy in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +8846,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 73%. For patients consuming citrus, the probability of scurvy is 54%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.54 +0.54 - 0.73 = -0.19 +-0.19 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look at how eating citrus correlates with scurvy case by case according to vitmain C. Method 2: We look directly at how eating citrus correlates with scurvy in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +8863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 17%. For patients not consuming citrus, the probability of scurvy is 47%. For patients consuming citrus, the probability of scurvy is 57%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.57 +0.17*0.57 - 0.83*0.47 = 0.49 +0.49 > 0",chain,orange_scurvy,1,marginal,P(Y) +8865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 17%. The probability of absence of citrus and scurvy is 39%. The probability of citrus intake and scurvy is 9%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.09 +0.09/0.17 - 0.39/0.83 = 0.10 +0.10 > 0",chain,orange_scurvy,1,correlation,P(Y | X) +8867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look directly at how eating citrus correlates with scurvy in general. Method 2: We look at this correlation case by case according to vitmain C.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +8880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 78%. For patients consuming citrus, the probability of scurvy is 52%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.52 +0.52 - 0.78 = -0.27 +-0.27 < 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 9%. The probability of absence of citrus and scurvy is 52%. The probability of citrus intake and scurvy is 3%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.03 +0.03/0.09 - 0.52/0.91 = -0.26 +-0.26 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +8904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 46%. For patients consuming citrus, the probability of scurvy is 61%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 46%. For patients consuming citrus, the probability of scurvy is 61%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +8910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 8%. For patients not consuming citrus, the probability of scurvy is 46%. For patients consuming citrus, the probability of scurvy is 61%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.08*0.61 - 0.92*0.46 = 0.48 +0.48 > 0",chain,orange_scurvy,1,marginal,P(Y) +8931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 75%. For patients consuming citrus, the probability of scurvy is 46%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.46 +0.46 - 0.75 = -0.29 +-0.29 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +8937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 11%. The probability of absence of citrus and scurvy is 67%. The probability of citrus intake and scurvy is 5%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.67 +P(Y=1, X=1=1) = 0.05 +0.05/0.11 - 0.67/0.89 = -0.29 +-0.29 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +8938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look at how eating citrus correlates with scurvy case by case according to vitmain C. Method 2: We look directly at how eating citrus correlates with scurvy in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +8939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look directly at how eating citrus correlates with scurvy in general. Method 2: We look at this correlation case by case according to vitmain C.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +8947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 18%. For patients not consuming citrus, the probability of scurvy is 68%. For patients consuming citrus, the probability of scurvy is 49%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.18*0.49 - 0.82*0.68 = 0.65 +0.65 > 0",chain,orange_scurvy,1,marginal,P(Y) +8961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 10%. The probability of absence of citrus and scurvy is 40%. The probability of citrus intake and scurvy is 3%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.03 +0.03/0.10 - 0.40/0.90 = -0.16 +-0.16 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +8976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 17%. For patients consuming citrus, the probability of scurvy is 30%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.30 +0.30 - 0.17 = 0.14 +0.14 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +8981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 17%. For patients consuming citrus, the probability of scurvy is 30%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.30 +0.30 - 0.17 = 0.14 +0.14 > 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 19%. For patients not consuming citrus, the probability of scurvy is 64%. For patients consuming citrus, the probability of scurvy is 72%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.72 +0.19*0.72 - 0.81*0.64 = 0.66 +0.66 > 0",chain,orange_scurvy,1,marginal,P(Y) +9022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look at how eating citrus correlates with scurvy case by case according to vitmain C. Method 2: We look directly at how eating citrus correlates with scurvy in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +9024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 60%. For patients consuming citrus, the probability of scurvy is 74%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.74 +0.74 - 0.60 = 0.13 +0.13 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 60%. For patients consuming citrus, the probability of scurvy is 74%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.74 +0.74 - 0.60 = 0.13 +0.13 > 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 60%. For patients consuming citrus, the probability of scurvy is 74%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.74 +0.74 - 0.60 = 0.13 +0.13 > 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look at how eating citrus correlates with scurvy case by case according to vitmain C. Method 2: We look directly at how eating citrus correlates with scurvy in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +9038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 65%. For patients consuming citrus, the probability of scurvy is 34%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.34 +0.34 - 0.65 = -0.31 +-0.31 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 56%. For patients consuming citrus, the probability of scurvy is 74%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.74 +0.74 - 0.56 = 0.18 +0.18 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 56%. For patients consuming citrus, the probability of scurvy is 74%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.74 +0.74 - 0.56 = 0.18 +0.18 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 49%. For patients consuming citrus, the probability of scurvy is 38%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.38 +0.38 - 0.49 = -0.10 +-0.10 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 49%. For patients consuming citrus, the probability of scurvy is 38%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.38 +0.38 - 0.49 = -0.10 +-0.10 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 61%. For patients consuming citrus, the probability of scurvy is 45%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.45 +0.45 - 0.61 = -0.16 +-0.16 < 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 13%. The probability of absence of citrus and scurvy is 53%. The probability of citrus intake and scurvy is 6%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.06 +0.06/0.13 - 0.53/0.87 = -0.16 +-0.16 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +9111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 54%. For patients consuming citrus, the probability of scurvy is 36%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.36 +0.36 - 0.54 = -0.17 +-0.17 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 74%. For patients consuming citrus, the probability of scurvy is 63%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.63 +0.63 - 0.74 = -0.12 +-0.12 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 68%. For patients consuming citrus, the probability of scurvy is 56%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.56 +0.56 - 0.68 = -0.12 +-0.12 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 8%. The probability of absence of citrus and scurvy is 62%. The probability of citrus intake and scurvy is 5%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.62 +P(Y=1, X=1=1) = 0.05 +0.05/0.08 - 0.62/0.92 = -0.12 +-0.12 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +9141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 8%. The probability of absence of citrus and scurvy is 62%. The probability of citrus intake and scurvy is 5%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.62 +P(Y=1, X=1=1) = 0.05 +0.05/0.08 - 0.62/0.92 = -0.12 +-0.12 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +9145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 19%. For patients consuming citrus, the probability of scurvy is 16%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.16 +0.16 - 0.19 = -0.03 +-0.03 < 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. The overall probability of citrus intake is 4%. The probability of absence of citrus and scurvy is 18%. The probability of citrus intake and scurvy is 1%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.01 +0.01/0.04 - 0.18/0.96 = -0.03 +-0.03 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +9160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 45%. For patients consuming citrus, the probability of scurvy is 91%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.91 +0.91 - 0.45 = 0.46 +0.46 > 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. For patients not consuming citrus, the probability of scurvy is 72%. For patients consuming citrus, the probability of scurvy is 28%.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.28 +0.28 - 0.72 = -0.44 +-0.44 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +9179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. Method 1: We look directly at how eating citrus correlates with scurvy in general. Method 2: We look at this correlation case by case according to vitmain C.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +9198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 83%. For situations with reduced supply, the probability of increased price is 55%. For situations with increased supply, the probability of increased price is 60%.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.60 +0.83*0.60 - 0.17*0.55 = 0.59 +0.59 > 0",IV,price,1,marginal,P(Y) +9209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 66%. The probability of reduced supply and increased price is 22%. The probability of increased supply and increased price is 62%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.62 +0.62/0.66 - 0.22/0.34 = 0.29 +0.29 > 0",IV,price,1,correlation,P(Y | X) +9217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 75%. The probability of reduced supply and increased price is 12%. The probability of increased supply and increased price is 57%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.57 +0.57/0.75 - 0.12/0.25 = 0.29 +0.29 > 0",IV,price,1,correlation,P(Y | X) +9224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 67%. The probability of reduced supply and increased price is 8%. The probability of increased supply and increased price is 30%.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.30 +0.30/0.67 - 0.08/0.33 = 0.21 +0.21 > 0",IV,price,1,correlation,P(Y | X) +9228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 61%. For farms with increased crop yield per acre, the probability of increased price is 52%. For farms with reduced crop yield per acre, the probability of increased supply is 68%. For farms with increased crop yield per acre, the probability of increased supply is 30%.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.61 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.68 +P(X=1 | V2=1) = 0.30 +(0.52 - 0.61) / (0.30 - 0.68) = 0.25 +0.25 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 63%. For farms with increased crop yield per acre, the probability of increased price is 65%. For farms with reduced crop yield per acre, the probability of increased supply is 85%. For farms with increased crop yield per acre, the probability of increased supply is 73%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.65 +P(X=1 | V2=0) = 0.85 +P(X=1 | V2=1) = 0.73 +(0.65 - 0.63) / (0.73 - 0.85) = -0.16 +-0.16 < 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. Method 1: We look at how supply correlates with price case by case according to demand. Method 2: We look directly at how supply correlates with price in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +9263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 91%. For situations with reduced supply, the probability of increased price is 49%. For situations with increased supply, the probability of increased price is 76%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.76 +0.91*0.76 - 0.09*0.49 = 0.74 +0.74 > 0",IV,price,1,marginal,P(Y) +9293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 49%. For farms with increased crop yield per acre, the probability of increased price is 47%. For farms with reduced crop yield per acre, the probability of increased supply is 44%. For farms with increased crop yield per acre, the probability of increased supply is 29%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.49 +P(Y=1 | V2=1) = 0.47 +P(X=1 | V2=0) = 0.44 +P(X=1 | V2=1) = 0.29 +(0.47 - 0.49) / (0.29 - 0.44) = 0.11 +0.11 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. Method 1: We look directly at how supply correlates with price in general. Method 2: We look at this correlation case by case according to demand.",no,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +9310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 74%. For situations with reduced supply, the probability of increased price is 47%. For situations with increased supply, the probability of increased price is 74%.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.74 +0.74*0.74 - 0.26*0.47 = 0.67 +0.67 > 0",IV,price,1,marginal,P(Y) +9315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. Method 1: We look at how supply correlates with price case by case according to demand. Method 2: We look directly at how supply correlates with price in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +9345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 60%. The probability of reduced supply and increased price is 16%. The probability of increased supply and increased price is 34%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.34 +0.34/0.60 - 0.16/0.40 = 0.15 +0.15 > 0",IV,price,1,correlation,P(Y | X) +9347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. Method 1: We look at how supply correlates with price case by case according to demand. Method 2: We look directly at how supply correlates with price in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +9359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 76%. For situations with reduced supply, the probability of increased price is 44%. For situations with increased supply, the probability of increased price is 67%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.67 +0.76*0.67 - 0.24*0.44 = 0.62 +0.62 > 0",IV,price,1,marginal,P(Y) +9378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. Method 1: We look directly at how supply correlates with price in general. Method 2: We look at this correlation case by case according to demand.",no,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +9390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 47%. For situations with reduced supply, the probability of increased price is 27%. For situations with increased supply, the probability of increased price is 46%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.46 +0.47*0.46 - 0.53*0.27 = 0.36 +0.36 > 0",IV,price,1,marginal,P(Y) +9392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 47%. The probability of reduced supply and increased price is 15%. The probability of increased supply and increased price is 21%.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.21 +0.21/0.47 - 0.15/0.53 = 0.18 +0.18 > 0",IV,price,1,correlation,P(Y | X) +9399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. The overall probability of increased supply is 93%. For situations with reduced supply, the probability of increased price is 50%. For situations with increased supply, the probability of increased price is 84%.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.84 +0.93*0.84 - 0.07*0.50 = 0.82 +0.82 > 0",IV,price,1,marginal,P(Y) +9427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 44%. The probability of receives no treatment and recovery is 18%. The probability of receives treatment and recovery is 36%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.36 +0.36/0.44 - 0.18/0.56 = 0.51 +0.51 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +9430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 92%. For patients who are not male and receiving treatment, the probability of recovery is 61%. For patients who are male and not receiving treatment, the probability of recovery is 36%. For patients who are male and receiving treatment, the probability of recovery is 6%. The overall probability of male gender is 55%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.92 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.36 +P(Y=1 | V1=1, X=1) = 0.06 +P(V1=1) = 0.55 +0.45 * (0.61 - 0.92) + 0.55 * (0.06 - 0.36) = -0.30 +-0.30 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look directly at how treatment correlates with recovery in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +9440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 96%. For patients who are not male and receiving treatment, the probability of recovery is 84%. For patients who are male and not receiving treatment, the probability of recovery is 33%. For patients who are male and receiving treatment, the probability of recovery is 20%. The overall probability of male gender is 52%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.52 +0.48 * (0.84 - 0.96) + 0.52 * (0.20 - 0.33) = -0.13 +-0.13 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 96%. For patients who are not male and receiving treatment, the probability of recovery is 84%. For patients who are male and not receiving treatment, the probability of recovery is 33%. For patients who are male and receiving treatment, the probability of recovery is 20%. The overall probability of male gender is 52%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.52 +0.48 * (0.84 - 0.96) + 0.52 * (0.20 - 0.33) = -0.13 +-0.13 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 46%. For patients not receiving treatment, the probability of recovery is 39%. For patients receiving treatment, the probability of recovery is 81%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.81 +0.46*0.81 - 0.54*0.39 = 0.58 +0.58 > 0",confounding,simpson_drug,1,marginal,P(Y) +9446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 46%. The probability of receives no treatment and recovery is 21%. The probability of receives treatment and recovery is 37%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.37 +0.37/0.46 - 0.21/0.54 = 0.42 +0.42 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +9447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 46%. The probability of receives no treatment and recovery is 21%. The probability of receives treatment and recovery is 37%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.37 +0.37/0.46 - 0.21/0.54 = 0.42 +0.42 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +9479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look at how treatment correlates with recovery case by case according to gender. Method 2: We look directly at how treatment correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +9480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 88%. For patients who are not male and receiving treatment, the probability of recovery is 74%. For patients who are male and not receiving treatment, the probability of recovery is 22%. For patients who are male and receiving treatment, the probability of recovery is 11%. The overall probability of male gender is 42%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.74 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.11 +P(V1=1) = 0.42 +0.58 * (0.74 - 0.88) + 0.42 * (0.11 - 0.22) = -0.12 +-0.12 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 55%. For patients not receiving treatment, the probability of recovery is 31%. For patients receiving treatment, the probability of recovery is 71%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.71 +0.55*0.71 - 0.45*0.31 = 0.54 +0.54 > 0",confounding,simpson_drug,1,marginal,P(Y) +9502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 80%. For patients who are not male and receiving treatment, the probability of recovery is 67%. For patients who are male and not receiving treatment, the probability of recovery is 19%. For patients who are male and receiving treatment, the probability of recovery is 4%. The overall probability of male gender is 41%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.41 +0.59 * (0.67 - 0.80) + 0.41 * (0.04 - 0.19) = -0.13 +-0.13 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look at how treatment correlates with recovery case by case according to gender. Method 2: We look directly at how treatment correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +9552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 93%. For patients who are not male and receiving treatment, the probability of recovery is 61%. For patients who are male and not receiving treatment, the probability of recovery is 35%. For patients who are male and receiving treatment, the probability of recovery is 2%. The overall probability of male gender is 41%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.35 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.41 +0.59 * (0.61 - 0.93) + 0.41 * (0.02 - 0.35) = -0.32 +-0.32 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 93%. For patients who are not male and receiving treatment, the probability of recovery is 61%. For patients who are male and not receiving treatment, the probability of recovery is 35%. For patients who are male and receiving treatment, the probability of recovery is 2%. The overall probability of male gender is 41%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.35 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.41 +0.59 * (0.61 - 0.93) + 0.41 * (0.02 - 0.35) = -0.32 +-0.32 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 59%. The probability of receives no treatment and recovery is 15%. The probability of receives treatment and recovery is 35%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.35 +0.35/0.59 - 0.15/0.41 = 0.23 +0.23 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +9578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look directly at how treatment correlates with recovery in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +9583,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 91%. For patients who are not male and receiving treatment, the probability of recovery is 81%. For patients who are male and not receiving treatment, the probability of recovery is 30%. For patients who are male and receiving treatment, the probability of recovery is 15%. The overall probability of male gender is 44%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.30 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.44 +0.56 * (0.81 - 0.91) + 0.44 * (0.15 - 0.30) = -0.10 +-0.10 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 98%. For patients who are not male and receiving treatment, the probability of recovery is 67%. For patients who are male and not receiving treatment, the probability of recovery is 41%. For patients who are male and receiving treatment, the probability of recovery is 10%. The overall probability of male gender is 43%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.10 +P(V1=1) = 0.43 +0.57 * (0.67 - 0.98) + 0.43 * (0.10 - 0.41) = -0.32 +-0.32 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look at how treatment correlates with recovery case by case according to gender. Method 2: We look directly at how treatment correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +9603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 82%. For patients who are not male and receiving treatment, the probability of recovery is 65%. For patients who are male and not receiving treatment, the probability of recovery is 18%. For patients who are male and receiving treatment, the probability of recovery is 1%. The overall probability of male gender is 44%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.82 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.44 +0.56 * (0.65 - 0.82) + 0.44 * (0.01 - 0.18) = -0.17 +-0.17 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 56%. For patients not receiving treatment, the probability of recovery is 18%. For patients receiving treatment, the probability of recovery is 64%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.64 +0.56*0.64 - 0.44*0.18 = 0.44 +0.44 > 0",confounding,simpson_drug,1,marginal,P(Y) +9625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 57%. For patients not receiving treatment, the probability of recovery is 38%. For patients receiving treatment, the probability of recovery is 84%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.84 +0.57*0.84 - 0.43*0.38 = 0.62 +0.62 > 0",confounding,simpson_drug,1,marginal,P(Y) +9642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 87%. For patients who are not male and receiving treatment, the probability of recovery is 77%. For patients who are male and not receiving treatment, the probability of recovery is 27%. For patients who are male and receiving treatment, the probability of recovery is 13%. The overall probability of male gender is 54%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.87 +P(Y=1 | V1=0, X=1) = 0.77 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.54 +0.46 * (0.77 - 0.87) + 0.54 * (0.13 - 0.27) = -0.11 +-0.11 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 42%. For patients not receiving treatment, the probability of recovery is 36%. For patients receiving treatment, the probability of recovery is 52%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.52 +0.42*0.52 - 0.58*0.36 = 0.43 +0.43 > 0",confounding,simpson_drug,1,marginal,P(Y) +9661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 83%. For patients who are not male and receiving treatment, the probability of recovery is 73%. For patients who are male and not receiving treatment, the probability of recovery is 27%. For patients who are male and receiving treatment, the probability of recovery is 16%. The overall probability of male gender is 58%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.83 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.58 +0.42 * (0.73 - 0.83) + 0.58 * (0.16 - 0.27) = -0.10 +-0.10 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 53%. The probability of receives no treatment and recovery is 21%. The probability of receives treatment and recovery is 32%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.32 +0.32/0.53 - 0.21/0.47 = 0.16 +0.16 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +9693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who are not male and not receiving treatment, the probability of recovery is 98%. For patients who are not male and receiving treatment, the probability of recovery is 64%. For patients who are male and not receiving treatment, the probability of recovery is 36%. For patients who are male and receiving treatment, the probability of recovery is 2%. The overall probability of male gender is 48%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.64 +P(Y=1 | V1=1, X=0) = 0.36 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.48 +0.52 * (0.64 - 0.98) + 0.48 * (0.02 - 0.36) = -0.34 +-0.34 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 44%. For patients not receiving treatment, the probability of recovery is 16%. For patients receiving treatment, the probability of recovery is 57%.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.57 +0.44*0.57 - 0.56*0.16 = 0.35 +0.35 > 0",confounding,simpson_drug,1,marginal,P(Y) +9706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 44%. The probability of receives no treatment and recovery is 9%. The probability of receives treatment and recovery is 25%.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.25 +0.25/0.44 - 0.09/0.56 = 0.42 +0.42 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +9739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. Method 1: We look at how hospital costs correlates with recovery case by case according to age. Method 2: We look directly at how hospital costs correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +9744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 51%. For patients who pay a low hospital bill, the probability of recovery is 32%. For people who pay a high hospital bill, the probability of recovery is 70%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.70 +0.51*0.70 - 0.49*0.32 = 0.52 +0.52 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. Method 1: We look at how hospital costs correlates with recovery case by case according to age. Method 2: We look directly at how hospital costs correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +9765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 40%. For patients who pay a low hospital bill, the probability of recovery is 33%. For people who pay a high hospital bill, the probability of recovery is 69%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.69 +0.40*0.69 - 0.60*0.33 = 0.47 +0.47 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 40%. The probability of low hospital bill and recovery is 20%. The probability of high hospital bill and recovery is 27%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.27 +0.27/0.40 - 0.20/0.60 = 0.35 +0.35 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 47%. The probability of low hospital bill and recovery is 13%. The probability of high hospital bill and recovery is 32%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.32 +0.32/0.47 - 0.13/0.53 = 0.43 +0.43 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 62%. The probability of low hospital bill and recovery is 14%. The probability of high hospital bill and recovery is 33%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.33 +0.33/0.62 - 0.14/0.38 = 0.18 +0.18 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 58%. For patients who pay a low hospital bill, the probability of recovery is 26%. For people who pay a high hospital bill, the probability of recovery is 69%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.69 +0.58*0.69 - 0.42*0.26 = 0.52 +0.52 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 47%. The probability of low hospital bill and recovery is 15%. The probability of high hospital bill and recovery is 31%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.31 +0.31/0.47 - 0.15/0.53 = 0.36 +0.36 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 95%. For patients who are young and pay a high hospital bill, the probability of recovery is 73%. For patients who are old and pay a low hospital bill, the probability of recovery is 22%. For patients who are old and pay a high hospital bill, the probability of recovery is 0%. The overall probability of old age is 40%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.00 +P(V1=1) = 0.40 +0.60 * (0.73 - 0.95) + 0.40 * (0.00 - 0.22) = -0.22 +-0.22 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 60%. For patients who pay a low hospital bill, the probability of recovery is 39%. For people who pay a high hospital bill, the probability of recovery is 62%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.62 +0.60*0.62 - 0.40*0.39 = 0.53 +0.53 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 44%. The probability of low hospital bill and recovery is 17%. The probability of high hospital bill and recovery is 32%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.32 +0.32/0.44 - 0.17/0.56 = 0.44 +0.44 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 96%. For patients who are young and pay a high hospital bill, the probability of recovery is 75%. For patients who are old and pay a low hospital bill, the probability of recovery is 23%. For patients who are old and pay a high hospital bill, the probability of recovery is 3%. The overall probability of old age is 52%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.52 +0.48 * (0.75 - 0.96) + 0.52 * (0.03 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 52%. For patients who pay a low hospital bill, the probability of recovery is 35%. For people who pay a high hospital bill, the probability of recovery is 58%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.58 +0.52*0.58 - 0.48*0.35 = 0.47 +0.47 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 58%. The probability of low hospital bill and recovery is 11%. The probability of high hospital bill and recovery is 41%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.41 +0.41/0.58 - 0.11/0.42 = 0.44 +0.44 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 96%. For patients who are young and pay a high hospital bill, the probability of recovery is 74%. For patients who are old and pay a low hospital bill, the probability of recovery is 23%. For patients who are old and pay a high hospital bill, the probability of recovery is 2%. The overall probability of old age is 46%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.74 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.46 +0.54 * (0.74 - 0.96) + 0.46 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 96%. For patients who are young and pay a high hospital bill, the probability of recovery is 74%. For patients who are old and pay a low hospital bill, the probability of recovery is 23%. For patients who are old and pay a high hospital bill, the probability of recovery is 2%. The overall probability of old age is 46%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.74 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.46 +0.54 * (0.74 - 0.96) + 0.46 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 57%. For patients who pay a low hospital bill, the probability of recovery is 32%. For people who pay a high hospital bill, the probability of recovery is 64%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.64 +0.57*0.64 - 0.43*0.32 = 0.50 +0.50 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 99%. For patients who are young and pay a high hospital bill, the probability of recovery is 87%. For patients who are old and pay a low hospital bill, the probability of recovery is 30%. For patients who are old and pay a high hospital bill, the probability of recovery is 19%. The overall probability of old age is 47%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.99 +P(Y=1 | V1=0, X=1) = 0.87 +P(Y=1 | V1=1, X=0) = 0.30 +P(Y=1 | V1=1, X=1) = 0.19 +P(V1=1) = 0.47 +0.53 * (0.87 - 0.99) + 0.47 * (0.19 - 0.30) = -0.13 +-0.13 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. Method 1: We look at how hospital costs correlates with recovery case by case according to age. Method 2: We look directly at how hospital costs correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +9941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 100%. For patients who are young and pay a high hospital bill, the probability of recovery is 79%. For patients who are old and pay a low hospital bill, the probability of recovery is 27%. For patients who are old and pay a high hospital bill, the probability of recovery is 7%. The overall probability of old age is 47%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 1.00 +P(Y=1 | V1=0, X=1) = 0.79 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.07 +P(V1=1) = 0.47 +0.53 * (0.79 - 1.00) + 0.47 * (0.07 - 0.27) = -0.21 +-0.21 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 100%. For patients who are young and pay a high hospital bill, the probability of recovery is 79%. For patients who are old and pay a low hospital bill, the probability of recovery is 27%. For patients who are old and pay a high hospital bill, the probability of recovery is 7%. The overall probability of old age is 47%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 1.00 +P(Y=1 | V1=0, X=1) = 0.79 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.07 +P(V1=1) = 0.47 +0.53 * (0.79 - 1.00) + 0.47 * (0.07 - 0.27) = -0.21 +-0.21 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +9945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 69%. For patients who pay a low hospital bill, the probability of recovery is 32%. For people who pay a high hospital bill, the probability of recovery is 61%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.61 +0.69*0.61 - 0.31*0.32 = 0.52 +0.52 > 0",confounding,simpson_hospital,1,marginal,P(Y) +9950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 91%. For patients who are young and pay a high hospital bill, the probability of recovery is 76%. For patients who are old and pay a low hospital bill, the probability of recovery is 28%. For patients who are old and pay a high hospital bill, the probability of recovery is 12%. The overall probability of old age is 57%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.28 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.57 +0.43 * (0.76 - 0.91) + 0.57 * (0.12 - 0.28) = -0.16 +-0.16 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 95%. For patients who are young and pay a high hospital bill, the probability of recovery is 74%. For patients who are old and pay a low hospital bill, the probability of recovery is 23%. For patients who are old and pay a high hospital bill, the probability of recovery is 2%. The overall probability of old age is 48%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.74 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.48 +0.52 * (0.74 - 0.95) + 0.48 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. The overall probability of high hospital bill is 51%. The probability of low hospital bill and recovery is 19%. The probability of high hospital bill and recovery is 30%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.30 +0.30/0.51 - 0.19/0.49 = 0.19 +0.19 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +9980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 97%. For patients who are young and pay a high hospital bill, the probability of recovery is 75%. For patients who are old and pay a low hospital bill, the probability of recovery is 23%. For patients who are old and pay a high hospital bill, the probability of recovery is 3%. The overall probability of old age is 58%.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.58 +0.42 * (0.75 - 0.97) + 0.58 * (0.03 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +9989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. Method 1: We look at how hospital costs correlates with recovery case by case according to age. Method 2: We look directly at how hospital costs correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +10002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 83%. For patients who are young and pay a high hospital bill, the probability of recovery is 68%. For patients who are old and pay a low hospital bill, the probability of recovery is 21%. For patients who are old and pay a high hospital bill, the probability of recovery is 10%. The overall probability of old age is 47%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.83 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.10 +P(V1=1) = 0.47 +0.53 * (0.68 - 0.83) + 0.47 * (0.10 - 0.21) = -0.14 +-0.14 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. For patients who are young and pay a low hospital bill, the probability of recovery is 95%. For patients who are young and pay a high hospital bill, the probability of recovery is 73%. For patients who are old and pay a low hospital bill, the probability of recovery is 22%. For patients who are old and pay a high hospital bill, the probability of recovery is 0%. The overall probability of old age is 52%.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.00 +P(V1=1) = 0.52 +0.48 * (0.73 - 0.95) + 0.52 * (0.00 - 0.22) = -0.22 +-0.22 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 94%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 81%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 18%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 7%. The overall probability of large kidney stone is 57%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.07 +P(V1=1) = 0.57 +0.43 * (0.81 - 0.94) + 0.57 * (0.07 - 0.18) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look at how treatment correlates with recovery case by case according to kidney stone size. Method 2: We look directly at how treatment correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +10061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 96%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 83%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 21%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 11%. The overall probability of large kidney stone is 42%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.11 +P(V1=1) = 0.42 +0.58 * (0.83 - 0.96) + 0.42 * (0.11 - 0.21) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 33%. The probability of receives no treatment and recovery is 34%. The probability of receives treatment and recovery is 27%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.27 +0.27/0.33 - 0.34/0.67 = 0.31 +0.31 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +10068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look directly at how treatment correlates with recovery in general. Method 2: We look at this correlation case by case according to kidney stone size.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +10070,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 92%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 84%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 28%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 20%. The overall probability of large kidney stone is 44%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.92 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.28 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.44 +0.56 * (0.84 - 0.92) + 0.44 * (0.20 - 0.28) = -0.08 +-0.08 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 53%. For patients not receiving treatment, the probability of recovery is 38%. For patients receiving treatment, the probability of recovery is 80%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.80 +0.53*0.80 - 0.47*0.38 = 0.60 +0.60 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 94%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 80%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 18%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 5%. The overall probability of large kidney stone is 58%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.05 +P(V1=1) = 0.58 +0.42 * (0.80 - 0.94) + 0.58 * (0.05 - 0.18) = -0.13 +-0.13 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 49%. For patients not receiving treatment, the probability of recovery is 38%. For patients receiving treatment, the probability of recovery is 69%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.69 +0.49*0.69 - 0.51*0.38 = 0.53 +0.53 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 92%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 81%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 24%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 19%. The overall probability of large kidney stone is 57%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.92 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.19 +P(V1=1) = 0.57 +0.43 * (0.81 - 0.92) + 0.57 * (0.19 - 0.24) = -0.10 +-0.10 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 51%. For patients not receiving treatment, the probability of recovery is 24%. For patients receiving treatment, the probability of recovery is 71%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.71 +0.51*0.71 - 0.49*0.24 = 0.49 +0.49 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 51%. For patients not receiving treatment, the probability of recovery is 24%. For patients receiving treatment, the probability of recovery is 71%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.71 +0.51*0.71 - 0.49*0.24 = 0.49 +0.49 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 36%. For patients not receiving treatment, the probability of recovery is 31%. For patients receiving treatment, the probability of recovery is 78%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.78 +0.36*0.78 - 0.64*0.31 = 0.48 +0.48 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 36%. For patients not receiving treatment, the probability of recovery is 31%. For patients receiving treatment, the probability of recovery is 78%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.78 +0.36*0.78 - 0.64*0.31 = 0.48 +0.48 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look at how treatment correlates with recovery case by case according to kidney stone size. Method 2: We look directly at how treatment correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +10142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 95%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 83%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 20%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 9%. The overall probability of large kidney stone is 41%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 0.20 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.41 +0.59 * (0.83 - 0.95) + 0.41 * (0.09 - 0.20) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 69%. For patients not receiving treatment, the probability of recovery is 27%. For patients receiving treatment, the probability of recovery is 69%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.69 +0.69*0.69 - 0.31*0.27 = 0.56 +0.56 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. Method 1: We look directly at how treatment correlates with recovery in general. Method 2: We look at this correlation case by case according to kidney stone size.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +10172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 86%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 75%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 19%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 9%. The overall probability of large kidney stone is 55%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.86 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.55 +0.45 * (0.75 - 0.86) + 0.55 * (0.09 - 0.19) = -0.11 +-0.11 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 39%. The probability of receives no treatment and recovery is 19%. The probability of receives treatment and recovery is 27%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.27 +0.27/0.39 - 0.19/0.61 = 0.39 +0.39 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +10203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 99%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 88%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 23%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 9%. The overall probability of large kidney stone is 59%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.99 +P(Y=1 | V1=0, X=1) = 0.88 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.59 +0.41 * (0.88 - 0.99) + 0.59 * (0.09 - 0.23) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 52%. For patients not receiving treatment, the probability of recovery is 45%. For patients receiving treatment, the probability of recovery is 73%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.73 +0.52*0.73 - 0.48*0.45 = 0.60 +0.60 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 88%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 77%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 20%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 9%. The overall probability of large kidney stone is 41%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.77 +P(Y=1 | V1=1, X=0) = 0.20 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.41 +0.59 * (0.77 - 0.88) + 0.41 * (0.09 - 0.20) = -0.10 +-0.10 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 92%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 81%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 17%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 5%. The overall probability of large kidney stone is 49%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.92 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.05 +P(V1=1) = 0.49 +0.51 * (0.81 - 0.92) + 0.49 * (0.05 - 0.17) = -0.11 +-0.11 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 63%. For patients not receiving treatment, the probability of recovery is 25%. For patients receiving treatment, the probability of recovery is 62%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.62 +0.63*0.62 - 0.37*0.25 = 0.48 +0.48 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 54%. For patients not receiving treatment, the probability of recovery is 28%. For patients receiving treatment, the probability of recovery is 76%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.76 +0.54*0.76 - 0.46*0.28 = 0.53 +0.53 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +10296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 54%. The probability of receives no treatment and recovery is 13%. The probability of receives treatment and recovery is 41%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.41 +0.41/0.54 - 0.13/0.46 = 0.47 +0.47 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +10297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. The overall probability of receives treatment is 54%. The probability of receives no treatment and recovery is 13%. The probability of receives treatment and recovery is 41%.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.41 +0.41/0.54 - 0.13/0.46 = 0.47 +0.47 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +10311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. For patients who have small kidney stones and not receiving treatment, the probability of recovery is 99%. For patients who have small kidney stones and receiving treatment, the probability of recovery is 88%. For patients who have large kidney stones and not receiving treatment, the probability of recovery is 32%. For patients who have large kidney stones and receiving treatment, the probability of recovery is 18%. The overall probability of large kidney stone is 59%.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.99 +P(Y=1 | V1=0, X=1) = 0.88 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.18 +P(V1=1) = 0.59 +0.41 * (0.88 - 0.99) + 0.59 * (0.18 - 0.32) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. Method 1: We look directly at how vaccination correlates with disease in general. Method 2: We look at this correlation case by case according to pre-conditions.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +10331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 95%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 75%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 24%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 3%. The overall probability of pre-conditions is 41%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.41 +0.59 * (0.75 - 0.95) + 0.41 * (0.03 - 0.24) = -0.20 +-0.20 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 95%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 75%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 24%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 3%. The overall probability of pre-conditions is 41%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.41 +0.59 * (0.75 - 0.95) + 0.41 * (0.03 - 0.24) = -0.20 +-0.20 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. Method 1: We look at how vaccination correlates with disease case by case according to pre-conditions. Method 2: We look directly at how vaccination correlates with disease in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +10357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 58%. The probability of vaccine refusal and recovering from the disease is 8%. The probability of getting the vaccine and recovering from the disease is 39%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.39 +0.39/0.58 - 0.08/0.42 = 0.48 +0.48 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 53%. The probability of vaccine refusal and recovering from the disease is 18%. The probability of getting the vaccine and recovering from the disease is 33%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.33 +0.33/0.53 - 0.18/0.47 = 0.23 +0.23 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 93%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 81%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 24%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 13%. The overall probability of pre-conditions is 46%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.46 +0.54 * (0.81 - 0.93) + 0.46 * (0.13 - 0.24) = -0.12 +-0.12 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 48%. For people refusing the vaccine, the probability of recovering from the disease is 12%. For people getting the vaccine, the probability of recovering from the disease is 51%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.51 +0.48*0.51 - 0.52*0.12 = 0.31 +0.31 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +10420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 96%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 76%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 25%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 4%. The overall probability of pre-conditions is 54%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.54 +0.46 * (0.76 - 0.96) + 0.54 * (0.04 - 0.25) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 96%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 76%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 25%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 4%. The overall probability of pre-conditions is 54%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.54 +0.46 * (0.76 - 0.96) + 0.54 * (0.04 - 0.25) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. Method 1: We look at how vaccination correlates with disease case by case according to pre-conditions. Method 2: We look directly at how vaccination correlates with disease in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +10440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 91%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 80%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 21%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 13%. The overall probability of pre-conditions is 55%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.55 +0.45 * (0.80 - 0.91) + 0.55 * (0.13 - 0.21) = -0.09 +-0.09 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. Method 1: We look directly at how vaccination correlates with disease in general. Method 2: We look at this correlation case by case according to pre-conditions.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +10453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 95%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 75%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 23%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 2%. The overall probability of pre-conditions is 47%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.47 +0.53 * (0.75 - 0.95) + 0.47 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 84%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 71%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 23%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 13%. The overall probability of pre-conditions is 52%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.84 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.52 +0.48 * (0.71 - 0.84) + 0.52 * (0.13 - 0.23) = -0.12 +-0.12 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 52%. The probability of vaccine refusal and recovering from the disease is 12%. The probability of getting the vaccine and recovering from the disease is 34%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.34 +0.34/0.52 - 0.12/0.48 = 0.41 +0.41 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 48%. The probability of vaccine refusal and recovering from the disease is 17%. The probability of getting the vaccine and recovering from the disease is 36%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.36 +0.36/0.48 - 0.17/0.52 = 0.43 +0.43 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 94%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 75%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 19%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 1%. The overall probability of pre-conditions is 51%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.51 +0.49 * (0.75 - 0.94) + 0.51 * (0.01 - 0.19) = -0.19 +-0.19 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 43%. The probability of vaccine refusal and recovering from the disease is 17%. The probability of getting the vaccine and recovering from the disease is 31%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.31 +0.31/0.43 - 0.17/0.57 = 0.44 +0.44 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 93%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 81%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 22%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 15%. The overall probability of pre-conditions is 59%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.59 +0.41 * (0.81 - 0.93) + 0.59 * (0.15 - 0.22) = -0.11 +-0.11 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. Method 1: We look directly at how vaccination correlates with disease in general. Method 2: We look at this correlation case by case according to pre-conditions.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +10534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 34%. For people refusing the vaccine, the probability of recovering from the disease is 28%. For people getting the vaccine, the probability of recovering from the disease is 74%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.74 +0.34*0.74 - 0.66*0.28 = 0.44 +0.44 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +10536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 34%. The probability of vaccine refusal and recovering from the disease is 19%. The probability of getting the vaccine and recovering from the disease is 25%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.25 +0.25/0.34 - 0.19/0.66 = 0.46 +0.46 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. The overall probability of getting the vaccine is 34%. The probability of vaccine refusal and recovering from the disease is 19%. The probability of getting the vaccine and recovering from the disease is 25%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.25 +0.25/0.34 - 0.19/0.66 = 0.46 +0.46 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +10560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 91%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 84%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 21%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 16%. The overall probability of pre-conditions is 44%.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.44 +0.56 * (0.84 - 0.91) + 0.44 * (0.16 - 0.21) = -0.06 +-0.06 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. For people with no pre-conditions and refusing the vaccine, the probability of recovering from the disease is 89%. For people with no pre-conditions and getting the vaccine, the probability of recovering from the disease is 79%. For people with pre-conditions and refusing the vaccine, the probability of recovering from the disease is 22%. For people with pre-conditions and getting the vaccine, the probability of recovering from the disease is 15%. The overall probability of pre-conditions is 54%.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.89 +P(Y=1 | V1=0, X=1) = 0.79 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.54 +0.46 * (0.79 - 0.89) + 0.54 * (0.15 - 0.22) = -0.10 +-0.10 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. Method 1: We look directly at how vaccination correlates with disease in general. Method 2: We look at this correlation case by case according to pre-conditions.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +10621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 70%. For infants with smoking mothers, the probability of high infant mortality is 53%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.53 +0.53 - 0.70 = -0.18 +-0.18 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 60%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 86%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 36%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 61%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 43%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 14%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 71%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 49%. The overall probability of good health is 15%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.49 +P(V2=1) = 0.15 +0.15 * 0.86 * (0.49 - 0.71)+ 0.85 * 0.86 * (0.14 - 0.43)= 0.06 +0.06 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +10630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 94%. The probability of nonsmoking mother and high infant mortality is 4%. The probability of smoking mother and high infant mortality is 49%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.49 +0.49/0.94 - 0.04/0.06 = -0.18 +-0.18 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +10658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 81%. The probability of nonsmoking mother and high infant mortality is 16%. The probability of smoking mother and high infant mortality is 53%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.53 +0.53/0.81 - 0.16/0.19 = -0.18 +-0.18 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +10665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 56%. For infants with smoking mothers, the probability of high infant mortality is 31%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.31 +0.31 - 0.56 = -0.25 +-0.25 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 95%. The probability of nonsmoking mother and high infant mortality is 3%. The probability of smoking mother and high infant mortality is 39%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.39 +0.39/0.95 - 0.03/0.05 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +10714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 88%. The probability of nonsmoking mother and high infant mortality is 10%. The probability of smoking mother and high infant mortality is 56%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.56 +0.56/0.88 - 0.10/0.12 = -0.24 +-0.24 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +10716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look at how maternal smoking status correlates with infant mortality case by case according to infant's birth weight. Method 2: We look directly at how maternal smoking status correlates with infant mortality in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +10721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 65%. For infants with smoking mothers, the probability of high infant mortality is 37%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.37 +0.37 - 0.65 = -0.29 +-0.29 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 85%. The probability of nonsmoking mother and high infant mortality is 9%. The probability of smoking mother and high infant mortality is 37%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.37 +0.37/0.85 - 0.09/0.15 = -0.16 +-0.16 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +10768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 83%. For infants with nonsmoking mothers, the probability of high infant mortality is 68%. For infants with smoking mothers, the probability of high infant mortality is 47%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.47 +0.83*0.47 - 0.17*0.68 = 0.51 +0.51 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +10783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 87%. For infants with nonsmoking mothers, the probability of high infant mortality is 54%. For infants with smoking mothers, the probability of high infant mortality is 31%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.31 +0.87*0.31 - 0.13*0.54 = 0.34 +0.34 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +10793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 57%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 83%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 31%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 54%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 41%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 12%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 71%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 40%. The overall probability of good health is 6%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.12 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.40 +P(V2=1) = 0.06 +0.06 * 0.83 * (0.40 - 0.71)+ 0.94 * 0.83 * (0.12 - 0.41)= 0.07 +0.07 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +10805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 59%. For infants with smoking mothers, the probability of high infant mortality is 26%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.26 +0.26 - 0.59 = -0.33 +-0.33 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +10806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 40%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 85%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 6%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 32%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 44%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 21%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 77%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 54%. The overall probability of good health is 6%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.06 +P(Y=1 | X=1, V3=1) = 0.32 +P(V3=1 | X=0, V2=0) = 0.44 +P(V3=1 | X=0, V2=1) = 0.21 +P(V3=1 | X=1, V2=0) = 0.77 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.06 +0.06 * 0.85 * (0.54 - 0.77)+ 0.94 * 0.85 * (0.21 - 0.44)= 0.15 +0.15 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +10817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 80%. For infants with smoking mothers, the probability of high infant mortality is 61%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.61 +0.61 - 0.80 = -0.19 +-0.19 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 94%. For infants with nonsmoking mothers, the probability of high infant mortality is 80%. For infants with smoking mothers, the probability of high infant mortality is 61%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.61 +0.94*0.61 - 0.06*0.80 = 0.62 +0.62 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +10830,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 65%. For infants with smoking mothers, the probability of high infant mortality is 44%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.44 +0.44 - 0.65 = -0.21 +-0.21 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 65%. For infants with smoking mothers, the probability of high infant mortality is 44%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.44 +0.44 - 0.65 = -0.21 +-0.21 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look at how maternal smoking status correlates with infant mortality case by case according to infant's birth weight. Method 2: We look directly at how maternal smoking status correlates with infant mortality in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +10844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 85%. For infants with smoking mothers, the probability of high infant mortality is 65%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.65 +0.65 - 0.85 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 59%. For infants with smoking mothers, the probability of high infant mortality is 43%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.43 +0.43 - 0.59 = -0.16 +-0.16 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +10862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 42%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 69%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 20%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 44%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 62%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 39%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 95%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 72%. The overall probability of good health is 3%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.44 +P(V3=1 | X=0, V2=0) = 0.62 +P(V3=1 | X=0, V2=1) = 0.39 +P(V3=1 | X=1, V2=0) = 0.95 +P(V3=1 | X=1, V2=1) = 0.72 +P(V2=1) = 0.03 +0.03 * 0.69 * (0.72 - 0.95)+ 0.97 * 0.69 * (0.39 - 0.62)= 0.09 +0.09 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +10892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 40%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 67%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 13%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 42%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 52%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 11%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 73%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 44%. The overall probability of good health is 19%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.13 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.73 +P(V3=1 | X=1, V2=1) = 0.44 +P(V2=1) = 0.19 +0.19 * (0.42 - 0.13) * 0.11 + 0.81 * (0.67 - 0.40) * 0.73 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +10905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 64%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 89%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 29%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 63%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 48%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 26%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 85%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 54%. The overall probability of good health is 11%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.64 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.63 +P(V3=1 | X=0, V2=0) = 0.48 +P(V3=1 | X=0, V2=1) = 0.26 +P(V3=1 | X=1, V2=0) = 0.85 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.11 +0.11 * 0.89 * (0.54 - 0.85)+ 0.89 * 0.89 * (0.26 - 0.48)= 0.08 +0.08 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +10921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 55%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 77%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 25%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 50%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 36%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 7%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 72%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 50%. The overall probability of good health is 4%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.77 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.50 +P(V3=1 | X=0, V2=0) = 0.36 +P(V3=1 | X=0, V2=1) = 0.07 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.50 +P(V2=1) = 0.04 +0.04 * (0.50 - 0.25) * 0.07 + 0.96 * (0.77 - 0.55) * 0.72 = -0.29 +-0.29 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +10960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 63%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 87%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 39%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 63%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 32%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 1%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 64%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 22%. The overall probability of good health is 3%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.63 +P(V3=1 | X=0, V2=0) = 0.32 +P(V3=1 | X=0, V2=1) = 0.01 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.22 +P(V2=1) = 0.03 +0.03 * 0.87 * (0.22 - 0.64)+ 0.97 * 0.87 * (0.01 - 0.32)= 0.07 +0.07 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +10969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look directly at how maternal smoking status correlates with infant mortality in general. Method 2: We look at this correlation case by case according to infant's birth weight.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +10979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 86%. For infants with nonsmoking mothers, the probability of high infant mortality is 68%. For infants with smoking mothers, the probability of high infant mortality is 53%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.53 +0.86*0.53 - 0.14*0.68 = 0.55 +0.55 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +10997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look directly at how maternal smoking status correlates with infant mortality in general. Method 2: We look at this correlation case by case according to infant's birth weight.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +10998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers, the probability of high infant mortality is 79%. For infants with smoking mothers, the probability of high infant mortality is 46%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.46 +0.46 - 0.79 = -0.34 +-0.34 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 94%. For infants with nonsmoking mothers, the probability of high infant mortality is 79%. For infants with smoking mothers, the probability of high infant mortality is 46%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.46 +0.94*0.46 - 0.06*0.79 = 0.48 +0.48 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +11007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of smoking mother is 94%. For infants with nonsmoking mothers, the probability of high infant mortality is 79%. For infants with smoking mothers, the probability of high infant mortality is 46%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.46 +0.94*0.46 - 0.06*0.79 = 0.48 +0.48 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +11016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 70%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 97%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 35%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 77%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 64%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 29%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 94%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 58%. The overall probability of good health is 6%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.64 +P(V3=1 | X=0, V2=1) = 0.29 +P(V3=1 | X=1, V2=0) = 0.94 +P(V3=1 | X=1, V2=1) = 0.58 +P(V2=1) = 0.06 +0.06 * 0.97 * (0.58 - 0.94)+ 0.94 * 0.97 * (0.29 - 0.64)= 0.07 +0.07 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 70%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 97%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 35%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 77%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 64%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 29%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 94%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 58%. The overall probability of good health is 6%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.64 +P(V3=1 | X=0, V2=1) = 0.29 +P(V3=1 | X=1, V2=0) = 0.94 +P(V3=1 | X=1, V2=1) = 0.58 +P(V2=1) = 0.06 +0.06 * (0.77 - 0.35) * 0.29 + 0.94 * (0.97 - 0.70) * 0.94 = -0.24 +-0.24 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look at how maternal smoking status correlates with infant mortality case by case according to infant's birth weight. Method 2: We look directly at how maternal smoking status correlates with infant mortality in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +11032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 46%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 71%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 18%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 46%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 59%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 19%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 83%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 44%. The overall probability of good health is 18%.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.19 +P(V3=1 | X=1, V2=0) = 0.83 +P(V3=1 | X=1, V2=1) = 0.44 +P(V2=1) = 0.18 +0.18 * (0.46 - 0.18) * 0.19 + 0.82 * (0.71 - 0.46) * 0.83 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants with nonsmoking mothers and low infant birth weight, the probability of high infant mortality is 46%. For infants with nonsmoking mothers and normal infant birth weight, the probability of high infant mortality is 71%. For infants with smoking mothers and low infant birth weight, the probability of high infant mortality is 18%. For infants with smoking mothers and normal infant birth weight, the probability of high infant mortality is 46%. For infants with nonsmoking mothers and with poor health, the probability of normal infant birth weight is 59%. For infants with nonsmoking mothers and with good health, the probability of normal infant birth weight is 19%. For infants with smoking mothers and with poor health, the probability of normal infant birth weight is 83%. For infants with smoking mothers and with good health, the probability of normal infant birth weight is 44%. The overall probability of good health is 18%.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.19 +P(V3=1 | X=1, V2=0) = 0.83 +P(V3=1 | X=1, V2=1) = 0.44 +P(V2=1) = 0.18 +0.18 * (0.46 - 0.18) * 0.19 + 0.82 * (0.71 - 0.46) * 0.83 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 95%. For nonsmokers, the probability of lung cancer is 45%. For smokers, the probability of lung cancer is 65%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.65 +0.95*0.65 - 0.05*0.45 = 0.64 +0.64 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +11067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 94%. For nonsmokers and with high tar deposit, the probability of lung cancer is 64%. For smokers and with no tar deposit, the probability of lung cancer is 89%. For smokers and with high tar deposit, the probability of lung cancer is 61%. For nonsmokers, the probability of high tar deposit is 55%. For smokers, the probability of high tar deposit is 18%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.89 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0) = 0.55 +P(V3=1 | X=1) = 0.18 +0.61 * (0.18 - 0.55) + 0.64 * (0.82 - 0.45) = 0.11 +0.11 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 55%. For smokers, the probability of high tar deposit is 18%. For nonsmokers and with no tar deposit, the probability of lung cancer is 94%. For nonsmokers and with high tar deposit, the probability of lung cancer is 64%. For smokers and with no tar deposit, the probability of lung cancer is 89%. For smokers and with high tar deposit, the probability of lung cancer is 61%. The overall probability of smoking is 50%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.55 +P(V3=1 | X=1) = 0.18 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.89 +P(Y=1 | X=1, V3=1) = 0.61 +P(X=1) = 0.50 +0.18 - 0.55 * (0.61 * 0.50 + 0.64 * 0.50)= 0.11 +0.11 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 55%. The probability of nonsmoking and lung cancer is 33%. The probability of smoking and lung cancer is 47%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.47 +0.47/0.55 - 0.33/0.45 = 0.10 +0.10 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +11097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 55%. The probability of nonsmoking and lung cancer is 33%. The probability of smoking and lung cancer is 47%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.47 +0.47/0.55 - 0.33/0.45 = 0.10 +0.10 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +11101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 78%. For smokers, the probability of high tar deposit is 32%. For nonsmokers and with no tar deposit, the probability of lung cancer is 69%. For nonsmokers and with high tar deposit, the probability of lung cancer is 33%. For smokers and with no tar deposit, the probability of lung cancer is 76%. For smokers and with high tar deposit, the probability of lung cancer is 24%. The overall probability of smoking is 97%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.78 +P(V3=1 | X=1) = 0.32 +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.24 +P(X=1) = 0.97 +(0.32 - 0.78)* (0.24 * 0.97) + (0.68 - 0.22) * (0.33 * 0.03) = 0.24 +0.24 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. Method 1: We look directly at how smoking correlates with lung cancer in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +11123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. Method 1: We look at how smoking correlates with lung cancer case by case according to gender. Method 2: We look directly at how smoking correlates with lung cancer in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +11126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 72%. For nonsmokers and with high tar deposit, the probability of lung cancer is 19%. For smokers and with no tar deposit, the probability of lung cancer is 69%. For smokers and with high tar deposit, the probability of lung cancer is 18%. For nonsmokers, the probability of high tar deposit is 69%. For smokers, the probability of high tar deposit is 3%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.19 +P(Y=1 | X=1, V3=0) = 0.69 +P(Y=1 | X=1, V3=1) = 0.18 +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.03 +0.18 * (0.03 - 0.69) + 0.19 * (0.97 - 0.31) = 0.34 +0.34 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 70%. For nonsmokers, the probability of lung cancer is 36%. For smokers, the probability of lung cancer is 68%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.68 +0.70*0.68 - 0.30*0.36 = 0.59 +0.59 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +11159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. Method 1: We look at how smoking correlates with lung cancer case by case according to gender. Method 2: We look directly at how smoking correlates with lung cancer in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +11161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 56%. For smokers, the probability of high tar deposit is 32%. For nonsmokers and with no tar deposit, the probability of lung cancer is 76%. For nonsmokers and with high tar deposit, the probability of lung cancer is 43%. For smokers and with no tar deposit, the probability of lung cancer is 67%. For smokers and with high tar deposit, the probability of lung cancer is 32%. The overall probability of smoking is 37%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.32 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.32 +P(X=1) = 0.37 +(0.32 - 0.56)* (0.32 * 0.37) + (0.68 - 0.44) * (0.43 * 0.63) = 0.08 +0.08 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 78%. For smokers, the probability of high tar deposit is 28%. For nonsmokers and with no tar deposit, the probability of lung cancer is 76%. For nonsmokers and with high tar deposit, the probability of lung cancer is 33%. For smokers and with no tar deposit, the probability of lung cancer is 77%. For smokers and with high tar deposit, the probability of lung cancer is 34%. The overall probability of smoking is 63%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.78 +P(V3=1 | X=1) = 0.28 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.63 +0.28 - 0.78 * (0.34 * 0.63 + 0.33 * 0.37)= 0.21 +0.21 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 94%. For smokers, the probability of high tar deposit is 46%. For nonsmokers and with no tar deposit, the probability of lung cancer is 82%. For nonsmokers and with high tar deposit, the probability of lung cancer is 52%. For smokers and with no tar deposit, the probability of lung cancer is 78%. For smokers and with high tar deposit, the probability of lung cancer is 50%. The overall probability of smoking is 37%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.94 +P(V3=1 | X=1) = 0.46 +P(Y=1 | X=0, V3=0) = 0.82 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.50 +P(X=1) = 0.37 +0.46 - 0.94 * (0.50 * 0.37 + 0.52 * 0.63)= 0.14 +0.14 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 37%. For nonsmokers, the probability of lung cancer is 54%. For smokers, the probability of lung cancer is 65%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.65 +0.37*0.65 - 0.63*0.54 = 0.58 +0.58 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +11208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 57%. For smokers, the probability of high tar deposit is 1%. For nonsmokers and with no tar deposit, the probability of lung cancer is 97%. For nonsmokers and with high tar deposit, the probability of lung cancer is 58%. For smokers and with no tar deposit, the probability of lung cancer is 92%. For smokers and with high tar deposit, the probability of lung cancer is 54%. The overall probability of smoking is 45%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.57 +P(V3=1 | X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.45 +(0.01 - 0.57)* (0.54 * 0.45) + (0.99 - 0.43) * (0.58 * 0.55) = 0.22 +0.22 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 45%. The probability of nonsmoking and lung cancer is 42%. The probability of smoking and lung cancer is 41%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.41 +0.41/0.45 - 0.42/0.55 = 0.17 +0.17 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +11222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 84%. For nonsmokers and with high tar deposit, the probability of lung cancer is 33%. For smokers and with no tar deposit, the probability of lung cancer is 82%. For smokers and with high tar deposit, the probability of lung cancer is 33%. For nonsmokers, the probability of high tar deposit is 66%. For smokers, the probability of high tar deposit is 8%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.08 +0.33 * (0.08 - 0.66) + 0.33 * (0.92 - 0.34) = 0.29 +0.29 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 57%. The probability of nonsmoking and lung cancer is 22%. The probability of smoking and lung cancer is 45%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.45 +0.45/0.57 - 0.22/0.43 = 0.28 +0.28 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +11237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 63%. For smokers, the probability of high tar deposit is 26%. For nonsmokers and with no tar deposit, the probability of lung cancer is 61%. For nonsmokers and with high tar deposit, the probability of lung cancer is 27%. For smokers and with no tar deposit, the probability of lung cancer is 44%. For smokers and with high tar deposit, the probability of lung cancer is 14%. The overall probability of smoking is 21%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.26 +P(Y=1 | X=0, V3=0) = 0.61 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.14 +P(X=1) = 0.21 +0.26 - 0.63 * (0.14 * 0.21 + 0.27 * 0.79)= 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 86%. The probability of nonsmoking and lung cancer is 5%. The probability of smoking and lung cancer is 45%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.45 +0.45/0.86 - 0.05/0.14 = 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +11263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 41%. For nonsmokers, the probability of lung cancer is 39%. For smokers, the probability of lung cancer is 47%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.47 +0.41*0.47 - 0.59*0.39 = 0.42 +0.42 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +11268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 36%. For smokers, the probability of high tar deposit is 2%. For nonsmokers and with no tar deposit, the probability of lung cancer is 80%. For nonsmokers and with high tar deposit, the probability of lung cancer is 46%. For smokers and with no tar deposit, the probability of lung cancer is 78%. For smokers and with high tar deposit, the probability of lung cancer is 44%. The overall probability of smoking is 63%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.36 +P(V3=1 | X=1) = 0.02 +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.44 +P(X=1) = 0.63 +(0.02 - 0.36)* (0.44 * 0.63) + (0.98 - 0.64) * (0.46 * 0.37) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 97%. For smokers, the probability of high tar deposit is 45%. For nonsmokers and with no tar deposit, the probability of lung cancer is 62%. For nonsmokers and with high tar deposit, the probability of lung cancer is 28%. For smokers and with no tar deposit, the probability of lung cancer is 61%. For smokers and with high tar deposit, the probability of lung cancer is 27%. The overall probability of smoking is 86%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.45 +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.27 +P(X=1) = 0.86 +0.45 - 0.97 * (0.27 * 0.86 + 0.28 * 0.14)= 0.18 +0.18 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 86%. For nonsmokers, the probability of lung cancer is 29%. For smokers, the probability of lung cancer is 46%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.46 +0.86*0.46 - 0.14*0.29 = 0.43 +0.43 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +11307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 79%. For nonsmokers and with high tar deposit, the probability of lung cancer is 49%. For smokers and with no tar deposit, the probability of lung cancer is 73%. For smokers and with high tar deposit, the probability of lung cancer is 41%. For nonsmokers, the probability of high tar deposit is 66%. For smokers, the probability of high tar deposit is 29%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.49 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.41 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.29 +0.41 * (0.29 - 0.66) + 0.49 * (0.71 - 0.34) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. The overall probability of smoking is 53%. For nonsmokers, the probability of lung cancer is 41%. For smokers, the probability of lung cancer is 69%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.69 +0.53*0.69 - 0.47*0.41 = 0.56 +0.56 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +11343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 75%. For nonsmokers and with high tar deposit, the probability of lung cancer is 42%. For smokers and with no tar deposit, the probability of lung cancer is 75%. For smokers and with high tar deposit, the probability of lung cancer is 42%. For nonsmokers, the probability of high tar deposit is 44%. For smokers, the probability of high tar deposit is 22%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0) = 0.44 +P(V3=1 | X=1) = 0.22 +0.42 * (0.22 - 0.44) + 0.42 * (0.78 - 0.56) = 0.07 +0.07 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 82%. For nonsmokers and with high tar deposit, the probability of lung cancer is 56%. For smokers and with no tar deposit, the probability of lung cancer is 79%. For smokers and with high tar deposit, the probability of lung cancer is 53%. For nonsmokers, the probability of high tar deposit is 66%. For smokers, the probability of high tar deposit is 32%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.82 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.32 +0.53 * (0.32 - 0.66) + 0.56 * (0.68 - 0.34) = 0.09 +0.09 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 82%. For nonsmokers and with high tar deposit, the probability of lung cancer is 56%. For smokers and with no tar deposit, the probability of lung cancer is 79%. For smokers and with high tar deposit, the probability of lung cancer is 53%. For nonsmokers, the probability of high tar deposit is 66%. For smokers, the probability of high tar deposit is 32%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.82 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.32 +0.53 * (0.32 - 0.66) + 0.56 * (0.68 - 0.34) = 0.09 +0.09 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 65%. For nonsmokers and with high tar deposit, the probability of lung cancer is 33%. For smokers and with no tar deposit, the probability of lung cancer is 66%. For smokers and with high tar deposit, the probability of lung cancer is 34%. For nonsmokers, the probability of high tar deposit is 70%. For smokers, the probability of high tar deposit is 19%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.19 +0.34 * (0.19 - 0.70) + 0.33 * (0.81 - 0.30) = 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 70%. For smokers, the probability of high tar deposit is 19%. For nonsmokers and with no tar deposit, the probability of lung cancer is 65%. For nonsmokers and with high tar deposit, the probability of lung cancer is 33%. For smokers and with no tar deposit, the probability of lung cancer is 66%. For smokers and with high tar deposit, the probability of lung cancer is 34%. The overall probability of smoking is 56%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.56 +0.19 - 0.70 * (0.34 * 0.56 + 0.33 * 0.44)= 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 74%. For smokers, the probability of high tar deposit is 29%. For nonsmokers and with no tar deposit, the probability of lung cancer is 85%. For nonsmokers and with high tar deposit, the probability of lung cancer is 59%. For smokers and with no tar deposit, the probability of lung cancer is 84%. For smokers and with high tar deposit, the probability of lung cancer is 58%. The overall probability of smoking is 63%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.74 +P(V3=1 | X=1) = 0.29 +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.58 +P(X=1) = 0.63 +(0.29 - 0.74)* (0.58 * 0.63) + (0.71 - 0.26) * (0.59 * 0.37) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of lung cancer is 85%. For nonsmokers and with high tar deposit, the probability of lung cancer is 59%. For smokers and with no tar deposit, the probability of lung cancer is 84%. For smokers and with high tar deposit, the probability of lung cancer is 58%. For nonsmokers, the probability of high tar deposit is 74%. For smokers, the probability of high tar deposit is 29%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0) = 0.74 +P(V3=1 | X=1) = 0.29 +0.58 * (0.29 - 0.74) + 0.59 * (0.71 - 0.26) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 68%. For people with nonsmoking genes and smokers, the probability of lung cancer is 54%. For people with smoking genes and nonsmokers, the probability of lung cancer is 82%. For people with smoking genes and smokers, the probability of lung cancer is 58%. For people with nonsmoking genes and with low pollution, the probability of smoking is 60%. For people with nonsmoking genes and with high pollution, the probability of smoking is 36%. For people with smoking genes and with low pollution, the probability of smoking is 34%. For people with smoking genes and with high pollution, the probability of smoking is 2%. The overall probability of high pollution is 41%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0, V2=0) = 0.60 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.34 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.41 +0.41 * (0.58 - 0.82) * 0.36 + 0.59 * (0.54 - 0.68) * 0.34 = 0.03 +0.03 > 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 70%. For people with smoking genes, the probability of lung cancer is 56%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.56 +0.56 - 0.70 = -0.14 +-0.14 < 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 55%. For people with smoking genes, the probability of lung cancer is 62%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.62 +0.62 - 0.55 = 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 55%. For people with smoking genes, the probability of lung cancer is 62%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.62 +0.62 - 0.55 = 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 68%. For people with nonsmoking genes and smokers, the probability of lung cancer is 46%. For people with smoking genes and nonsmokers, the probability of lung cancer is 71%. For people with smoking genes and smokers, the probability of lung cancer is 44%. For people with nonsmoking genes and with low pollution, the probability of smoking is 73%. For people with nonsmoking genes and with high pollution, the probability of smoking is 42%. For people with smoking genes and with low pollution, the probability of smoking is 49%. For people with smoking genes and with high pollution, the probability of smoking is 17%. The overall probability of high pollution is 53%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.44 +P(V3=1 | X=0, V2=0) = 0.73 +P(V3=1 | X=0, V2=1) = 0.42 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.53 +0.53 * 0.46 * (0.17 - 0.49)+ 0.47 * 0.46 * (0.42 - 0.73)= 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 82%. The probability of nonsmoking gene and lung cancer is 10%. The probability of smoking gene and lung cancer is 51%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.51 +0.51/0.82 - 0.10/0.18 = 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +11498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 60%. For people with smoking genes, the probability of lung cancer is 42%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.42 +0.42 - 0.60 = -0.18 +-0.18 < 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 76%. For people with nonsmoking genes and smokers, the probability of lung cancer is 55%. For people with smoking genes and nonsmokers, the probability of lung cancer is 53%. For people with smoking genes and smokers, the probability of lung cancer is 31%. For people with nonsmoking genes and with low pollution, the probability of smoking is 82%. For people with nonsmoking genes and with high pollution, the probability of smoking is 51%. For people with smoking genes and with low pollution, the probability of smoking is 56%. For people with smoking genes and with high pollution, the probability of smoking is 31%. The overall probability of high pollution is 19%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.55 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0, V2=0) = 0.82 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.19 +0.19 * (0.31 - 0.53) * 0.51 + 0.81 * (0.55 - 0.76) * 0.56 = -0.25 +-0.25 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 81%. For people with nonsmoking genes, the probability of lung cancer is 60%. For people with smoking genes, the probability of lung cancer is 42%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.42 +0.81*0.42 - 0.19*0.60 = 0.45 +0.45 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +11511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look directly at how gene correlates with lung cancer in general. Method 2: We look at this correlation case by case according to smoking.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 59%. For people with nonsmoking genes and smokers, the probability of lung cancer is 36%. For people with smoking genes and nonsmokers, the probability of lung cancer is 67%. For people with smoking genes and smokers, the probability of lung cancer is 33%. For people with nonsmoking genes and with low pollution, the probability of smoking is 89%. For people with nonsmoking genes and with high pollution, the probability of smoking is 56%. For people with smoking genes and with low pollution, the probability of smoking is 60%. For people with smoking genes and with high pollution, the probability of smoking is 25%. The overall probability of high pollution is 47%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0, V2=0) = 0.89 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.60 +P(V3=1 | X=1, V2=1) = 0.25 +P(V2=1) = 0.47 +0.47 * (0.33 - 0.67) * 0.56 + 0.53 * (0.36 - 0.59) * 0.60 = -0.04 +-0.04 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 85%. For people with nonsmoking genes and smokers, the probability of lung cancer is 63%. For people with smoking genes and nonsmokers, the probability of lung cancer is 66%. For people with smoking genes and smokers, the probability of lung cancer is 39%. For people with nonsmoking genes and with low pollution, the probability of smoking is 81%. For people with nonsmoking genes and with high pollution, the probability of smoking is 60%. For people with smoking genes and with low pollution, the probability of smoking is 53%. For people with smoking genes and with high pollution, the probability of smoking is 30%. The overall probability of high pollution is 7%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.81 +P(V3=1 | X=0, V2=1) = 0.60 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.07 +0.07 * 0.63 * (0.30 - 0.53)+ 0.93 * 0.63 * (0.60 - 0.81)= 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 85%. For people with nonsmoking genes and smokers, the probability of lung cancer is 63%. For people with smoking genes and nonsmokers, the probability of lung cancer is 66%. For people with smoking genes and smokers, the probability of lung cancer is 39%. For people with nonsmoking genes and with low pollution, the probability of smoking is 81%. For people with nonsmoking genes and with high pollution, the probability of smoking is 60%. For people with smoking genes and with low pollution, the probability of smoking is 53%. For people with smoking genes and with high pollution, the probability of smoking is 30%. The overall probability of high pollution is 7%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.81 +P(V3=1 | X=0, V2=1) = 0.60 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.07 +0.07 * (0.39 - 0.66) * 0.60 + 0.93 * (0.63 - 0.85) * 0.53 = -0.23 +-0.23 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 61%. For people with smoking genes, the probability of lung cancer is 71%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.71 +0.71 - 0.61 = 0.10 +0.10 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 98%. The probability of nonsmoking gene and lung cancer is 1%. The probability of smoking gene and lung cancer is 70%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.70 +0.70/0.98 - 0.01/0.02 = 0.09 +0.09 > 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +11560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 75%. For people with nonsmoking genes and smokers, the probability of lung cancer is 49%. For people with smoking genes and nonsmokers, the probability of lung cancer is 49%. For people with smoking genes and smokers, the probability of lung cancer is 23%. For people with nonsmoking genes and with low pollution, the probability of smoking is 75%. For people with nonsmoking genes and with high pollution, the probability of smoking is 46%. For people with smoking genes and with low pollution, the probability of smoking is 39%. For people with smoking genes and with high pollution, the probability of smoking is 17%. The overall probability of high pollution is 6%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.49 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.75 +P(V3=1 | X=0, V2=1) = 0.46 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.06 +0.06 * (0.23 - 0.49) * 0.46 + 0.94 * (0.49 - 0.75) * 0.39 = -0.26 +-0.26 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 94%. For people with nonsmoking genes, the probability of lung cancer is 56%. For people with smoking genes, the probability of lung cancer is 64%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.64 +0.94*0.64 - 0.06*0.56 = 0.64 +0.64 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +11577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 94%. For people with nonsmoking genes, the probability of lung cancer is 56%. For people with smoking genes, the probability of lung cancer is 64%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.64 +0.94*0.64 - 0.06*0.56 = 0.64 +0.64 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +11584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 58%. For people with smoking genes, the probability of lung cancer is 41%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.41 +0.41 - 0.58 = -0.16 +-0.16 < 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 44%. For people with smoking genes, the probability of lung cancer is 53%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.53 - 0.44 = 0.09 +0.09 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 59%. For people with nonsmoking genes and smokers, the probability of lung cancer is 39%. For people with smoking genes and nonsmokers, the probability of lung cancer is 59%. For people with smoking genes and smokers, the probability of lung cancer is 44%. For people with nonsmoking genes and with low pollution, the probability of smoking is 87%. For people with nonsmoking genes and with high pollution, the probability of smoking is 57%. For people with smoking genes and with low pollution, the probability of smoking is 52%. For people with smoking genes and with high pollution, the probability of smoking is 28%. The overall probability of high pollution is 49%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.44 +P(V3=1 | X=0, V2=0) = 0.87 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.28 +P(V2=1) = 0.49 +0.49 * 0.39 * (0.28 - 0.52)+ 0.51 * 0.39 * (0.57 - 0.87)= 0.09 +0.09 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 85%. For people with nonsmoking genes and smokers, the probability of lung cancer is 66%. For people with smoking genes and nonsmokers, the probability of lung cancer is 66%. For people with smoking genes and smokers, the probability of lung cancer is 40%. For people with nonsmoking genes and with low pollution, the probability of smoking is 74%. For people with nonsmoking genes and with high pollution, the probability of smoking is 46%. For people with smoking genes and with low pollution, the probability of smoking is 41%. For people with smoking genes and with high pollution, the probability of smoking is 20%. The overall probability of high pollution is 19%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.40 +P(V3=1 | X=0, V2=0) = 0.74 +P(V3=1 | X=0, V2=1) = 0.46 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.19 +0.19 * (0.40 - 0.66) * 0.46 + 0.81 * (0.66 - 0.85) * 0.41 = -0.25 +-0.25 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look at how gene correlates with lung cancer case by case according to smoking. Method 2: We look directly at how gene correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 92%. For people with nonsmoking genes, the probability of lung cancer is 78%. For people with smoking genes, the probability of lung cancer is 58%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.58 +0.92*0.58 - 0.08*0.78 = 0.59 +0.59 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +11651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look directly at how gene correlates with lung cancer in general. Method 2: We look at this correlation case by case according to smoking.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 47%. For people with smoking genes, the probability of lung cancer is 55%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.55 +0.55 - 0.47 = 0.08 +0.08 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 57%. For people with nonsmoking genes and smokers, the probability of lung cancer is 39%. For people with smoking genes and nonsmokers, the probability of lung cancer is 63%. For people with smoking genes and smokers, the probability of lung cancer is 42%. For people with nonsmoking genes and with low pollution, the probability of smoking is 75%. For people with nonsmoking genes and with high pollution, the probability of smoking is 44%. For people with smoking genes and with low pollution, the probability of smoking is 53%. For people with smoking genes and with high pollution, the probability of smoking is 24%. The overall probability of high pollution is 57%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.75 +P(V3=1 | X=0, V2=1) = 0.44 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.24 +P(V2=1) = 0.57 +0.57 * 0.39 * (0.24 - 0.53)+ 0.43 * 0.39 * (0.44 - 0.75)= 0.05 +0.05 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look at how gene correlates with lung cancer case by case according to smoking. Method 2: We look directly at how gene correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 90%. For people with nonsmoking genes, the probability of lung cancer is 61%. For people with smoking genes, the probability of lung cancer is 48%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.48 +0.90*0.48 - 0.10*0.61 = 0.50 +0.50 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +11679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look directly at how gene correlates with lung cancer in general. Method 2: We look at this correlation case by case according to smoking.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 47%. For people with smoking genes, the probability of lung cancer is 53%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.06 +0.06 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 56%. For people with nonsmoking genes and smokers, the probability of lung cancer is 42%. For people with smoking genes and nonsmokers, the probability of lung cancer is 60%. For people with smoking genes and smokers, the probability of lung cancer is 40%. For people with nonsmoking genes and with low pollution, the probability of smoking is 76%. For people with nonsmoking genes and with high pollution, the probability of smoking is 48%. For people with smoking genes and with low pollution, the probability of smoking is 46%. For people with smoking genes and with high pollution, the probability of smoking is 21%. The overall probability of high pollution is 41%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.40 +P(V3=1 | X=0, V2=0) = 0.76 +P(V3=1 | X=0, V2=1) = 0.48 +P(V3=1 | X=1, V2=0) = 0.46 +P(V3=1 | X=1, V2=1) = 0.21 +P(V2=1) = 0.41 +0.41 * 0.42 * (0.21 - 0.46)+ 0.59 * 0.42 * (0.48 - 0.76)= 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 89%. The probability of nonsmoking gene and lung cancer is 5%. The probability of smoking gene and lung cancer is 47%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.47 +0.47/0.89 - 0.05/0.11 = 0.06 +0.06 > 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +11719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of smoking gene is 94%. The probability of nonsmoking gene and lung cancer is 3%. The probability of smoking gene and lung cancer is 53%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.53 +0.53/0.94 - 0.03/0.06 = -0.00 +0.00 = 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +11722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 54%. For people with smoking genes, the probability of lung cancer is 38%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.38 +0.38 - 0.54 = -0.16 +-0.16 < 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 65%. For people with smoking genes, the probability of lung cancer is 49%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.49 +0.49 - 0.65 = -0.16 +-0.16 < 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 79%. For people with nonsmoking genes and smokers, the probability of lung cancer is 64%. For people with smoking genes and nonsmokers, the probability of lung cancer is 62%. For people with smoking genes and smokers, the probability of lung cancer is 38%. For people with nonsmoking genes and with low pollution, the probability of smoking is 92%. For people with nonsmoking genes and with high pollution, the probability of smoking is 64%. For people with smoking genes and with low pollution, the probability of smoking is 55%. For people with smoking genes and with high pollution, the probability of smoking is 29%. The overall probability of high pollution is 11%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.64 +P(V3=1 | X=1, V2=0) = 0.55 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.11 +0.11 * 0.64 * (0.29 - 0.55)+ 0.89 * 0.64 * (0.64 - 0.92)= 0.08 +0.08 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 79%. For people with nonsmoking genes and smokers, the probability of lung cancer is 64%. For people with smoking genes and nonsmokers, the probability of lung cancer is 62%. For people with smoking genes and smokers, the probability of lung cancer is 38%. For people with nonsmoking genes and with low pollution, the probability of smoking is 92%. For people with nonsmoking genes and with high pollution, the probability of smoking is 64%. For people with smoking genes and with low pollution, the probability of smoking is 55%. For people with smoking genes and with high pollution, the probability of smoking is 29%. The overall probability of high pollution is 11%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.64 +P(V3=1 | X=1, V2=0) = 0.55 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.11 +0.11 * (0.38 - 0.62) * 0.64 + 0.89 * (0.64 - 0.79) * 0.55 = -0.25 +-0.25 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look at how gene correlates with lung cancer case by case according to smoking. Method 2: We look directly at how gene correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look directly at how gene correlates with lung cancer in general. Method 2: We look at this correlation case by case according to smoking.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +11807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes, the probability of lung cancer is 68%. For people with smoking genes, the probability of lung cancer is 54%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.54 +0.54 - 0.68 = -0.14 +-0.14 < 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 84%. For people with nonsmoking genes and smokers, the probability of lung cancer is 60%. For people with smoking genes and nonsmokers, the probability of lung cancer is 62%. For people with smoking genes and smokers, the probability of lung cancer is 37%. For people with nonsmoking genes and with low pollution, the probability of smoking is 70%. For people with nonsmoking genes and with high pollution, the probability of smoking is 45%. For people with smoking genes and with low pollution, the probability of smoking is 35%. For people with smoking genes and with high pollution, the probability of smoking is 10%. The overall probability of high pollution is 17%.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.37 +P(V3=1 | X=0, V2=0) = 0.70 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.35 +P(V3=1 | X=1, V2=1) = 0.10 +P(V2=1) = 0.17 +0.17 * 0.60 * (0.10 - 0.35)+ 0.83 * 0.60 * (0.45 - 0.70)= 0.10 +0.10 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +11813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people with nonsmoking genes and nonsmokers, the probability of lung cancer is 84%. For people with nonsmoking genes and smokers, the probability of lung cancer is 60%. For people with smoking genes and nonsmokers, the probability of lung cancer is 62%. For people with smoking genes and smokers, the probability of lung cancer is 37%. For people with nonsmoking genes and with low pollution, the probability of smoking is 70%. For people with nonsmoking genes and with high pollution, the probability of smoking is 45%. For people with smoking genes and with low pollution, the probability of smoking is 35%. For people with smoking genes and with high pollution, the probability of smoking is 10%. The overall probability of high pollution is 17%.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.37 +P(V3=1 | X=0, V2=0) = 0.70 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.35 +P(V3=1 | X=1, V2=1) = 0.10 +P(V2=1) = 0.17 +0.17 * (0.37 - 0.62) * 0.45 + 0.83 * (0.60 - 0.84) * 0.35 = -0.24 +-0.24 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +11827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 3%. For nonsmokers, the probability of lung cancer is 28%. For smokers, the probability of lung cancer is 46%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.46 +0.03*0.46 - 0.97*0.28 = 0.29 +0.29 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +11829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 3%. The probability of nonsmoking and lung cancer is 27%. The probability of smoking and lung cancer is 1%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.27/0.97 = 0.18 +0.18 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +11830,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look at how smoking correlates with lung cancer case by case according to tar deposit. Method 2: We look directly at how smoking correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +11843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look directly at how smoking correlates with lung cancer in general. Method 2: We look at this correlation case by case according to tar deposit.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +11856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 64%. For smokers, the probability of lung cancer is 80%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.80 +0.80 - 0.64 = 0.17 +0.17 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 64%. For smokers, the probability of lung cancer is 80%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.80 +0.80 - 0.64 = 0.17 +0.17 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +11884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 28%. For smokers, the probability of lung cancer is 5%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.05 +0.05 - 0.28 = -0.23 +-0.23 < 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +11889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 84%. The probability of nonsmoking and lung cancer is 4%. The probability of smoking and lung cancer is 4%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.84 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.04 +0.04/0.84 - 0.04/0.16 = -0.23 +-0.23 < 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +11903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look directly at how smoking correlates with lung cancer in general. Method 2: We look at this correlation case by case according to tar deposit.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +11907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 27%. For smokers, the probability of lung cancer is 57%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.57 +0.57 - 0.27 = 0.30 +0.30 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 27%. For smokers, the probability of lung cancer is 57%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.57 +0.57 - 0.27 = 0.30 +0.30 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +11911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 99%. For nonsmokers, the probability of lung cancer is 27%. For smokers, the probability of lung cancer is 57%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.57 +0.99*0.57 - 0.01*0.27 = 0.56 +0.56 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +11917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 41%. For smokers, the probability of lung cancer is 32%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.32 +0.32 - 0.41 = -0.09 +-0.09 < 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +11934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 8%. For nonsmokers, the probability of lung cancer is 29%. For smokers, the probability of lung cancer is 64%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.64 +0.08*0.64 - 0.92*0.29 = 0.32 +0.32 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +11959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 87%. For nonsmokers, the probability of lung cancer is 75%. For smokers, the probability of lung cancer is 43%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.43 +0.87*0.43 - 0.13*0.75 = 0.47 +0.47 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +11961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 87%. The probability of nonsmoking and lung cancer is 10%. The probability of smoking and lung cancer is 37%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.37 +0.37/0.87 - 0.10/0.13 = -0.32 +-0.32 < 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +11966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 28%. For smokers, the probability of lung cancer is 54%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.54 +0.54 - 0.28 = 0.25 +0.25 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +11968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 28%. For smokers, the probability of lung cancer is 54%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.54 +0.54 - 0.28 = 0.25 +0.25 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +11969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 28%. For smokers, the probability of lung cancer is 54%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.54 +0.54 - 0.28 = 0.25 +0.25 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +11970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 13%. For nonsmokers, the probability of lung cancer is 28%. For smokers, the probability of lung cancer is 54%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.54 +0.13*0.54 - 0.87*0.28 = 0.32 +0.32 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +12011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look directly at how smoking correlates with lung cancer in general. Method 2: We look at this correlation case by case according to tar deposit.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +12013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 61%. For smokers, the probability of lung cancer is 81%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.81 +0.81 - 0.61 = 0.20 +0.20 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 95%. For nonsmokers, the probability of lung cancer is 61%. For smokers, the probability of lung cancer is 81%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.81 +0.95*0.81 - 0.05*0.61 = 0.80 +0.80 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +12021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 95%. The probability of nonsmoking and lung cancer is 3%. The probability of smoking and lung cancer is 77%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.77 +0.77/0.95 - 0.03/0.05 = 0.20 +0.20 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +12054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 93%. For nonsmokers, the probability of lung cancer is 56%. For smokers, the probability of lung cancer is 71%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.71 +0.93*0.71 - 0.07*0.56 = 0.69 +0.69 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +12056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 93%. The probability of nonsmoking and lung cancer is 4%. The probability of smoking and lung cancer is 65%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.65 +0.65/0.93 - 0.04/0.07 = 0.15 +0.15 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +12059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look directly at how smoking correlates with lung cancer in general. Method 2: We look at this correlation case by case according to tar deposit.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +12081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 11%. The probability of nonsmoking and lung cancer is 48%. The probability of smoking and lung cancer is 7%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.07 +0.07/0.11 - 0.48/0.89 = 0.10 +0.10 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +12086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 30%. For smokers, the probability of lung cancer is 43%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.43 +0.43 - 0.30 = 0.13 +0.13 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 30%. For smokers, the probability of lung cancer is 43%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.43 +0.43 - 0.30 = 0.13 +0.13 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look at how smoking correlates with lung cancer case by case according to tar deposit. Method 2: We look directly at how smoking correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +12120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 17%. For smokers, the probability of lung cancer is 49%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.49 +0.49 - 0.17 = 0.32 +0.32 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look at how smoking correlates with lung cancer case by case according to tar deposit. Method 2: We look directly at how smoking correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +12137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 50%. For smokers, the probability of lung cancer is 33%.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.33 +0.33 - 0.50 = -0.17 +-0.17 < 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +12140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of smoking is 80%. The probability of nonsmoking and lung cancer is 10%. The probability of smoking and lung cancer is 27%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.27 +0.27/0.80 - 0.10/0.20 = -0.17 +-0.17 < 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +12157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 60%. For smokers, the probability of lung cancer is 74%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.74 +0.74 - 0.60 = 0.14 +0.14 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 73%. For smokers, the probability of lung cancer is 51%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.51 +0.51 - 0.73 = -0.23 +-0.23 < 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For nonsmokers, the probability of lung cancer is 73%. For smokers, the probability of lung cancer is 51%.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.51 +0.51 - 0.73 = -0.23 +-0.23 < 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 49%. For areas with high cigarette tax, the probability of normal infant birth weight is 54%. For areas with low cigarette tax, the probability of smoking mother is 27%. For areas with high cigarette tax, the probability of smoking mother is 50%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.49 +P(Y=1 | V2=1) = 0.54 +P(X=1 | V2=0) = 0.27 +P(X=1 | V2=1) = 0.50 +(0.54 - 0.49) / (0.50 - 0.27) = 0.22 +0.22 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 40%. The probability of nonsmoking mother and normal infant birth weight is 6%. The probability of smoking mother and normal infant birth weight is 17%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.17 +0.17/0.40 - 0.06/0.60 = 0.31 +0.31 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 15%. For infants with nonsmoking mothers, the probability of normal infant birth weight is 7%. For infants with smoking mothers, the probability of normal infant birth weight is 47%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.47 +0.15*0.47 - 0.85*0.07 = 0.13 +0.13 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +12232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 15%. The probability of nonsmoking mother and normal infant birth weight is 6%. The probability of smoking mother and normal infant birth weight is 7%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.07 +0.07/0.15 - 0.06/0.85 = 0.39 +0.39 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 15%. The probability of nonsmoking mother and normal infant birth weight is 6%. The probability of smoking mother and normal infant birth weight is 7%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.07 +0.07/0.15 - 0.06/0.85 = 0.39 +0.39 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look directly at how maternal smoking status correlates with infant's birth weight in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +12236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 20%. For areas with high cigarette tax, the probability of normal infant birth weight is 41%. For areas with low cigarette tax, the probability of smoking mother is 22%. For areas with high cigarette tax, the probability of smoking mother is 70%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.20 +P(Y=1 | V2=1) = 0.41 +P(X=1 | V2=0) = 0.22 +P(X=1 | V2=1) = 0.70 +(0.41 - 0.20) / (0.70 - 0.22) = 0.44 +0.44 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 25%. The probability of nonsmoking mother and normal infant birth weight is 8%. The probability of smoking mother and normal infant birth weight is 14%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.14 +0.14/0.25 - 0.08/0.75 = 0.44 +0.44 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 22%. For infants with nonsmoking mothers, the probability of normal infant birth weight is 19%. For infants with smoking mothers, the probability of normal infant birth weight is 49%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.49 +0.22*0.49 - 0.78*0.19 = 0.26 +0.26 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +12255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 31%. For infants with nonsmoking mothers, the probability of normal infant birth weight is 5%. For infants with smoking mothers, the probability of normal infant birth weight is 38%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.38 +0.31*0.38 - 0.69*0.05 = 0.15 +0.15 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +12281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 14%. The probability of nonsmoking mother and normal infant birth weight is 14%. The probability of smoking mother and normal infant birth weight is 6%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.06 +0.06/0.14 - 0.14/0.86 = 0.29 +0.29 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 17%. The probability of nonsmoking mother and normal infant birth weight is 31%. The probability of smoking mother and normal infant birth weight is 14%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.14 +0.14/0.17 - 0.31/0.83 = 0.44 +0.44 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look at how maternal smoking status correlates with infant's birth weight case by case according to unobserved confounders. Method 2: We look directly at how maternal smoking status correlates with infant's birth weight in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +12296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 25%. The probability of nonsmoking mother and normal infant birth weight is 13%. The probability of smoking mother and normal infant birth weight is 11%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.11 +0.11/0.25 - 0.13/0.75 = 0.27 +0.27 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 34%. For areas with high cigarette tax, the probability of normal infant birth weight is 43%. For areas with low cigarette tax, the probability of smoking mother is 25%. For areas with high cigarette tax, the probability of smoking mother is 57%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.34 +P(Y=1 | V2=1) = 0.43 +P(X=1 | V2=0) = 0.25 +P(X=1 | V2=1) = 0.57 +(0.43 - 0.34) / (0.57 - 0.25) = 0.26 +0.26 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12314,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look directly at how maternal smoking status correlates with infant's birth weight in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +12319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 41%. For infants with nonsmoking mothers, the probability of normal infant birth weight is 25%. For infants with smoking mothers, the probability of normal infant birth weight is 61%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.61 +0.41*0.61 - 0.59*0.25 = 0.40 +0.40 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +12322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look directly at how maternal smoking status correlates with infant's birth weight in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +12323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look at how maternal smoking status correlates with infant's birth weight case by case according to unobserved confounders. Method 2: We look directly at how maternal smoking status correlates with infant's birth weight in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +12333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 77%. For areas with high cigarette tax, the probability of normal infant birth weight is 88%. For areas with low cigarette tax, the probability of smoking mother is 61%. For areas with high cigarette tax, the probability of smoking mother is 90%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.77 +P(Y=1 | V2=1) = 0.88 +P(X=1 | V2=0) = 0.61 +P(X=1 | V2=1) = 0.90 +(0.88 - 0.77) / (0.90 - 0.61) = 0.37 +0.37 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 52%. The probability of nonsmoking mother and normal infant birth weight is 2%. The probability of smoking mother and normal infant birth weight is 34%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.34 +0.34/0.52 - 0.02/0.48 = 0.62 +0.62 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 14%. The probability of nonsmoking mother and normal infant birth weight is 4%. The probability of smoking mother and normal infant birth weight is 6%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.06 +0.06/0.14 - 0.04/0.86 = 0.37 +0.37 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +12406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of smoking mother is 34%. For infants with nonsmoking mothers, the probability of normal infant birth weight is 12%. For infants with smoking mothers, the probability of normal infant birth weight is 52%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.52 +0.34*0.52 - 0.66*0.12 = 0.25 +0.25 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +12419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look at how maternal smoking status correlates with infant's birth weight case by case according to unobserved confounders. Method 2: We look directly at how maternal smoking status correlates with infant's birth weight in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +12427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. Method 1: We look at how water quality correlates with cholera case by case according to poverty. Method 2: We look directly at how water quality correlates with cholera in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +12445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 60%. For people served by a global water company, the probability of cholera contraction is 54%. For people served by a local water company, the probability of clean water is 43%. For people served by a global water company, the probability of clean water is 20%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.60 +P(Y=1 | V2=1) = 0.54 +P(X=1 | V2=0) = 0.43 +P(X=1 | V2=1) = 0.20 +(0.54 - 0.60) / (0.20 - 0.43) = 0.26 +0.26 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 78%. For people served by a global water company, the probability of cholera contraction is 71%. For people served by a local water company, the probability of clean water is 48%. For people served by a global water company, the probability of clean water is 24%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.78 +P(Y=1 | V2=1) = 0.71 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.24 +(0.71 - 0.78) / (0.24 - 0.48) = 0.29 +0.29 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. The overall probability of clean water is 29%. For people with only polluted water, the probability of cholera contraction is 47%. For people with access to clean water, the probability of cholera contraction is 63%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.63 +0.29*0.63 - 0.71*0.47 = 0.52 +0.52 > 0",IV,water_cholera,1,marginal,P(Y) +12466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. Method 1: We look directly at how water quality correlates with cholera in general. Method 2: We look at this correlation case by case according to poverty.",no,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +12504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. The overall probability of clean water is 28%. The probability of polluted water and cholera contraction is 27%. The probability of clean water and cholera contraction is 18%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.18 +0.18/0.28 - 0.27/0.72 = 0.27 +0.27 > 0",IV,water_cholera,1,correlation,P(Y | X) +12539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. Method 1: We look at how water quality correlates with cholera case by case according to poverty. Method 2: We look directly at how water quality correlates with cholera in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +12548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 67%. For people served by a global water company, the probability of cholera contraction is 62%. For people served by a local water company, the probability of clean water is 42%. For people served by a global water company, the probability of clean water is 18%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.67 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.42 +P(X=1 | V2=1) = 0.18 +(0.62 - 0.67) / (0.18 - 0.42) = 0.22 +0.22 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 67%. For people served by a global water company, the probability of cholera contraction is 62%. For people served by a local water company, the probability of clean water is 42%. For people served by a global water company, the probability of clean water is 18%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.67 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.42 +P(X=1 | V2=1) = 0.18 +(0.62 - 0.67) / (0.18 - 0.42) = 0.22 +0.22 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. Method 1: We look directly at how water quality correlates with cholera in general. Method 2: We look at this correlation case by case according to poverty.",no,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +12565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 40%. For people served by a global water company, the probability of cholera contraction is 31%. For people served by a local water company, the probability of clean water is 46%. For people served by a global water company, the probability of clean water is 21%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.40 +P(Y=1 | V2=1) = 0.31 +P(X=1 | V2=0) = 0.46 +P(X=1 | V2=1) = 0.21 +(0.31 - 0.40) / (0.21 - 0.46) = 0.35 +0.35 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 70%. For people served by a global water company, the probability of cholera contraction is 62%. For people served by a local water company, the probability of clean water is 71%. For people served by a global water company, the probability of clean water is 41%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.70 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.71 +P(X=1 | V2=1) = 0.41 +(0.62 - 0.70) / (0.41 - 0.71) = 0.29 +0.29 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12573,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 70%. For people served by a global water company, the probability of cholera contraction is 62%. For people served by a local water company, the probability of clean water is 71%. For people served by a global water company, the probability of clean water is 41%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.70 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.71 +P(X=1 | V2=1) = 0.41 +(0.62 - 0.70) / (0.41 - 0.71) = 0.29 +0.29 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. The overall probability of clean water is 26%. For people with only polluted water, the probability of cholera contraction is 61%. For people with access to clean water, the probability of cholera contraction is 89%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.26 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.89 +0.26*0.89 - 0.74*0.61 = 0.68 +0.68 > 0",IV,water_cholera,1,marginal,P(Y) +12607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. The overall probability of clean water is 22%. For people with only polluted water, the probability of cholera contraction is 68%. For people with access to clean water, the probability of cholera contraction is 88%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.88 +0.22*0.88 - 0.78*0.68 = 0.73 +0.73 > 0",IV,water_cholera,1,marginal,P(Y) +12628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. For people served by a local water company, the probability of cholera contraction is 52%. For people served by a global water company, the probability of cholera contraction is 42%. For people served by a local water company, the probability of clean water is 59%. For people served by a global water company, the probability of clean water is 14%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.52 +P(Y=1 | V2=1) = 0.42 +P(X=1 | V2=0) = 0.59 +P(X=1 | V2=1) = 0.14 +(0.42 - 0.52) / (0.14 - 0.59) = 0.21 +0.21 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. The overall probability of clean water is 31%. For people with only polluted water, the probability of cholera contraction is 36%. For people with access to clean water, the probability of cholera contraction is 74%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.74 +0.31*0.74 - 0.69*0.36 = 0.48 +0.48 > 0",IV,water_cholera,1,marginal,P(Y) +12659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. Method 1: We look at how water quality correlates with cholera case by case according to poverty. Method 2: We look directly at how water quality correlates with cholera in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +12663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 74%. For people who have a brother, the probability of ringing alarm is 22%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.22 +0.22 - 0.74 = -0.52 +-0.52 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 6%. The probability of not having a brother and ringing alarm is 70%. The probability of having a brother and ringing alarm is 1%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.70 +P(Y=1, X=1=1) = 0.01 +0.01/0.06 - 0.70/0.94 = -0.52 +-0.52 < 0",mediation,alarm,1,correlation,P(Y | X) +12673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look directly at how having a brother correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +12685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 4%. The probability of not having a brother and ringing alarm is 74%. The probability of having a brother and ringing alarm is 1%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.74 +P(Y=1, X=1=1) = 0.01 +0.01/0.04 - 0.74/0.96 = -0.46 +-0.46 < 0",mediation,alarm,1,correlation,P(Y | X) +12690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 90%. For people who have a brother, the probability of ringing alarm is 31%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.31 +0.31 - 0.90 = -0.58 +-0.58 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 90%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 45%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 58%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 11%. For people who do not have a brother, the probability of alarm set by wife is 1%. For people who have a brother, the probability of alarm set by wife is 57%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.90 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.01 +P(V2=1 | X=1) = 0.57 +0.57 * (0.45 - 0.90)+ 0.01 * (0.11 - 0.58)= -0.25 +-0.25 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +12693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 90%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 45%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 58%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 11%. For people who do not have a brother, the probability of alarm set by wife is 1%. For people who have a brother, the probability of alarm set by wife is 57%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.90 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.01 +P(V2=1 | X=1) = 0.57 +0.57 * (0.45 - 0.90)+ 0.01 * (0.11 - 0.58)= -0.25 +-0.25 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +12694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 90%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 45%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 58%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 11%. For people who do not have a brother, the probability of alarm set by wife is 1%. For people who have a brother, the probability of alarm set by wife is 57%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.90 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.01 +P(V2=1 | X=1) = 0.57 +0.01 * (0.11 - 0.58) + 0.57 * (0.45 - 0.90) = -0.32 +-0.32 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +12699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 4%. The probability of not having a brother and ringing alarm is 86%. The probability of having a brother and ringing alarm is 1%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.86 +P(Y=1, X=1=1) = 0.01 +0.01/0.04 - 0.86/0.96 = -0.58 +-0.58 < 0",mediation,alarm,1,correlation,P(Y | X) +12712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 17%. The probability of not having a brother and ringing alarm is 69%. The probability of having a brother and ringing alarm is 3%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.69 +P(Y=1, X=1=1) = 0.03 +0.03/0.17 - 0.69/0.83 = -0.64 +-0.64 < 0",mediation,alarm,1,correlation,P(Y | X) +12714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look at how having a brother correlates with alarm clock case by case according to wife. Method 2: We look directly at how having a brother correlates with alarm clock in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +12729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look directly at how having a brother correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +12736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 95%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 42%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 62%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 3%. For people who do not have a brother, the probability of alarm set by wife is 22%. For people who have a brother, the probability of alarm set by wife is 58%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.03 +P(V2=1 | X=0) = 0.22 +P(V2=1 | X=1) = 0.58 +0.22 * (0.03 - 0.62) + 0.58 * (0.42 - 0.95) = -0.34 +-0.34 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +12740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 2%. The probability of not having a brother and ringing alarm is 81%. The probability of having a brother and ringing alarm is 1%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.81 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.81/0.98 = -0.56 +-0.56 < 0",mediation,alarm,1,correlation,P(Y | X) +12748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 95%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 52%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 63%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 13%. For people who do not have a brother, the probability of alarm set by wife is 23%. For people who have a brother, the probability of alarm set by wife is 59%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.52 +P(Y=1 | X=1, V2=0) = 0.63 +P(Y=1 | X=1, V2=1) = 0.13 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.59 +0.59 * (0.52 - 0.95)+ 0.23 * (0.13 - 0.63)= -0.16 +-0.16 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +12751,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 95%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 52%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 63%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 13%. For people who do not have a brother, the probability of alarm set by wife is 23%. For people who have a brother, the probability of alarm set by wife is 59%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.52 +P(Y=1 | X=1, V2=0) = 0.63 +P(Y=1 | X=1, V2=1) = 0.13 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.59 +0.23 * (0.13 - 0.63) + 0.59 * (0.52 - 0.95) = -0.34 +-0.34 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +12752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 6%. For people who do not have a brother, the probability of ringing alarm is 86%. For people who have a brother, the probability of ringing alarm is 34%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.34 +0.06*0.34 - 0.94*0.86 = 0.83 +0.83 > 0",mediation,alarm,1,marginal,P(Y) +12761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 72%. For people who have a brother, the probability of ringing alarm is 24%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.24 - 0.72 = -0.48 +-0.48 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12764,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 94%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 43%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 55%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 11%. For people who do not have a brother, the probability of alarm set by wife is 43%. For people who have a brother, the probability of alarm set by wife is 69%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.94 +P(Y=1 | X=0, V2=1) = 0.43 +P(Y=1 | X=1, V2=0) = 0.55 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.43 +P(V2=1 | X=1) = 0.69 +0.43 * (0.11 - 0.55) + 0.69 * (0.43 - 0.94) = -0.36 +-0.36 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +12773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 82%. For people who have a brother, the probability of ringing alarm is 28%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.28 +0.28 - 0.82 = -0.54 +-0.54 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 14%. For people who do not have a brother, the probability of ringing alarm is 82%. For people who have a brother, the probability of ringing alarm is 28%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.28 +0.14*0.28 - 0.86*0.82 = 0.74 +0.74 > 0",mediation,alarm,1,marginal,P(Y) +12795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 9%. For people who do not have a brother, the probability of ringing alarm is 72%. For people who have a brother, the probability of ringing alarm is 17%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.17 +0.09*0.17 - 0.91*0.72 = 0.67 +0.67 > 0",mediation,alarm,1,marginal,P(Y) +12811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 10%. The probability of not having a brother and ringing alarm is 73%. The probability of having a brother and ringing alarm is 2%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.73 +P(Y=1, X=1=1) = 0.02 +0.02/0.10 - 0.73/0.90 = -0.61 +-0.61 < 0",mediation,alarm,1,correlation,P(Y | X) +12812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look at how having a brother correlates with alarm clock case by case according to wife. Method 2: We look directly at how having a brother correlates with alarm clock in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +12830,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 64%. For people who have a brother, the probability of ringing alarm is 24%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.24 +0.24 - 0.64 = -0.40 +-0.40 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 80%. For people who have a brother, the probability of ringing alarm is 34%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.34 +0.34 - 0.80 = -0.46 +-0.46 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +12874,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 93%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 48%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 63%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 15%. For people who do not have a brother, the probability of alarm set by wife is 30%. For people who have a brother, the probability of alarm set by wife is 61%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.93 +P(Y=1 | X=0, V2=1) = 0.48 +P(Y=1 | X=1, V2=0) = 0.63 +P(Y=1 | X=1, V2=1) = 0.15 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.61 +0.61 * (0.48 - 0.93)+ 0.30 * (0.15 - 0.63)= -0.14 +-0.14 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +12881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 2%. The probability of not having a brother and ringing alarm is 78%. The probability of having a brother and ringing alarm is 1%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.78 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.78/0.98 = -0.46 +-0.46 < 0",mediation,alarm,1,correlation,P(Y | X) +12887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 69%. For people who have a brother, the probability of ringing alarm is 25%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.25 +0.25 - 0.69 = -0.45 +-0.45 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +12925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. Method 1: We look directly at how having a brother correlates with alarm clock in general. Method 2: We look at this correlation case by case according to wife.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,alarm,2,backadj,[backdoor adjustment set for Y given X] +12987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 95%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 50%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 62%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 14%. For people who do not have a brother, the probability of alarm set by wife is 40%. For people who have a brother, the probability of alarm set by wife is 77%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.14 +P(V2=1 | X=0) = 0.40 +P(V2=1 | X=1) = 0.77 +0.77 * (0.50 - 0.95)+ 0.40 * (0.14 - 0.62)= -0.17 +-0.17 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +12996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 84%. For people who have a brother, the probability of ringing alarm is 29%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.29 +0.29 - 0.84 = -0.55 +-0.55 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 88%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 45%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 58%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 13%. For people who do not have a brother, the probability of alarm set by wife is 9%. For people who have a brother, the probability of alarm set by wife is 64%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.88 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.13 +P(V2=1 | X=0) = 0.09 +P(V2=1 | X=1) = 0.64 +0.64 * (0.45 - 0.88)+ 0.09 * (0.13 - 0.58)= -0.24 +-0.24 < 0",mediation,alarm,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +13038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 79%. For people who have a brother, the probability of ringing alarm is 30%.",no,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.30 +0.30 - 0.79 = -0.49 +-0.49 < 0",mediation,alarm,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. The overall probability of having a brother is 1%. For people who do not have a brother, the probability of ringing alarm is 79%. For people who have a brother, the probability of ringing alarm is 30%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.30 +0.01*0.30 - 0.99*0.79 = 0.78 +0.78 > 0",mediation,alarm,1,marginal,P(Y) +13054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother, the probability of ringing alarm is 90%. For people who have a brother, the probability of ringing alarm is 25%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.25 +0.25 - 0.90 = -0.65 +-0.65 < 0",mediation,alarm,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. For people who do not have a brother and wives that don't set the alarm, the probability of ringing alarm is 87%. For people who do not have a brother and wives that set the alarm, the probability of ringing alarm is 42%. For people who have a brother and wives that don't set the alarm, the probability of ringing alarm is 55%. For people who have a brother and wives that set the alarm, the probability of ringing alarm is 9%. For people who do not have a brother, the probability of alarm set by wife is 62%. For people who have a brother, the probability of alarm set by wife is 75%.",yes,"Let X = having a brother; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.87 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.55 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.62 +P(V2=1 | X=1) = 0.75 +0.62 * (0.09 - 0.55) + 0.75 * (0.42 - 0.87) = -0.32 +-0.32 < 0",mediation,alarm,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +13082,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 86%. For people who drink coffee, the probability of dark room is 55%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.55 +0.55 - 0.86 = -0.31 +-0.31 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13083,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 86%. For people who drink coffee, the probability of dark room is 55%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.55 +0.55 - 0.86 = -0.31 +-0.31 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 5%. For people who do not drink coffee, the probability of dark room is 84%. For people who drink coffee, the probability of dark room is 50%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.50 +0.05*0.50 - 0.95*0.84 = 0.82 +0.82 > 0",fork,candle,1,marginal,P(Y) +13116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 13%. The probability of not drinking coffee and dark room is 79%. The probability of drinking coffee and dark room is 7%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.07 +0.07/0.13 - 0.79/0.87 = -0.39 +-0.39 < 0",fork,candle,1,correlation,P(Y | X) +13117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 13%. The probability of not drinking coffee and dark room is 79%. The probability of drinking coffee and dark room is 7%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.07 +0.07/0.13 - 0.79/0.87 = -0.39 +-0.39 < 0",fork,candle,1,correlation,P(Y | X) +13119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. Method 1: We look directly at how drinking coffee correlates with room in general. Method 2: We look at this correlation case by case according to the candle.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +13120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 83%. For people who drink coffee, the probability of dark room is 46%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.46 +0.46 - 0.83 = -0.37 +-0.37 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 17%. For people who do not drink coffee, the probability of dark room is 83%. For people who drink coffee, the probability of dark room is 46%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.46 +0.17*0.46 - 0.83*0.83 = 0.76 +0.76 > 0",fork,candle,1,marginal,P(Y) +13131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 89%. For people who drink coffee, the probability of dark room is 58%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.58 +0.58 - 0.89 = -0.30 +-0.30 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 89%. For people who drink coffee, the probability of dark room is 58%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.58 +0.58 - 0.89 = -0.30 +-0.30 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 20%. For people who do not drink coffee, the probability of dark room is 89%. For people who drink coffee, the probability of dark room is 58%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.58 +0.20*0.58 - 0.80*0.89 = 0.83 +0.83 > 0",fork,candle,1,marginal,P(Y) +13138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. Method 1: We look at how drinking coffee correlates with room case by case according to the candle. Method 2: We look directly at how drinking coffee correlates with room in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +13150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 89%. For people who drink coffee, the probability of dark room is 57%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.57 +0.57 - 0.89 = -0.32 +-0.32 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 88%. For people who drink coffee, the probability of dark room is 57%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.57 +0.57 - 0.88 = -0.31 +-0.31 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 16%. For people who do not drink coffee, the probability of dark room is 88%. For people who drink coffee, the probability of dark room is 56%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.56 +0.16*0.56 - 0.84*0.88 = 0.83 +0.83 > 0",fork,candle,1,marginal,P(Y) +13205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 17%. For people who do not drink coffee, the probability of dark room is 93%. For people who drink coffee, the probability of dark room is 62%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.62 +0.17*0.62 - 0.83*0.93 = 0.88 +0.88 > 0",fork,candle,1,marginal,P(Y) +13207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 17%. The probability of not drinking coffee and dark room is 77%. The probability of drinking coffee and dark room is 11%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.77 +P(Y=1, X=1=1) = 0.11 +0.11/0.17 - 0.77/0.83 = -0.30 +-0.30 < 0",fork,candle,1,correlation,P(Y | X) +13218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. Method 1: We look at how drinking coffee correlates with room case by case according to the candle. Method 2: We look directly at how drinking coffee correlates with room in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +13239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. Method 1: We look directly at how drinking coffee correlates with room in general. Method 2: We look at this correlation case by case according to the candle.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +13251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 88%. For people who drink coffee, the probability of dark room is 55%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.55 +0.55 - 0.88 = -0.32 +-0.32 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 14%. For people who do not drink coffee, the probability of dark room is 94%. For people who drink coffee, the probability of dark room is 60%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.60 +0.14*0.60 - 0.86*0.94 = 0.89 +0.89 > 0",fork,candle,1,marginal,P(Y) +13304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 5%. For people who do not drink coffee, the probability of dark room is 89%. For people who drink coffee, the probability of dark room is 56%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.56 +0.05*0.56 - 0.95*0.89 = 0.87 +0.87 > 0",fork,candle,1,marginal,P(Y) +13310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 84%. For people who drink coffee, the probability of dark room is 52%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.52 +0.52 - 0.84 = -0.32 +-0.32 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 3%. For people who do not drink coffee, the probability of dark room is 84%. For people who drink coffee, the probability of dark room is 49%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.49 +0.03*0.49 - 0.97*0.84 = 0.83 +0.83 > 0",fork,candle,1,marginal,P(Y) +13336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 3%. The probability of not drinking coffee and dark room is 82%. The probability of drinking coffee and dark room is 1%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.82 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.82/0.97 = -0.35 +-0.35 < 0",fork,candle,1,correlation,P(Y | X) +13347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 18%. The probability of not drinking coffee and dark room is 76%. The probability of drinking coffee and dark room is 10%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.76 +P(Y=1, X=1=1) = 0.10 +0.10/0.18 - 0.76/0.82 = -0.34 +-0.34 < 0",fork,candle,1,correlation,P(Y | X) +13349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. Method 1: We look directly at how drinking coffee correlates with room in general. Method 2: We look at this correlation case by case according to the candle.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,candle,2,backadj,[backdoor adjustment set for Y given X] +13351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 87%. For people who drink coffee, the probability of dark room is 54%.",yes,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.54 +0.54 - 0.87 = -0.33 +-0.33 < 0",fork,candle,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 18%. The probability of not drinking coffee and dark room is 71%. The probability of drinking coffee and dark room is 10%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.10 +0.10/0.18 - 0.71/0.82 = -0.33 +-0.33 < 0",fork,candle,1,correlation,P(Y | X) +13363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. For people who do not drink coffee, the probability of dark room is 86%. For people who drink coffee, the probability of dark room is 54%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.54 +0.54 - 0.86 = -0.32 +-0.32 < 0",fork,candle,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on room. The candle has a direct effect on room. The overall probability of drinking coffee is 14%. For people who do not drink coffee, the probability of dark room is 92%. For people who drink coffee, the probability of dark room is 59%.",no,"Let V2 = the candle; X = drinking coffee; Y = room. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.59 +0.14*0.59 - 0.86*0.92 = 0.88 +0.88 > 0",fork,candle,1,marginal,P(Y) +13383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of large feet is 83%. For managers who don't sign termination letters and directors who sign termination letters, the probability of large feet is 50%. For managers who sign termination letters and directors who don't sign termination letters, the probability of large feet is 50%. For managers who sign termination letters and directors who sign termination letters, the probability of large feet is 15%. For managers who don't sign termination letters, the probability of director signing the termination letter is 7%. For managers who sign termination letters, the probability of director signing the termination letter is 13%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0) = 0.07 +P(V3=1 | X=1) = 0.13 +0.13 * (0.15 - 0.50) + 0.07 * (0.50 - 0.83) = -0.33 +-0.33 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look directly at how manager correlates with foot size in general. Method 2: We look at this correlation case by case according to director.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 71%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 25%. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 88%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 45%. The overall probability of CEO's decision to fire the employee is 91%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.71 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.91 +0.09 * (0.25 - 0.71) 0.91 * (0.45 - 0.88) = -0.43 +-0.43 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 19%. The probability of manager not signing the termination letter and large feet is 60%. The probability of manager signing the termination letter and large feet is 7%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.60 +P(Y=1, X=1=1) = 0.07 +0.07/0.19 - 0.60/0.81 = -0.36 +-0.36 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 20%. The probability of manager not signing the termination letter and large feet is 61%. The probability of manager signing the termination letter and large feet is 7%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.61 +P(Y=1, X=1=1) = 0.07 +0.07/0.20 - 0.61/0.80 = -0.42 +-0.42 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look at how manager correlates with foot size case by case according to director. Method 2: We look directly at how manager correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 54%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 21%. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 79%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 46%. The overall probability of CEO's decision to fire the employee is 92%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.54 +P(Y=1 | V1=0, X=1) = 0.21 +P(Y=1 | V1=1, X=0) = 0.79 +P(Y=1 | V1=1, X=1) = 0.46 +P(V1=1) = 0.92 +0.08 * (0.21 - 0.54) 0.92 * (0.46 - 0.79) = -0.33 +-0.33 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look at how manager correlates with foot size case by case according to director. Method 2: We look directly at how manager correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 32%. The probability of manager not signing the termination letter and large feet is 47%. The probability of manager signing the termination letter and large feet is 7%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.07 +0.07/0.32 - 0.47/0.68 = -0.48 +-0.48 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of large feet is 80%. For managers who don't sign termination letters and directors who sign termination letters, the probability of large feet is 43%. For managers who sign termination letters and directors who don't sign termination letters, the probability of large feet is 37%. For managers who sign termination letters and directors who sign termination letters, the probability of large feet is 6%. For managers who don't sign termination letters, the probability of director signing the termination letter is 14%. For managers who sign termination letters, the probability of director signing the termination letter is 45%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.06 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.45 +0.45 * (0.06 - 0.37) + 0.14 * (0.43 - 0.80) = -0.40 +-0.40 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 24%. For managers who don't sign termination letters, the probability of large feet is 75%. For managers who sign termination letters, the probability of large feet is 23%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.23 +0.24*0.23 - 0.76*0.75 = 0.62 +0.62 > 0",diamondcut,firing_employee,1,marginal,P(Y) +13517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 27%. The probability of manager not signing the termination letter and large feet is 65%. The probability of manager signing the termination letter and large feet is 11%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.65 +P(Y=1, X=1=1) = 0.11 +0.11/0.27 - 0.65/0.73 = -0.47 +-0.47 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look directly at how manager correlates with foot size in general. Method 2: We look at this correlation case by case according to director.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look at how manager correlates with foot size case by case according to director. Method 2: We look directly at how manager correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 49%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 8%. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 63%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 25%. The overall probability of CEO's decision to fire the employee is 82%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.49 +P(Y=1 | V1=0, X=1) = 0.08 +P(Y=1 | V1=1, X=0) = 0.63 +P(Y=1 | V1=1, X=1) = 0.25 +P(V1=1) = 0.82 +0.18 * (0.08 - 0.49) 0.82 * (0.25 - 0.63) = -0.39 +-0.39 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of large feet is 87%. For managers who don't sign termination letters and directors who sign termination letters, the probability of large feet is 52%. For managers who sign termination letters and directors who don't sign termination letters, the probability of large feet is 44%. For managers who sign termination letters and directors who sign termination letters, the probability of large feet is 3%. For managers who don't sign termination letters, the probability of director signing the termination letter is 20%. For managers who sign termination letters, the probability of director signing the termination letter is 40%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.03 +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.40 +0.40 * (0.03 - 0.44) + 0.20 * (0.52 - 0.87) = -0.46 +-0.46 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 72%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 28%. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 94%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 51%. The overall probability of CEO's decision to fire the employee is 88%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.72 +P(Y=1 | V1=0, X=1) = 0.28 +P(Y=1 | V1=1, X=0) = 0.94 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.88 +0.12 * (0.28 - 0.72) 0.88 * (0.51 - 0.94) = -0.43 +-0.43 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of large feet is 99%. For managers who don't sign termination letters and directors who sign termination letters, the probability of large feet is 65%. For managers who sign termination letters and directors who don't sign termination letters, the probability of large feet is 56%. For managers who sign termination letters and directors who sign termination letters, the probability of large feet is 20%. For managers who don't sign termination letters, the probability of director signing the termination letter is 17%. For managers who sign termination letters, the probability of director signing the termination letter is 39%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.39 +0.39 * (0.20 - 0.56) + 0.17 * (0.65 - 0.99) = -0.43 +-0.43 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look directly at how manager correlates with foot size in general. Method 2: We look at this correlation case by case according to director.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 17%. The probability of manager not signing the termination letter and large feet is 70%. The probability of manager signing the termination letter and large feet is 7%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.70 +P(Y=1, X=1=1) = 0.07 +0.07/0.17 - 0.70/0.83 = -0.44 +-0.44 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 60%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 10%. For CEOs who fire employees and managers who don't sign termination letters, the probability of large feet is 80%. For CEOs who fire employees and managers who sign termination letters, the probability of large feet is 33%. The overall probability of CEO's decision to fire the employee is 89%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.60 +P(Y=1 | V1=0, X=1) = 0.10 +P(Y=1 | V1=1, X=0) = 0.80 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.89 +0.11 * (0.10 - 0.60) 0.89 * (0.33 - 0.80) = -0.47 +-0.47 < 0",diamondcut,firing_employee,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 30%. For managers who don't sign termination letters, the probability of large feet is 73%. For managers who sign termination letters, the probability of large feet is 36%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.36 +0.30*0.36 - 0.70*0.73 = 0.62 +0.62 > 0",diamondcut,firing_employee,1,marginal,P(Y) +13649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. Method 1: We look at how manager correlates with foot size case by case according to director. Method 2: We look directly at how manager correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,firing_employee,2,backadj,[backdoor adjustment set for Y given X] +13653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. For managers who don't sign termination letters and directors who don't sign termination letters, the probability of large feet is 96%. For managers who don't sign termination letters and directors who sign termination letters, the probability of large feet is 57%. For managers who sign termination letters and directors who don't sign termination letters, the probability of large feet is 52%. For managers who sign termination letters and directors who sign termination letters, the probability of large feet is 10%. For managers who don't sign termination letters, the probability of director signing the termination letter is 30%. For managers who sign termination letters, the probability of director signing the termination letter is 36%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.36 +0.36 * (0.10 - 0.52) + 0.30 * (0.57 - 0.96) = -0.45 +-0.45 < 0",diamondcut,firing_employee,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 57%. The probability of manager not signing the termination letter and large feet is 37%. The probability of manager signing the termination letter and large feet is 21%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.21 +0.21/0.57 - 0.37/0.43 = -0.47 +-0.47 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 14%. For managers who don't sign termination letters, the probability of large feet is 83%. For managers who sign termination letters, the probability of large feet is 29%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.29 +0.14*0.29 - 0.86*0.83 = 0.75 +0.75 > 0",diamondcut,firing_employee,1,marginal,P(Y) +13667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 14%. The probability of manager not signing the termination letter and large feet is 71%. The probability of manager signing the termination letter and large feet is 4%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.04 +0.04/0.14 - 0.71/0.86 = -0.54 +-0.54 < 0",diamondcut,firing_employee,1,correlation,P(Y | X) +13674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 17%. For managers who don't sign termination letters, the probability of large feet is 93%. For managers who sign termination letters, the probability of large feet is 36%.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.36 +0.17*0.36 - 0.83*0.93 = 0.83 +0.83 > 0",diamondcut,firing_employee,1,marginal,P(Y) +13675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on foot size. Director has a direct effect on foot size. The overall probability of manager signing the termination letter is 17%. For managers who don't sign termination letters, the probability of large feet is 93%. For managers who sign termination letters, the probability of large feet is 36%.",no,"Let V1 = CEO; V3 = director; X = manager; Y = foot size. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.36 +0.17*0.36 - 0.83*0.93 = 0.83 +0.83 > 0",diamondcut,firing_employee,1,marginal,P(Y) +13681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 40%. For people who have visited England, the probability of the prisoner's death is 78%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.78 +0.78 - 0.40 = 0.38 +0.38 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 40%. For people who have visited England, the probability of the prisoner's death is 78%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.78 +0.78 - 0.40 = 0.38 +0.38 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +13690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look at how having visited England correlates with prisoner case by case according to the private. Method 2: We look directly at how having visited England correlates with prisoner in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +13695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 22%. For people who have visited England, the probability of the prisoner's death is 68%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.68 +0.68 - 0.22 = 0.46 +0.46 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 34%. For people who have visited England, the probability of the prisoner's death is 73%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.73 +0.73 - 0.34 = 0.39 +0.39 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look directly at how having visited England correlates with prisoner in general. Method 2: We look at this correlation case by case according to the private.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +13731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 28%. For people who have visited England, the probability of the prisoner's death is 75%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.75 +0.75 - 0.28 = 0.47 +0.47 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 57%. For people who have not visited England, the probability of the prisoner's death is 21%. For people who have visited England, the probability of the prisoner's death is 66%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.66 +0.57*0.66 - 0.43*0.21 = 0.46 +0.46 > 0",diamond,firing_squad,1,marginal,P(Y) +13749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 57%. The probability of not having visited England and the prisoner's death is 9%. The probability of having visited England and the prisoner's death is 38%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.38 +0.38/0.57 - 0.09/0.43 = 0.45 +0.45 > 0",diamond,firing_squad,1,correlation,P(Y | X) +13758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 18%. For people who have not visited England, the probability of the prisoner's death is 33%. For people who have visited England, the probability of the prisoner's death is 81%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.81 +0.18*0.81 - 0.82*0.33 = 0.42 +0.42 > 0",diamond,firing_squad,1,marginal,P(Y) +13768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 24%. For people who have visited England, the probability of the prisoner's death is 74%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.74 +0.74 - 0.24 = 0.50 +0.50 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +13775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look directly at how having visited England correlates with prisoner in general. Method 2: We look at this correlation case by case according to the private.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +13783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 19%. For people who have not visited England, the probability of the prisoner's death is 32%. For people who have visited England, the probability of the prisoner's death is 75%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.75 +0.19*0.75 - 0.81*0.32 = 0.40 +0.40 > 0",diamond,firing_squad,1,marginal,P(Y) +13796,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 78%. The probability of not having visited England and the prisoner's death is 6%. The probability of having visited England and the prisoner's death is 49%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.49 +0.49/0.78 - 0.06/0.22 = 0.34 +0.34 > 0",diamond,firing_squad,1,correlation,P(Y | X) +13802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 11%. For people who have visited England, the probability of the prisoner's death is 55%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.55 +0.55 - 0.11 = 0.43 +0.43 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 11%. For people who have visited England, the probability of the prisoner's death is 55%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.55 +0.55 - 0.11 = 0.43 +0.43 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look directly at how having visited England correlates with prisoner in general. Method 2: We look at this correlation case by case according to the private.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +13825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 36%. For people who have visited England, the probability of the prisoner's death is 72%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.72 +0.72 - 0.36 = 0.36 +0.36 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13858,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look at how having visited England correlates with prisoner case by case according to the private. Method 2: We look directly at how having visited England correlates with prisoner in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +13863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 12%. For people who have visited England, the probability of the prisoner's death is 57%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.57 +0.57 - 0.12 = 0.45 +0.45 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 30%. For people who have visited England, the probability of the prisoner's death is 69%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.69 +0.69 - 0.30 = 0.39 +0.39 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +13889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 30%. For people who have visited England, the probability of the prisoner's death is 69%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.69 +0.69 - 0.30 = 0.39 +0.39 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +13892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 66%. The probability of not having visited England and the prisoner's death is 10%. The probability of having visited England and the prisoner's death is 45%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.45 +0.45/0.66 - 0.10/0.34 = 0.39 +0.39 > 0",diamond,firing_squad,1,correlation,P(Y | X) +13900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 33%. For people who have visited England, the probability of the prisoner's death is 89%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.89 +0.89 - 0.33 = 0.56 +0.56 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +13917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 47%. The probability of not having visited England and the prisoner's death is 11%. The probability of having visited England and the prisoner's death is 29%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.29 +0.29/0.47 - 0.11/0.53 = 0.40 +0.40 > 0",diamond,firing_squad,1,correlation,P(Y | X) +13925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 32%. For people who have visited England, the probability of the prisoner's death is 86%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.86 +0.86 - 0.32 = 0.55 +0.55 > 0",diamond,firing_squad,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +13934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 31%. For people who have visited England, the probability of the prisoner's death is 68%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.68 +0.68 - 0.31 = 0.37 +0.37 > 0",diamond,firing_squad,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +13950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 16%. For people who have not visited England, the probability of the prisoner's death is 29%. For people who have visited England, the probability of the prisoner's death is 81%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.81 +0.16*0.81 - 0.84*0.29 = 0.37 +0.37 > 0",diamond,firing_squad,1,marginal,P(Y) +13956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 23%. For people who have visited England, the probability of the prisoner's death is 64%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.64 +0.64 - 0.23 = 0.41 +0.41 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. For people who have not visited England, the probability of the prisoner's death is 23%. For people who have visited England, the probability of the prisoner's death is 64%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.64 +0.64 - 0.23 = 0.41 +0.41 > 0",diamond,firing_squad,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +13962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 69%. For people who have not visited England, the probability of the prisoner's death is 23%. For people who have visited England, the probability of the prisoner's death is 64%.",yes,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.64 +0.69*0.64 - 0.31*0.23 = 0.51 +0.51 > 0",diamond,firing_squad,1,marginal,P(Y) +13963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. The overall probability of having visited England is 69%. For people who have not visited England, the probability of the prisoner's death is 23%. For people who have visited England, the probability of the prisoner's death is 64%.",no,"Let X = having visited England; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.64 +0.69*0.64 - 0.31*0.23 = 0.51 +0.51 > 0",diamond,firing_squad,1,marginal,P(Y) +13966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look at how having visited England correlates with prisoner case by case according to the private. Method 2: We look directly at how having visited England correlates with prisoner in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +13991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. Method 1: We look directly at how having visited England correlates with prisoner in general. Method 2: We look at this correlation case by case according to the private.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,firing_squad,2,backadj,[backdoor adjustment set for Y given X] +14040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 46%. For in the rainy season, the probability of high rainfall is 34%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.34 +0.34 - 0.46 = -0.12 +-0.12 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 46%. For in the rainy season, the probability of high rainfall is 34%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.34 +0.34 - 0.46 = -0.12 +-0.12 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look directly at how season correlates with rainfall in general. Method 2: We look at this correlation case by case according to sprinkler.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look at how season correlates with rainfall case by case according to sprinkler. Method 2: We look directly at how season correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 55%. For in the rainy season, the probability of high rainfall is 54%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.54 +0.54 - 0.55 = -0.02 +-0.02 < 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +14073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 85%. The probability of dry season and high rainfall is 9%. The probability of rainy season and high rainfall is 45%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.45 +0.45/0.85 - 0.09/0.15 = -0.02 +-0.02 < 0",diamond,floor_wet,1,correlation,P(Y | X) +14078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 62%. For in the rainy season, the probability of high rainfall is 69%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.69 +0.69 - 0.62 = 0.07 +0.07 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 86%. For people in the dry season, the probability of high rainfall is 46%. For in the rainy season, the probability of high rainfall is 44%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.44 +0.86*0.44 - 0.14*0.46 = 0.45 +0.45 > 0",diamond,floor_wet,1,marginal,P(Y) +14109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 86%. The probability of dry season and high rainfall is 7%. The probability of rainy season and high rainfall is 38%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.38 +0.38/0.86 - 0.07/0.14 = -0.02 +-0.02 < 0",diamond,floor_wet,1,correlation,P(Y | X) +14111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look directly at how season correlates with rainfall in general. Method 2: We look at this correlation case by case according to sprinkler.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 55%. For in the rainy season, the probability of high rainfall is 60%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.60 +0.60 - 0.55 = 0.05 +0.05 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 89%. The probability of dry season and high rainfall is 5%. The probability of rainy season and high rainfall is 42%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.42 +0.42/0.89 - 0.05/0.11 = 0.02 +0.02 > 0",diamond,floor_wet,1,correlation,P(Y | X) +14138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 51%. For in the rainy season, the probability of high rainfall is 51%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.51 +0.51 - 0.51 = 0.01 +0.01 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 90%. The probability of dry season and high rainfall is 5%. The probability of rainy season and high rainfall is 46%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.46 +0.46/0.90 - 0.05/0.10 = 0.01 +0.01 > 0",diamond,floor_wet,1,correlation,P(Y | X) +14148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 54%. For in the rainy season, the probability of high rainfall is 65%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.65 +0.65 - 0.54 = 0.11 +0.11 > 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 54%. For in the rainy season, the probability of high rainfall is 65%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.65 +0.65 - 0.54 = 0.11 +0.11 > 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 57%. For in the rainy season, the probability of high rainfall is 58%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.58 +0.58 - 0.57 = 0.01 +0.01 > 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 57%. For in the rainy season, the probability of high rainfall is 58%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.58 +0.58 - 0.57 = 0.01 +0.01 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +14165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 57%. For in the rainy season, the probability of high rainfall is 58%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.58 +0.58 - 0.57 = 0.01 +0.01 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +14172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 41%. For in the rainy season, the probability of high rainfall is 40%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.40 +0.40 - 0.41 = -0.01 +-0.01 < 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 46%. For in the rainy season, the probability of high rainfall is 47%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.47 - 0.46 = 0.01 +0.01 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 90%. For people in the dry season, the probability of high rainfall is 46%. For in the rainy season, the probability of high rainfall is 47%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.90*0.47 - 0.10*0.46 = 0.46 +0.46 > 0",diamond,floor_wet,1,marginal,P(Y) +14203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 90%. For people in the dry season, the probability of high rainfall is 46%. For in the rainy season, the probability of high rainfall is 47%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.90*0.47 - 0.10*0.46 = 0.46 +0.46 > 0",diamond,floor_wet,1,marginal,P(Y) +14225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 36%. For in the rainy season, the probability of high rainfall is 35%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.35 +0.35 - 0.36 = -0.01 +-0.01 < 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +14230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look at how season correlates with rainfall case by case according to sprinkler. Method 2: We look directly at how season correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 89%. For people in the dry season, the probability of high rainfall is 41%. For in the rainy season, the probability of high rainfall is 50%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.50 +0.89*0.50 - 0.11*0.41 = 0.49 +0.49 > 0",diamond,floor_wet,1,marginal,P(Y) +14243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look directly at how season correlates with rainfall in general. Method 2: We look at this correlation case by case according to sprinkler.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 43%. For in the rainy season, the probability of high rainfall is 53%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.53 +0.53 - 0.43 = 0.09 +0.09 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +14279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look directly at how season correlates with rainfall in general. Method 2: We look at this correlation case by case according to sprinkler.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. Method 1: We look directly at how season correlates with rainfall in general. Method 2: We look at this correlation case by case according to sprinkler.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,floor_wet,2,backadj,[backdoor adjustment set for Y given X] +14300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 96%. The probability of dry season and high rainfall is 3%. The probability of rainy season and high rainfall is 59%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.59 +0.59/0.96 - 0.03/0.04 = -0.04 +-0.04 < 0",diamond,floor_wet,1,correlation,P(Y | X) +14306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 36%. For in the rainy season, the probability of high rainfall is 38%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.38 +0.38 - 0.36 = 0.02 +0.02 > 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 36%. For in the rainy season, the probability of high rainfall is 38%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.38 +0.38 - 0.36 = 0.02 +0.02 > 0",diamond,floor_wet,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +14329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 50%. For in the rainy season, the probability of high rainfall is 51%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.51 +0.51 - 0.50 = 0.01 +0.01 > 0",diamond,floor_wet,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 83%. The probability of dry season and high rainfall is 9%. The probability of rainy season and high rainfall is 42%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.42 +0.42/0.83 - 0.09/0.17 = 0.01 +0.01 > 0",diamond,floor_wet,1,correlation,P(Y | X) +14342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 56%. For in the rainy season, the probability of high rainfall is 52%.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.52 +0.52 - 0.56 = -0.04 +-0.04 < 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. The overall probability of rainy season is 86%. The probability of dry season and high rainfall is 8%. The probability of rainy season and high rainfall is 45%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.45 +0.45/0.86 - 0.08/0.14 = -0.04 +-0.04 < 0",diamond,floor_wet,1,correlation,P(Y | X) +14378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on rainfall. Sprinkler has a direct effect on rainfall. For people in the dry season, the probability of high rainfall is 49%. For in the rainy season, the probability of high rainfall is 49%.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = rainfall. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.49 - 0.49 = -0.00 +0.00 = 0",diamond,floor_wet,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 70%. For people who speak english, the probability of the forest on fire is 55%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.55 +0.55 - 0.70 = -0.15 +-0.15 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look directly at how ability to speak english correlates with the forest in general. Method 2: We look at this correlation case by case according to the smoker.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +14431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 83%. For people who speak english, the probability of the forest on fire is 48%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.48 +0.48 - 0.83 = -0.35 +-0.35 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 83%. For people who speak english, the probability of the forest on fire is 48%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.48 +0.48 - 0.83 = -0.35 +-0.35 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 98%. The probability of not speaking english and the forest on fire is 2%. The probability of speaking english and the forest on fire is 48%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.48 +0.48/0.98 - 0.02/0.02 = -0.35 +-0.35 < 0",fork,forest_fire,1,correlation,P(Y | X) +14476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 95%. The probability of not speaking english and the forest on fire is 4%. The probability of speaking english and the forest on fire is 52%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.52 +0.52/0.95 - 0.04/0.05 = -0.33 +-0.33 < 0",fork,forest_fire,1,correlation,P(Y | X) +14492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 83%. For people who speak english, the probability of the forest on fire is 45%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.45 +0.45 - 0.83 = -0.39 +-0.39 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 73%. For people who speak english, the probability of the forest on fire is 57%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.57 - 0.73 = -0.17 +-0.17 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 97%. For people who do not speak english, the probability of the forest on fire is 73%. For people who speak english, the probability of the forest on fire is 57%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.97*0.57 - 0.03*0.73 = 0.57 +0.57 > 0",fork,forest_fire,1,marginal,P(Y) +14510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 81%. For people who speak english, the probability of the forest on fire is 43%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.43 +0.43 - 0.81 = -0.38 +-0.38 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 97%. For people who do not speak english, the probability of the forest on fire is 67%. For people who speak english, the probability of the forest on fire is 54%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.54 +0.97*0.54 - 0.03*0.67 = 0.55 +0.55 > 0",fork,forest_fire,1,marginal,P(Y) +14553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 80%. For people who speak english, the probability of the forest on fire is 48%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.48 +0.48 - 0.80 = -0.33 +-0.33 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14563,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 78%. For people who speak english, the probability of the forest on fire is 60%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.60 +0.60 - 0.78 = -0.18 +-0.18 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 93%. For people who do not speak english, the probability of the forest on fire is 79%. For people who speak english, the probability of the forest on fire is 65%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.65 +0.93*0.65 - 0.07*0.79 = 0.66 +0.66 > 0",fork,forest_fire,1,marginal,P(Y) +14628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look at how ability to speak english correlates with the forest case by case according to the smoker. Method 2: We look directly at how ability to speak english correlates with the forest in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +14639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look directly at how ability to speak english correlates with the forest in general. Method 2: We look at this correlation case by case according to the smoker.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +14644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 95%. For people who do not speak english, the probability of the forest on fire is 71%. For people who speak english, the probability of the forest on fire is 57%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.57 +0.95*0.57 - 0.05*0.71 = 0.58 +0.58 > 0",fork,forest_fire,1,marginal,P(Y) +14661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 73%. For people who speak english, the probability of the forest on fire is 57%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.57 - 0.73 = -0.16 +-0.16 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 99%. For people who do not speak english, the probability of the forest on fire is 73%. For people who speak english, the probability of the forest on fire is 57%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.57 +0.99*0.57 - 0.01*0.73 = 0.57 +0.57 > 0",fork,forest_fire,1,marginal,P(Y) +14668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. Method 1: We look at how ability to speak english correlates with the forest case by case according to the smoker. Method 2: We look directly at how ability to speak english correlates with the forest in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,forest_fire,2,backadj,[backdoor adjustment set for Y given X] +14673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 87%. For people who speak english, the probability of the forest on fire is 53%.",no,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.53 +0.53 - 0.87 = -0.33 +-0.33 < 0",fork,forest_fire,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. The overall probability of speaking english is 99%. For people who do not speak english, the probability of the forest on fire is 78%. For people who speak english, the probability of the forest on fire is 45%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.45 +0.99*0.45 - 0.01*0.78 = 0.45 +0.45 > 0",fork,forest_fire,1,marginal,P(Y) +14691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on the forest. The smoker has a direct effect on the forest. For people who do not speak english, the probability of the forest on fire is 94%. For people who speak english, the probability of the forest on fire is 78%.",yes,"Let V2 = the smoker; X = ability to speak english; Y = the forest. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.78 +0.78 - 0.94 = -0.16 +-0.16 < 0",fork,forest_fire,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 37%. For days when Alice wakes up late, the probability of high rainfall is 71%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.71 +0.71 - 0.37 = 0.34 +0.34 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14723,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 47%. For days when Alice wakes up late, the probability of high rainfall is 84%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.84 +0.84 - 0.47 = 0.37 +0.37 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 2%. The probability of waking up on time and high rainfall is 46%. The probability of waking up late and high rainfall is 1%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.46/0.98 = 0.37 +0.37 > 0",fork,getting_late,1,correlation,P(Y | X) +14730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 52%. For days when Alice wakes up late, the probability of high rainfall is 85%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.85 +0.85 - 0.52 = 0.33 +0.33 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 52%. For days when Alice wakes up late, the probability of high rainfall is 85%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.85 +0.85 - 0.52 = 0.33 +0.33 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look at how Alice waking up correlates with rainfall case by case according to traffic. Method 2: We look directly at how Alice waking up correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 18%. For days when Alice wakes up on time, the probability of high rainfall is 43%. For days when Alice wakes up late, the probability of high rainfall is 76%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.76 +0.18*0.76 - 0.82*0.43 = 0.49 +0.49 > 0",fork,getting_late,1,marginal,P(Y) +14767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 2%. The probability of waking up on time and high rainfall is 43%. The probability of waking up late and high rainfall is 1%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.43/0.98 = 0.34 +0.34 > 0",fork,getting_late,1,correlation,P(Y | X) +14770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 45%. For days when Alice wakes up late, the probability of high rainfall is 77%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.77 +0.77 - 0.45 = 0.32 +0.32 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 46%. For days when Alice wakes up late, the probability of high rainfall is 79%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.79 +0.79 - 0.46 = 0.34 +0.34 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 46%. For days when Alice wakes up late, the probability of high rainfall is 79%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.79 +0.79 - 0.46 = 0.34 +0.34 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look at how Alice waking up correlates with rainfall case by case according to traffic. Method 2: We look directly at how Alice waking up correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 43%. For days when Alice wakes up late, the probability of high rainfall is 76%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.76 +0.76 - 0.43 = 0.34 +0.34 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 16%. The probability of waking up on time and high rainfall is 32%. The probability of waking up late and high rainfall is 12%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.12 +0.12/0.16 - 0.32/0.84 = 0.33 +0.33 > 0",fork,getting_late,1,correlation,P(Y | X) +14856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 17%. The probability of waking up on time and high rainfall is 32%. The probability of waking up late and high rainfall is 12%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.12 +0.12/0.17 - 0.32/0.83 = 0.34 +0.34 > 0",fork,getting_late,1,correlation,P(Y | X) +14857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 17%. The probability of waking up on time and high rainfall is 32%. The probability of waking up late and high rainfall is 12%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.12 +0.12/0.17 - 0.32/0.83 = 0.34 +0.34 > 0",fork,getting_late,1,correlation,P(Y | X) +14868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look at how Alice waking up correlates with rainfall case by case according to traffic. Method 2: We look directly at how Alice waking up correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look directly at how Alice waking up correlates with rainfall in general. Method 2: We look at this correlation case by case according to traffic.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 52%. For days when Alice wakes up late, the probability of high rainfall is 83%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.83 +0.83 - 0.52 = 0.32 +0.32 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 5%. For days when Alice wakes up on time, the probability of high rainfall is 46%. For days when Alice wakes up late, the probability of high rainfall is 78%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.78 +0.05*0.78 - 0.95*0.46 = 0.48 +0.48 > 0",fork,getting_late,1,marginal,P(Y) +14905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 14%. For days when Alice wakes up on time, the probability of high rainfall is 54%. For days when Alice wakes up late, the probability of high rainfall is 85%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.85 +0.14*0.85 - 0.86*0.54 = 0.59 +0.59 > 0",fork,getting_late,1,marginal,P(Y) +14918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look at how Alice waking up correlates with rainfall case by case according to traffic. Method 2: We look directly at how Alice waking up correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 49%. For days when Alice wakes up late, the probability of high rainfall is 84%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.84 +0.84 - 0.49 = 0.35 +0.35 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 3%. The probability of waking up on time and high rainfall is 51%. The probability of waking up late and high rainfall is 2%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.02 +0.02/0.03 - 0.51/0.97 = 0.31 +0.31 > 0",fork,getting_late,1,correlation,P(Y | X) +14939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look directly at how Alice waking up correlates with rainfall in general. Method 2: We look at this correlation case by case according to traffic.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 48%. For days when Alice wakes up late, the probability of high rainfall is 80%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.80 +0.80 - 0.48 = 0.32 +0.32 > 0",fork,getting_late,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +14972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 47%. For days when Alice wakes up late, the probability of high rainfall is 86%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.86 +0.86 - 0.47 = 0.39 +0.39 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. For days when Alice wakes up on time, the probability of high rainfall is 39%. For days when Alice wakes up late, the probability of high rainfall is 70%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.70 +0.70 - 0.39 = 0.32 +0.32 > 0",fork,getting_late,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +14984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 11%. For days when Alice wakes up on time, the probability of high rainfall is 39%. For days when Alice wakes up late, the probability of high rainfall is 70%.",no,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.70 +0.11*0.70 - 0.89*0.39 = 0.43 +0.43 > 0",fork,getting_late,1,marginal,P(Y) +14988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. Method 1: We look at how Alice waking up correlates with rainfall case by case according to traffic. Method 2: We look directly at how Alice waking up correlates with rainfall in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_late,2,backadj,[backdoor adjustment set for Y given X] +14996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on rainfall. Traffic has a direct effect on rainfall. The overall probability of waking up late is 14%. The probability of waking up on time and high rainfall is 41%. The probability of waking up late and high rainfall is 12%.",yes,"Let V2 = traffic; X = Alice waking up; Y = rainfall. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.12 +0.12/0.14 - 0.41/0.86 = 0.32 +0.32 > 0",fork,getting_late,1,correlation,P(Y | X) +15004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 89%. For people not using tanning salon treatments, the probability of black hair is 54%. For people who went to tanning salons, the probability of black hair is 16%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.16 +0.89*0.16 - 0.11*0.54 = 0.20 +0.20 > 0",fork,getting_tanned,1,marginal,P(Y) +15040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 74%. For people who went to tanning salons, the probability of black hair is 42%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.42 +0.42 - 0.74 = -0.32 +-0.32 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 85%. The probability of no tanning salon treatment and black hair is 11%. The probability of tanning salon treatment and black hair is 36%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.36 +0.36/0.85 - 0.11/0.15 = -0.32 +-0.32 < 0",fork,getting_tanned,1,correlation,P(Y | X) +15048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look at how tanning salon treatment correlates with black hair case by case according to going to the beach. Method 2: We look directly at how tanning salon treatment correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 97%. The probability of no tanning salon treatment and black hair is 2%. The probability of tanning salon treatment and black hair is 15%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.15 +0.15/0.97 - 0.02/0.03 = -0.46 +-0.46 < 0",fork,getting_tanned,1,correlation,P(Y | X) +15085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 93%. For people not using tanning salon treatments, the probability of black hair is 70%. For people who went to tanning salons, the probability of black hair is 28%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.28 +0.93*0.28 - 0.07*0.70 = 0.31 +0.31 > 0",fork,getting_tanned,1,marginal,P(Y) +15103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 53%. For people who went to tanning salons, the probability of black hair is 15%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.15 +0.15 - 0.53 = -0.38 +-0.38 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 93%. The probability of no tanning salon treatment and black hair is 4%. The probability of tanning salon treatment and black hair is 14%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.14 +0.14/0.93 - 0.04/0.07 = -0.38 +-0.38 < 0",fork,getting_tanned,1,correlation,P(Y | X) +15108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look at how tanning salon treatment correlates with black hair case by case according to going to the beach. Method 2: We look directly at how tanning salon treatment correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 69%. For people who went to tanning salons, the probability of black hair is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.28 +0.28 - 0.69 = -0.41 +-0.41 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look directly at how tanning salon treatment correlates with black hair in general. Method 2: We look at this correlation case by case according to going to the beach.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 67%. For people who went to tanning salons, the probability of black hair is 23%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.23 +0.23 - 0.67 = -0.44 +-0.44 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 82%. For people not using tanning salon treatments, the probability of black hair is 67%. For people who went to tanning salons, the probability of black hair is 23%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.23 +0.82*0.23 - 0.18*0.67 = 0.31 +0.31 > 0",fork,getting_tanned,1,marginal,P(Y) +15128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look at how tanning salon treatment correlates with black hair case by case according to going to the beach. Method 2: We look directly at how tanning salon treatment correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 65%. For people who went to tanning salons, the probability of black hair is 29%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.29 +0.29 - 0.65 = -0.36 +-0.36 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 65%. For people who went to tanning salons, the probability of black hair is 29%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.29 +0.29 - 0.65 = -0.36 +-0.36 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 75%. For people who went to tanning salons, the probability of black hair is 34%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.34 +0.34 - 0.75 = -0.42 +-0.42 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 83%. For people who went to tanning salons, the probability of black hair is 33%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.33 +0.33 - 0.83 = -0.50 +-0.50 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 83%. For people who went to tanning salons, the probability of black hair is 33%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.33 +0.33 - 0.83 = -0.50 +-0.50 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 56%. For people who went to tanning salons, the probability of black hair is 20%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.20 +0.20 - 0.56 = -0.36 +-0.36 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 66%. For people who went to tanning salons, the probability of black hair is 24%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.24 +0.24 - 0.66 = -0.42 +-0.42 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 63%. For people who went to tanning salons, the probability of black hair is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.28 +0.28 - 0.63 = -0.35 +-0.35 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15194,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 96%. For people not using tanning salon treatments, the probability of black hair is 63%. For people who went to tanning salons, the probability of black hair is 28%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.28 +0.96*0.28 - 0.04*0.63 = 0.29 +0.29 > 0",fork,getting_tanned,1,marginal,P(Y) +15210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 58%. For people who went to tanning salons, the probability of black hair is 18%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.18 +0.18 - 0.58 = -0.39 +-0.39 < 0",fork,getting_tanned,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 82%. The probability of no tanning salon treatment and black hair is 13%. The probability of tanning salon treatment and black hair is 19%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.19 +0.19/0.82 - 0.13/0.18 = -0.46 +-0.46 < 0",fork,getting_tanned,1,correlation,P(Y | X) +15236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 96%. The probability of no tanning salon treatment and black hair is 3%. The probability of tanning salon treatment and black hair is 25%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.25 +0.25/0.96 - 0.03/0.04 = -0.39 +-0.39 < 0",fork,getting_tanned,1,correlation,P(Y | X) +15245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 93%. For people not using tanning salon treatments, the probability of black hair is 71%. For people who went to tanning salons, the probability of black hair is 31%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.31 +0.93*0.31 - 0.07*0.71 = 0.34 +0.34 > 0",fork,getting_tanned,1,marginal,P(Y) +15267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. The overall probability of tanning salon treatment is 100%. The probability of no tanning salon treatment and black hair is 0%. The probability of tanning salon treatment and black hair is 19%.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 1.00 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.19 +0.19/1.00 - 0.00/0.00 = -0.51 +-0.51 < 0",fork,getting_tanned,1,correlation,P(Y | X) +15268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look at how tanning salon treatment correlates with black hair case by case according to going to the beach. Method 2: We look directly at how tanning salon treatment correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look directly at how tanning salon treatment correlates with black hair in general. Method 2: We look at this correlation case by case according to going to the beach.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. Method 1: We look at how tanning salon treatment correlates with black hair case by case according to going to the beach. Method 2: We look directly at how tanning salon treatment correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,getting_tanned,2,backadj,[backdoor adjustment set for Y given X] +15283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 65%. For people who went to tanning salons, the probability of black hair is 20%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.20 +0.20 - 0.65 = -0.45 +-0.45 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on black hair. Going to the beach has a direct effect on black hair. For people not using tanning salon treatments, the probability of black hair is 72%. For people who went to tanning salons, the probability of black hair is 33%.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = black hair. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.33 +0.33 - 0.72 = -0.38 +-0.38 < 0",fork,getting_tanned,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 79%. For those who choose to take the elevator, the probability of curly hair is 30%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.30 +0.30 - 0.79 = -0.49 +-0.49 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 96%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 71%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 49%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 26%. For those who choose to take the stairs, the probability of penguin happiness is 66%. For those who choose to take the elevator, the probability of penguin happiness is 82%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.96 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.26 +P(V2=1 | X=0) = 0.66 +P(V2=1 | X=1) = 0.82 +0.82 * (0.71 - 0.96)+ 0.66 * (0.26 - 0.49)= -0.04 +-0.04 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 16%. The probability of taking the stairs and curly hair is 53%. The probability of taking the elevator and curly hair is 1%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.01 +0.01/0.16 - 0.53/0.84 = -0.55 +-0.55 < 0",mediation,penguin,1,correlation,P(Y | X) +15328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 17%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.17 +0.17 - 0.70 = -0.53 +-0.53 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 20%. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 17%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.17 +0.20*0.17 - 0.80*0.70 = 0.60 +0.60 > 0",mediation,penguin,1,marginal,P(Y) +15337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 20%. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 17%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.17 +0.20*0.17 - 0.80*0.70 = 0.60 +0.60 > 0",mediation,penguin,1,marginal,P(Y) +15338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 20%. The probability of taking the stairs and curly hair is 56%. The probability of taking the elevator and curly hair is 3%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.03 +0.03/0.20 - 0.56/0.80 = -0.53 +-0.53 < 0",mediation,penguin,1,correlation,P(Y | X) +15339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 20%. The probability of taking the stairs and curly hair is 56%. The probability of taking the elevator and curly hair is 3%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.03 +0.03/0.20 - 0.56/0.80 = -0.53 +-0.53 < 0",mediation,penguin,1,correlation,P(Y | X) +15343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 72%. For those who choose to take the elevator, the probability of curly hair is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.24 - 0.72 = -0.49 +-0.49 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 72%. For those who choose to take the elevator, the probability of curly hair is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.24 - 0.72 = -0.49 +-0.49 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look at how my decision correlates with curly hair case by case according to penguin mood. Method 2: We look directly at how my decision correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 63%. For those who choose to take the elevator, the probability of curly hair is 21%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.21 +0.21 - 0.63 = -0.43 +-0.43 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 48%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 48%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 14%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 3%. For those who choose to take the stairs, the probability of penguin happiness is 51%. For those who choose to take the elevator, the probability of penguin happiness is 90%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.48 +P(Y=1 | X=0, V2=1) = 0.48 +P(Y=1 | X=1, V2=0) = 0.14 +P(Y=1 | X=1, V2=1) = 0.03 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.90 +0.90 * (0.48 - 0.48)+ 0.51 * (0.03 - 0.14)= -0.00 +0.00 = 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 24%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.24 +0.24 - 0.70 = -0.45 +-0.45 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 71%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 47%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 35%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 15%. For those who choose to take the stairs, the probability of penguin happiness is 4%. For those who choose to take the elevator, the probability of penguin happiness is 54%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.35 +P(Y=1 | X=1, V2=1) = 0.15 +P(V2=1 | X=0) = 0.04 +P(V2=1 | X=1) = 0.54 +0.04 * (0.15 - 0.35) + 0.54 * (0.47 - 0.71) = -0.35 +-0.35 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +15394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 10%. The probability of taking the stairs and curly hair is 63%. The probability of taking the elevator and curly hair is 2%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.02 +0.02/0.10 - 0.63/0.90 = -0.45 +-0.45 < 0",mediation,penguin,1,correlation,P(Y | X) +15397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look directly at how my decision correlates with curly hair in general. Method 2: We look at this correlation case by case according to penguin mood.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 72%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 38%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 20%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 0%. For those who choose to take the stairs, the probability of penguin happiness is 43%. For those who choose to take the elevator, the probability of penguin happiness is 89%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.72 +P(Y=1 | X=0, V2=1) = 0.38 +P(Y=1 | X=1, V2=0) = 0.20 +P(Y=1 | X=1, V2=1) = 0.00 +P(V2=1 | X=0) = 0.43 +P(V2=1 | X=1) = 0.89 +0.89 * (0.38 - 0.72)+ 0.43 * (0.00 - 0.20)= -0.16 +-0.16 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look at how my decision correlates with curly hair case by case according to penguin mood. Method 2: We look directly at how my decision correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 84%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 66%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 22%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 7%. For those who choose to take the stairs, the probability of penguin happiness is 32%. For those who choose to take the elevator, the probability of penguin happiness is 74%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.84 +P(Y=1 | X=0, V2=1) = 0.66 +P(Y=1 | X=1, V2=0) = 0.22 +P(Y=1 | X=1, V2=1) = 0.07 +P(V2=1 | X=0) = 0.32 +P(V2=1 | X=1) = 0.74 +0.74 * (0.66 - 0.84)+ 0.32 * (0.07 - 0.22)= -0.08 +-0.08 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 88%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 65%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 45%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 12%. For those who choose to take the stairs, the probability of penguin happiness is 6%. For those who choose to take the elevator, the probability of penguin happiness is 62%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.88 +P(Y=1 | X=0, V2=1) = 0.65 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.12 +P(V2=1 | X=0) = 0.06 +P(V2=1 | X=1) = 0.62 +0.06 * (0.12 - 0.45) + 0.62 * (0.65 - 0.88) = -0.44 +-0.44 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +15449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 1%. For those who choose to take the stairs, the probability of curly hair is 87%. For those who choose to take the elevator, the probability of curly hair is 24%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.24 +0.01*0.24 - 0.99*0.87 = 0.86 +0.86 > 0",mediation,penguin,1,marginal,P(Y) +15460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 53%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 53%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 19%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 6%. For those who choose to take the stairs, the probability of penguin happiness is 35%. For those who choose to take the elevator, the probability of penguin happiness is 66%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.53 +P(Y=1 | X=0, V2=1) = 0.53 +P(Y=1 | X=1, V2=0) = 0.19 +P(Y=1 | X=1, V2=1) = 0.06 +P(V2=1 | X=0) = 0.35 +P(V2=1 | X=1) = 0.66 +0.35 * (0.06 - 0.19) + 0.66 * (0.53 - 0.53) = -0.38 +-0.38 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +15483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 94%. For those who choose to take the elevator, the probability of curly hair is 45%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.45 +0.45 - 0.94 = -0.49 +-0.49 < 0",mediation,penguin,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 85%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 57%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 42%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 15%. For those who choose to take the stairs, the probability of penguin happiness is 19%. For those who choose to take the elevator, the probability of penguin happiness is 66%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.85 +P(Y=1 | X=0, V2=1) = 0.57 +P(Y=1 | X=1, V2=0) = 0.42 +P(Y=1 | X=1, V2=1) = 0.15 +P(V2=1 | X=0) = 0.19 +P(V2=1 | X=1) = 0.66 +0.66 * (0.57 - 0.85)+ 0.19 * (0.15 - 0.42)= -0.13 +-0.13 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 1%. The probability of taking the stairs and curly hair is 79%. The probability of taking the elevator and curly hair is 0%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.00 +0.00/0.01 - 0.79/0.99 = -0.56 +-0.56 < 0",mediation,penguin,1,correlation,P(Y | X) +15509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look directly at how my decision correlates with curly hair in general. Method 2: We look at this correlation case by case according to penguin mood.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 58%. For those who choose to take the elevator, the probability of curly hair is 3%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.03 +0.03 - 0.58 = -0.55 +-0.55 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look at how my decision correlates with curly hair case by case according to penguin mood. Method 2: We look directly at how my decision correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 29%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.29 +0.29 - 0.70 = -0.41 +-0.41 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 29%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.29 +0.29 - 0.70 = -0.41 +-0.41 < 0",mediation,penguin,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 16%. For those who choose to take the stairs, the probability of curly hair is 70%. For those who choose to take the elevator, the probability of curly hair is 29%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.29 +0.16*0.29 - 0.84*0.70 = 0.63 +0.63 > 0",mediation,penguin,1,marginal,P(Y) +15586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 77%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 57%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 39%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 19%. For those who choose to take the stairs, the probability of penguin happiness is 44%. For those who choose to take the elevator, the probability of penguin happiness is 87%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.77 +P(Y=1 | X=0, V2=1) = 0.57 +P(Y=1 | X=1, V2=0) = 0.39 +P(Y=1 | X=1, V2=1) = 0.19 +P(V2=1 | X=0) = 0.44 +P(V2=1 | X=1) = 0.87 +0.44 * (0.19 - 0.39) + 0.87 * (0.57 - 0.77) = -0.38 +-0.38 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +15589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 15%. For those who choose to take the stairs, the probability of curly hair is 68%. For those who choose to take the elevator, the probability of curly hair is 21%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.21 +0.15*0.21 - 0.85*0.68 = 0.61 +0.61 > 0",mediation,penguin,1,marginal,P(Y) +15592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look at how my decision correlates with curly hair case by case according to penguin mood. Method 2: We look directly at how my decision correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 75%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 73%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 16%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 32%. For those who choose to take the stairs, the probability of penguin happiness is 20%. For those who choose to take the elevator, the probability of penguin happiness is 100%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.73 +P(Y=1 | X=1, V2=0) = 0.16 +P(Y=1 | X=1, V2=1) = 0.32 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 1.00 +1.00 * (0.73 - 0.75)+ 0.20 * (0.32 - 0.16)= -0.02 +-0.02 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 8%. For those who choose to take the stairs, the probability of curly hair is 72%. For those who choose to take the elevator, the probability of curly hair is 24%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.24 +0.08*0.24 - 0.92*0.72 = 0.68 +0.68 > 0",mediation,penguin,1,marginal,P(Y) +15620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look at how my decision correlates with curly hair case by case according to penguin mood. Method 2: We look directly at how my decision correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 65%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 50%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 13%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 12%. For those who choose to take the stairs, the probability of penguin happiness is 21%. For those who choose to take the elevator, the probability of penguin happiness is 67%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.65 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.13 +P(Y=1 | X=1, V2=1) = 0.12 +P(V2=1 | X=0) = 0.21 +P(V2=1 | X=1) = 0.67 +0.21 * (0.12 - 0.13) + 0.67 * (0.50 - 0.65) = -0.49 +-0.49 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +15647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 18%. The probability of taking the stairs and curly hair is 55%. The probability of taking the elevator and curly hair is 3%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.03 +0.03/0.18 - 0.55/0.82 = -0.49 +-0.49 < 0",mediation,penguin,1,correlation,P(Y | X) +15662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. Method 1: We look at how my decision correlates with curly hair case by case according to penguin mood. Method 2: We look directly at how my decision correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,penguin,2,backadj,[backdoor adjustment set for Y given X] +15669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 85%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 59%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 45%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 23%. For those who choose to take the stairs, the probability of penguin happiness is 40%. For those who choose to take the elevator, the probability of penguin happiness is 68%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.85 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.40 +P(V2=1 | X=1) = 0.68 +0.68 * (0.59 - 0.85)+ 0.40 * (0.23 - 0.45)= -0.07 +-0.07 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 85%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 59%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 45%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 23%. For those who choose to take the stairs, the probability of penguin happiness is 40%. For those who choose to take the elevator, the probability of penguin happiness is 68%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.85 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.40 +P(V2=1 | X=1) = 0.68 +0.40 * (0.23 - 0.45) + 0.68 * (0.59 - 0.85) = -0.38 +-0.38 < 0",mediation,penguin,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +15673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 1%. For those who choose to take the stairs, the probability of curly hair is 75%. For those who choose to take the elevator, the probability of curly hair is 30%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.30 +0.01*0.30 - 0.99*0.75 = 0.74 +0.74 > 0",mediation,penguin,1,marginal,P(Y) +15710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 87%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 60%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 38%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 14%. For those who choose to take the stairs, the probability of penguin happiness is 2%. For those who choose to take the elevator, the probability of penguin happiness is 40%.",no,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.87 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.38 +P(Y=1 | X=1, V2=1) = 0.14 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.40 +0.40 * (0.60 - 0.87)+ 0.02 * (0.14 - 0.38)= -0.11 +-0.11 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. For those who choose to take the stairs and penguins who are sad, the probability of curly hair is 87%. For those who choose to take the stairs and penguins who are happy, the probability of curly hair is 60%. For those who choose to take the elevator and penguins who are sad, the probability of curly hair is 38%. For those who choose to take the elevator and penguins who are happy, the probability of curly hair is 14%. For those who choose to take the stairs, the probability of penguin happiness is 2%. For those who choose to take the elevator, the probability of penguin happiness is 40%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.87 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.38 +P(Y=1 | X=1, V2=1) = 0.14 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.40 +0.40 * (0.60 - 0.87)+ 0.02 * (0.14 - 0.38)= -0.11 +-0.11 < 0",mediation,penguin,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +15717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and curly hair. Penguin mood has a direct effect on curly hair. The overall probability of taking the elevator is 2%. The probability of taking the stairs and curly hair is 85%. The probability of taking the elevator and curly hair is 0%.",yes,"Let X = my decision; V2 = penguin mood; Y = curly hair. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.85 +P(Y=1, X=1=1) = 0.00 +0.00/0.02 - 0.85/0.98 = -0.58 +-0.58 < 0",mediation,penguin,1,correlation,P(Y | X) +15720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 54%. For vaccinated individuals, the probability of black hair is 48%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.48 +0.48 - 0.54 = -0.06 +-0.06 < 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 16%. For unvaccinated individuals, the probability of black hair is 54%. For vaccinated individuals, the probability of black hair is 48%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.48 +0.16*0.48 - 0.84*0.54 = 0.53 +0.53 > 0",diamond,vaccine_kills,1,marginal,P(Y) +15730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look at how vaccination status correlates with black hair case by case according to vaccination reaction. Method 2: We look directly at how vaccination status correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look directly at how vaccination status correlates with black hair in general. Method 2: We look at this correlation case by case according to vaccination reaction.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look at how vaccination status correlates with black hair case by case according to vaccination reaction. Method 2: We look directly at how vaccination status correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 57%. For vaccinated individuals, the probability of black hair is 66%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.66 +0.66 - 0.57 = 0.09 +0.09 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +15759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 43%. For vaccinated individuals, the probability of black hair is 54%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.54 +0.54 - 0.43 = 0.11 +0.11 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look directly at how vaccination status correlates with black hair in general. Method 2: We look at this correlation case by case according to vaccination reaction.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 1%. The probability of lack of vaccination and black hair is 48%. The probability of vaccination and black hair is 1%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.01 +0.01/0.01 - 0.48/0.99 = 0.09 +0.09 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look directly at how vaccination status correlates with black hair in general. Method 2: We look at this correlation case by case according to vaccination reaction.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 35%. For vaccinated individuals, the probability of black hair is 40%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.40 +0.40 - 0.35 = 0.05 +0.05 > 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 28%. For vaccinated individuals, the probability of black hair is 42%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.42 +0.42 - 0.28 = 0.13 +0.13 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 49%. For vaccinated individuals, the probability of black hair is 49%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.49 - 0.49 = -0.00 +0.00 = 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 9%. For unvaccinated individuals, the probability of black hair is 49%. For vaccinated individuals, the probability of black hair is 49%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.09*0.49 - 0.91*0.49 = 0.49 +0.49 > 0",diamond,vaccine_kills,1,marginal,P(Y) +15812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 9%. The probability of lack of vaccination and black hair is 45%. The probability of vaccination and black hair is 4%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.04 +0.04/0.09 - 0.45/0.91 = -0.00 +0.00 = 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 9%. The probability of lack of vaccination and black hair is 45%. The probability of vaccination and black hair is 4%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.04 +0.04/0.09 - 0.45/0.91 = -0.00 +0.00 = 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 8%. For unvaccinated individuals, the probability of black hair is 56%. For vaccinated individuals, the probability of black hair is 55%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.55 +0.08*0.55 - 0.92*0.56 = 0.56 +0.56 > 0",diamond,vaccine_kills,1,marginal,P(Y) +15841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 41%. For vaccinated individuals, the probability of black hair is 42%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.42 +0.42 - 0.41 = 0.02 +0.02 > 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 41%. For vaccinated individuals, the probability of black hair is 42%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.42 +0.42 - 0.41 = 0.02 +0.02 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +15848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 10%. The probability of lack of vaccination and black hair is 37%. The probability of vaccination and black hair is 4%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.04 +0.04/0.10 - 0.37/0.90 = 0.02 +0.02 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15850,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look at how vaccination status correlates with black hair case by case according to vaccination reaction. Method 2: We look directly at how vaccination status correlates with black hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 43%. For vaccinated individuals, the probability of black hair is 41%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.41 +0.41 - 0.43 = -0.02 +-0.02 < 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 41%. For vaccinated individuals, the probability of black hair is 51%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.51 +0.51 - 0.41 = 0.11 +0.11 > 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 16%. The probability of lack of vaccination and black hair is 39%. The probability of vaccination and black hair is 9%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.09 +0.09/0.16 - 0.39/0.84 = 0.06 +0.06 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 52%. For vaccinated individuals, the probability of black hair is 59%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.59 +0.59 - 0.52 = 0.07 +0.07 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +15920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 14%. The probability of lack of vaccination and black hair is 45%. The probability of vaccination and black hair is 8%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.08 +0.08/0.14 - 0.45/0.86 = 0.07 +0.07 > 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 45%. For vaccinated individuals, the probability of black hair is 49%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.49 +0.49 - 0.45 = 0.05 +0.05 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 40%. For vaccinated individuals, the probability of black hair is 38%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.38 +0.38 - 0.40 = -0.03 +-0.03 < 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 40%. For vaccinated individuals, the probability of black hair is 38%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.38 +0.38 - 0.40 = -0.03 +-0.03 < 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 56%. For vaccinated individuals, the probability of black hair is 52%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.52 +0.52 - 0.56 = -0.04 +-0.04 < 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +15956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 18%. The probability of lack of vaccination and black hair is 46%. The probability of vaccination and black hair is 10%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.10 +0.10/0.18 - 0.46/0.82 = -0.04 +-0.04 < 0",diamond,vaccine_kills,1,correlation,P(Y | X) +15959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look directly at how vaccination status correlates with black hair in general. Method 2: We look at this correlation case by case according to vaccination reaction.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +15966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 4%. For unvaccinated individuals, the probability of black hair is 59%. For vaccinated individuals, the probability of black hair is 53%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.53 +0.04*0.53 - 0.96*0.59 = 0.59 +0.59 > 0",diamond,vaccine_kills,1,marginal,P(Y) +15986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 42%. For vaccinated individuals, the probability of black hair is 60%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.60 +0.60 - 0.42 = 0.18 +0.18 > 0",diamond,vaccine_kills,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +15988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 42%. For vaccinated individuals, the probability of black hair is 60%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.60 +0.60 - 0.42 = 0.18 +0.18 > 0",diamond,vaccine_kills,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +15996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 27%. For vaccinated individuals, the probability of black hair is 37%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.37 +0.37 - 0.27 = 0.10 +0.10 > 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 5%. For unvaccinated individuals, the probability of black hair is 27%. For vaccinated individuals, the probability of black hair is 37%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.37 +0.05*0.37 - 0.95*0.27 = 0.27 +0.27 > 0",diamond,vaccine_kills,1,marginal,P(Y) +16007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. Method 1: We look directly at how vaccination status correlates with black hair in general. Method 2: We look at this correlation case by case according to vaccination reaction.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,vaccine_kills,2,backadj,[backdoor adjustment set for Y given X] +16021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 51%. For vaccinated individuals, the probability of black hair is 44%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.44 +0.44 - 0.51 = -0.08 +-0.08 < 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. For unvaccinated individuals, the probability of black hair is 53%. For vaccinated individuals, the probability of black hair is 58%.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.58 +0.58 - 0.53 = 0.05 +0.05 > 0",diamond,vaccine_kills,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on black hair. Vaccination reaction has a direct effect on black hair. The overall probability of vaccination is 8%. For unvaccinated individuals, the probability of black hair is 61%. For vaccinated individuals, the probability of black hair is 50%.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = black hair. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.50 +0.08*0.50 - 0.92*0.61 = 0.60 +0.60 > 0",diamond,vaccine_kills,1,marginal,P(Y) +16089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 7%. For people who do not have a sister, the probability of healthy heart is 62%. For people who have a sister, the probability of healthy heart is 45%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.45 +0.07*0.45 - 0.93*0.62 = 0.61 +0.61 > 0",mediation,blood_pressure,1,marginal,P(Y) +16104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 3%. The probability of not having a sister and healthy heart is 87%. The probability of having a sister and healthy heart is 2%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.87 +P(Y=1, X=1=1) = 0.02 +0.02/0.03 - 0.87/0.97 = -0.40 +-0.40 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +16142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 59%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 86%. For people who have a sister and with low blood pressure, the probability of healthy heart is 25%. For people who have a sister and with high blood pressure, the probability of healthy heart is 54%. For people who do not have a sister, the probability of high blood pressure is 36%. For people who have a sister, the probability of high blood pressure is 89%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.86 +P(Y=1 | X=1, V2=0) = 0.25 +P(Y=1 | X=1, V2=1) = 0.54 +P(V2=1 | X=0) = 0.36 +P(V2=1 | X=1) = 0.89 +0.36 * (0.54 - 0.25) + 0.89 * (0.86 - 0.59) = -0.33 +-0.33 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +16170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 55%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 86%. For people who have a sister and with low blood pressure, the probability of healthy heart is 20%. For people who have a sister and with high blood pressure, the probability of healthy heart is 50%. For people who do not have a sister, the probability of high blood pressure is 41%. For people who have a sister, the probability of high blood pressure is 69%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.86 +P(Y=1 | X=1, V2=0) = 0.20 +P(Y=1 | X=1, V2=1) = 0.50 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.69 +0.41 * (0.50 - 0.20) + 0.69 * (0.86 - 0.55) = -0.36 +-0.36 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +16171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 55%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 86%. For people who have a sister and with low blood pressure, the probability of healthy heart is 20%. For people who have a sister and with high blood pressure, the probability of healthy heart is 50%. For people who do not have a sister, the probability of high blood pressure is 41%. For people who have a sister, the probability of high blood pressure is 69%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.86 +P(Y=1 | X=1, V2=0) = 0.20 +P(Y=1 | X=1, V2=1) = 0.50 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.69 +0.41 * (0.50 - 0.20) + 0.69 * (0.86 - 0.55) = -0.36 +-0.36 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +16196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 38%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 69%. For people who have a sister and with low blood pressure, the probability of healthy heart is 4%. For people who have a sister and with high blood pressure, the probability of healthy heart is 34%. For people who do not have a sister, the probability of high blood pressure is 25%. For people who have a sister, the probability of high blood pressure is 80%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.38 +P(Y=1 | X=0, V2=1) = 0.69 +P(Y=1 | X=1, V2=0) = 0.04 +P(Y=1 | X=1, V2=1) = 0.34 +P(V2=1 | X=0) = 0.25 +P(V2=1 | X=1) = 0.80 +0.80 * (0.69 - 0.38)+ 0.25 * (0.34 - 0.04)= 0.17 +0.17 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +16209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 55%. For people who have a sister, the probability of healthy heart is 30%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.30 +0.30 - 0.55 = -0.25 +-0.25 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +16212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 43%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 71%. For people who have a sister and with low blood pressure, the probability of healthy heart is 18%. For people who have a sister and with high blood pressure, the probability of healthy heart is 43%. For people who do not have a sister, the probability of high blood pressure is 42%. For people who have a sister, the probability of high blood pressure is 49%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.43 +P(V2=1 | X=0) = 0.42 +P(V2=1 | X=1) = 0.49 +0.42 * (0.43 - 0.18) + 0.49 * (0.71 - 0.43) = -0.26 +-0.26 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +16221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 75%. For people who have a sister, the probability of healthy heart is 56%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.56 +0.56 - 0.75 = -0.19 +-0.19 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 75%. For people who have a sister, the probability of healthy heart is 56%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.56 +0.56 - 0.75 = -0.19 +-0.19 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +16227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 63%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 91%. For people who have a sister and with low blood pressure, the probability of healthy heart is 37%. For people who have a sister and with high blood pressure, the probability of healthy heart is 67%. For people who do not have a sister, the probability of high blood pressure is 42%. For people who have a sister, the probability of high blood pressure is 62%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.63 +P(Y=1 | X=0, V2=1) = 0.91 +P(Y=1 | X=1, V2=0) = 0.37 +P(Y=1 | X=1, V2=1) = 0.67 +P(V2=1 | X=0) = 0.42 +P(V2=1 | X=1) = 0.62 +0.42 * (0.67 - 0.37) + 0.62 * (0.91 - 0.63) = -0.25 +-0.25 < 0",mediation,blood_pressure,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +16231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 1%. The probability of not having a sister and healthy heart is 74%. The probability of having a sister and healthy heart is 1%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.74 +P(Y=1, X=1=1) = 0.01 +0.01/0.01 - 0.74/0.99 = -0.19 +-0.19 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +16248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 62%. For people who have a sister, the probability of healthy heart is 55%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.55 +0.55 - 0.62 = -0.07 +-0.07 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 19%. The probability of not having a sister and healthy heart is 50%. The probability of having a sister and healthy heart is 11%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.11 +0.11/0.19 - 0.50/0.81 = -0.07 +-0.07 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +16260,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look at how having a sister correlates with heart condition case by case according to blood pressure. Method 2: We look directly at how having a sister correlates with heart condition in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +16273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 17%. The probability of not having a sister and healthy heart is 53%. The probability of having a sister and healthy heart is 4%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.04 +0.04/0.17 - 0.53/0.83 = -0.43 +-0.43 < 0",mediation,blood_pressure,1,correlation,P(Y | X) +16285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 6%. For people who do not have a sister, the probability of healthy heart is 37%. For people who have a sister, the probability of healthy heart is 37%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.37 +0.06*0.37 - 0.94*0.37 = 0.37 +0.37 > 0",mediation,blood_pressure,1,marginal,P(Y) +16291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 67%. For people who have a sister, the probability of healthy heart is 39%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.39 +0.39 - 0.67 = -0.28 +-0.28 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 12%. For people who do not have a sister, the probability of healthy heart is 67%. For people who have a sister, the probability of healthy heart is 39%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.39 +0.12*0.39 - 0.88*0.67 = 0.63 +0.63 > 0",mediation,blood_pressure,1,marginal,P(Y) +16304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 57%. For people who have a sister, the probability of healthy heart is 39%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 9%. For people who do not have a sister, the probability of healthy heart is 95%. For people who have a sister, the probability of healthy heart is 28%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.28 +0.09*0.28 - 0.91*0.95 = 0.88 +0.88 > 0",mediation,blood_pressure,1,marginal,P(Y) +16334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 51%. For people who have a sister, the probability of healthy heart is 42%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.42 +0.42 - 0.51 = -0.10 +-0.10 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +16341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 2%. For people who do not have a sister, the probability of healthy heart is 51%. For people who have a sister, the probability of healthy heart is 42%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.42 +0.02*0.42 - 0.98*0.51 = 0.51 +0.51 > 0",mediation,blood_pressure,1,marginal,P(Y) +16345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look directly at how having a sister correlates with heart condition in general. Method 2: We look at this correlation case by case according to blood pressure.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +16358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look at how having a sister correlates with heart condition case by case according to blood pressure. Method 2: We look directly at how having a sister correlates with heart condition in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +16360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 64%. For people who have a sister, the probability of healthy heart is 53%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.53 +0.53 - 0.64 = -0.11 +-0.11 < 0",mediation,blood_pressure,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 43%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 72%. For people who have a sister and with low blood pressure, the probability of healthy heart is 14%. For people who have a sister and with high blood pressure, the probability of healthy heart is 49%. For people who do not have a sister, the probability of high blood pressure is 20%. For people who have a sister, the probability of high blood pressure is 70%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.72 +P(Y=1 | X=1, V2=0) = 0.14 +P(Y=1 | X=1, V2=1) = 0.49 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.70 +0.70 * (0.72 - 0.43)+ 0.20 * (0.49 - 0.14)= 0.15 +0.15 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +16393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 36%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 63%. For people who have a sister and with low blood pressure, the probability of healthy heart is 6%. For people who have a sister and with high blood pressure, the probability of healthy heart is 36%. For people who do not have a sister, the probability of high blood pressure is 34%. For people who have a sister, the probability of high blood pressure is 83%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.63 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.34 +P(V2=1 | X=1) = 0.83 +0.83 * (0.63 - 0.36)+ 0.34 * (0.36 - 0.06)= 0.13 +0.13 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +16421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 56%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 83%. For people who have a sister and with low blood pressure, the probability of healthy heart is 27%. For people who have a sister and with high blood pressure, the probability of healthy heart is 51%. For people who do not have a sister, the probability of high blood pressure is 41%. For people who have a sister, the probability of high blood pressure is 71%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.27 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.71 +0.71 * (0.83 - 0.56)+ 0.41 * (0.51 - 0.27)= 0.08 +0.08 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +16439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. The overall probability of having a sister is 14%. For people who do not have a sister, the probability of healthy heart is 62%. For people who have a sister, the probability of healthy heart is 35%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.35 +0.14*0.35 - 0.86*0.62 = 0.58 +0.58 > 0",mediation,blood_pressure,1,marginal,P(Y) +16443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. Method 1: We look directly at how having a sister correlates with heart condition in general. Method 2: We look at this correlation case by case according to blood pressure.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,blood_pressure,2,backadj,[backdoor adjustment set for Y given X] +16448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 44%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 71%. For people who have a sister and with low blood pressure, the probability of healthy heart is 9%. For people who have a sister and with high blood pressure, the probability of healthy heart is 35%. For people who do not have a sister, the probability of high blood pressure is 47%. For people who have a sister, the probability of high blood pressure is 73%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.44 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.09 +P(Y=1 | X=1, V2=1) = 0.35 +P(V2=1 | X=0) = 0.47 +P(V2=1 | X=1) = 0.73 +0.73 * (0.71 - 0.44)+ 0.47 * (0.35 - 0.09)= 0.07 +0.07 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +16474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 56%. For people who have a sister, the probability of healthy heart is 17%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.17 +0.17 - 0.56 = -0.38 +-0.38 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +16475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister, the probability of healthy heart is 56%. For people who have a sister, the probability of healthy heart is 17%.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.17 +0.17 - 0.56 = -0.38 +-0.38 < 0",mediation,blood_pressure,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +16490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. For people who do not have a sister and with low blood pressure, the probability of healthy heart is 61%. For people who do not have a sister and with high blood pressure, the probability of healthy heart is 87%. For people who have a sister and with low blood pressure, the probability of healthy heart is 29%. For people who have a sister and with high blood pressure, the probability of healthy heart is 50%. For people who do not have a sister, the probability of high blood pressure is 30%. For people who have a sister, the probability of high blood pressure is 88%.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.61 +P(Y=1 | X=0, V2=1) = 0.87 +P(Y=1 | X=1, V2=0) = 0.29 +P(Y=1 | X=1, V2=1) = 0.50 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.88 +0.88 * (0.87 - 0.61)+ 0.30 * (0.50 - 0.29)= 0.15 +0.15 > 0",mediation,blood_pressure,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +16509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 95%. For people who do not speak english and are not famous, the probability of talent is 98%. For people who do not speak english and are famous, the probability of talent is 67%. For people who speak english and are not famous, the probability of talent is 91%. For people who speak english and are famous, the probability of talent is 39%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 0.39 +0.39 - (0.95*0.39 + 0.05*0.67) = -0.04 +-0.04 < 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +16526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between speaking english and talent is -0.03.",no,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +16536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between speaking english and talent is -0.03.",no,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +16537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between speaking english and talent is -0.03.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +16550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 81%. For people who do not speak english, the probability of talent is 92%. For people who speak english, the probability of talent is 92%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.81*0.92 - 0.19*0.92 = 0.92 +0.92 > 0",collision,celebrity,1,marginal,P(Y) +16575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look directly at how ability to speak english correlates with talent in general. Method 2: We look at this correlation case by case according to fame.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +16591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 98%. For people who do not speak english, the probability of talent is 87%. For people who speak english, the probability of talent is 87%.",no,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.98*0.87 - 0.02*0.87 = 0.87 +0.87 > 0",collision,celebrity,1,marginal,P(Y) +16604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look at how ability to speak english correlates with talent case by case according to fame. Method 2: We look directly at how ability to speak english correlates with talent in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +16608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 84%. For people who do not speak english and are not famous, the probability of talent is 98%. For people who do not speak english and are famous, the probability of talent is 80%. For people who speak english and are not famous, the probability of talent is 93%. For people who speak english and are famous, the probability of talent is 71%.",no,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.84 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.80 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.71 +0.71 - (0.84*0.71 + 0.16*0.80) = -0.03 +-0.03 < 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +16617,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between speaking english and talent is -0.02.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +16619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 97%. For people who do not speak english and are not famous, the probability of talent is 100%. For people who do not speak english and are famous, the probability of talent is 84%. For people who speak english and are not famous, the probability of talent is 95%. For people who speak english and are famous, the probability of talent is 80%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.97 +P(Y=1 | X=0, V3=0) = 1.00 +P(Y=1 | X=0, V3=1) = 0.84 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.80 +0.80 - (0.97*0.80 + 0.03*0.84) = -0.00 +0.00 = 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +16630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 92%. For people who do not speak english, the probability of talent is 84%. For people who speak english, the probability of talent is 84%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.84 +0.92*0.84 - 0.08*0.84 = 0.84 +0.84 > 0",collision,celebrity,1,marginal,P(Y) +16664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look at how ability to speak english correlates with talent case by case according to fame. Method 2: We look directly at how ability to speak english correlates with talent in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +16667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between speaking english and talent is -0.02.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +16669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 96%. For people who do not speak english and are not famous, the probability of talent is 98%. For people who do not speak english and are famous, the probability of talent is 95%. For people who speak english and are not famous, the probability of talent is 98%. For people who speak english and are famous, the probability of talent is 93%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.95 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.93 +0.93 - (0.96*0.93 + 0.04*0.95) = -0.00 +0.00 = 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +16694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look at how ability to speak english correlates with talent case by case according to fame. Method 2: We look directly at how ability to speak english correlates with talent in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +16719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 86%. For people who do not speak english and are not famous, the probability of talent is 97%. For people who do not speak english and are famous, the probability of talent is 92%. For people who speak english and are not famous, the probability of talent is 97%. For people who speak english and are famous, the probability of talent is 74%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.86 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.86*0.74 + 0.14*0.92) = -0.09 +-0.09 < 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +16725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look directly at how ability to speak english correlates with talent in general. Method 2: We look at this correlation case by case according to fame.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +16730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 81%. For people who do not speak english, the probability of talent is 96%. For people who speak english, the probability of talent is 96%.",yes,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.96 +0.81*0.96 - 0.19*0.96 = 0.96 +0.96 > 0",collision,celebrity,1,marginal,P(Y) +16735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. Method 1: We look directly at how ability to speak english correlates with talent in general. Method 2: We look at this correlation case by case according to fame.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,celebrity,2,backadj,[backdoor adjustment set for Y given X] +16738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. The overall probability of speaking english is 81%. For people who do not speak english and are not famous, the probability of talent is 98%. For people who do not speak english and are famous, the probability of talent is 92%. For people who speak english and are not famous, the probability of talent is 97%. For people who speak english and are famous, the probability of talent is 86%.",no,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.81 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.86 +0.86 - (0.81*0.86 + 0.19*0.92) = -0.03 +-0.03 < 0",collision,celebrity,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +16786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on fame. Talent has a direct effect on fame. For people who are famous, the correlation between speaking english and talent is -0.44.",no,"Let Y = talent; X = ability to speak english; V3 = fame. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,celebrity,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +16810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 20%. For patients who do not have a sister, the probability of low cholesterol is 81%. For patients who have a sister, the probability of low cholesterol is 70%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.70 +0.20*0.70 - 0.80*0.81 = 0.79 +0.79 > 0",IV,cholesterol,1,marginal,P(Y) +16820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 44%. The probability of not having a sister and low cholesterol is 25%. The probability of having a sister and low cholesterol is 20%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.20 +0.20/0.44 - 0.25/0.56 = 0.01 +0.01 > 0",IV,cholesterol,1,correlation,P(Y | X) +16824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 29%. For patients assigned the drug treatment, the probability of low cholesterol is 26%. For patients not assigned the drug treatment, the probability of having a sister is 57%. For patients assigned the drug treatment, the probability of having a sister is 15%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.29 +P(Y=1 | V2=1) = 0.26 +P(X=1 | V2=0) = 0.57 +P(X=1 | V2=1) = 0.15 +(0.26 - 0.29) / (0.15 - 0.57) = 0.08 +0.08 > 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 21%. For patients who do not have a sister, the probability of low cholesterol is 25%. For patients who have a sister, the probability of low cholesterol is 34%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.34 +0.21*0.34 - 0.79*0.25 = 0.27 +0.27 > 0",IV,cholesterol,1,marginal,P(Y) +16841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 71%. For patients assigned the drug treatment, the probability of low cholesterol is 76%. For patients not assigned the drug treatment, the probability of having a sister is 48%. For patients assigned the drug treatment, the probability of having a sister is 8%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.71 +P(Y=1 | V2=1) = 0.76 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.08 +(0.76 - 0.71) / (0.08 - 0.48) = -0.14 +-0.14 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 43%. For patients who do not have a sister, the probability of low cholesterol is 42%. For patients who have a sister, the probability of low cholesterol is 40%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.40 +0.43*0.40 - 0.57*0.42 = 0.41 +0.41 > 0",IV,cholesterol,1,marginal,P(Y) +16887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look at how having a sister correlates with cholesterol level case by case according to unobserved confounders. Method 2: We look directly at how having a sister correlates with cholesterol level in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +16892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 34%. The probability of not having a sister and low cholesterol is 32%. The probability of having a sister and low cholesterol is 21%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.21 +0.21/0.34 - 0.32/0.66 = 0.11 +0.11 > 0",IV,cholesterol,1,correlation,P(Y | X) +16898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 35%. For patients who do not have a sister, the probability of low cholesterol is 73%. For patients who have a sister, the probability of low cholesterol is 29%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.29 +0.35*0.29 - 0.65*0.73 = 0.57 +0.57 > 0",IV,cholesterol,1,marginal,P(Y) +16909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 53%. The probability of not having a sister and low cholesterol is 24%. The probability of having a sister and low cholesterol is 46%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.46 +0.46/0.53 - 0.24/0.47 = 0.36 +0.36 > 0",IV,cholesterol,1,correlation,P(Y | X) +16915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 44%. For patients who do not have a sister, the probability of low cholesterol is 49%. For patients who have a sister, the probability of low cholesterol is 56%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.56 +0.44*0.56 - 0.56*0.49 = 0.52 +0.52 > 0",IV,cholesterol,1,marginal,P(Y) +16918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look directly at how having a sister correlates with cholesterol level in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +16922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 41%. For patients who do not have a sister, the probability of low cholesterol is 52%. For patients who have a sister, the probability of low cholesterol is 44%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.44 +0.41*0.44 - 0.59*0.52 = 0.48 +0.48 > 0",IV,cholesterol,1,marginal,P(Y) +16925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 41%. The probability of not having a sister and low cholesterol is 31%. The probability of having a sister and low cholesterol is 18%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.18 +0.18/0.41 - 0.31/0.59 = -0.08 +-0.08 < 0",IV,cholesterol,1,correlation,P(Y | X) +16926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look directly at how having a sister correlates with cholesterol level in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +16935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look at how having a sister correlates with cholesterol level case by case according to unobserved confounders. Method 2: We look directly at how having a sister correlates with cholesterol level in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +16946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 13%. For patients who do not have a sister, the probability of low cholesterol is 87%. For patients who have a sister, the probability of low cholesterol is 47%.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.47 +0.13*0.47 - 0.87*0.87 = 0.82 +0.82 > 0",IV,cholesterol,1,marginal,P(Y) +16984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 51%. For patients assigned the drug treatment, the probability of low cholesterol is 64%. For patients not assigned the drug treatment, the probability of having a sister is 67%. For patients assigned the drug treatment, the probability of having a sister is 30%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.51 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.67 +P(X=1 | V2=1) = 0.30 +(0.64 - 0.51) / (0.30 - 0.67) = -0.38 +-0.38 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +16995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 16%. For patients who do not have a sister, the probability of low cholesterol is 58%. For patients who have a sister, the probability of low cholesterol is 45%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.45 +0.16*0.45 - 0.84*0.58 = 0.56 +0.56 > 0",IV,cholesterol,1,marginal,P(Y) +16998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. Method 1: We look directly at how having a sister correlates with cholesterol level in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,cholesterol,2,backadj,[backdoor adjustment set for Y given X] +17000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. For patients not assigned the drug treatment, the probability of low cholesterol is 63%. For patients assigned the drug treatment, the probability of low cholesterol is 64%. For patients not assigned the drug treatment, the probability of having a sister is 50%. For patients assigned the drug treatment, the probability of having a sister is 18%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.50 +P(X=1 | V2=1) = 0.18 +(0.64 - 0.63) / (0.18 - 0.50) = -0.01 +-0.01 < 0",IV,cholesterol,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 52%. For patients who do not have a sister, the probability of low cholesterol is 46%. For patients who have a sister, the probability of low cholesterol is 53%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.53 +0.52*0.53 - 0.48*0.46 = 0.50 +0.50 > 0",IV,cholesterol,1,marginal,P(Y) +17028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a sister and cholesterol level. Treatment assignment has a direct effect on having a sister. Having a sister has a direct effect on cholesterol level. Unobserved confounders is unobserved. The overall probability of having a sister is 24%. The probability of not having a sister and low cholesterol is 69%. The probability of having a sister and low cholesterol is 15%.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = having a sister; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.69 +P(Y=1, X=1=1) = 0.15 +0.15/0.24 - 0.69/0.76 = -0.27 +-0.27 < 0",IV,cholesterol,1,correlation,P(Y | X) +17040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 22%. For people who have a brother, the probability of high salary is 51%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.51 +0.51 - 0.22 = 0.29 +0.29 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 96%. For people who do not have a brother, the probability of high salary is 55%. For people who have a brother, the probability of high salary is 64%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.64 +0.96*0.64 - 0.04*0.55 = 0.64 +0.64 > 0",chain,college_salary,1,marginal,P(Y) +17059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 96%. For people who do not have a brother, the probability of high salary is 55%. For people who have a brother, the probability of high salary is 64%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.64 +0.96*0.64 - 0.04*0.55 = 0.64 +0.64 > 0",chain,college_salary,1,marginal,P(Y) +17060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 96%. The probability of not having a brother and high salary is 2%. The probability of having a brother and high salary is 62%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.62 +0.62/0.96 - 0.02/0.04 = 0.09 +0.09 > 0",chain,college_salary,1,correlation,P(Y | X) +17074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look at how having a brother correlates with salary case by case according to skill. Method 2: We look directly at how having a brother correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +17085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 82%. The probability of not having a brother and high salary is 4%. The probability of having a brother and high salary is 39%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.39 +0.39/0.82 - 0.04/0.18 = 0.23 +0.23 > 0",chain,college_salary,1,correlation,P(Y | X) +17113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 37%. For people who have a brother, the probability of high salary is 46%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.46 +0.46 - 0.37 = 0.09 +0.09 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look at how having a brother correlates with salary case by case according to skill. Method 2: We look directly at how having a brother correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +17139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 43%. For people who have a brother, the probability of high salary is 72%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.72 +0.72 - 0.43 = 0.29 +0.29 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 43%. For people who have a brother, the probability of high salary is 72%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.72 +0.72 - 0.43 = 0.29 +0.29 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +17181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 88%. The probability of not having a brother and high salary is 1%. The probability of having a brother and high salary is 23%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.23 +0.23/0.88 - 0.01/0.12 = 0.14 +0.14 > 0",chain,college_salary,1,correlation,P(Y | X) +17205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 89%. The probability of not having a brother and high salary is 3%. The probability of having a brother and high salary is 58%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.58 +0.58/0.89 - 0.03/0.11 = 0.38 +0.38 > 0",chain,college_salary,1,correlation,P(Y | X) +17207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look directly at how having a brother correlates with salary in general. Method 2: We look at this correlation case by case according to skill.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +17211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 51%. For people who have a brother, the probability of high salary is 86%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.86 +0.86 - 0.51 = 0.34 +0.34 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look directly at how having a brother correlates with salary in general. Method 2: We look at this correlation case by case according to skill.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +17233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 29%. For people who have a brother, the probability of high salary is 56%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.56 +0.56 - 0.29 = 0.28 +0.28 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 18%. For people who have a brother, the probability of high salary is 38%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.38 +0.38 - 0.18 = 0.20 +0.20 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 18%. For people who have a brother, the probability of high salary is 38%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.38 +0.38 - 0.18 = 0.20 +0.20 > 0",chain,college_salary,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 18%. For people who have a brother, the probability of high salary is 38%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.38 +0.38 - 0.18 = 0.20 +0.20 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +17255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look directly at how having a brother correlates with salary in general. Method 2: We look at this correlation case by case according to skill.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +17263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 90%. For people who do not have a brother, the probability of high salary is 19%. For people who have a brother, the probability of high salary is 69%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.69 +0.90*0.69 - 0.10*0.19 = 0.64 +0.64 > 0",chain,college_salary,1,marginal,P(Y) +17275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 82%. For people who do not have a brother, the probability of high salary is 45%. For people who have a brother, the probability of high salary is 61%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.61 +0.82*0.61 - 0.18*0.45 = 0.58 +0.58 > 0",chain,college_salary,1,marginal,P(Y) +17284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 24%. For people who have a brother, the probability of high salary is 50%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.50 +0.50 - 0.24 = 0.26 +0.26 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +17287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 93%. For people who do not have a brother, the probability of high salary is 24%. For people who have a brother, the probability of high salary is 50%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.50 +0.93*0.50 - 0.07*0.24 = 0.48 +0.48 > 0",chain,college_salary,1,marginal,P(Y) +17343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 39%. For people who have a brother, the probability of high salary is 57%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.57 +0.57 - 0.39 = 0.18 +0.18 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 51%. For people who have a brother, the probability of high salary is 75%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.75 +0.75 - 0.51 = 0.24 +0.24 > 0",chain,college_salary,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +17362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. Method 1: We look at how having a brother correlates with salary case by case according to skill. Method 2: We look directly at how having a brother correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,college_salary,2,backadj,[backdoor adjustment set for Y given X] +17370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 82%. For people who do not have a brother, the probability of high salary is 56%. For people who have a brother, the probability of high salary is 70%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.70 +0.82*0.70 - 0.18*0.56 = 0.68 +0.68 > 0",chain,college_salary,1,marginal,P(Y) +17373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. The overall probability of having a brother is 82%. The probability of not having a brother and high salary is 10%. The probability of having a brother and high salary is 58%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.58 +0.58/0.82 - 0.10/0.18 = 0.14 +0.14 > 0",chain,college_salary,1,correlation,P(Y | X) +17379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 37%. For people who have a brother, the probability of high salary is 54%.",yes,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.54 +0.54 - 0.37 = 0.17 +0.17 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on skill. Skill has a direct effect on salary. For people who do not have a brother, the probability of high salary is 60%. For people who have a brother, the probability of high salary is 66%.",no,"Let X = having a brother; V2 = skill; Y = salary. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.66 +0.66 - 0.60 = 0.07 +0.07 > 0",chain,college_salary,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 24%. For people without a college degree, the probability of large feet is 85%. For people with a college degree or higher, the probability of large feet is 48%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.48 +0.24*0.48 - 0.76*0.85 = 0.76 +0.76 > 0",IV,college_wage,1,marginal,P(Y) +17406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look directly at how education level correlates with foot size in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look at how education level correlates with foot size case by case according to unobserved confounders. Method 2: We look directly at how education level correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. For people living far from a college, the probability of large feet is 34%. For people living close to a college, the probability of large feet is 65%. For people living far from a college, the probability of college degree or higher is 64%. For people living close to a college, the probability of college degree or higher is 16%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.34 +P(Y=1 | V2=1) = 0.65 +P(X=1 | V2=0) = 0.64 +P(X=1 | V2=1) = 0.16 +(0.65 - 0.34) / (0.16 - 0.64) = -0.64 +-0.64 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 59%. For people without a college degree, the probability of large feet is 76%. For people with a college degree or higher, the probability of large feet is 10%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.10 +0.59*0.10 - 0.41*0.76 = 0.37 +0.37 > 0",IV,college_wage,1,marginal,P(Y) +17428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 59%. The probability of high school degree or lower and large feet is 31%. The probability of college degree or higher and large feet is 6%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.06 +0.06/0.59 - 0.31/0.41 = -0.66 +-0.66 < 0",IV,college_wage,1,correlation,P(Y | X) +17447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look at how education level correlates with foot size case by case according to unobserved confounders. Method 2: We look directly at how education level correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 43%. For people without a college degree, the probability of large feet is 61%. For people with a college degree or higher, the probability of large feet is 34%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.34 +0.43*0.34 - 0.57*0.61 = 0.49 +0.49 > 0",IV,college_wage,1,marginal,P(Y) +17478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look directly at how education level correlates with foot size in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. For people living far from a college, the probability of large feet is 42%. For people living close to a college, the probability of large feet is 55%. For people living far from a college, the probability of college degree or higher is 48%. For people living close to a college, the probability of college degree or higher is 15%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.42 +P(Y=1 | V2=1) = 0.55 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.15 +(0.55 - 0.42) / (0.15 - 0.48) = -0.39 +-0.39 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 46%. For people without a college degree, the probability of large feet is 88%. For people with a college degree or higher, the probability of large feet is 43%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.43 +0.46*0.43 - 0.54*0.88 = 0.68 +0.68 > 0",IV,college_wage,1,marginal,P(Y) +17509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 46%. The probability of high school degree or lower and large feet is 48%. The probability of college degree or higher and large feet is 20%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.20 +0.20/0.46 - 0.48/0.54 = -0.45 +-0.45 < 0",IV,college_wage,1,correlation,P(Y | X) +17511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look at how education level correlates with foot size case by case according to unobserved confounders. Method 2: We look directly at how education level correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. For people living far from a college, the probability of large feet is 22%. For people living close to a college, the probability of large feet is 39%. For people living far from a college, the probability of college degree or higher is 84%. For people living close to a college, the probability of college degree or higher is 47%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.22 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.84 +P(X=1 | V2=1) = 0.47 +(0.39 - 0.22) / (0.47 - 0.84) = -0.46 +-0.46 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17527,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look at how education level correlates with foot size case by case according to unobserved confounders. Method 2: We look directly at how education level correlates with foot size in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 23%. For people without a college degree, the probability of large feet is 79%. For people with a college degree or higher, the probability of large feet is 29%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.29 +0.23*0.29 - 0.77*0.79 = 0.68 +0.68 > 0",IV,college_wage,1,marginal,P(Y) +17531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 23%. For people without a college degree, the probability of large feet is 79%. For people with a college degree or higher, the probability of large feet is 29%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.29 +0.23*0.29 - 0.77*0.79 = 0.68 +0.68 > 0",IV,college_wage,1,marginal,P(Y) +17537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. For people living far from a college, the probability of large feet is 51%. For people living close to a college, the probability of large feet is 60%. For people living far from a college, the probability of college degree or higher is 57%. For people living close to a college, the probability of college degree or higher is 27%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.51 +P(Y=1 | V2=1) = 0.60 +P(X=1 | V2=0) = 0.57 +P(X=1 | V2=1) = 0.27 +(0.60 - 0.51) / (0.27 - 0.57) = -0.28 +-0.28 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. For people living far from a college, the probability of large feet is 39%. For people living close to a college, the probability of large feet is 49%. For people living far from a college, the probability of college degree or higher is 57%. For people living close to a college, the probability of college degree or higher is 30%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.49 +P(X=1 | V2=0) = 0.57 +P(X=1 | V2=1) = 0.30 +(0.49 - 0.39) / (0.30 - 0.57) = -0.37 +-0.37 < 0",IV,college_wage,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 73%. For people without a college degree, the probability of large feet is 90%. For people with a college degree or higher, the probability of large feet is 52%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.52 +0.73*0.52 - 0.27*0.90 = 0.62 +0.62 > 0",IV,college_wage,1,marginal,P(Y) +17589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 73%. The probability of high school degree or lower and large feet is 24%. The probability of college degree or higher and large feet is 38%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.38 +0.38/0.73 - 0.24/0.27 = -0.38 +-0.38 < 0",IV,college_wage,1,correlation,P(Y | X) +17594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 31%. For people without a college degree, the probability of large feet is 61%. For people with a college degree or higher, the probability of large feet is 33%.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.33 +0.31*0.33 - 0.69*0.61 = 0.52 +0.52 > 0",IV,college_wage,1,marginal,P(Y) +17595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 31%. For people without a college degree, the probability of large feet is 61%. For people with a college degree or higher, the probability of large feet is 33%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.33 +0.31*0.33 - 0.69*0.61 = 0.52 +0.52 > 0",IV,college_wage,1,marginal,P(Y) +17614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. Method 1: We look directly at how education level correlates with foot size in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,college_wage,2,backadj,[backdoor adjustment set for Y given X] +17628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and foot size. Proximity to a college has a direct effect on education level. Education level has a direct effect on foot size. Unobserved confounders is unobserved. The overall probability of college degree or higher is 59%. The probability of high school degree or lower and large feet is 28%. The probability of college degree or higher and large feet is 15%.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = foot size. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.15 +0.15/0.59 - 0.28/0.41 = -0.42 +-0.42 < 0",IV,college_wage,1,correlation,P(Y | X) +17644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. Method 1: We look at how talent correlates with brown eyes case by case according to elite institution admission status. Method 2: We look directly at how talent correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +17657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and brown eyes is -0.07.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +17714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. Method 1: We look at how talent correlates with brown eyes case by case according to elite institution admission status. Method 2: We look directly at how talent correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +17729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 90%. For students who are not talented and rejected from elite institutions, the probability of brown eyes is 99%. For students who are not talented and accepted to elite institutions, the probability of brown eyes is 89%. For students who are talented and rejected from elite institutions, the probability of brown eyes is 96%. For students who are talented and accepted to elite institutions, the probability of brown eyes is 84%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.84 +0.84 - (0.90*0.84 + 0.10*0.89) = -0.01 +-0.01 < 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +17736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and brown eyes is -0.06.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +17738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 95%. For students who are not talented and rejected from elite institutions, the probability of brown eyes is 98%. For students who are not talented and accepted to elite institutions, the probability of brown eyes is 91%. For students who are talented and rejected from elite institutions, the probability of brown eyes is 96%. For students who are talented and accepted to elite institutions, the probability of brown eyes is 84%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.84 +0.84 - (0.95*0.84 + 0.05*0.91) = -0.01 +-0.01 < 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +17750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 95%. For students who are not talented, the probability of brown eyes is 82%. For students who are talented, the probability of brown eyes is 82%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.82 +0.95*0.82 - 0.05*0.82 = 0.82 +0.82 > 0",collision,elite_students,1,marginal,P(Y) +17770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 91%. For students who are not talented, the probability of brown eyes is 94%. For students who are talented, the probability of brown eyes is 94%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.94 +0.91*0.94 - 0.09*0.94 = 0.94 +0.94 > 0",collision,elite_students,1,marginal,P(Y) +17771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 91%. For students who are not talented, the probability of brown eyes is 94%. For students who are talented, the probability of brown eyes is 94%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.94 +0.91*0.94 - 0.09*0.94 = 0.94 +0.94 > 0",collision,elite_students,1,marginal,P(Y) +17785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. Method 1: We look directly at how talent correlates with brown eyes in general. Method 2: We look at this correlation case by case according to elite institution admission status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +17789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 93%. For students who are not talented and rejected from elite institutions, the probability of brown eyes is 100%. For students who are not talented and accepted to elite institutions, the probability of brown eyes is 99%. For students who are talented and rejected from elite institutions, the probability of brown eyes is 99%. For students who are talented and accepted to elite institutions, the probability of brown eyes is 98%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.93 +P(Y=1 | X=0, V3=0) = 1.00 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.98 +0.98 - (0.93*0.98 + 0.07*0.99) = -0.00 +0.00 = 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +17791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 91%. For students who are not talented, the probability of brown eyes is 95%. For students who are talented, the probability of brown eyes is 95%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.95 +0.91*0.95 - 0.09*0.95 = 0.95 +0.95 > 0",collision,elite_students,1,marginal,P(Y) +17811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 87%. For students who are not talented, the probability of brown eyes is 86%. For students who are talented, the probability of brown eyes is 86%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.87*0.86 - 0.13*0.86 = 0.86 +0.86 > 0",collision,elite_students,1,marginal,P(Y) +17820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 81%. For students who are not talented, the probability of brown eyes is 87%. For students who are talented, the probability of brown eyes is 87%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.81*0.87 - 0.19*0.87 = 0.87 +0.87 > 0",collision,elite_students,1,marginal,P(Y) +17849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 82%. For students who are not talented and rejected from elite institutions, the probability of brown eyes is 99%. For students who are not talented and accepted to elite institutions, the probability of brown eyes is 94%. For students who are talented and rejected from elite institutions, the probability of brown eyes is 97%. For students who are talented and accepted to elite institutions, the probability of brown eyes is 90%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.82 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.94 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.90 +0.90 - (0.82*0.90 + 0.18*0.94) = -0.01 +-0.01 < 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +17851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 95%. For students who are not talented, the probability of brown eyes is 88%. For students who are talented, the probability of brown eyes is 88%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.95*0.88 - 0.05*0.88 = 0.88 +0.88 > 0",collision,elite_students,1,marginal,P(Y) +17854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. Method 1: We look at how talent correlates with brown eyes case by case according to elite institution admission status. Method 2: We look directly at how talent correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +17886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and brown eyes is -0.06.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +17898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 98%. For students who are not talented and rejected from elite institutions, the probability of brown eyes is 99%. For students who are not talented and accepted to elite institutions, the probability of brown eyes is 97%. For students who are talented and rejected from elite institutions, the probability of brown eyes is 98%. For students who are talented and accepted to elite institutions, the probability of brown eyes is 94%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.98 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.94 +0.94 - (0.98*0.94 + 0.02*0.97) = -0.00 +0.00 = 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +17915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. Method 1: We look directly at how talent correlates with brown eyes in general. Method 2: We look at this correlation case by case according to elite institution admission status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +17924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. Method 1: We look at how talent correlates with brown eyes case by case according to elite institution admission status. Method 2: We look directly at how talent correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,elite_students,2,backadj,[backdoor adjustment set for Y given X] +17931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 86%. For students who are not talented, the probability of brown eyes is 96%. For students who are talented, the probability of brown eyes is 96%.",no,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.96 +0.86*0.96 - 0.14*0.96 = 0.96 +0.96 > 0",collision,elite_students,1,marginal,P(Y) +17937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. For students accepted to elite institutions, the correlation between talent and brown eyes is -0.03.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,elite_students,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +17939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Talent has a direct effect on elite institution admission status. Brown eyes has a direct effect on elite institution admission status. The overall probability of talent is 86%. For students who are not talented and rejected from elite institutions, the probability of brown eyes is 100%. For students who are not talented and accepted to elite institutions, the probability of brown eyes is 94%. For students who are talented and rejected from elite institutions, the probability of brown eyes is 98%. For students who are talented and accepted to elite institutions, the probability of brown eyes is 92%.",yes,"Let Y = brown eyes; X = talent; V3 = elite institution admission status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.86 +P(Y=1 | X=0, V3=0) = 1.00 +P(Y=1 | X=0, V3=1) = 0.94 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.92 +0.92 - (0.86*0.92 + 0.14*0.94) = -0.00 +0.00 = 0",collision,elite_students,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +17940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 58%. For students who are encouraged, the probability of brown eyes is 34%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.34 +0.34 - 0.58 = -0.24 +-0.24 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 90%. For students who are not encouraged, the probability of brown eyes is 58%. For students who are encouraged, the probability of brown eyes is 34%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.34 +0.90*0.34 - 0.10*0.58 = 0.36 +0.36 > 0",mediation,encouagement_program,1,marginal,P(Y) +17952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. Method 1: We look at how encouragement level correlates with brown eyes case by case according to studying habit. Method 2: We look directly at how encouragement level correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +17954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 59%. For students who are encouraged, the probability of brown eyes is 46%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.46 +0.46 - 0.59 = -0.13 +-0.13 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +17961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 76%. For students who are not encouraged and study hard, the probability of brown eyes is 54%. For students who are encouraged and do not study hard, the probability of brown eyes is 56%. For students who are encouraged and study hard, the probability of brown eyes is 28%. For students who are not encouraged, the probability of studying hard is 77%. For students who are encouraged, the probability of studying hard is 36%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.76 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.36 +0.77 * (0.28 - 0.56) + 0.36 * (0.54 - 0.76) = -0.25 +-0.25 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +17970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 57%. For students who are encouraged, the probability of brown eyes is 34%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.34 +0.34 - 0.57 = -0.23 +-0.23 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 85%. For students who are not encouraged, the probability of brown eyes is 57%. For students who are encouraged, the probability of brown eyes is 34%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.34 +0.85*0.34 - 0.15*0.57 = 0.38 +0.38 > 0",mediation,encouagement_program,1,marginal,P(Y) +17978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 85%. The probability of discouragement and brown eyes is 9%. The probability of encouragement and brown eyes is 29%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.29 +0.29/0.85 - 0.09/0.15 = -0.23 +-0.23 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +17985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 69%. For students who are encouraged, the probability of brown eyes is 47%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.47 +0.47 - 0.69 = -0.22 +-0.22 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +17993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 85%. The probability of discouragement and brown eyes is 10%. The probability of encouragement and brown eyes is 40%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.40 +0.40/0.85 - 0.10/0.15 = -0.22 +-0.22 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +17994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. Method 1: We look at how encouragement level correlates with brown eyes case by case according to studying habit. Method 2: We look directly at how encouragement level correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +18003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 84%. For students who are not encouraged and study hard, the probability of brown eyes is 50%. For students who are encouraged and do not study hard, the probability of brown eyes is 53%. For students who are encouraged and study hard, the probability of brown eyes is 23%. For students who are not encouraged, the probability of studying hard is 74%. For students who are encouraged, the probability of studying hard is 19%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.84 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.53 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.19 +0.74 * (0.23 - 0.53) + 0.19 * (0.50 - 0.84) = -0.28 +-0.28 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 82%. The probability of discouragement and brown eyes is 11%. The probability of encouragement and brown eyes is 38%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.38 +0.38/0.82 - 0.11/0.18 = -0.11 +-0.11 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +18026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 72%. For students who are encouraged, the probability of brown eyes is 52%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.52 +0.52 - 0.72 = -0.20 +-0.20 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 91%. For students who are not encouraged and study hard, the probability of brown eyes is 71%. For students who are encouraged and do not study hard, the probability of brown eyes is 66%. For students who are encouraged and study hard, the probability of brown eyes is 42%. For students who are not encouraged, the probability of studying hard is 95%. For students who are encouraged, the probability of studying hard is 61%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.91 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.66 +P(Y=1 | X=1, V2=1) = 0.42 +P(V2=1 | X=0) = 0.95 +P(V2=1 | X=1) = 0.61 +0.95 * (0.42 - 0.66) + 0.61 * (0.71 - 0.91) = -0.29 +-0.29 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 91%. The probability of discouragement and brown eyes is 7%. The probability of encouragement and brown eyes is 47%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.47 +0.47/0.91 - 0.07/0.09 = -0.20 +-0.20 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +18040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 36%. For students who are encouraged, the probability of brown eyes is 26%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.26 +0.26 - 0.36 = -0.10 +-0.10 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. Method 1: We look directly at how encouragement level correlates with brown eyes in general. Method 2: We look at this correlation case by case according to studying habit.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +18079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. Method 1: We look directly at how encouragement level correlates with brown eyes in general. Method 2: We look at this correlation case by case according to studying habit.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +18097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 53%. For students who are encouraged, the probability of brown eyes is 31%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.31 +0.31 - 0.53 = -0.22 +-0.22 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 92%. For students who are not encouraged, the probability of brown eyes is 53%. For students who are encouraged, the probability of brown eyes is 31%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.31 +0.92*0.31 - 0.08*0.53 = 0.33 +0.33 > 0",mediation,encouagement_program,1,marginal,P(Y) +18105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 92%. The probability of discouragement and brown eyes is 4%. The probability of encouragement and brown eyes is 28%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.28 +0.28/0.92 - 0.04/0.08 = -0.22 +-0.22 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +18117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 84%. For students who are not encouraged, the probability of brown eyes is 58%. For students who are encouraged, the probability of brown eyes is 44%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.44 +0.84*0.44 - 0.16*0.58 = 0.46 +0.46 > 0",mediation,encouagement_program,1,marginal,P(Y) +18127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 71%. For students who are not encouraged and study hard, the probability of brown eyes is 41%. For students who are encouraged and do not study hard, the probability of brown eyes is 35%. For students who are encouraged and study hard, the probability of brown eyes is 10%. For students who are not encouraged, the probability of studying hard is 52%. For students who are encouraged, the probability of studying hard is 5%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.41 +P(Y=1 | X=1, V2=0) = 0.35 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.52 +P(V2=1 | X=1) = 0.05 +0.05 * (0.41 - 0.71)+ 0.52 * (0.10 - 0.35)= 0.14 +0.14 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 89%. For students who are not encouraged and study hard, the probability of brown eyes is 47%. For students who are encouraged and do not study hard, the probability of brown eyes is 65%. For students who are encouraged and study hard, the probability of brown eyes is 16%. For students who are not encouraged, the probability of studying hard is 57%. For students who are encouraged, the probability of studying hard is 6%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.16 +P(V2=1 | X=0) = 0.57 +P(V2=1 | X=1) = 0.06 +0.06 * (0.47 - 0.89)+ 0.57 * (0.16 - 0.65)= 0.21 +0.21 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 61%. For students who are encouraged, the probability of brown eyes is 31%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.31 +0.31 - 0.61 = -0.30 +-0.30 < 0",mediation,encouagement_program,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 68%. For students who are not encouraged and study hard, the probability of brown eyes is 46%. For students who are encouraged and do not study hard, the probability of brown eyes is 33%. For students who are encouraged and study hard, the probability of brown eyes is 2%. For students who are not encouraged, the probability of studying hard is 35%. For students who are encouraged, the probability of studying hard is 6%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.68 +P(Y=1 | X=0, V2=1) = 0.46 +P(Y=1 | X=1, V2=0) = 0.33 +P(Y=1 | X=1, V2=1) = 0.02 +P(V2=1 | X=0) = 0.35 +P(V2=1 | X=1) = 0.06 +0.06 * (0.46 - 0.68)+ 0.35 * (0.02 - 0.33)= 0.06 +0.06 > 0",mediation,encouagement_program,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 89%. The probability of discouragement and brown eyes is 7%. The probability of encouragement and brown eyes is 27%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.27 +0.27/0.89 - 0.07/0.11 = -0.30 +-0.30 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +18184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 88%. For students who are not encouraged and study hard, the probability of brown eyes is 58%. For students who are encouraged and do not study hard, the probability of brown eyes is 58%. For students who are encouraged and study hard, the probability of brown eyes is 23%. For students who are not encouraged, the probability of studying hard is 77%. For students who are encouraged, the probability of studying hard is 29%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.88 +P(Y=1 | X=0, V2=1) = 0.58 +P(Y=1 | X=1, V2=0) = 0.58 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.29 +0.77 * (0.23 - 0.58) + 0.29 * (0.58 - 0.88) = -0.34 +-0.34 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 95%. The probability of discouragement and brown eyes is 3%. The probability of encouragement and brown eyes is 46%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.46 +0.46/0.95 - 0.03/0.05 = -0.17 +-0.17 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +18193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 50%. For students who are encouraged, the probability of brown eyes is 39%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.39 +0.39 - 0.50 = -0.10 +-0.10 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 73%. For students who are not encouraged and study hard, the probability of brown eyes is 36%. For students who are encouraged and do not study hard, the probability of brown eyes is 46%. For students who are encouraged and study hard, the probability of brown eyes is 1%. For students who are not encouraged, the probability of studying hard is 62%. For students who are encouraged, the probability of studying hard is 14%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.36 +P(Y=1 | X=1, V2=0) = 0.46 +P(Y=1 | X=1, V2=1) = 0.01 +P(V2=1 | X=0) = 0.62 +P(V2=1 | X=1) = 0.14 +0.62 * (0.01 - 0.46) + 0.14 * (0.36 - 0.73) = -0.32 +-0.32 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 98%. For students who are not encouraged, the probability of brown eyes is 50%. For students who are encouraged, the probability of brown eyes is 39%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.39 +0.98*0.39 - 0.02*0.50 = 0.40 +0.40 > 0",mediation,encouagement_program,1,marginal,P(Y) +18207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 45%. For students who are encouraged, the probability of brown eyes is 40%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.40 +0.40 - 0.45 = -0.05 +-0.05 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 72%. For students who are encouraged, the probability of brown eyes is 46%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.46 +0.46 - 0.72 = -0.26 +-0.26 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 61%. For students who are encouraged, the probability of brown eyes is 45%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.45 +0.45 - 0.61 = -0.16 +-0.16 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged and do not study hard, the probability of brown eyes is 80%. For students who are not encouraged and study hard, the probability of brown eyes is 51%. For students who are encouraged and do not study hard, the probability of brown eyes is 49%. For students who are encouraged and study hard, the probability of brown eyes is 27%. For students who are not encouraged, the probability of studying hard is 66%. For students who are encouraged, the probability of studying hard is 15%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.80 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.27 +P(V2=1 | X=0) = 0.66 +P(V2=1 | X=1) = 0.15 +0.66 * (0.27 - 0.49) + 0.15 * (0.51 - 0.80) = -0.27 +-0.27 < 0",mediation,encouagement_program,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 53%. For students who are encouraged, the probability of brown eyes is 39%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.39 +0.39 - 0.53 = -0.14 +-0.14 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. For students who are not encouraged, the probability of brown eyes is 54%. For students who are encouraged, the probability of brown eyes is 45%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.45 +0.45 - 0.54 = -0.09 +-0.09 < 0",mediation,encouagement_program,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 98%. The probability of discouragement and brown eyes is 2%. The probability of encouragement and brown eyes is 46%.",yes,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.46 +0.46/0.98 - 0.02/0.02 = -0.27 +-0.27 < 0",mediation,encouagement_program,1,correlation,P(Y | X) +18341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. The overall probability of encouragement is 84%. For students who are not encouraged, the probability of brown eyes is 75%. For students who are encouraged, the probability of brown eyes is 55%.",no,"Let X = encouragement level; V2 = studying habit; Y = brown eyes. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.55 +0.84*0.55 - 0.16*0.75 = 0.59 +0.59 > 0",mediation,encouagement_program,1,marginal,P(Y) +18358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and brown eyes. Studying habit has a direct effect on brown eyes. Method 1: We look at how encouragement level correlates with brown eyes case by case according to studying habit. Method 2: We look directly at how encouragement level correlates with brown eyes in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,encouagement_program,2,backadj,[backdoor adjustment set for Y given X] +18361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 85%. For individuals who are male, the probability of being lactose intolerant is 41%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.41 +0.41 - 0.85 = -0.45 +-0.45 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 8%. For individuals who are not male, the probability of being lactose intolerant is 85%. For individuals who are male, the probability of being lactose intolerant is 41%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.41 +0.08*0.41 - 0.92*0.85 = 0.81 +0.81 > 0",mediation,gender_admission,1,marginal,P(Y) +18390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 90%. For individuals who are male, the probability of being lactose intolerant is 44%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.44 +0.44 - 0.90 = -0.46 +-0.46 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 55%. For individuals who are male, the probability of being lactose intolerant is 50%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.50 +0.50 - 0.55 = -0.05 +-0.05 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 3%. For individuals who are not male, the probability of being lactose intolerant is 55%. For individuals who are male, the probability of being lactose intolerant is 50%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.50 +0.03*0.50 - 0.97*0.55 = 0.55 +0.55 > 0",mediation,gender_admission,1,marginal,P(Y) +18418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 67%. For individuals who are male, the probability of being lactose intolerant is 22%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.22 +0.22 - 0.67 = -0.46 +-0.46 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 37%. For individuals who are male, the probability of being lactose intolerant is 18%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.18 +0.18 - 0.37 = -0.20 +-0.20 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 6%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 44%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 12%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 55%. For individuals who are not male, the probability of competitive department is 83%. For individuals who are male, the probability of competitive department is 13%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.44 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.55 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.13 +0.13 * (0.44 - 0.06)+ 0.83 * (0.55 - 0.12)= -0.27 +-0.27 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 6%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 44%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 12%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 55%. For individuals who are not male, the probability of competitive department is 83%. For individuals who are male, the probability of competitive department is 13%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.44 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.55 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.13 +0.83 * (0.55 - 0.12) + 0.13 * (0.44 - 0.06) = 0.11 +0.11 > 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 43%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 83%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 18%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 53%. For individuals who are not male, the probability of competitive department is 88%. For individuals who are male, the probability of competitive department is 30%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.53 +P(V2=1 | X=0) = 0.88 +P(V2=1 | X=1) = 0.30 +0.30 * (0.83 - 0.43)+ 0.88 * (0.53 - 0.18)= -0.24 +-0.24 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 43%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 83%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 18%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 53%. For individuals who are not male, the probability of competitive department is 88%. For individuals who are male, the probability of competitive department is 30%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.53 +P(V2=1 | X=0) = 0.88 +P(V2=1 | X=1) = 0.30 +0.88 * (0.53 - 0.18) + 0.30 * (0.83 - 0.43) = -0.30 +-0.30 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 14%. For individuals who are not male, the probability of being lactose intolerant is 59%. For individuals who are male, the probability of being lactose intolerant is 44%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.44 +0.14*0.44 - 0.86*0.59 = 0.57 +0.57 > 0",mediation,gender_admission,1,marginal,P(Y) +18468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 14%. The probability of non-male gender and being lactose intolerant is 51%. The probability of male gender and being lactose intolerant is 6%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.06 +0.06/0.14 - 0.51/0.86 = -0.15 +-0.15 < 0",mediation,gender_admission,1,correlation,P(Y | X) +18470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. Method 1: We look at how gender correlates with lactose intolerance case by case according to department competitiveness. Method 2: We look directly at how gender correlates with lactose intolerance in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +18473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 78%. For individuals who are male, the probability of being lactose intolerant is 42%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.42 +0.42 - 0.78 = -0.37 +-0.37 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 62%. For individuals who are male, the probability of being lactose intolerant is 39%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.39 +0.39 - 0.62 = -0.23 +-0.23 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 17%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 81%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 37%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 63%. For individuals who are not male, the probability of competitive department is 70%. For individuals who are male, the probability of competitive department is 9%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.17 +P(Y=1 | X=0, V2=1) = 0.81 +P(Y=1 | X=1, V2=0) = 0.37 +P(Y=1 | X=1, V2=1) = 0.63 +P(V2=1 | X=0) = 0.70 +P(V2=1 | X=1) = 0.09 +0.09 * (0.81 - 0.17)+ 0.70 * (0.63 - 0.37)= -0.39 +-0.39 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 51%. For individuals who are male, the probability of being lactose intolerant is 33%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.33 +0.33 - 0.51 = -0.18 +-0.18 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. Method 1: We look directly at how gender correlates with lactose intolerance in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +18544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 53%. For individuals who are male, the probability of being lactose intolerant is 41%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.41 +0.41 - 0.53 = -0.12 +-0.12 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 93%. For individuals who are male, the probability of being lactose intolerant is 51%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.51 +0.51 - 0.93 = -0.42 +-0.42 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 93%. For individuals who are male, the probability of being lactose intolerant is 51%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.51 +0.51 - 0.93 = -0.42 +-0.42 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. Method 1: We look at how gender correlates with lactose intolerance case by case according to department competitiveness. Method 2: We look directly at how gender correlates with lactose intolerance in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +18576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 23%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 67%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 30%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 56%. For individuals who are not male, the probability of competitive department is 87%. For individuals who are male, the probability of competitive department is 2%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.23 +P(Y=1 | X=0, V2=1) = 0.67 +P(Y=1 | X=1, V2=0) = 0.30 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.02 +0.87 * (0.56 - 0.30) + 0.02 * (0.67 - 0.23) = -0.09 +-0.09 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 68%. For individuals who are male, the probability of being lactose intolerant is 22%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.22 +0.22 - 0.68 = -0.47 +-0.47 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 68%. For individuals who are male, the probability of being lactose intolerant is 22%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.22 +0.22 - 0.68 = -0.47 +-0.47 < 0",mediation,gender_admission,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. Method 1: We look at how gender correlates with lactose intolerance case by case according to department competitiveness. Method 2: We look directly at how gender correlates with lactose intolerance in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +18600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 40%. For individuals who are male, the probability of being lactose intolerant is 31%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.31 +0.31 - 0.40 = -0.09 +-0.09 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 47%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 71%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 40%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 69%. For individuals who are not male, the probability of competitive department is 88%. For individuals who are male, the probability of competitive department is 66%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.47 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.40 +P(Y=1 | X=1, V2=1) = 0.69 +P(V2=1 | X=0) = 0.88 +P(V2=1 | X=1) = 0.66 +0.88 * (0.69 - 0.40) + 0.66 * (0.71 - 0.47) = -0.03 +-0.03 < 0",mediation,gender_admission,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +18636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 8%. The probability of non-male gender and being lactose intolerant is 63%. The probability of male gender and being lactose intolerant is 5%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.05 +0.05/0.08 - 0.63/0.92 = -0.09 +-0.09 < 0",mediation,gender_admission,1,correlation,P(Y | X) +18686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 25%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 60%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 21%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 72%. For individuals who are not male, the probability of competitive department is 48%. For individuals who are male, the probability of competitive department is 17%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.25 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.21 +P(Y=1 | X=1, V2=1) = 0.72 +P(V2=1 | X=0) = 0.48 +P(V2=1 | X=1) = 0.17 +0.17 * (0.60 - 0.25)+ 0.48 * (0.72 - 0.21)= -0.11 +-0.11 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. Method 1: We look at how gender correlates with lactose intolerance case by case according to department competitiveness. Method 2: We look directly at how gender correlates with lactose intolerance in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +18709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. Method 1: We look directly at how gender correlates with lactose intolerance in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,gender_admission,2,backadj,[backdoor adjustment set for Y given X] +18713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 57%. For individuals who are male, the probability of being lactose intolerant is 14%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.14 +0.14 - 0.57 = -0.42 +-0.42 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 6%. For individuals who are not male, the probability of being lactose intolerant is 57%. For individuals who are male, the probability of being lactose intolerant is 14%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.14 +0.06*0.14 - 0.94*0.57 = 0.54 +0.54 > 0",mediation,gender_admission,1,marginal,P(Y) +18727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male, the probability of being lactose intolerant is 72%. For individuals who are male, the probability of being lactose intolerant is 28%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.28 +0.28 - 0.72 = -0.45 +-0.45 < 0",mediation,gender_admission,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 11%. The probability of non-male gender and being lactose intolerant is 64%. The probability of male gender and being lactose intolerant is 3%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.64 +P(Y=1, X=1=1) = 0.03 +0.03/0.11 - 0.64/0.89 = -0.45 +-0.45 < 0",mediation,gender_admission,1,correlation,P(Y | X) +18743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 35%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 67%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 38%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 71%. For individuals who are not male, the probability of competitive department is 74%. For individuals who are male, the probability of competitive department is 20%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.67 +P(Y=1 | X=1, V2=0) = 0.38 +P(Y=1 | X=1, V2=1) = 0.71 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.20 +0.20 * (0.67 - 0.35)+ 0.74 * (0.71 - 0.38)= -0.17 +-0.17 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 4%. For individuals who are not male, the probability of being lactose intolerant is 58%. For individuals who are male, the probability of being lactose intolerant is 45%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.45 +0.04*0.45 - 0.96*0.58 = 0.58 +0.58 > 0",mediation,gender_admission,1,marginal,P(Y) +18749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 4%. The probability of non-male gender and being lactose intolerant is 56%. The probability of male gender and being lactose intolerant is 2%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.02 +0.02/0.04 - 0.56/0.96 = -0.13 +-0.13 < 0",mediation,gender_admission,1,correlation,P(Y | X) +18756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. For individuals who are not male and applicants to a non-competitive department, the probability of being lactose intolerant is 54%. For individuals who are not male and applicants to a competitive department, the probability of being lactose intolerant is 93%. For individuals who are male and applicants to a non-competitive department, the probability of being lactose intolerant is 33%. For individuals who are male and applicants to a competitive department, the probability of being lactose intolerant is 67%. For individuals who are not male, the probability of competitive department is 70%. For individuals who are male, the probability of competitive department is 25%.",no,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.54 +P(Y=1 | X=0, V2=1) = 0.93 +P(Y=1 | X=1, V2=0) = 0.33 +P(Y=1 | X=1, V2=1) = 0.67 +P(V2=1 | X=0) = 0.70 +P(V2=1 | X=1) = 0.25 +0.25 * (0.93 - 0.54)+ 0.70 * (0.67 - 0.33)= -0.17 +-0.17 < 0",mediation,gender_admission,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +18760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 1%. For individuals who are not male, the probability of being lactose intolerant is 81%. For individuals who are male, the probability of being lactose intolerant is 42%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.42 +0.01*0.42 - 0.99*0.81 = 0.81 +0.81 > 0",mediation,gender_admission,1,marginal,P(Y) +18763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and lactose intolerance. Department competitiveness has a direct effect on lactose intolerance. The overall probability of male gender is 1%. The probability of non-male gender and being lactose intolerant is 80%. The probability of male gender and being lactose intolerant is 1%.",yes,"Let X = gender; V2 = department competitiveness; Y = lactose intolerance. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.80 +P(Y=1, X=1=1) = 0.01 +0.01/0.01 - 0.80/0.99 = -0.40 +-0.40 < 0",mediation,gender_admission,1,correlation,P(Y | X) +18784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 47%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 65%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 51%. For individuals who are male and applicants to a competitive department, the probability of freckles is 70%. For individuals who are not male and out-of-state residents, the probability of competitive department is 14%. For individuals who are not male and in-state residents, the probability of competitive department is 60%. For individuals who are male and out-of-state residents, the probability of competitive department is 28%. For individuals who are male and in-state residents, the probability of competitive department is 68%. The overall probability of in-state residency is 12%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.14 +P(V3=1 | X=0, V2=1) = 0.60 +P(V3=1 | X=1, V2=0) = 0.28 +P(V3=1 | X=1, V2=1) = 0.68 +P(V2=1) = 0.12 +0.12 * 0.65 * (0.68 - 0.28)+ 0.88 * 0.65 * (0.60 - 0.14)= 0.03 +0.03 > 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +18786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 47%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 65%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 51%. For individuals who are male and applicants to a competitive department, the probability of freckles is 70%. For individuals who are not male and out-of-state residents, the probability of competitive department is 14%. For individuals who are not male and in-state residents, the probability of competitive department is 60%. For individuals who are male and out-of-state residents, the probability of competitive department is 28%. For individuals who are male and in-state residents, the probability of competitive department is 68%. The overall probability of in-state residency is 12%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.14 +P(V3=1 | X=0, V2=1) = 0.60 +P(V3=1 | X=1, V2=0) = 0.28 +P(V3=1 | X=1, V2=1) = 0.68 +P(V2=1) = 0.12 +0.12 * (0.70 - 0.51) * 0.60 + 0.88 * (0.65 - 0.47) * 0.28 = 0.03 +0.03 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +18793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look directly at how gender correlates with freckles in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +18797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 50%. For individuals who are male, the probability of freckles is 82%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.82 +0.82 - 0.50 = 0.32 +0.32 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +18807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look directly at how gender correlates with freckles in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +18834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look at how gender correlates with freckles case by case according to department competitiveness. Method 2: We look directly at how gender correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +18844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 11%. For individuals who are not male, the probability of freckles is 43%. For individuals who are male, the probability of freckles is 74%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.74 +0.11*0.74 - 0.89*0.43 = 0.46 +0.46 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +18851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 81%. For individuals who are male, the probability of freckles is 48%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.48 +0.48 - 0.81 = -0.33 +-0.33 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look at how gender correlates with freckles case by case according to department competitiveness. Method 2: We look directly at how gender correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +18873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 7%. For individuals who are not male, the probability of freckles is 38%. For individuals who are male, the probability of freckles is 40%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.07*0.40 - 0.93*0.38 = 0.38 +0.38 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +18874,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 7%. The probability of non-male gender and freckles is 34%. The probability of male gender and freckles is 3%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.07 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.03 +0.03/0.07 - 0.34/0.93 = 0.03 +0.03 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +18888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 12%. The probability of non-male gender and freckles is 34%. The probability of male gender and freckles is 8%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.08 +0.08/0.12 - 0.34/0.88 = 0.30 +0.30 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +18910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 56%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 78%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 53%. For individuals who are male and applicants to a competitive department, the probability of freckles is 76%. For individuals who are not male and out-of-state residents, the probability of competitive department is 39%. For individuals who are not male and in-state residents, the probability of competitive department is 82%. For individuals who are male and out-of-state residents, the probability of competitive department is 51%. For individuals who are male and in-state residents, the probability of competitive department is 77%. The overall probability of in-state residency is 7%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.76 +P(V3=1 | X=0, V2=0) = 0.39 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.51 +P(V3=1 | X=1, V2=1) = 0.77 +P(V2=1) = 0.07 +0.07 * 0.78 * (0.77 - 0.51)+ 0.93 * 0.78 * (0.82 - 0.39)= 0.03 +0.03 > 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +18934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 68%. For individuals who are male, the probability of freckles is 38%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.38 - 0.68 = -0.30 +-0.30 < 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 49%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 74%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 52%. For individuals who are male and applicants to a competitive department, the probability of freckles is 66%. For individuals who are not male and out-of-state residents, the probability of competitive department is 18%. For individuals who are not male and in-state residents, the probability of competitive department is 50%. For individuals who are male and out-of-state residents, the probability of competitive department is 8%. For individuals who are male and in-state residents, the probability of competitive department is 66%. The overall probability of in-state residency is 13%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.08 +P(V3=1 | X=1, V2=1) = 0.66 +P(V2=1) = 0.13 +0.13 * (0.66 - 0.52) * 0.50 + 0.87 * (0.74 - 0.49) * 0.08 = 0.02 +0.02 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +18962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 56%. For individuals who are male, the probability of freckles is 88%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.88 +0.88 - 0.56 = 0.32 +0.32 > 0",arrowhead,gender_admission_state,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +18970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 6%. For individuals who are not male, the probability of freckles is 56%. For individuals who are male, the probability of freckles is 88%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.88 +0.06*0.88 - 0.94*0.56 = 0.57 +0.57 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +18988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look at how gender correlates with freckles case by case according to department competitiveness. Method 2: We look directly at how gender correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +19006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 26%. For individuals who are male, the probability of freckles is 64%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.64 +0.64 - 0.26 = 0.37 +0.37 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 26%. For individuals who are male, the probability of freckles is 64%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.64 +0.64 - 0.26 = 0.37 +0.37 > 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 7%. The probability of non-male gender and freckles is 53%. The probability of male gender and freckles is 4%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.07 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.04 +0.04/0.07 - 0.53/0.93 = -0.00 +0.00 = 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +19055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 19%. For individuals who are not male, the probability of freckles is 49%. For individuals who are male, the probability of freckles is 78%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.78 +0.19*0.78 - 0.81*0.49 = 0.54 +0.54 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +19057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 19%. The probability of non-male gender and freckles is 40%. The probability of male gender and freckles is 15%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.15 +0.15/0.19 - 0.40/0.81 = 0.30 +0.30 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +19067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 60%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 90%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 34%. For individuals who are male and applicants to a competitive department, the probability of freckles is 58%. For individuals who are not male and out-of-state residents, the probability of competitive department is 61%. For individuals who are not male and in-state residents, the probability of competitive department is 91%. For individuals who are male and out-of-state residents, the probability of competitive department is 19%. For individuals who are male and in-state residents, the probability of competitive department is 48%. The overall probability of in-state residency is 6%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.34 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0, V2=0) = 0.61 +P(V3=1 | X=0, V2=1) = 0.91 +P(V3=1 | X=1, V2=0) = 0.19 +P(V3=1 | X=1, V2=1) = 0.48 +P(V2=1) = 0.06 +0.06 * (0.58 - 0.34) * 0.91 + 0.94 * (0.90 - 0.60) * 0.19 = -0.28 +-0.28 < 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male, the probability of freckles is 59%. For individuals who are male, the probability of freckles is 55%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.55 +0.55 - 0.59 = -0.04 +-0.04 < 0",arrowhead,gender_admission_state,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 35%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 58%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 63%. For individuals who are male and applicants to a competitive department, the probability of freckles is 83%. For individuals who are not male and out-of-state residents, the probability of competitive department is 25%. For individuals who are not male and in-state residents, the probability of competitive department is 48%. For individuals who are male and out-of-state residents, the probability of competitive department is 51%. For individuals who are male and in-state residents, the probability of competitive department is 72%. The overall probability of in-state residency is 8%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0, V2=0) = 0.25 +P(V3=1 | X=0, V2=1) = 0.48 +P(V3=1 | X=1, V2=0) = 0.51 +P(V3=1 | X=1, V2=1) = 0.72 +P(V2=1) = 0.08 +0.08 * (0.83 - 0.63) * 0.48 + 0.92 * (0.58 - 0.35) * 0.51 = 0.27 +0.27 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 13%. For individuals who are not male, the probability of freckles is 41%. For individuals who are male, the probability of freckles is 74%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.74 +0.13*0.74 - 0.87*0.41 = 0.45 +0.45 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +19112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 80%. The probability of non-male gender and freckles is 14%. The probability of male gender and freckles is 33%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.33 +0.33/0.80 - 0.14/0.20 = -0.31 +-0.31 < 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +19124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 16%. For individuals who are not male, the probability of freckles is 56%. For individuals who are male, the probability of freckles is 62%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.62 +0.16*0.62 - 0.84*0.56 = 0.57 +0.57 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +19126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 16%. The probability of non-male gender and freckles is 48%. The probability of male gender and freckles is 10%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.10 +0.10/0.16 - 0.48/0.84 = 0.04 +0.04 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +19135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 43%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 63%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 66%. For individuals who are male and applicants to a competitive department, the probability of freckles is 88%. For individuals who are not male and out-of-state residents, the probability of competitive department is 21%. For individuals who are not male and in-state residents, the probability of competitive department is 44%. For individuals who are male and out-of-state residents, the probability of competitive department is 57%. For individuals who are male and in-state residents, the probability of competitive department is 88%. The overall probability of in-state residency is 14%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0, V2=0) = 0.21 +P(V3=1 | X=0, V2=1) = 0.44 +P(V3=1 | X=1, V2=0) = 0.57 +P(V3=1 | X=1, V2=1) = 0.88 +P(V2=1) = 0.14 +0.14 * 0.63 * (0.88 - 0.57)+ 0.86 * 0.63 * (0.44 - 0.21)= 0.09 +0.09 > 0",arrowhead,gender_admission_state,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 11%. For individuals who are not male, the probability of freckles is 48%. For individuals who are male, the probability of freckles is 79%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.79 +0.11*0.79 - 0.89*0.48 = 0.51 +0.51 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +19142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look at how gender correlates with freckles case by case according to department competitiveness. Method 2: We look directly at how gender correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +19156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look at how gender correlates with freckles case by case according to department competitiveness. Method 2: We look directly at how gender correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +19171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. Method 1: We look directly at how gender correlates with freckles in general. Method 2: We look at this correlation case by case according to department competitiveness.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_admission_state,2,backadj,[backdoor adjustment set for Y given X] +19181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 83%. For individuals who are not male, the probability of freckles is 68%. For individuals who are male, the probability of freckles is 38%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.38 +0.83*0.38 - 0.17*0.68 = 0.43 +0.43 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +19192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. For individuals who are not male and applicants to a non-competitive department, the probability of freckles is 29%. For individuals who are not male and applicants to a competitive department, the probability of freckles is 48%. For individuals who are male and applicants to a non-competitive department, the probability of freckles is 52%. For individuals who are male and applicants to a competitive department, the probability of freckles is 77%. For individuals who are not male and out-of-state residents, the probability of competitive department is 33%. For individuals who are not male and in-state residents, the probability of competitive department is 68%. For individuals who are male and out-of-state residents, the probability of competitive department is 58%. For individuals who are male and in-state residents, the probability of competitive department is 91%. The overall probability of in-state residency is 15%.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.33 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.15 +0.15 * (0.77 - 0.52) * 0.68 + 0.85 * (0.48 - 0.29) * 0.58 = 0.24 +0.24 > 0",arrowhead,gender_admission_state,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19194,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 2%. For individuals who are not male, the probability of freckles is 37%. For individuals who are male, the probability of freckles is 68%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.68 +0.02*0.68 - 0.98*0.37 = 0.37 +0.37 > 0",arrowhead,gender_admission_state,1,marginal,P(Y) +19197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and freckles. Residency status has a direct effect on department competitiveness and freckles. Department competitiveness has a direct effect on freckles. Residency status is unobserved. The overall probability of male gender is 2%. The probability of non-male gender and freckles is 36%. The probability of male gender and freckles is 1%.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.36/0.98 = 0.31 +0.31 > 0",arrowhead,gender_admission_state,1,correlation,P(Y | X) +19204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 70%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 48%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 44%. For individuals who like spicy food and white-collar workers, the probability of high salary is 17%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 74%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 45%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 49%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 18%. The overall probability of high skill level is 95%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.74 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.18 +P(V2=1) = 0.95 +0.95 * 0.48 * (0.18 - 0.49)+ 0.05 * 0.48 * (0.45 - 0.74)= 0.06 +0.06 > 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look at how liking spicy food correlates with salary case by case according to occupation. Method 2: We look directly at how liking spicy food correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +19226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look at how liking spicy food correlates with salary case by case according to occupation. Method 2: We look directly at how liking spicy food correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +19229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 19%. For individuals who like spicy food, the probability of high salary is 40%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.40 +0.40 - 0.19 = 0.21 +0.21 > 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +19239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 83%. The probability of not liking spicy food and high salary is 3%. The probability of liking spicy food and high salary is 33%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.33 +0.33/0.83 - 0.03/0.17 = 0.21 +0.21 > 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 54%. For individuals who like spicy food, the probability of high salary is 41%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.41 +0.41 - 0.54 = -0.12 +-0.12 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +19266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 2%. The probability of not liking spicy food and high salary is 53%. The probability of liking spicy food and high salary is 1%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.53/0.98 = -0.13 +-0.13 < 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 22%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 2%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 50%. For individuals who like spicy food and white-collar workers, the probability of high salary is 26%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 57%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 24%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 99%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 76%. The overall probability of high skill level is 96%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.26 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.76 +P(V2=1) = 0.96 +0.96 * 0.02 * (0.76 - 0.99)+ 0.04 * 0.02 * (0.24 - 0.57)= -0.11 +-0.11 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 22%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 2%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 50%. For individuals who like spicy food and white-collar workers, the probability of high salary is 26%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 57%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 24%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 99%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 76%. The overall probability of high skill level is 96%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.26 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.76 +P(V2=1) = 0.96 +0.96 * (0.26 - 0.50) * 0.24 + 0.04 * (0.02 - 0.22) * 0.99 = 0.27 +0.27 > 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 48%. For individuals who like spicy food, the probability of high salary is 31%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.31 +0.31 - 0.48 = -0.17 +-0.17 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 3%. For individuals who do not like spicy food, the probability of high salary is 48%. For individuals who like spicy food, the probability of high salary is 31%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.31 +0.03*0.31 - 0.97*0.48 = 0.47 +0.47 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 3%. The probability of not liking spicy food and high salary is 46%. The probability of liking spicy food and high salary is 1%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.46/0.97 = -0.17 +-0.17 < 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 35%. For individuals who like spicy food, the probability of high salary is 33%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.33 +0.33 - 0.35 = -0.01 +-0.01 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 44%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 19%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 44%. For individuals who like spicy food and white-collar workers, the probability of high salary is 19%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 71%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 32%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 65%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 37%. The overall probability of high skill level is 86%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.19 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.71 +P(V3=1 | X=0, V2=1) = 0.32 +P(V3=1 | X=1, V2=0) = 0.65 +P(V3=1 | X=1, V2=1) = 0.37 +P(V2=1) = 0.86 +0.86 * (0.19 - 0.44) * 0.32 + 0.14 * (0.19 - 0.44) * 0.65 = -0.00 +0.00 = 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 81%. For individuals who do not like spicy food, the probability of high salary is 43%. For individuals who like spicy food, the probability of high salary is 63%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.63 +0.81*0.63 - 0.19*0.43 = 0.59 +0.59 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look directly at how liking spicy food correlates with salary in general. Method 2: We look at this correlation case by case according to occupation.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +19347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 58%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 41%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 65%. For individuals who like spicy food and white-collar workers, the probability of high salary is 38%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 100%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 45%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 72%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 48%. The overall probability of high skill level is 91%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.41 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0, V2=0) = 1.00 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.48 +P(V2=1) = 0.91 +0.91 * (0.38 - 0.65) * 0.45 + 0.09 * (0.41 - 0.58) * 0.72 = 0.01 +0.01 > 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 35%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 14%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 65%. For individuals who like spicy food and white-collar workers, the probability of high salary is 37%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 48%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 26%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 72%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 52%. The overall probability of high skill level is 87%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.37 +P(V3=1 | X=0, V2=0) = 0.48 +P(V3=1 | X=0, V2=1) = 0.26 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.87 +0.87 * 0.14 * (0.52 - 0.72)+ 0.13 * 0.14 * (0.26 - 0.48)= -0.06 +-0.06 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 35%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 14%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 65%. For individuals who like spicy food and white-collar workers, the probability of high salary is 37%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 48%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 26%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 72%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 52%. The overall probability of high skill level is 87%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.37 +P(V3=1 | X=0, V2=0) = 0.48 +P(V3=1 | X=0, V2=1) = 0.26 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.87 +0.87 * (0.37 - 0.65) * 0.26 + 0.13 * (0.14 - 0.35) * 0.72 = 0.29 +0.29 > 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 82%. The probability of not liking spicy food and high salary is 5%. The probability of liking spicy food and high salary is 41%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.41 +0.41/0.82 - 0.05/0.18 = 0.21 +0.21 > 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 16%. For individuals who do not like spicy food, the probability of high salary is 52%. For individuals who like spicy food, the probability of high salary is 35%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.16*0.35 - 0.84*0.52 = 0.49 +0.49 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 7%. For individuals who do not like spicy food, the probability of high salary is 44%. For individuals who like spicy food, the probability of high salary is 29%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.29 +0.07*0.29 - 0.93*0.44 = 0.43 +0.43 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 38%. For individuals who like spicy food, the probability of high salary is 48%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.48 +0.48 - 0.38 = 0.10 +0.10 > 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 40%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 20%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 61%. For individuals who like spicy food and white-collar workers, the probability of high salary is 39%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 42%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 9%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 89%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 58%. The overall probability of high skill level is 93%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.42 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.89 +P(V3=1 | X=1, V2=1) = 0.58 +P(V2=1) = 0.93 +0.93 * 0.20 * (0.58 - 0.89)+ 0.07 * 0.20 * (0.09 - 0.42)= -0.12 +-0.12 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 35%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 13%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 63%. For individuals who like spicy food and white-collar workers, the probability of high salary is 42%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 55%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 33%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 93%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 53%. The overall probability of high skill level is 92%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.55 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.93 +P(V3=1 | X=1, V2=1) = 0.53 +P(V2=1) = 0.92 +0.92 * 0.13 * (0.53 - 0.93)+ 0.08 * 0.13 * (0.33 - 0.55)= -0.05 +-0.05 < 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 96%. The probability of not liking spicy food and high salary is 1%. The probability of liking spicy food and high salary is 49%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.49 +0.49/0.96 - 0.01/0.04 = 0.23 +0.23 > 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 67%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 45%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 42%. For individuals who like spicy food and white-collar workers, the probability of high salary is 25%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 66%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 44%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 39%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 9%. The overall probability of high skill level is 80%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.66 +P(V3=1 | X=0, V2=1) = 0.44 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.80 +0.80 * 0.45 * (0.09 - 0.39)+ 0.20 * 0.45 * (0.44 - 0.66)= 0.08 +0.08 > 0",arrowhead,gender_pay,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +19459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 67%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 45%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 42%. For individuals who like spicy food and white-collar workers, the probability of high salary is 25%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 66%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 44%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 39%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 9%. The overall probability of high skill level is 80%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.66 +P(V3=1 | X=0, V2=1) = 0.44 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.80 +0.80 * (0.25 - 0.42) * 0.44 + 0.20 * (0.45 - 0.67) * 0.39 = -0.25 +-0.25 < 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 7%. For individuals who do not like spicy food, the probability of high salary is 56%. For individuals who like spicy food, the probability of high salary is 39%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.39 +0.07*0.39 - 0.93*0.56 = 0.55 +0.55 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look at how liking spicy food correlates with salary case by case according to occupation. Method 2: We look directly at how liking spicy food correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +19466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 49%. For individuals who like spicy food, the probability of high salary is 36%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.36 - 0.49 = -0.13 +-0.13 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +19478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look at how liking spicy food correlates with salary case by case according to occupation. Method 2: We look directly at how liking spicy food correlates with salary in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +19482,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 25%. For individuals who like spicy food, the probability of high salary is 44%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.44 +0.44 - 0.25 = 0.19 +0.19 > 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 8%. The probability of not liking spicy food and high salary is 46%. The probability of liking spicy food and high salary is 3%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.03 +0.03/0.08 - 0.46/0.92 = -0.18 +-0.18 < 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 47%. For individuals who like spicy food, the probability of high salary is 40%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.40 +0.40 - 0.47 = -0.07 +-0.07 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +19516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 13%. For individuals who do not like spicy food, the probability of high salary is 47%. For individuals who like spicy food, the probability of high salary is 40%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.40 +0.13*0.40 - 0.87*0.47 = 0.46 +0.46 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 46%. For individuals who like spicy food, the probability of high salary is 35%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.35 +0.35 - 0.46 = -0.11 +-0.11 < 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +19543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 62%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 39%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 41%. For individuals who like spicy food and white-collar workers, the probability of high salary is 19%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 90%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 67%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 58%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 26%. The overall probability of high skill level is 92%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.90 +P(V3=1 | X=0, V2=1) = 0.67 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.92 +0.92 * (0.19 - 0.41) * 0.67 + 0.08 * (0.39 - 0.62) * 0.58 = -0.21 +-0.21 < 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 2%. For individuals who do not like spicy food, the probability of high salary is 46%. For individuals who like spicy food, the probability of high salary is 35%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.35 +0.02*0.35 - 0.98*0.46 = 0.46 +0.46 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 46%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 27%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 47%. For individuals who like spicy food and white-collar workers, the probability of high salary is 23%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 84%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 33%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 84%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 51%. The overall probability of high skill level is 84%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.84 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.84 +P(V3=1 | X=1, V2=1) = 0.51 +P(V2=1) = 0.84 +0.84 * (0.23 - 0.47) * 0.33 + 0.16 * (0.27 - 0.46) * 0.84 = -0.00 +0.00 = 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. Method 1: We look directly at how liking spicy food correlates with salary in general. Method 2: We look at this correlation case by case according to occupation.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,gender_pay,2,backadj,[backdoor adjustment set for Y given X] +19587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 90%. For individuals who do not like spicy food, the probability of high salary is 39%. For individuals who like spicy food, the probability of high salary is 56%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.56 +0.90*0.56 - 0.10*0.39 = 0.54 +0.54 > 0",arrowhead,gender_pay,1,marginal,P(Y) +19593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 43%. For individuals who like spicy food, the probability of high salary is 47%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.47 +0.47 - 0.43 = 0.05 +0.05 > 0",arrowhead,gender_pay,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +19598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food and blue-collar workers, the probability of high salary is 49%. For individuals who do not like spicy food and white-collar workers, the probability of high salary is 28%. For individuals who like spicy food and blue-collar workers, the probability of high salary is 53%. For individuals who like spicy food and white-collar workers, the probability of high salary is 30%. For individuals who do not like spicy food and with low skill levels, the probability of white-collar job is 57%. For individuals who do not like spicy food and with high skill levels, the probability of white-collar job is 30%. For individuals who like spicy food and with low skill levels, the probability of white-collar job is 68%. For individuals who like spicy food and with high skill levels, the probability of white-collar job is 25%. The overall probability of high skill level is 95%.",yes,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.30 +P(V3=1 | X=1, V2=0) = 0.68 +P(V3=1 | X=1, V2=1) = 0.25 +P(V2=1) = 0.95 +0.95 * (0.30 - 0.53) * 0.30 + 0.05 * (0.28 - 0.49) * 0.68 = 0.03 +0.03 > 0",arrowhead,gender_pay,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +19609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. For individuals who do not like spicy food, the probability of high salary is 46%. For individuals who like spicy food, the probability of high salary is 31%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.31 +0.31 - 0.46 = -0.15 +-0.15 < 0",arrowhead,gender_pay,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +19616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. The overall probability of liking spicy food is 13%. The probability of not liking spicy food and high salary is 40%. The probability of liking spicy food and high salary is 4%.",no,"Let V2 = skill; X = liking spicy food; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.04 +0.04/0.13 - 0.40/0.87 = -0.15 +-0.15 < 0",arrowhead,gender_pay,1,correlation,P(Y | X) +19635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look directly at how drinking coffee correlates with broken bones in general. Method 2: We look at this correlation case by case according to hospitalization status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +19654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look at how drinking coffee correlates with broken bones case by case according to hospitalization status. Method 2: We look directly at how drinking coffee correlates with broken bones in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +19658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 41%. For people who do not drink coffee and non-hospitalized individuals, the probability of broken bones is 93%. For people who do not drink coffee and hospitalized individuals, the probability of broken bones is 69%. For people who drink coffee and non-hospitalized individuals, the probability of broken bones is 93%. For people who drink coffee and hospitalized individuals, the probability of broken bones is 75%.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.41 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.75 +0.75 - (0.41*0.75 + 0.59*0.69) = 0.03 +0.03 > 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +19667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.41.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 96%. For people who do not drink coffee and non-hospitalized individuals, the probability of broken bones is 96%. For people who do not drink coffee and hospitalized individuals, the probability of broken bones is 61%. For people who drink coffee and non-hospitalized individuals, the probability of broken bones is 94%. For people who drink coffee and hospitalized individuals, the probability of broken bones is 74%.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.61 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.96*0.74 + 0.04*0.61) = 0.00 +0.00 = 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +19680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 44%. For people who do not drink coffee, the probability of broken bones is 96%. For people who drink coffee, the probability of broken bones is 96%.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.96 +0.44*0.96 - 0.56*0.96 = 0.96 +0.96 > 0",collision,hospitalization,1,marginal,P(Y) +19701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 94%. For people who do not drink coffee, the probability of broken bones is 95%. For people who drink coffee, the probability of broken bones is 95%.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.95 +0.94*0.95 - 0.06*0.95 = 0.95 +0.95 > 0",collision,hospitalization,1,marginal,P(Y) +19711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 88%. For people who do not drink coffee, the probability of broken bones is 87%. For people who drink coffee, the probability of broken bones is 87%.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.88*0.87 - 0.12*0.87 = 0.87 +0.87 > 0",collision,hospitalization,1,marginal,P(Y) +19738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 51%. For people who do not drink coffee and non-hospitalized individuals, the probability of broken bones is 98%. For people who do not drink coffee and hospitalized individuals, the probability of broken bones is 91%. For people who drink coffee and non-hospitalized individuals, the probability of broken bones is 99%. For people who drink coffee and hospitalized individuals, the probability of broken bones is 94%.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.94 +0.94 - (0.51*0.94 + 0.49*0.91) = 0.01 +0.01 > 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +19754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look at how drinking coffee correlates with broken bones case by case according to hospitalization status. Method 2: We look directly at how drinking coffee correlates with broken bones in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +19755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look directly at how drinking coffee correlates with broken bones in general. Method 2: We look at this correlation case by case according to hospitalization status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +19767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.10.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.25.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.16.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look directly at how drinking coffee correlates with broken bones in general. Method 2: We look at this correlation case by case according to hospitalization status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +19826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.04.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 55%. For people who do not drink coffee and non-hospitalized individuals, the probability of broken bones is 95%. For people who do not drink coffee and hospitalized individuals, the probability of broken bones is 83%. For people who drink coffee and non-hospitalized individuals, the probability of broken bones is 93%. For people who drink coffee and hospitalized individuals, the probability of broken bones is 74%.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.55*0.74 + 0.45*0.83) = -0.06 +-0.06 < 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +19868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 84%. For people who do not drink coffee and non-hospitalized individuals, the probability of broken bones is 92%. For people who do not drink coffee and hospitalized individuals, the probability of broken bones is 71%. For people who drink coffee and non-hospitalized individuals, the probability of broken bones is 88%. For people who drink coffee and hospitalized individuals, the probability of broken bones is 58%.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.84 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.58 +0.58 - (0.84*0.58 + 0.16*0.71) = -0.04 +-0.04 < 0",collision,hospitalization,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +19871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. The overall probability of drinking coffee is 82%. For people who do not drink coffee, the probability of broken bones is 85%. For people who drink coffee, the probability of broken bones is 85%.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.85 +0.82*0.85 - 0.18*0.85 = 0.85 +0.85 > 0",collision,hospitalization,1,marginal,P(Y) +19886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.13.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is 0.04.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. Method 1: We look at how drinking coffee correlates with broken bones case by case according to hospitalization status. Method 2: We look directly at how drinking coffee correlates with broken bones in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,hospitalization,2,backadj,[backdoor adjustment set for Y given X] +19916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.18.",no,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on hospitalization status. Broken bones has a direct effect on hospitalization status. For hospitalized individuals, the correlation between drinking coffee and broken bones is -0.18.",yes,"Let Y = broken bones; X = drinking coffee; V3 = hospitalization status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,hospitalization,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is -0.01.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +19939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 5%. For people who do not like spicy food and single people, the probability of attractive appearance is 92%. For people who do not like spicy food and in a relationship, the probability of attractive appearance is 73%. For people who like spicy food and single people, the probability of attractive appearance is 86%. For people who like spicy food and in a relationship, the probability of attractive appearance is 71%.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.86 +P(Y=1 | X=1, V3=1) = 0.71 +0.71 - (0.05*0.71 + 0.95*0.73) = -0.02 +-0.02 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +19954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look at how liking spicy food correlates with appearance case by case according to relationship status. Method 2: We look directly at how liking spicy food correlates with appearance in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +19998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 16%. For people who do not like spicy food and single people, the probability of attractive appearance is 99%. For people who do not like spicy food and in a relationship, the probability of attractive appearance is 46%. For people who like spicy food and single people, the probability of attractive appearance is 94%. For people who like spicy food and in a relationship, the probability of attractive appearance is 82%.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.16 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.82 +0.82 - (0.16*0.82 + 0.84*0.46) = 0.25 +0.25 > 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +20004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look at how liking spicy food correlates with appearance case by case according to relationship status. Method 2: We look directly at how liking spicy food correlates with appearance in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look directly at how liking spicy food correlates with appearance in general. Method 2: We look at this correlation case by case according to relationship status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look at how liking spicy food correlates with appearance case by case according to relationship status. Method 2: We look directly at how liking spicy food correlates with appearance in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is -0.07.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 1%. For people who do not like spicy food and single people, the probability of attractive appearance is 92%. For people who do not like spicy food and in a relationship, the probability of attractive appearance is 66%. For people who like spicy food and single people, the probability of attractive appearance is 91%. For people who like spicy food and in a relationship, the probability of attractive appearance is 74%.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.01*0.74 + 0.99*0.66) = 0.08 +0.08 > 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +20039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 1%. For people who do not like spicy food and single people, the probability of attractive appearance is 92%. For people who do not like spicy food and in a relationship, the probability of attractive appearance is 66%. For people who like spicy food and single people, the probability of attractive appearance is 91%. For people who like spicy food and in a relationship, the probability of attractive appearance is 74%.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.01*0.74 + 0.99*0.66) = 0.08 +0.08 > 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +20047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is -0.03.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is -0.03.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look directly at how liking spicy food correlates with appearance in general. Method 2: We look at this correlation case by case according to relationship status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is 0.07.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 20%. For people who do not like spicy food and single people, the probability of attractive appearance is 27%. For people who do not like spicy food and in a relationship, the probability of attractive appearance is 5%. For people who like spicy food and single people, the probability of attractive appearance is 14%. For people who like spicy food and in a relationship, the probability of attractive appearance is 4%.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.20 +P(Y=1 | X=0, V3=0) = 0.27 +P(Y=1 | X=0, V3=1) = 0.05 +P(Y=1 | X=1, V3=0) = 0.14 +P(Y=1 | X=1, V3=1) = 0.04 +0.04 - (0.20*0.04 + 0.80*0.05) = -0.01 +-0.01 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +20135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look directly at how liking spicy food correlates with appearance in general. Method 2: We look at this correlation case by case according to relationship status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look at how liking spicy food correlates with appearance case by case according to relationship status. Method 2: We look directly at how liking spicy food correlates with appearance in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is -0.04.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 14%. For people who do not like spicy food and single people, the probability of attractive appearance is 96%. For people who do not like spicy food and in a relationship, the probability of attractive appearance is 88%. For people who like spicy food and single people, the probability of attractive appearance is 98%. For people who like spicy food and in a relationship, the probability of attractive appearance is 84%.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.14 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.84 +0.84 - (0.14*0.84 + 0.86*0.88) = -0.03 +-0.03 < 0",collision,man_in_relationship,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +20167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is -0.02.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 11%. For people who do not like spicy food, the probability of attractive appearance is 97%. For people who like spicy food, the probability of attractive appearance is 97%.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.97 +0.11*0.97 - 0.89*0.97 = 0.97 +0.97 > 0",collision,man_in_relationship,1,marginal,P(Y) +20171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 11%. For people who do not like spicy food, the probability of attractive appearance is 97%. For people who like spicy food, the probability of attractive appearance is 97%.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.97 +0.11*0.97 - 0.89*0.97 = 0.97 +0.97 > 0",collision,man_in_relationship,1,marginal,P(Y) +20191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. The overall probability of liking spicy food is 19%. For people who do not like spicy food, the probability of attractive appearance is 88%. For people who like spicy food, the probability of attractive appearance is 88%.",no,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.19*0.88 - 0.81*0.88 = 0.88 +0.88 > 0",collision,man_in_relationship,1,marginal,P(Y) +20197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. For people in a relationship, the correlation between liking spicy food and attractive appearance is 0.02.",yes,"Let Y = appearance; X = liking spicy food; V3 = relationship status. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,man_in_relationship,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +20215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on relationship status. Appearance has a direct effect on relationship status. Method 1: We look directly at how liking spicy food correlates with appearance in general. Method 2: We look at this correlation case by case according to relationship status.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,man_in_relationship,2,backadj,[backdoor adjustment set for Y given X] +20222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 90%. For children with intelligent parents, the probability of being lactose intolerant is 56%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.56 +0.56 - 0.90 = -0.34 +-0.34 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 6%. The probability of unintelligent parents and being lactose intolerant is 83%. The probability of intelligent parents and being lactose intolerant is 3%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.83 +P(Y=1, X=1=1) = 0.03 +0.03/0.06 - 0.83/0.94 = -0.34 +-0.34 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +20238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 93%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 60%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 63%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 34%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 98%. For children with unintelligent parents and confounder active, the probability of high parental social status is 91%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 56%. For children with intelligent parents and confounder active, the probability of high parental social status is 51%. The overall probability of confounder active is 49%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0, V2=0) = 0.98 +P(V3=1 | X=0, V2=1) = 0.91 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.51 +P(V2=1) = 0.49 +0.49 * 0.60 * (0.51 - 0.56)+ 0.51 * 0.60 * (0.91 - 0.98)= 0.14 +0.14 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 93%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 60%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 63%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 34%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 98%. For children with unintelligent parents and confounder active, the probability of high parental social status is 91%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 56%. For children with intelligent parents and confounder active, the probability of high parental social status is 51%. The overall probability of confounder active is 49%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0, V2=0) = 0.98 +P(V3=1 | X=0, V2=1) = 0.91 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.51 +P(V2=1) = 0.49 +0.49 * (0.34 - 0.63) * 0.91 + 0.51 * (0.60 - 0.93) * 0.56 = -0.27 +-0.27 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +20242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 3%. For children with unintelligent parents, the probability of being lactose intolerant is 62%. For children with intelligent parents, the probability of being lactose intolerant is 47%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.47 +0.03*0.47 - 0.97*0.62 = 0.61 +0.61 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. Method 1: We look directly at how parents' intelligence correlates with lactose intolerance in general. Method 2: We look at this correlation case by case according to parents' social status.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +20258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 19%. The probability of unintelligent parents and being lactose intolerant is 53%. The probability of intelligent parents and being lactose intolerant is 8%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.08 +0.08/0.19 - 0.53/0.81 = -0.23 +-0.23 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +20280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 82%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 46%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 48%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 14%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 63%. For children with unintelligent parents and confounder active, the probability of high parental social status is 68%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 16%. For children with intelligent parents and confounder active, the probability of high parental social status is 30%. The overall probability of confounder active is 53%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.82 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0, V2=0) = 0.63 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.53 +0.53 * 0.46 * (0.30 - 0.16)+ 0.47 * 0.46 * (0.68 - 0.63)= 0.15 +0.15 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 16%. For children with unintelligent parents, the probability of being lactose intolerant is 58%. For children with intelligent parents, the probability of being lactose intolerant is 39%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.39 +0.16*0.39 - 0.84*0.58 = 0.55 +0.55 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 7%. For children with unintelligent parents, the probability of being lactose intolerant is 86%. For children with intelligent parents, the probability of being lactose intolerant is 35%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.35 +0.07*0.35 - 0.93*0.86 = 0.82 +0.82 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 86%. For children with intelligent parents, the probability of being lactose intolerant is 48%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.48 +0.48 - 0.86 = -0.38 +-0.38 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 73%. For children with intelligent parents, the probability of being lactose intolerant is 46%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.46 +0.46 - 0.73 = -0.27 +-0.27 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. For children with unintelligent parents, the probability of being lactose intolerant is 73%. For children with intelligent parents, the probability of being lactose intolerant is 46%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.46 +0.14*0.46 - 0.86*0.73 = 0.69 +0.69 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 78%. For children with intelligent parents, the probability of being lactose intolerant is 54%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.54 +0.54 - 0.78 = -0.24 +-0.24 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 78%. For children with intelligent parents, the probability of being lactose intolerant is 54%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.54 +0.54 - 0.78 = -0.24 +-0.24 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 2%. For children with unintelligent parents, the probability of being lactose intolerant is 78%. For children with intelligent parents, the probability of being lactose intolerant is 54%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.54 +0.02*0.54 - 0.98*0.78 = 0.77 +0.77 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. Method 1: We look directly at how parents' intelligence correlates with lactose intolerance in general. Method 2: We look at this correlation case by case according to parents' social status.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +20346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 66%. For children with intelligent parents, the probability of being lactose intolerant is 23%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.23 +0.23 - 0.66 = -0.43 +-0.43 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 71%. For children with intelligent parents, the probability of being lactose intolerant is 41%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.41 +0.41 - 0.71 = -0.30 +-0.30 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. The probability of unintelligent parents and being lactose intolerant is 49%. The probability of intelligent parents and being lactose intolerant is 5%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.05 +0.05/0.14 - 0.49/0.86 = -0.24 +-0.24 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +20389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 88%. For children with intelligent parents, the probability of being lactose intolerant is 48%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.48 +0.48 - 0.88 = -0.40 +-0.40 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 92%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 85%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 51%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 47%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 80%. For children with unintelligent parents and confounder active, the probability of high parental social status is 34%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 44%. For children with intelligent parents and confounder active, the probability of high parental social status is 12%. The overall probability of confounder active is 52%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.34 +P(V3=1 | X=1, V2=0) = 0.44 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.52 +0.52 * 0.85 * (0.12 - 0.44)+ 0.48 * 0.85 * (0.34 - 0.80)= 0.01 +0.01 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. Method 1: We look at how parents' intelligence correlates with lactose intolerance case by case according to parents' social status. Method 2: We look directly at how parents' intelligence correlates with lactose intolerance in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +20437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 72%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 50%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 16%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 12%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 95%. For children with unintelligent parents and confounder active, the probability of high parental social status is 59%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 70%. For children with intelligent parents and confounder active, the probability of high parental social status is 25%. The overall probability of confounder active is 45%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.12 +P(V3=1 | X=0, V2=0) = 0.95 +P(V3=1 | X=0, V2=1) = 0.59 +P(V3=1 | X=1, V2=0) = 0.70 +P(V3=1 | X=1, V2=1) = 0.25 +P(V2=1) = 0.45 +0.45 * (0.12 - 0.16) * 0.59 + 0.55 * (0.50 - 0.72) * 0.70 = -0.39 +-0.39 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +20453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 11%. For children with unintelligent parents, the probability of being lactose intolerant is 37%. For children with intelligent parents, the probability of being lactose intolerant is 22%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.22 +0.11*0.22 - 0.89*0.37 = 0.36 +0.36 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 3%. For children with unintelligent parents, the probability of being lactose intolerant is 46%. For children with intelligent parents, the probability of being lactose intolerant is 16%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.16 +0.03*0.16 - 0.97*0.46 = 0.46 +0.46 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 72%. For children with intelligent parents, the probability of being lactose intolerant is 58%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.58 +0.58 - 0.72 = -0.15 +-0.15 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 5%. For children with unintelligent parents, the probability of being lactose intolerant is 72%. For children with intelligent parents, the probability of being lactose intolerant is 58%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.58 +0.05*0.58 - 0.95*0.72 = 0.72 +0.72 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 83%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 46%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 55%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 20%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 24%. For children with unintelligent parents and confounder active, the probability of high parental social status is 6%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 40%. For children with intelligent parents and confounder active, the probability of high parental social status is 62%. The overall probability of confounder active is 44%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0, V2=0) = 0.24 +P(V3=1 | X=0, V2=1) = 0.06 +P(V3=1 | X=1, V2=0) = 0.40 +P(V3=1 | X=1, V2=1) = 0.62 +P(V2=1) = 0.44 +0.44 * 0.46 * (0.62 - 0.40)+ 0.56 * 0.46 * (0.06 - 0.24)= -0.13 +-0.13 < 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. For children with unintelligent parents, the probability of being lactose intolerant is 76%. For children with intelligent parents, the probability of being lactose intolerant is 37%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.37 +0.14*0.37 - 0.86*0.76 = 0.71 +0.71 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 12%. For children with unintelligent parents, the probability of being lactose intolerant is 73%. For children with intelligent parents, the probability of being lactose intolerant is 42%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.42 +0.12*0.42 - 0.88*0.73 = 0.68 +0.68 > 0",arrowhead,nature_vs_nurture,1,marginal,P(Y) +20525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 12%. The probability of unintelligent parents and being lactose intolerant is 64%. The probability of intelligent parents and being lactose intolerant is 5%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.64 +P(Y=1, X=1=1) = 0.05 +0.05/0.12 - 0.64/0.88 = -0.31 +-0.31 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +20534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 68%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 38%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 41%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 10%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 66%. For children with unintelligent parents and confounder active, the probability of high parental social status is 61%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 23%. For children with intelligent parents and confounder active, the probability of high parental social status is 38%. The overall probability of confounder active is 41%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0, V2=0) = 0.66 +P(V3=1 | X=0, V2=1) = 0.61 +P(V3=1 | X=1, V2=0) = 0.23 +P(V3=1 | X=1, V2=1) = 0.38 +P(V2=1) = 0.41 +0.41 * (0.10 - 0.41) * 0.61 + 0.59 * (0.38 - 0.68) * 0.23 = -0.27 +-0.27 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +20542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 86%. For children with intelligent parents, the probability of being lactose intolerant is 46%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.46 +0.46 - 0.86 = -0.40 +-0.40 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 63%. For children with intelligent parents, the probability of being lactose intolerant is 29%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.29 +0.29 - 0.63 = -0.34 +-0.34 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 60%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 65%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 29%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 22%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 72%. For children with unintelligent parents and confounder active, the probability of high parental social status is 41%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 35%. For children with intelligent parents and confounder active, the probability of high parental social status is 12%. The overall probability of confounder active is 52%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.22 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.35 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.52 +0.52 * (0.22 - 0.29) * 0.41 + 0.48 * (0.65 - 0.60) * 0.35 = -0.36 +-0.36 < 0",arrowhead,nature_vs_nurture,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +20570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 52%. For children with intelligent parents, the probability of being lactose intolerant is 35%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.35 - 0.52 = -0.17 +-0.17 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 52%. For children with intelligent parents, the probability of being lactose intolerant is 35%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.35 +0.35 - 0.52 = -0.17 +-0.17 < 0",arrowhead,nature_vs_nurture,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 75%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 50%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 48%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 21%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 96%. For children with unintelligent parents and confounder active, the probability of high parental social status is 90%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 50%. For children with intelligent parents and confounder active, the probability of high parental social status is 50%. The overall probability of confounder active is 49%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0, V2=0) = 0.96 +P(V3=1 | X=0, V2=1) = 0.90 +P(V3=1 | X=1, V2=0) = 0.50 +P(V3=1 | X=1, V2=1) = 0.50 +P(V2=1) = 0.49 +0.49 * 0.50 * (0.50 - 0.50)+ 0.51 * 0.50 * (0.90 - 0.96)= 0.11 +0.11 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 14%. The probability of unintelligent parents and being lactose intolerant is 45%. The probability of intelligent parents and being lactose intolerant is 5%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.05 +0.05/0.14 - 0.45/0.86 = -0.17 +-0.17 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +20587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 49%. For children with intelligent parents, the probability of being lactose intolerant is 25%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.25 +0.25 - 0.49 = -0.24 +-0.24 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 66%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 42%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 43%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 17%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 70%. For children with unintelligent parents and confounder active, the probability of high parental social status is 71%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 58%. For children with intelligent parents and confounder active, the probability of high parental social status is 82%. The overall probability of confounder active is 57%.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.70 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.57 +0.57 * 0.42 * (0.82 - 0.58)+ 0.43 * 0.42 * (0.71 - 0.70)= -0.00 +0.00 = 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. Method 1: We look at how parents' intelligence correlates with lactose intolerance case by case according to parents' social status. Method 2: We look directly at how parents' intelligence correlates with lactose intolerance in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +20628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents, the probability of being lactose intolerant is 86%. For children with intelligent parents, the probability of being lactose intolerant is 47%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.47 +0.47 - 0.86 = -0.39 +-0.39 < 0",arrowhead,nature_vs_nurture,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. For children with unintelligent parents and with low parental social status, the probability of being lactose intolerant is 89%. For children with unintelligent parents and with high parental social status, the probability of being lactose intolerant is 86%. For children with intelligent parents and with low parental social status, the probability of being lactose intolerant is 45%. For children with intelligent parents and with high parental social status, the probability of being lactose intolerant is 47%. For children with unintelligent parents and confounder inactive, the probability of high parental social status is 92%. For children with unintelligent parents and confounder active, the probability of high parental social status is 70%. For children with intelligent parents and confounder inactive, the probability of high parental social status is 55%. For children with intelligent parents and confounder active, the probability of high parental social status is 24%. The overall probability of confounder active is 49%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.89 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.70 +P(V3=1 | X=1, V2=0) = 0.55 +P(V3=1 | X=1, V2=1) = 0.24 +P(V2=1) = 0.49 +0.49 * 0.86 * (0.24 - 0.55)+ 0.51 * 0.86 * (0.70 - 0.92)= 0.01 +0.01 > 0",arrowhead,nature_vs_nurture,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +20637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. The overall probability of intelligent parents is 13%. The probability of unintelligent parents and being lactose intolerant is 75%. The probability of intelligent parents and being lactose intolerant is 6%.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = lactose intolerance. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.75 +P(Y=1, X=1=1) = 0.06 +0.06/0.13 - 0.75/0.87 = -0.41 +-0.41 < 0",arrowhead,nature_vs_nurture,1,correlation,P(Y | X) +20639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and lactose intolerance. Other unobserved factors has a direct effect on parents' social status and lactose intolerance. Parents' social status has a direct effect on lactose intolerance. Other unobserved factors is unobserved. Method 1: We look directly at how parents' intelligence correlates with lactose intolerance in general. Method 2: We look at this correlation case by case according to parents' social status.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nature_vs_nurture,2,backadj,[backdoor adjustment set for Y given X] +20641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 40%. For smokers, the probability of freckles is 74%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.74 +0.74 - 0.40 = 0.33 +0.33 > 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 46%. For nonsmokers and are hard-working, the probability of freckles is 25%. For smokers and are lazy, the probability of freckles is 49%. For smokers and are hard-working, the probability of freckles is 21%. For nonsmokers, the probability of being hard-working is 24%. For smokers, the probability of being hard-working is 66%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.46 +P(Y=1 | X=0, V2=1) = 0.25 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.21 +P(V2=1 | X=0) = 0.24 +P(V2=1 | X=1) = 0.66 +0.24 * (0.21 - 0.49) + 0.66 * (0.25 - 0.46) = 0.02 +0.02 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +20665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 85%. The probability of nonsmoking and freckles is 6%. The probability of smoking and freckles is 26%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.26 +0.26/0.85 - 0.06/0.15 = -0.10 +-0.10 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +20667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to effort.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +20682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 54%. For smokers, the probability of freckles is 68%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.68 +0.68 - 0.54 = 0.14 +0.14 > 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 55%. For nonsmokers and are hard-working, the probability of freckles is 24%. For smokers and are lazy, the probability of freckles is 81%. For smokers and are hard-working, the probability of freckles is 59%. For nonsmokers, the probability of being hard-working is 2%. For smokers, the probability of being hard-working is 59%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.24 +P(Y=1 | X=1, V2=0) = 0.81 +P(Y=1 | X=1, V2=1) = 0.59 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.59 +0.59 * (0.24 - 0.55)+ 0.02 * (0.59 - 0.81)= -0.18 +-0.18 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +20690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 91%. For nonsmokers, the probability of freckles is 54%. For smokers, the probability of freckles is 68%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.68 +0.91*0.68 - 0.09*0.54 = 0.66 +0.66 > 0",mediation,neg_mediation,1,marginal,P(Y) +20691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 91%. For nonsmokers, the probability of freckles is 54%. For smokers, the probability of freckles is 68%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.68 +0.91*0.68 - 0.09*0.54 = 0.66 +0.66 > 0",mediation,neg_mediation,1,marginal,P(Y) +20698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 51%. For smokers, the probability of freckles is 37%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.37 +0.37 - 0.51 = -0.14 +-0.14 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 61%. For nonsmokers and are hard-working, the probability of freckles is 41%. For smokers and are lazy, the probability of freckles is 74%. For smokers and are hard-working, the probability of freckles is 31%. For nonsmokers, the probability of being hard-working is 50%. For smokers, the probability of being hard-working is 86%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.61 +P(Y=1 | X=0, V2=1) = 0.41 +P(Y=1 | X=1, V2=0) = 0.74 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.50 +P(V2=1 | X=1) = 0.86 +0.86 * (0.41 - 0.61)+ 0.50 * (0.31 - 0.74)= -0.07 +-0.07 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +20710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 27%. For smokers, the probability of freckles is 17%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.17 +0.17 - 0.27 = -0.10 +-0.10 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 47%. For nonsmokers and are hard-working, the probability of freckles is 9%. For smokers and are lazy, the probability of freckles is 55%. For smokers and are hard-working, the probability of freckles is 14%. For nonsmokers, the probability of being hard-working is 54%. For smokers, the probability of being hard-working is 94%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.47 +P(Y=1 | X=0, V2=1) = 0.09 +P(Y=1 | X=1, V2=0) = 0.55 +P(Y=1 | X=1, V2=1) = 0.14 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.94 +0.54 * (0.14 - 0.55) + 0.94 * (0.09 - 0.47) = 0.06 +0.06 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +20722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. Method 1: We look at how smoking correlates with freckles case by case according to effort. Method 2: We look directly at how smoking correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +20739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 63%. For smokers, the probability of freckles is 54%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.54 +0.54 - 0.63 = -0.09 +-0.09 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 86%. For nonsmokers, the probability of freckles is 63%. For smokers, the probability of freckles is 54%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.54 +0.86*0.54 - 0.14*0.63 = 0.57 +0.57 > 0",mediation,neg_mediation,1,marginal,P(Y) +20748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 86%. The probability of nonsmoking and freckles is 9%. The probability of smoking and freckles is 47%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.47 +0.47/0.86 - 0.09/0.14 = -0.09 +-0.09 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +20756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 92%. For nonsmokers and are hard-working, the probability of freckles is 50%. For smokers and are lazy, the probability of freckles is 80%. For smokers and are hard-working, the probability of freckles is 36%. For nonsmokers, the probability of being hard-working is 17%. For smokers, the probability of being hard-working is 74%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.92 +P(Y=1 | X=0, V2=1) = 0.50 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.74 +0.74 * (0.50 - 0.92)+ 0.17 * (0.36 - 0.80)= -0.25 +-0.25 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +20768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 44%. For smokers, the probability of freckles is 66%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.66 +0.66 - 0.44 = 0.23 +0.23 > 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20796,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 53%. For smokers, the probability of freckles is 29%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.29 +0.29 - 0.53 = -0.24 +-0.24 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +20801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 55%. For nonsmokers and are hard-working, the probability of freckles is 29%. For smokers and are lazy, the probability of freckles is 63%. For smokers and are hard-working, the probability of freckles is 26%. For nonsmokers, the probability of being hard-working is 9%. For smokers, the probability of being hard-working is 92%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.29 +P(Y=1 | X=1, V2=0) = 0.63 +P(Y=1 | X=1, V2=1) = 0.26 +P(V2=1 | X=0) = 0.09 +P(V2=1 | X=1) = 0.92 +0.09 * (0.26 - 0.63) + 0.92 * (0.29 - 0.55) = 0.07 +0.07 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +20856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 38%. For nonsmokers and are hard-working, the probability of freckles is 9%. For smokers and are lazy, the probability of freckles is 65%. For smokers and are hard-working, the probability of freckles is 38%. For nonsmokers, the probability of being hard-working is 20%. For smokers, the probability of being hard-working is 79%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.38 +P(Y=1 | X=0, V2=1) = 0.09 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.38 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.79 +0.20 * (0.38 - 0.65) + 0.79 * (0.09 - 0.38) = 0.27 +0.27 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +20873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 87%. For nonsmokers, the probability of freckles is 88%. For smokers, the probability of freckles is 67%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.67 +0.87*0.67 - 0.13*0.88 = 0.69 +0.69 > 0",mediation,neg_mediation,1,marginal,P(Y) +20877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to effort.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +20896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 53%. For nonsmokers and are hard-working, the probability of freckles is 28%. For smokers and are lazy, the probability of freckles is 80%. For smokers and are hard-working, the probability of freckles is 58%. For nonsmokers, the probability of being hard-working is 17%. For smokers, the probability of being hard-working is 88%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.53 +P(Y=1 | X=0, V2=1) = 0.28 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.58 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.88 +0.88 * (0.28 - 0.53)+ 0.17 * (0.58 - 0.80)= -0.18 +-0.18 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +20898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 53%. For nonsmokers and are hard-working, the probability of freckles is 28%. For smokers and are lazy, the probability of freckles is 80%. For smokers and are hard-working, the probability of freckles is 58%. For nonsmokers, the probability of being hard-working is 17%. For smokers, the probability of being hard-working is 88%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.53 +P(Y=1 | X=0, V2=1) = 0.28 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.58 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.88 +0.17 * (0.58 - 0.80) + 0.88 * (0.28 - 0.53) = 0.28 +0.28 > 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +20917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 89%. The probability of nonsmoking and freckles is 7%. The probability of smoking and freckles is 33%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.33 +0.33/0.89 - 0.07/0.11 = -0.28 +-0.28 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +20943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 90%. For nonsmokers, the probability of freckles is 35%. For smokers, the probability of freckles is 46%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.46 +0.90*0.46 - 0.10*0.35 = 0.45 +0.45 > 0",mediation,neg_mediation,1,marginal,P(Y) +20945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 90%. The probability of nonsmoking and freckles is 3%. The probability of smoking and freckles is 41%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.41 +0.41/0.90 - 0.03/0.10 = 0.11 +0.11 > 0",mediation,neg_mediation,1,correlation,P(Y | X) +20949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 49%. For smokers, the probability of freckles is 39%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.39 - 0.49 = -0.11 +-0.11 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 91%. For nonsmokers, the probability of freckles is 49%. For smokers, the probability of freckles is 39%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.91*0.39 - 0.09*0.49 = 0.40 +0.40 > 0",mediation,neg_mediation,1,marginal,P(Y) +20962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 91%. For smokers, the probability of freckles is 65%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.65 +0.65 - 0.91 = -0.27 +-0.27 < 0",mediation,neg_mediation,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +20967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 100%. For nonsmokers and are hard-working, the probability of freckles is 63%. For smokers and are lazy, the probability of freckles is 93%. For smokers and are hard-working, the probability of freckles is 45%. For nonsmokers, the probability of being hard-working is 23%. For smokers, the probability of being hard-working is 60%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 1.00 +P(Y=1 | X=0, V2=1) = 0.63 +P(Y=1 | X=1, V2=0) = 0.93 +P(Y=1 | X=1, V2=1) = 0.45 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.60 +0.60 * (0.63 - 1.00)+ 0.23 * (0.45 - 0.93)= -0.13 +-0.13 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +20987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 98%. The probability of nonsmoking and freckles is 1%. The probability of smoking and freckles is 49%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.49 +0.49/0.98 - 0.01/0.02 = 0.15 +0.15 > 0",mediation,neg_mediation,1,correlation,P(Y | X) +20992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers, the probability of freckles is 67%. For smokers, the probability of freckles is 55%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.55 +0.55 - 0.67 = -0.12 +-0.12 < 0",mediation,neg_mediation,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. Method 1: We look at how smoking correlates with freckles case by case according to effort. Method 2: We look directly at how smoking correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +21013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 87%. For nonsmokers, the probability of freckles is 53%. For smokers, the probability of freckles is 39%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.39 +0.87*0.39 - 0.13*0.53 = 0.42 +0.42 > 0",mediation,neg_mediation,1,marginal,P(Y) +21015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. The overall probability of smoking is 87%. The probability of nonsmoking and freckles is 7%. The probability of smoking and freckles is 34%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.34 +0.34/0.87 - 0.07/0.13 = -0.14 +-0.14 < 0",mediation,neg_mediation,1,correlation,P(Y | X) +21023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 69%. For nonsmokers and are hard-working, the probability of freckles is 14%. For smokers and are lazy, the probability of freckles is 59%. For smokers and are hard-working, the probability of freckles is 17%. For nonsmokers, the probability of being hard-working is 47%. For smokers, the probability of being hard-working is 87%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.69 +P(Y=1 | X=0, V2=1) = 0.14 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.17 +P(V2=1 | X=0) = 0.47 +P(V2=1 | X=1) = 0.87 +0.87 * (0.14 - 0.69)+ 0.47 * (0.17 - 0.59)= -0.22 +-0.22 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +21024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 69%. For nonsmokers and are hard-working, the probability of freckles is 14%. For smokers and are lazy, the probability of freckles is 59%. For smokers and are hard-working, the probability of freckles is 17%. For nonsmokers, the probability of being hard-working is 47%. For smokers, the probability of being hard-working is 87%.",no,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.69 +P(Y=1 | X=0, V2=1) = 0.14 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.17 +P(V2=1 | X=0) = 0.47 +P(V2=1 | X=1) = 0.87 +0.47 * (0.17 - 0.59) + 0.87 * (0.14 - 0.69) = -0.04 +-0.04 < 0",mediation,neg_mediation,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +21044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. Method 1: We look at how smoking correlates with freckles case by case according to effort. Method 2: We look directly at how smoking correlates with freckles in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,neg_mediation,2,backadj,[backdoor adjustment set for Y given X] +21051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and freckles. Effort has a direct effect on freckles. For nonsmokers and are lazy, the probability of freckles is 49%. For nonsmokers and are hard-working, the probability of freckles is 27%. For smokers and are lazy, the probability of freckles is 87%. For smokers and are hard-working, the probability of freckles is 56%. For nonsmokers, the probability of being hard-working is 4%. For smokers, the probability of being hard-working is 51%.",yes,"Let X = smoking; V2 = effort; Y = freckles. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.49 +P(Y=1 | X=0, V2=1) = 0.27 +P(Y=1 | X=1, V2=0) = 0.87 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.04 +P(V2=1 | X=1) = 0.51 +0.51 * (0.27 - 0.49)+ 0.04 * (0.56 - 0.87)= -0.10 +-0.10 < 0",mediation,neg_mediation,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +21062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 59%. For people who play card games, the probability of long lifespan is 79%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.79 +0.79 - 0.59 = 0.19 +0.19 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 43%. For people who do not play card games and with diabetes, the probability of long lifespan is 72%. For people who play card games and without diabetes, the probability of long lifespan is 74%. For people who play card games and with diabetes, the probability of long lifespan is 93%. For people who do not play card games and nonsmokers, the probability of having diabetes is 79%. For people who do not play card games and smokers, the probability of having diabetes is 50%. For people who play card games and nonsmokers, the probability of having diabetes is 52%. For people who play card games and smokers, the probability of having diabetes is 20%. The overall probability of smoker is 85%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.93 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.85 +0.85 * (0.93 - 0.74) * 0.50 + 0.15 * (0.72 - 0.43) * 0.52 = 0.26 +0.26 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21076,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 51%. For people who play card games, the probability of long lifespan is 66%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.66 +0.66 - 0.51 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 32%. For people who do not play card games and with diabetes, the probability of long lifespan is 60%. For people who play card games and without diabetes, the probability of long lifespan is 62%. For people who play card games and with diabetes, the probability of long lifespan is 81%. For people who do not play card games and nonsmokers, the probability of having diabetes is 57%. For people who do not play card games and smokers, the probability of having diabetes is 68%. For people who play card games and nonsmokers, the probability of having diabetes is 31%. For people who play card games and smokers, the probability of having diabetes is 19%. The overall probability of smoker is 88%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.19 +P(V2=1) = 0.88 +0.88 * (0.81 - 0.62) * 0.68 + 0.12 * (0.60 - 0.32) * 0.31 = 0.25 +0.25 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look at how playing card games correlates with lifespan case by case according to diabetes. Method 2: We look directly at how playing card games correlates with lifespan in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 42%. For people who do not play card games and with diabetes, the probability of long lifespan is 66%. For people who play card games and without diabetes, the probability of long lifespan is 66%. For people who play card games and with diabetes, the probability of long lifespan is 89%. For people who do not play card games and nonsmokers, the probability of having diabetes is 100%. For people who do not play card games and smokers, the probability of having diabetes is 62%. For people who play card games and nonsmokers, the probability of having diabetes is 71%. For people who play card games and smokers, the probability of having diabetes is 41%. The overall probability of smoker is 89%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.89 +P(V3=1 | X=0, V2=0) = 1.00 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.41 +P(V2=1) = 0.89 +0.89 * (0.89 - 0.66) * 0.62 + 0.11 * (0.66 - 0.42) * 0.71 = 0.24 +0.24 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look directly at how playing card games correlates with lifespan in general. Method 2: We look at this correlation case by case according to diabetes.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look directly at how playing card games correlates with lifespan in general. Method 2: We look at this correlation case by case according to diabetes.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 56%. For people who do not play card games and with diabetes, the probability of long lifespan is 82%. For people who play card games and without diabetes, the probability of long lifespan is 56%. For people who play card games and with diabetes, the probability of long lifespan is 81%. For people who do not play card games and nonsmokers, the probability of having diabetes is 58%. For people who do not play card games and smokers, the probability of having diabetes is 72%. For people who play card games and nonsmokers, the probability of having diabetes is 29%. For people who play card games and smokers, the probability of having diabetes is 20%. The overall probability of smoker is 86%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.58 +P(V3=1 | X=0, V2=1) = 0.72 +P(V3=1 | X=1, V2=0) = 0.29 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.86 +0.86 * 0.82 * (0.20 - 0.29)+ 0.14 * 0.82 * (0.72 - 0.58)= -0.11 +-0.11 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +21139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 82%. For people who do not play card games, the probability of long lifespan is 74%. For people who play card games, the probability of long lifespan is 62%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.62 +0.82*0.62 - 0.18*0.74 = 0.64 +0.64 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +21154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 98%. The probability of not playing card games and long lifespan is 1%. The probability of playing card games and long lifespan is 57%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.57 +0.57/0.98 - 0.01/0.02 = 0.18 +0.18 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +21159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 50%. For people who play card games, the probability of long lifespan is 64%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.64 +0.64 - 0.50 = 0.14 +0.14 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look at how playing card games correlates with lifespan case by case according to diabetes. Method 2: We look directly at how playing card games correlates with lifespan in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 43%. For people who do not play card games and with diabetes, the probability of long lifespan is 74%. For people who play card games and without diabetes, the probability of long lifespan is 48%. For people who play card games and with diabetes, the probability of long lifespan is 72%. For people who do not play card games and nonsmokers, the probability of having diabetes is 76%. For people who do not play card games and smokers, the probability of having diabetes is 74%. For people who play card games and nonsmokers, the probability of having diabetes is 39%. For people who play card games and smokers, the probability of having diabetes is 31%. The overall probability of smoker is 92%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.72 +P(V3=1 | X=0, V2=0) = 0.76 +P(V3=1 | X=0, V2=1) = 0.74 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.92 +0.92 * 0.74 * (0.31 - 0.39)+ 0.08 * 0.74 * (0.74 - 0.76)= -0.13 +-0.13 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +21181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 96%. For people who do not play card games, the probability of long lifespan is 66%. For people who play card games, the probability of long lifespan is 56%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.56 +0.96*0.56 - 0.04*0.66 = 0.56 +0.56 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +21189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 36%. For people who play card games, the probability of long lifespan is 58%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.58 +0.58 - 0.36 = 0.22 +0.22 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 23%. For people who do not play card games and with diabetes, the probability of long lifespan is 45%. For people who play card games and without diabetes, the probability of long lifespan is 53%. For people who play card games and with diabetes, the probability of long lifespan is 71%. For people who do not play card games and nonsmokers, the probability of having diabetes is 97%. For people who do not play card games and smokers, the probability of having diabetes is 53%. For people who play card games and nonsmokers, the probability of having diabetes is 61%. For people who play card games and smokers, the probability of having diabetes is 26%. The overall probability of smoker is 92%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.53 +P(V3=1 | X=1, V2=0) = 0.61 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.92 +0.92 * 0.45 * (0.26 - 0.61)+ 0.08 * 0.45 * (0.53 - 0.97)= -0.07 +-0.07 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +21191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 23%. For people who do not play card games and with diabetes, the probability of long lifespan is 45%. For people who play card games and without diabetes, the probability of long lifespan is 53%. For people who play card games and with diabetes, the probability of long lifespan is 71%. For people who do not play card games and nonsmokers, the probability of having diabetes is 97%. For people who do not play card games and smokers, the probability of having diabetes is 53%. For people who play card games and nonsmokers, the probability of having diabetes is 61%. For people who play card games and smokers, the probability of having diabetes is 26%. The overall probability of smoker is 92%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.53 +P(V3=1 | X=1, V2=0) = 0.61 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.92 +0.92 * 0.45 * (0.26 - 0.61)+ 0.08 * 0.45 * (0.53 - 0.97)= -0.07 +-0.07 < 0",arrowhead,obesity_mortality,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +21193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 23%. For people who do not play card games and with diabetes, the probability of long lifespan is 45%. For people who play card games and without diabetes, the probability of long lifespan is 53%. For people who play card games and with diabetes, the probability of long lifespan is 71%. For people who do not play card games and nonsmokers, the probability of having diabetes is 97%. For people who do not play card games and smokers, the probability of having diabetes is 53%. For people who play card games and nonsmokers, the probability of having diabetes is 61%. For people who play card games and smokers, the probability of having diabetes is 26%. The overall probability of smoker is 92%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.53 +P(V3=1 | X=1, V2=0) = 0.61 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.92 +0.92 * (0.71 - 0.53) * 0.53 + 0.08 * (0.45 - 0.23) * 0.61 = 0.28 +0.28 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21214,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 87%. For people who play card games, the probability of long lifespan is 64%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.64 +0.64 - 0.87 = -0.23 +-0.23 < 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look at how playing card games correlates with lifespan case by case according to diabetes. Method 2: We look directly at how playing card games correlates with lifespan in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 56%. For people who play card games, the probability of long lifespan is 70%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.70 +0.70 - 0.56 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 85%. The probability of not playing card games and long lifespan is 8%. The probability of playing card games and long lifespan is 60%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.60 +0.60/0.85 - 0.08/0.15 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +21259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 73%. For people who play card games, the probability of long lifespan is 63%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.63 +0.63 - 0.73 = -0.10 +-0.10 < 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 94%. The probability of not playing card games and long lifespan is 3%. The probability of playing card games and long lifespan is 64%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.64 +0.64/0.94 - 0.03/0.06 = 0.18 +0.18 > 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +21307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 85%. For people who do not play card games, the probability of long lifespan is 64%. For people who play card games, the probability of long lifespan is 50%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.50 +0.85*0.50 - 0.15*0.64 = 0.52 +0.52 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +21327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 49%. For people who play card games, the probability of long lifespan is 60%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.60 +0.60 - 0.49 = 0.12 +0.12 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 28%. For people who do not play card games and with diabetes, the probability of long lifespan is 59%. For people who play card games and without diabetes, the probability of long lifespan is 51%. For people who play card games and with diabetes, the probability of long lifespan is 81%. For people who do not play card games and nonsmokers, the probability of having diabetes is 71%. For people who do not play card games and smokers, the probability of having diabetes is 65%. For people who play card games and nonsmokers, the probability of having diabetes is 37%. For people who play card games and smokers, the probability of having diabetes is 31%. The overall probability of smoker is 93%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.71 +P(V3=1 | X=0, V2=1) = 0.65 +P(V3=1 | X=1, V2=0) = 0.37 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.93 +0.93 * (0.81 - 0.51) * 0.65 + 0.07 * (0.59 - 0.28) * 0.37 = 0.22 +0.22 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 99%. For people who do not play card games, the probability of long lifespan is 49%. For people who play card games, the probability of long lifespan is 60%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.60 +0.99*0.60 - 0.01*0.49 = 0.60 +0.60 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +21339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look directly at how playing card games correlates with lifespan in general. Method 2: We look at this correlation case by case according to diabetes.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 65%. For people who play card games, the probability of long lifespan is 56%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.56 +0.56 - 0.65 = -0.09 +-0.09 < 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look at how playing card games correlates with lifespan case by case according to diabetes. Method 2: We look directly at how playing card games correlates with lifespan in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 55%. For people who play card games, the probability of long lifespan is 70%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.70 +0.70 - 0.55 = 0.15 +0.15 > 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 90%. For people who do not play card games, the probability of long lifespan is 55%. For people who play card games, the probability of long lifespan is 70%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.70 +0.90*0.70 - 0.10*0.55 = 0.69 +0.69 > 0",arrowhead,obesity_mortality,1,marginal,P(Y) +21393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. The overall probability of playing card games is 91%. The probability of not playing card games and long lifespan is 7%. The probability of playing card games and long lifespan is 58%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.58 +0.58/0.91 - 0.07/0.09 = -0.22 +-0.22 < 0",arrowhead,obesity_mortality,1,correlation,P(Y | X) +21394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look at how playing card games correlates with lifespan case by case according to diabetes. Method 2: We look directly at how playing card games correlates with lifespan in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 47%. For people who play card games, the probability of long lifespan is 63%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.63 +0.63 - 0.47 = 0.16 +0.16 > 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 35%. For people who do not play card games and with diabetes, the probability of long lifespan is 58%. For people who play card games and without diabetes, the probability of long lifespan is 58%. For people who play card games and with diabetes, the probability of long lifespan is 83%. For people who do not play card games and nonsmokers, the probability of having diabetes is 80%. For people who do not play card games and smokers, the probability of having diabetes is 50%. For people who play card games and nonsmokers, the probability of having diabetes is 53%. For people who play card games and smokers, the probability of having diabetes is 17%. The overall probability of smoker is 96%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.96 +0.96 * (0.83 - 0.58) * 0.50 + 0.04 * (0.58 - 0.35) * 0.53 = 0.25 +0.25 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 35%. For people who do not play card games and with diabetes, the probability of long lifespan is 62%. For people who play card games and without diabetes, the probability of long lifespan is 61%. For people who play card games and with diabetes, the probability of long lifespan is 84%. For people who do not play card games and nonsmokers, the probability of having diabetes is 87%. For people who do not play card games and smokers, the probability of having diabetes is 89%. For people who play card games and nonsmokers, the probability of having diabetes is 53%. For people who play card games and smokers, the probability of having diabetes is 59%. The overall probability of smoker is 95%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0, V2=0) = 0.87 +P(V3=1 | X=0, V2=1) = 0.89 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.95 +0.95 * (0.84 - 0.61) * 0.89 + 0.05 * (0.62 - 0.35) * 0.53 = 0.23 +0.23 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games and without diabetes, the probability of long lifespan is 35%. For people who do not play card games and with diabetes, the probability of long lifespan is 62%. For people who play card games and without diabetes, the probability of long lifespan is 61%. For people who play card games and with diabetes, the probability of long lifespan is 84%. For people who do not play card games and nonsmokers, the probability of having diabetes is 87%. For people who do not play card games and smokers, the probability of having diabetes is 89%. For people who play card games and nonsmokers, the probability of having diabetes is 53%. For people who play card games and smokers, the probability of having diabetes is 59%. The overall probability of smoker is 95%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0, V2=0) = 0.87 +P(V3=1 | X=0, V2=1) = 0.89 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.95 +0.95 * (0.84 - 0.61) * 0.89 + 0.05 * (0.62 - 0.35) * 0.53 = 0.23 +0.23 > 0",arrowhead,obesity_mortality,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +21424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 63%. For people who play card games, the probability of long lifespan is 53%.",no,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.53 +0.53 - 0.63 = -0.09 +-0.09 < 0",arrowhead,obesity_mortality,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. Method 1: We look directly at how playing card games correlates with lifespan in general. Method 2: We look at this correlation case by case according to diabetes.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,obesity_mortality,2,backadj,[backdoor adjustment set for Y given X] +21440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Playing card games has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. For people who do not play card games, the probability of long lifespan is 62%. For people who play card games, the probability of long lifespan is 55%.",yes,"Let V2 = smoking; X = playing card games; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.55 +0.55 - 0.62 = -0.06 +-0.06 < 0",arrowhead,obesity_mortality,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 16%. For patients not consuming citrus, the probability of curly hair is 59%. For patients consuming citrus, the probability of curly hair is 33%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.33 +0.16*0.33 - 0.84*0.59 = 0.55 +0.55 > 0",chain,orange_scurvy,1,marginal,P(Y) +21507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 73%. For patients consuming citrus, the probability of curly hair is 54%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.54 +0.54 - 0.73 = -0.19 +-0.19 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 20%. For patients not consuming citrus, the probability of curly hair is 73%. For patients consuming citrus, the probability of curly hair is 54%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.54 +0.20*0.54 - 0.80*0.73 = 0.69 +0.69 > 0",chain,orange_scurvy,1,marginal,P(Y) +21512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 20%. The probability of absence of citrus and curly hair is 58%. The probability of citrus intake and curly hair is 11%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.11 +0.11/0.20 - 0.58/0.80 = -0.19 +-0.19 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +21514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. Method 1: We look at how eating citrus correlates with curly hair case by case according to vitmain C. Method 2: We look directly at how eating citrus correlates with curly hair in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +21519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 47%. For patients consuming citrus, the probability of curly hair is 57%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.57 +0.57 - 0.47 = 0.10 +0.10 > 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 8%. For patients not consuming citrus, the probability of curly hair is 46%. For patients consuming citrus, the probability of curly hair is 61%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.08*0.61 - 0.92*0.46 = 0.48 +0.48 > 0",chain,orange_scurvy,1,marginal,P(Y) +21594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 11%. For patients not consuming citrus, the probability of curly hair is 75%. For patients consuming citrus, the probability of curly hair is 46%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.46 +0.11*0.46 - 0.89*0.75 = 0.72 +0.72 > 0",chain,orange_scurvy,1,marginal,P(Y) +21633,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 12%. The probability of absence of citrus and curly hair is 34%. The probability of citrus intake and curly hair is 2%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.02 +0.02/0.12 - 0.34/0.88 = -0.25 +-0.25 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +21637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 17%. For patients consuming citrus, the probability of curly hair is 30%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.30 +0.30 - 0.17 = 0.14 +0.14 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 17%. For patients consuming citrus, the probability of curly hair is 30%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.30 +0.30 - 0.17 = 0.14 +0.14 > 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 33%. For patients consuming citrus, the probability of curly hair is 17%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.17 +0.17 - 0.33 = -0.16 +-0.16 < 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 2%. The probability of absence of citrus and curly hair is 32%. The probability of citrus intake and curly hair is 0%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.00 +0.00/0.02 - 0.32/0.98 = -0.16 +-0.16 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +21678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 2%. For patients not consuming citrus, the probability of curly hair is 75%. For patients consuming citrus, the probability of curly hair is 42%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.42 +0.02*0.42 - 0.98*0.75 = 0.74 +0.74 > 0",chain,orange_scurvy,1,marginal,P(Y) +21690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 3%. For patients not consuming citrus, the probability of curly hair is 60%. For patients consuming citrus, the probability of curly hair is 74%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.74 +0.03*0.74 - 0.97*0.60 = 0.61 +0.61 > 0",chain,orange_scurvy,1,marginal,P(Y) +21705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 19%. The probability of absence of citrus and curly hair is 53%. The probability of citrus intake and curly hair is 6%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.53 +P(Y=1, X=1=1) = 0.06 +0.06/0.19 - 0.53/0.81 = -0.31 +-0.31 < 0",chain,orange_scurvy,1,correlation,P(Y | X) +21707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. Method 1: We look directly at how eating citrus correlates with curly hair in general. Method 2: We look at this correlation case by case according to vitmain C.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +21709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 56%. For patients consuming citrus, the probability of curly hair is 74%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.74 +0.74 - 0.56 = 0.18 +0.18 > 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. Method 1: We look directly at how eating citrus correlates with curly hair in general. Method 2: We look at this correlation case by case according to vitmain C.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,orange_scurvy,2,backadj,[backdoor adjustment set for Y given X] +21724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 49%. For patients consuming citrus, the probability of curly hair is 38%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.38 +0.38 - 0.49 = -0.10 +-0.10 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +21733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 61%. For patients consuming citrus, the probability of curly hair is 45%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.45 +0.45 - 0.61 = -0.16 +-0.16 < 0",chain,orange_scurvy,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 61%. For patients consuming citrus, the probability of curly hair is 45%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.45 +0.45 - 0.61 = -0.16 +-0.16 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 55%. For patients consuming citrus, the probability of curly hair is 41%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.41 +0.41 - 0.55 = -0.14 +-0.14 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 54%. For patients consuming citrus, the probability of curly hair is 36%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.36 +0.36 - 0.54 = -0.17 +-0.17 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +21775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 6%. For patients not consuming citrus, the probability of curly hair is 54%. For patients consuming citrus, the probability of curly hair is 36%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.36 +0.06*0.36 - 0.94*0.54 = 0.53 +0.53 > 0",chain,orange_scurvy,1,marginal,P(Y) +21782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 74%. For patients consuming citrus, the probability of curly hair is 63%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.63 +0.63 - 0.74 = -0.12 +-0.12 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 19%. For patients consuming citrus, the probability of curly hair is 16%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.16 +0.16 - 0.19 = -0.03 +-0.03 < 0",chain,orange_scurvy,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +21811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. The overall probability of citrus intake is 4%. For patients not consuming citrus, the probability of curly hair is 19%. For patients consuming citrus, the probability of curly hair is 16%.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.16 +0.04*0.16 - 0.96*0.19 = 0.19 +0.19 > 0",chain,orange_scurvy,1,marginal,P(Y) +21831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. For patients not consuming citrus, the probability of curly hair is 72%. For patients consuming citrus, the probability of curly hair is 28%.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.28 +0.28 - 0.72 = -0.44 +-0.44 < 0",chain,orange_scurvy,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +21845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 82%. The probability of no full moon and increased price is 7%. The probability of full moon and increased price is 61%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.61 +0.61/0.82 - 0.07/0.18 = 0.36 +0.36 > 0",IV,price,1,correlation,P(Y | X) +21864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 85%. For farms with increased crop yield per acre, the probability of increased price is 79%. For farms with reduced crop yield per acre, the probability of full moon is 67%. For farms with increased crop yield per acre, the probability of full moon is 45%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.85 +P(Y=1 | V2=1) = 0.79 +P(X=1 | V2=0) = 0.67 +P(X=1 | V2=1) = 0.45 +(0.79 - 0.85) / (0.45 - 0.67) = 0.27 +0.27 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 36%. For farms with increased crop yield per acre, the probability of increased price is 37%. For farms with reduced crop yield per acre, the probability of full moon is 62%. For farms with increased crop yield per acre, the probability of full moon is 67%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.36 +P(Y=1 | V2=1) = 0.37 +P(X=1 | V2=0) = 0.62 +P(X=1 | V2=1) = 0.67 +(0.37 - 0.36) / (0.67 - 0.62) = 0.23 +0.23 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look at how full moon correlates with price case by case according to demand. Method 2: We look directly at how full moon correlates with price in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +21888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 61%. For farms with increased crop yield per acre, the probability of increased price is 52%. For farms with reduced crop yield per acre, the probability of full moon is 68%. For farms with increased crop yield per acre, the probability of full moon is 30%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.61 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.68 +P(X=1 | V2=1) = 0.30 +(0.52 - 0.61) / (0.30 - 0.68) = 0.25 +0.25 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 61%. For farms with increased crop yield per acre, the probability of increased price is 52%. For farms with reduced crop yield per acre, the probability of full moon is 68%. For farms with increased crop yield per acre, the probability of full moon is 30%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.61 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.68 +P(X=1 | V2=1) = 0.30 +(0.52 - 0.61) / (0.30 - 0.68) = 0.25 +0.25 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 59%. For farms with increased crop yield per acre, the probability of increased price is 40%. For farms with reduced crop yield per acre, the probability of full moon is 60%. For farms with increased crop yield per acre, the probability of full moon is 8%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.59 +P(Y=1 | V2=1) = 0.40 +P(X=1 | V2=0) = 0.60 +P(X=1 | V2=1) = 0.08 +(0.40 - 0.59) / (0.08 - 0.60) = 0.36 +0.36 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 63%. For farms with increased crop yield per acre, the probability of increased price is 65%. For farms with reduced crop yield per acre, the probability of full moon is 85%. For farms with increased crop yield per acre, the probability of full moon is 73%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.65 +P(X=1 | V2=0) = 0.85 +P(X=1 | V2=1) = 0.73 +(0.65 - 0.63) / (0.73 - 0.85) = -0.16 +-0.16 < 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 63%. For farms with increased crop yield per acre, the probability of increased price is 65%. For farms with reduced crop yield per acre, the probability of full moon is 85%. For farms with increased crop yield per acre, the probability of full moon is 73%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.65 +P(X=1 | V2=0) = 0.85 +P(X=1 | V2=1) = 0.73 +(0.65 - 0.63) / (0.73 - 0.85) = -0.16 +-0.16 < 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +21932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 93%. The probability of no full moon and increased price is 6%. The probability of full moon and increased price is 87%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.87 +0.87/0.93 - 0.06/0.07 = 0.06 +0.06 > 0",IV,price,1,correlation,P(Y | X) +21939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 87%. For situations where there is no full moon, the probability of increased price is 40%. For situations where there is a full moon, the probability of increased price is 82%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.82 +0.87*0.82 - 0.13*0.40 = 0.76 +0.76 > 0",IV,price,1,marginal,P(Y) +21941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 87%. The probability of no full moon and increased price is 5%. The probability of full moon and increased price is 71%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.71 +0.71/0.87 - 0.05/0.13 = 0.42 +0.42 > 0",IV,price,1,correlation,P(Y | X) +21959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look at how full moon correlates with price case by case according to demand. Method 2: We look directly at how full moon correlates with price in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +21962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 70%. For situations where there is no full moon, the probability of increased price is 33%. For situations where there is a full moon, the probability of increased price is 84%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.84 +0.70*0.84 - 0.30*0.33 = 0.69 +0.69 > 0",IV,price,1,marginal,P(Y) +21996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 57%. The probability of no full moon and increased price is 20%. The probability of full moon and increased price is 43%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.43 +0.43/0.57 - 0.20/0.43 = 0.29 +0.29 > 0",IV,price,1,correlation,P(Y | X) +22000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 48%. For farms with increased crop yield per acre, the probability of increased price is 50%. For farms with reduced crop yield per acre, the probability of full moon is 49%. For farms with increased crop yield per acre, the probability of full moon is 60%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.48 +P(Y=1 | V2=1) = 0.50 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.60 +(0.50 - 0.48) / (0.60 - 0.49) = 0.12 +0.12 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 60%. For situations where there is no full moon, the probability of increased price is 41%. For situations where there is a full moon, the probability of increased price is 56%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.56 +0.60*0.56 - 0.40*0.41 = 0.50 +0.50 > 0",IV,price,1,marginal,P(Y) +22006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look directly at how full moon correlates with price in general. Method 2: We look at this correlation case by case according to demand.",no,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +22009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. For farms with reduced crop yield per acre, the probability of increased price is 66%. For farms with increased crop yield per acre, the probability of increased price is 58%. For farms with reduced crop yield per acre, the probability of full moon is 69%. For farms with increased crop yield per acre, the probability of full moon is 42%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.66 +P(Y=1 | V2=1) = 0.58 +P(X=1 | V2=0) = 0.69 +P(X=1 | V2=1) = 0.42 +(0.58 - 0.66) / (0.42 - 0.69) = 0.26 +0.26 > 0",IV,price,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 69%. For situations where there is no full moon, the probability of increased price is 45%. For situations where there is a full moon, the probability of increased price is 74%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.74 +0.69*0.74 - 0.31*0.45 = 0.65 +0.65 > 0",IV,price,1,marginal,P(Y) +22020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 76%. The probability of no full moon and increased price is 11%. The probability of full moon and increased price is 51%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.51 +0.51/0.76 - 0.11/0.24 = 0.24 +0.24 > 0",IV,price,1,correlation,P(Y | X) +22022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look directly at how full moon correlates with price in general. Method 2: We look at this correlation case by case according to demand.",no,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +22023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look at how full moon correlates with price case by case according to demand. Method 2: We look directly at how full moon correlates with price in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +22029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 44%. The probability of no full moon and increased price is 50%. The probability of full moon and increased price is 25%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.25 +0.25/0.44 - 0.50/0.56 = -0.34 +-0.34 < 0",IV,price,1,correlation,P(Y | X) +22030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look directly at how full moon correlates with price in general. Method 2: We look at this correlation case by case according to demand.",no,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +22038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. Method 1: We look directly at how full moon correlates with price in general. Method 2: We look at this correlation case by case according to demand.",no,"nan +nan +nan +nan +nan +nan +nan",IV,price,2,backadj,[backdoor adjustment set for Y given X] +22042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 63%. For situations where there is no full moon, the probability of increased price is 41%. For situations where there is a full moon, the probability of increased price is 72%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.72 +0.63*0.72 - 0.37*0.41 = 0.60 +0.60 > 0",IV,price,1,marginal,P(Y) +22045,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 63%. The probability of no full moon and increased price is 15%. The probability of full moon and increased price is 45%.",no,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.45 +0.45/0.63 - 0.15/0.37 = 0.31 +0.31 > 0",IV,price,1,correlation,P(Y | X) +22051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on full moon and price. Yield per acre has a direct effect on full moon. Full moon has a direct effect on price. Demand is unobserved. The overall probability of full moon is 47%. For situations where there is no full moon, the probability of increased price is 27%. For situations where there is a full moon, the probability of increased price is 46%.",yes,"Let V2 = yield per acre; V1 = demand; X = full moon; Y = price. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.46 +0.47*0.46 - 0.53*0.27 = 0.36 +0.36 > 0",IV,price,1,marginal,P(Y) +22088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look directly at how treatment correlates with peanut allergy in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 40%. For patients not receiving treatment, the probability of being allergic to peanuts is 43%. For patients receiving treatment, the probability of being allergic to peanuts is 59%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.59 +0.40*0.59 - 0.60*0.43 = 0.50 +0.50 > 0",confounding,simpson_drug,1,marginal,P(Y) +22096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 40%. The probability of receives no treatment and being allergic to peanuts is 26%. The probability of receives treatment and being allergic to peanuts is 24%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.24 +0.24/0.40 - 0.26/0.60 = 0.16 +0.16 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +22108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look directly at how treatment correlates with peanut allergy in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look at how treatment correlates with peanut allergy case by case according to gender. Method 2: We look directly at how treatment correlates with peanut allergy in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 90%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 80%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 30%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 20%. The overall probability of male gender is 50%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.30 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.50 +0.50 * (0.80 - 0.90) + 0.50 * (0.20 - 0.30) = -0.10 +-0.10 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 94%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 61%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 34%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 0%. The overall probability of male gender is 48%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.00 +P(V1=1) = 0.48 +0.52 * (0.61 - 0.94) + 0.48 * (0.00 - 0.34) = -0.33 +-0.33 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 51%. The probability of receives no treatment and being allergic to peanuts is 18%. The probability of receives treatment and being allergic to peanuts is 30%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.30 +0.30/0.51 - 0.18/0.49 = 0.22 +0.22 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +22164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 59%. For patients not receiving treatment, the probability of being allergic to peanuts is 24%. For patients receiving treatment, the probability of being allergic to peanuts is 64%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.64 +0.59*0.64 - 0.41*0.24 = 0.47 +0.47 > 0",confounding,simpson_drug,1,marginal,P(Y) +22167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 59%. The probability of receives no treatment and being allergic to peanuts is 10%. The probability of receives treatment and being allergic to peanuts is 38%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.38 +0.38/0.59 - 0.10/0.41 = 0.39 +0.39 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +22182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 97%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 75%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 25%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 7%. The overall probability of male gender is 51%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.07 +P(V1=1) = 0.51 +0.49 * (0.75 - 0.97) + 0.51 * (0.07 - 0.25) = -0.22 +-0.22 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 93%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 62%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 35%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 4%. The overall probability of male gender is 58%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.62 +P(Y=1 | V1=1, X=0) = 0.35 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.58 +0.42 * (0.62 - 0.93) + 0.58 * (0.04 - 0.35) = -0.31 +-0.31 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 93%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 62%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 35%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 4%. The overall probability of male gender is 58%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.62 +P(Y=1 | V1=1, X=0) = 0.35 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.58 +0.42 * (0.62 - 0.93) + 0.58 * (0.04 - 0.35) = -0.31 +-0.31 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 44%. For patients not receiving treatment, the probability of being allergic to peanuts is 38%. For patients receiving treatment, the probability of being allergic to peanuts is 56%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.56 +0.44*0.56 - 0.56*0.38 = 0.46 +0.46 > 0",confounding,simpson_drug,1,marginal,P(Y) +22209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look at how treatment correlates with peanut allergy case by case according to gender. Method 2: We look directly at how treatment correlates with peanut allergy in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look at how treatment correlates with peanut allergy case by case according to gender. Method 2: We look directly at how treatment correlates with peanut allergy in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 55%. The probability of receives no treatment and being allergic to peanuts is 14%. The probability of receives treatment and being allergic to peanuts is 39%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.39 +0.39/0.55 - 0.14/0.45 = 0.42 +0.42 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +22230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 97%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 67%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 41%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 9%. The overall probability of male gender is 58%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.58 +0.42 * (0.67 - 0.97) + 0.58 * (0.09 - 0.41) = -0.31 +-0.31 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 91%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 81%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 30%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 15%. The overall probability of male gender is 44%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.30 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.44 +0.56 * (0.81 - 0.91) + 0.44 * (0.15 - 0.30) = -0.10 +-0.10 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 56%. For patients not receiving treatment, the probability of being allergic to peanuts is 18%. For patients receiving treatment, the probability of being allergic to peanuts is 64%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.64 +0.56*0.64 - 0.44*0.18 = 0.44 +0.44 > 0",confounding,simpson_drug,1,marginal,P(Y) +22281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 98%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 87%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 34%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 14%. The overall probability of male gender is 43%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.87 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.14 +P(V1=1) = 0.43 +0.57 * (0.87 - 0.98) + 0.43 * (0.14 - 0.34) = -0.15 +-0.15 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 98%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 87%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 34%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 14%. The overall probability of male gender is 43%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.87 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.14 +P(V1=1) = 0.43 +0.57 * (0.87 - 0.98) + 0.43 * (0.14 - 0.34) = -0.11 +-0.11 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 98%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 87%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 34%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 14%. The overall probability of male gender is 43%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.87 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.14 +P(V1=1) = 0.43 +0.57 * (0.87 - 0.98) + 0.43 * (0.14 - 0.34) = -0.11 +-0.11 < 0",confounding,simpson_drug,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 57%. For patients not receiving treatment, the probability of being allergic to peanuts is 38%. For patients receiving treatment, the probability of being allergic to peanuts is 84%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.84 +0.57*0.84 - 0.43*0.38 = 0.62 +0.62 > 0",confounding,simpson_drug,1,marginal,P(Y) +22318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look directly at how treatment correlates with peanut allergy in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 45%. For patients not receiving treatment, the probability of being allergic to peanuts is 27%. For patients receiving treatment, the probability of being allergic to peanuts is 69%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.69 +0.45*0.69 - 0.55*0.27 = 0.46 +0.46 > 0",confounding,simpson_drug,1,marginal,P(Y) +22326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 45%. The probability of receives no treatment and being allergic to peanuts is 15%. The probability of receives treatment and being allergic to peanuts is 31%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.31 +0.31/0.45 - 0.15/0.55 = 0.42 +0.42 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +22337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. The overall probability of receives treatment is 53%. The probability of receives no treatment and being allergic to peanuts is 21%. The probability of receives treatment and being allergic to peanuts is 32%.",no,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.32 +0.32/0.53 - 0.21/0.47 = 0.16 +0.16 > 0",confounding,simpson_drug,1,correlation,P(Y | X) +22351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. For patients who are not male and not receiving treatment, the probability of being allergic to peanuts is 98%. For patients who are not male and receiving treatment, the probability of being allergic to peanuts is 64%. For patients who are male and not receiving treatment, the probability of being allergic to peanuts is 36%. For patients who are male and receiving treatment, the probability of being allergic to peanuts is 2%. The overall probability of male gender is 48%.",yes,"Let V1 = gender; X = treatment; Y = peanut allergy. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.64 +P(Y=1 | V1=1, X=0) = 0.36 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.48 +0.52 * (0.64 - 0.98) + 0.48 * (0.02 - 0.36) = -0.34 +-0.34 < 0",confounding,simpson_drug,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and peanut allergy. Treatment has a direct effect on peanut allergy. Method 1: We look directly at how treatment correlates with peanut allergy in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_drug,2,backadj,[backdoor adjustment set for Y given X] +22381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 97%. For patients who are young and pay a high hospital bill, the probability of thick lips is 75%. For patients who are old and pay a low hospital bill, the probability of thick lips is 24%. For patients who are old and pay a high hospital bill, the probability of thick lips is 2%. The overall probability of old age is 57%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.57 +0.43 * (0.75 - 0.97) + 0.57 * (0.02 - 0.24) = -0.22 +-0.22 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 97%. For patients who are young and pay a high hospital bill, the probability of thick lips is 75%. For patients who are old and pay a low hospital bill, the probability of thick lips is 24%. For patients who are old and pay a high hospital bill, the probability of thick lips is 2%. The overall probability of old age is 57%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.57 +0.43 * (0.75 - 0.97) + 0.57 * (0.02 - 0.24) = -0.22 +-0.22 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look at how hospital costs correlates with lip thickness case by case according to age. Method 2: We look directly at how hospital costs correlates with lip thickness in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 82%. For patients who are young and pay a high hospital bill, the probability of thick lips is 71%. For patients who are old and pay a low hospital bill, the probability of thick lips is 25%. For patients who are old and pay a high hospital bill, the probability of thick lips is 11%. The overall probability of old age is 46%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.82 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.11 +P(V1=1) = 0.46 +0.54 * (0.71 - 0.82) + 0.46 * (0.11 - 0.25) = -0.12 +-0.12 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look directly at how hospital costs correlates with lip thickness in general. Method 2: We look at this correlation case by case according to age.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look directly at how hospital costs correlates with lip thickness in general. Method 2: We look at this correlation case by case according to age.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 96%. For patients who are young and pay a high hospital bill, the probability of thick lips is 75%. For patients who are old and pay a low hospital bill, the probability of thick lips is 25%. For patients who are old and pay a high hospital bill, the probability of thick lips is 5%. The overall probability of old age is 52%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.05 +P(V1=1) = 0.52 +0.48 * (0.75 - 0.96) + 0.52 * (0.05 - 0.25) = -0.21 +-0.21 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 62%. For patients who pay a low hospital bill, the probability of thick lips is 36%. For people who pay a high hospital bill, the probability of thick lips is 53%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.53 +0.62*0.53 - 0.38*0.36 = 0.47 +0.47 > 0",confounding,simpson_hospital,1,marginal,P(Y) +22473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 87%. For patients who are young and pay a high hospital bill, the probability of thick lips is 72%. For patients who are old and pay a low hospital bill, the probability of thick lips is 21%. For patients who are old and pay a high hospital bill, the probability of thick lips is 8%. The overall probability of old age is 41%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.87 +P(Y=1 | V1=0, X=1) = 0.72 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.08 +P(V1=1) = 0.41 +0.59 * (0.72 - 0.87) + 0.41 * (0.08 - 0.21) = -0.15 +-0.15 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look directly at how hospital costs correlates with lip thickness in general. Method 2: We look at this correlation case by case according to age.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 80%. For patients who are young and pay a high hospital bill, the probability of thick lips is 65%. For patients who are old and pay a low hospital bill, the probability of thick lips is 18%. For patients who are old and pay a high hospital bill, the probability of thick lips is 1%. The overall probability of old age is 54%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.54 +0.46 * (0.65 - 0.80) + 0.54 * (0.01 - 0.18) = -0.15 +-0.15 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 80%. For patients who are young and pay a high hospital bill, the probability of thick lips is 65%. For patients who are old and pay a low hospital bill, the probability of thick lips is 18%. For patients who are old and pay a high hospital bill, the probability of thick lips is 1%. The overall probability of old age is 54%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.54 +0.46 * (0.65 - 0.80) + 0.54 * (0.01 - 0.18) = -0.15 +-0.15 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 45%. For patients who pay a low hospital bill, the probability of thick lips is 24%. For people who pay a high hospital bill, the probability of thick lips is 60%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.60 +0.45*0.60 - 0.55*0.24 = 0.39 +0.39 > 0",confounding,simpson_hospital,1,marginal,P(Y) +22517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 45%. The probability of low hospital bill and thick lips is 13%. The probability of high hospital bill and thick lips is 27%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.27 +0.27/0.45 - 0.13/0.55 = 0.36 +0.36 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +22520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 95%. For patients who are young and pay a high hospital bill, the probability of thick lips is 73%. For patients who are old and pay a low hospital bill, the probability of thick lips is 22%. For patients who are old and pay a high hospital bill, the probability of thick lips is 0%. The overall probability of old age is 40%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.00 +P(V1=1) = 0.40 +0.60 * (0.73 - 0.95) + 0.40 * (0.00 - 0.22) = -0.22 +-0.22 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 60%. The probability of low hospital bill and thick lips is 15%. The probability of high hospital bill and thick lips is 37%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.37 +0.37/0.60 - 0.15/0.40 = 0.24 +0.24 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +22532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 86%. For patients who are young and pay a high hospital bill, the probability of thick lips is 75%. For patients who are old and pay a low hospital bill, the probability of thick lips is 27%. For patients who are old and pay a high hospital bill, the probability of thick lips is 11%. The overall probability of old age is 54%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.86 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.11 +P(V1=1) = 0.54 +0.46 * (0.75 - 0.86) + 0.54 * (0.11 - 0.27) = -0.11 +-0.11 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 58%. The probability of low hospital bill and thick lips is 11%. The probability of high hospital bill and thick lips is 41%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.41 +0.41/0.58 - 0.11/0.42 = 0.44 +0.44 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +22559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look at how hospital costs correlates with lip thickness case by case according to age. Method 2: We look directly at how hospital costs correlates with lip thickness in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 59%. For patients who pay a low hospital bill, the probability of thick lips is 32%. For people who pay a high hospital bill, the probability of thick lips is 69%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.69 +0.59*0.69 - 0.41*0.32 = 0.54 +0.54 > 0",confounding,simpson_hospital,1,marginal,P(Y) +22566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 59%. The probability of low hospital bill and thick lips is 13%. The probability of high hospital bill and thick lips is 41%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.41 +0.41/0.59 - 0.13/0.41 = 0.36 +0.36 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +22578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look directly at how hospital costs correlates with lip thickness in general. Method 2: We look at this correlation case by case according to age.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look directly at how hospital costs correlates with lip thickness in general. Method 2: We look at this correlation case by case according to age.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22622,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 95%. For patients who are young and pay a high hospital bill, the probability of thick lips is 74%. For patients who are old and pay a low hospital bill, the probability of thick lips is 23%. For patients who are old and pay a high hospital bill, the probability of thick lips is 2%. The overall probability of old age is 48%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.74 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.48 +0.52 * (0.74 - 0.95) + 0.48 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_hospital,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 89%. For patients who are young and pay a high hospital bill, the probability of thick lips is 73%. For patients who are old and pay a low hospital bill, the probability of thick lips is 24%. For patients who are old and pay a high hospital bill, the probability of thick lips is 9%. The overall probability of old age is 59%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.89 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.59 +0.41 * (0.73 - 0.89) + 0.59 * (0.09 - 0.24) = -0.16 +-0.16 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 44%. For patients who pay a low hospital bill, the probability of thick lips is 28%. For people who pay a high hospital bill, the probability of thick lips is 64%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.64 +0.44*0.64 - 0.56*0.28 = 0.44 +0.44 > 0",confounding,simpson_hospital,1,marginal,P(Y) +22635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 44%. For patients who pay a low hospital bill, the probability of thick lips is 28%. For people who pay a high hospital bill, the probability of thick lips is 64%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.64 +0.44*0.64 - 0.56*0.28 = 0.44 +0.44 > 0",confounding,simpson_hospital,1,marginal,P(Y) +22646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. The overall probability of high hospital bill is 38%. The probability of low hospital bill and thick lips is 23%. The probability of high hospital bill and thick lips is 23%.",yes,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.23 +0.23/0.38 - 0.23/0.62 = 0.24 +0.24 > 0",confounding,simpson_hospital,1,correlation,P(Y | X) +22650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. For patients who are young and pay a low hospital bill, the probability of thick lips is 96%. For patients who are young and pay a high hospital bill, the probability of thick lips is 79%. For patients who are old and pay a low hospital bill, the probability of thick lips is 34%. For patients who are old and pay a high hospital bill, the probability of thick lips is 20%. The overall probability of old age is 49%.",no,"Let V1 = age; X = hospital costs; Y = lip thickness. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.79 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.49 +0.51 * (0.79 - 0.96) + 0.49 * (0.20 - 0.34) = -0.15 +-0.15 < 0",confounding,simpson_hospital,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and lip thickness. Hospital costs has a direct effect on lip thickness. Method 1: We look directly at how hospital costs correlates with lip thickness in general. Method 2: We look at this correlation case by case according to age.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_hospital,2,backadj,[backdoor adjustment set for Y given X] +22690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 96%. For patients who have small kidney stones and speak english, the probability of recovery is 90%. For patients who have large kidney stones and do not speak english, the probability of recovery is 32%. For patients who have large kidney stones and speak english, the probability of recovery is 25%. The overall probability of large kidney stone is 44%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.90 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.25 +P(V1=1) = 0.44 +0.56 * (0.90 - 0.96) + 0.44 * (0.25 - 0.32) = -0.06 +-0.06 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 96%. For patients who have small kidney stones and speak english, the probability of recovery is 90%. For patients who have large kidney stones and do not speak english, the probability of recovery is 32%. For patients who have large kidney stones and speak english, the probability of recovery is 25%. The overall probability of large kidney stone is 44%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.90 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.25 +P(V1=1) = 0.44 +0.56 * (0.90 - 0.96) + 0.44 * (0.25 - 0.32) = -0.06 +-0.06 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 55%. For patients who do not speak english, the probability of recovery is 40%. For patients who speak english, the probability of recovery is 84%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.84 +0.55*0.84 - 0.45*0.40 = 0.64 +0.64 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +22708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look directly at how ability to speak english correlates with recovery in general. Method 2: We look at this correlation case by case according to kidney stone size.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look at how ability to speak english correlates with recovery case by case according to kidney stone size. Method 2: We look directly at how ability to speak english correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look directly at how ability to speak english correlates with recovery in general. Method 2: We look at this correlation case by case according to kidney stone size.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look at how ability to speak english correlates with recovery case by case according to kidney stone size. Method 2: We look directly at how ability to speak english correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look directly at how ability to speak english correlates with recovery in general. Method 2: We look at this correlation case by case according to kidney stone size.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 90%. For patients who have small kidney stones and speak english, the probability of recovery is 79%. For patients who have large kidney stones and do not speak english, the probability of recovery is 13%. For patients who have large kidney stones and speak english, the probability of recovery is 0%. The overall probability of large kidney stone is 40%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.79 +P(Y=1 | V1=1, X=0) = 0.13 +P(Y=1 | V1=1, X=1) = 0.00 +P(V1=1) = 0.40 +0.60 * (0.79 - 0.90) + 0.40 * (0.00 - 0.13) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 90%. For patients who have small kidney stones and speak english, the probability of recovery is 79%. For patients who have large kidney stones and do not speak english, the probability of recovery is 13%. For patients who have large kidney stones and speak english, the probability of recovery is 0%. The overall probability of large kidney stone is 40%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.79 +P(Y=1 | V1=1, X=0) = 0.13 +P(Y=1 | V1=1, X=1) = 0.00 +P(V1=1) = 0.40 +0.60 * (0.79 - 0.90) + 0.40 * (0.00 - 0.13) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 49%. The probability of not speaking english and recovery is 20%. The probability of speaking english and recovery is 33%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.33 +0.33/0.49 - 0.20/0.51 = 0.30 +0.30 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 51%. The probability of not speaking english and recovery is 12%. The probability of speaking english and recovery is 36%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.36 +0.36/0.51 - 0.12/0.49 = 0.47 +0.47 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look at how ability to speak english correlates with recovery case by case according to kidney stone size. Method 2: We look directly at how ability to speak english correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 95%. For patients who have small kidney stones and speak english, the probability of recovery is 81%. For patients who have large kidney stones and do not speak english, the probability of recovery is 17%. For patients who have large kidney stones and speak english, the probability of recovery is 6%. The overall probability of large kidney stone is 54%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.06 +P(V1=1) = 0.54 +0.46 * (0.81 - 0.95) + 0.54 * (0.06 - 0.17) = -0.13 +-0.13 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 95%. For patients who have small kidney stones and speak english, the probability of recovery is 81%. For patients who have large kidney stones and do not speak english, the probability of recovery is 17%. For patients who have large kidney stones and speak english, the probability of recovery is 6%. The overall probability of large kidney stone is 54%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.06 +P(V1=1) = 0.54 +0.46 * (0.81 - 0.95) + 0.54 * (0.06 - 0.17) = -0.14 +-0.14 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22796,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 50%. The probability of not speaking english and recovery is 16%. The probability of speaking english and recovery is 40%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.40 +0.40/0.50 - 0.16/0.50 = 0.47 +0.47 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 98%. For patients who have small kidney stones and speak english, the probability of recovery is 87%. For patients who have large kidney stones and do not speak english, the probability of recovery is 25%. For patients who have large kidney stones and speak english, the probability of recovery is 10%. The overall probability of large kidney stone is 44%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.87 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.10 +P(V1=1) = 0.44 +0.56 * (0.87 - 0.98) + 0.44 * (0.10 - 0.25) = -0.11 +-0.11 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 38%. The probability of not speaking english and recovery is 16%. The probability of speaking english and recovery is 29%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.29 +0.29/0.38 - 0.16/0.62 = 0.49 +0.49 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look at how ability to speak english correlates with recovery case by case according to kidney stone size. Method 2: We look directly at how ability to speak english correlates with recovery in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 48%. The probability of not speaking english and recovery is 13%. The probability of speaking english and recovery is 36%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.36 +0.36/0.48 - 0.13/0.52 = 0.50 +0.50 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 52%. For patients who do not speak english, the probability of recovery is 45%. For patients who speak english, the probability of recovery is 73%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.73 +0.52*0.73 - 0.48*0.45 = 0.60 +0.60 > 0",confounding,simpson_kidneystone,1,marginal,P(Y) +22920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 92%. For patients who have small kidney stones and speak english, the probability of recovery is 81%. For patients who have large kidney stones and do not speak english, the probability of recovery is 17%. For patients who have large kidney stones and speak english, the probability of recovery is 5%. The overall probability of large kidney stone is 49%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.92 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.05 +P(V1=1) = 0.49 +0.51 * (0.81 - 0.92) + 0.49 * (0.05 - 0.17) = -0.12 +-0.12 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 63%. The probability of not speaking english and recovery is 9%. The probability of speaking english and recovery is 39%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.39 +0.39/0.63 - 0.09/0.37 = 0.37 +0.37 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 88%. For patients who have small kidney stones and speak english, the probability of recovery is 72%. For patients who have large kidney stones and do not speak english, the probability of recovery is 16%. For patients who have large kidney stones and speak english, the probability of recovery is 4%. The overall probability of large kidney stone is 41%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.72 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.41 +0.59 * (0.72 - 0.88) + 0.41 * (0.04 - 0.16) = -0.14 +-0.14 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 88%. For patients who have small kidney stones and speak english, the probability of recovery is 72%. For patients who have large kidney stones and do not speak english, the probability of recovery is 16%. For patients who have large kidney stones and speak english, the probability of recovery is 4%. The overall probability of large kidney stone is 41%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.72 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.41 +0.59 * (0.72 - 0.88) + 0.41 * (0.04 - 0.16) = -0.16 +-0.16 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 97%. For patients who have small kidney stones and speak english, the probability of recovery is 84%. For patients who have large kidney stones and do not speak english, the probability of recovery is 20%. For patients who have large kidney stones and speak english, the probability of recovery is 7%. The overall probability of large kidney stone is 55%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.20 +P(Y=1 | V1=1, X=1) = 0.07 +P(V1=1) = 0.55 +0.45 * (0.84 - 0.97) + 0.55 * (0.07 - 0.20) = -0.13 +-0.13 < 0",confounding,simpson_kidneystone,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +22958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. Method 1: We look directly at how ability to speak english correlates with recovery in general. Method 2: We look at this correlation case by case according to kidney stone size.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_kidneystone,2,backadj,[backdoor adjustment set for Y given X] +22962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 98%. For patients who have small kidney stones and speak english, the probability of recovery is 85%. For patients who have large kidney stones and do not speak english, the probability of recovery is 23%. For patients who have large kidney stones and speak english, the probability of recovery is 9%. The overall probability of large kidney stone is 57%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.85 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.57 +0.43 * (0.85 - 0.98) + 0.57 * (0.09 - 0.23) = -0.14 +-0.14 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 45%. The probability of not speaking english and recovery is 21%. The probability of speaking english and recovery is 28%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.28 +0.28/0.45 - 0.21/0.55 = 0.26 +0.26 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. For patients who have small kidney stones and do not speak english, the probability of recovery is 99%. For patients who have small kidney stones and speak english, the probability of recovery is 88%. For patients who have large kidney stones and do not speak english, the probability of recovery is 32%. For patients who have large kidney stones and speak english, the probability of recovery is 18%. The overall probability of large kidney stone is 59%.",no,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.99 +P(Y=1 | V1=0, X=1) = 0.88 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.18 +P(V1=1) = 0.59 +0.41 * (0.88 - 0.99) + 0.59 * (0.18 - 0.32) = -0.11 +-0.11 < 0",confounding,simpson_kidneystone,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on ability to speak english and recovery. Ability to speak english has a direct effect on recovery. The overall probability of speaking english is 45%. The probability of not speaking english and recovery is 19%. The probability of speaking english and recovery is 35%.",yes,"Let V1 = kidney stone size; X = ability to speak english; Y = recovery. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.35 +0.35/0.45 - 0.19/0.55 = 0.43 +0.43 > 0",confounding,simpson_kidneystone,1,correlation,P(Y | X) +22982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 91%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 81%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 20%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 10%. The overall probability of pre-conditions is 43%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.20 +P(Y=1 | V1=1, X=1) = 0.10 +P(V1=1) = 0.43 +0.57 * (0.81 - 0.91) + 0.43 * (0.10 - 0.20) = -0.10 +-0.10 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +22996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 67%. The probability of not having a brother and recovering from the disease is 11%. The probability of having a brother and recovering from the disease is 42%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.42 +0.42/0.67 - 0.11/0.33 = 0.29 +0.29 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +23010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 85%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 75%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 15%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 8%. The overall probability of pre-conditions is 45%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.85 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.15 +P(Y=1 | V1=1, X=1) = 0.08 +P(V1=1) = 0.45 +0.55 * (0.75 - 0.85) + 0.45 * (0.08 - 0.15) = -0.09 +-0.09 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 53%. For people who do not have a brother, the probability of recovering from the disease is 38%. For people who have a brother, the probability of recovering from the disease is 62%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.62 +0.53*0.62 - 0.47*0.38 = 0.51 +0.51 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 50%. For people who do not have a brother, the probability of recovering from the disease is 30%. For people who have a brother, the probability of recovering from the disease is 68%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.68 +0.50*0.68 - 0.50*0.30 = 0.50 +0.50 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 99%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 78%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 25%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 3%. The overall probability of pre-conditions is 42%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.99 +P(Y=1 | V1=0, X=1) = 0.78 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.42 +0.58 * (0.78 - 0.99) + 0.42 * (0.03 - 0.25) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 99%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 78%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 25%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 3%. The overall probability of pre-conditions is 42%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.99 +P(Y=1 | V1=0, X=1) = 0.78 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.42 +0.58 * (0.78 - 0.99) + 0.42 * (0.03 - 0.25) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 48%. For people who do not have a brother, the probability of recovering from the disease is 12%. For people who have a brother, the probability of recovering from the disease is 51%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.51 +0.48*0.51 - 0.52*0.12 = 0.31 +0.31 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. Method 1: We look at how having a brother correlates with disease case by case according to pre-conditions. Method 2: We look directly at how having a brother correlates with disease in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +23110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 95%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 75%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 23%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 2%. The overall probability of pre-conditions is 47%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.47 +0.53 * (0.75 - 0.95) + 0.47 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 95%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 75%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 23%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 2%. The overall probability of pre-conditions is 47%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.02 +P(V1=1) = 0.47 +0.53 * (0.75 - 0.95) + 0.47 * (0.02 - 0.23) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 84%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 71%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 23%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 13%. The overall probability of pre-conditions is 52%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.84 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.52 +0.48 * (0.71 - 0.84) + 0.52 * (0.13 - 0.23) = -0.13 +-0.13 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. Method 1: We look directly at how having a brother correlates with disease in general. Method 2: We look at this correlation case by case according to pre-conditions.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +23129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. Method 1: We look at how having a brother correlates with disease case by case according to pre-conditions. Method 2: We look directly at how having a brother correlates with disease in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +23133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 91%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 84%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 27%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 19%. The overall probability of pre-conditions is 53%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.19 +P(V1=1) = 0.53 +0.47 * (0.84 - 0.91) + 0.53 * (0.19 - 0.27) = -0.08 +-0.08 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 44%. For people who do not have a brother, the probability of recovering from the disease is 48%. For people who have a brother, the probability of recovering from the disease is 69%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.69 +0.44*0.69 - 0.56*0.48 = 0.57 +0.57 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 43%. For people who do not have a brother, the probability of recovering from the disease is 29%. For people who have a brother, the probability of recovering from the disease is 73%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.73 +0.43*0.73 - 0.57*0.29 = 0.48 +0.48 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. Method 1: We look at how having a brother correlates with disease case by case according to pre-conditions. Method 2: We look directly at how having a brother correlates with disease in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +23166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 46%. The probability of not having a brother and recovering from the disease is 15%. The probability of having a brother and recovering from the disease is 31%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.31 +0.31/0.46 - 0.15/0.54 = 0.39 +0.39 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +23175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 37%. For people who do not have a brother, the probability of recovering from the disease is 32%. For people who have a brother, the probability of recovering from the disease is 69%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.69 +0.37*0.69 - 0.63*0.32 = 0.46 +0.46 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 87%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 73%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 22%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 4%. The overall probability of pre-conditions is 45%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.87 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.45 +0.55 * (0.73 - 0.87) + 0.45 * (0.04 - 0.22) = -0.14 +-0.14 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. Method 1: We look at how having a brother correlates with disease case by case according to pre-conditions. Method 2: We look directly at how having a brother correlates with disease in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +23203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 94%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 74%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 24%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 3%. The overall probability of pre-conditions is 42%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.74 +P(Y=1 | V1=1, X=0) = 0.24 +P(Y=1 | V1=1, X=1) = 0.03 +P(V1=1) = 0.42 +0.58 * (0.74 - 0.94) + 0.42 * (0.03 - 0.24) = -0.20 +-0.20 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 49%. The probability of not having a brother and recovering from the disease is 20%. The probability of having a brother and recovering from the disease is 34%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.34 +0.34/0.49 - 0.20/0.51 = 0.29 +0.29 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +23225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 62%. For people who do not have a brother, the probability of recovering from the disease is 21%. For people who have a brother, the probability of recovering from the disease is 77%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.77 +0.62*0.77 - 0.38*0.21 = 0.57 +0.57 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 97%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 77%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 25%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 4%. The overall probability of pre-conditions is 55%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.77 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.55 +0.45 * (0.77 - 0.97) + 0.55 * (0.04 - 0.25) = -0.21 +-0.21 < 0",confounding,simpson_vaccine,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. For people with no pre-conditions and do not have a brother, the probability of recovering from the disease is 97%. For people with no pre-conditions and have a brother, the probability of recovering from the disease is 77%. For people with pre-conditions and do not have a brother, the probability of recovering from the disease is 25%. For people with pre-conditions and have a brother, the probability of recovering from the disease is 4%. The overall probability of pre-conditions is 55%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.77 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.55 +0.45 * (0.77 - 0.97) + 0.55 * (0.04 - 0.25) = -0.20 +-0.20 < 0",confounding,simpson_vaccine,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 44%. The probability of not having a brother and recovering from the disease is 17%. The probability of having a brother and recovering from the disease is 31%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.31 +0.31/0.44 - 0.17/0.56 = 0.38 +0.38 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +23244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 53%. For people who do not have a brother, the probability of recovering from the disease is 19%. For people who have a brother, the probability of recovering from the disease is 60%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.60 +0.53*0.60 - 0.47*0.19 = 0.41 +0.41 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 52%. The probability of not having a brother and recovering from the disease is 13%. The probability of having a brother and recovering from the disease is 35%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.35 +0.35/0.52 - 0.13/0.48 = 0.40 +0.40 > 0",confounding,simpson_vaccine,1,correlation,P(Y | X) +23264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 66%. For people who do not have a brother, the probability of recovering from the disease is 33%. For people who have a brother, the probability of recovering from the disease is 66%.",yes,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.66 +0.66*0.66 - 0.34*0.33 = 0.55 +0.55 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. The overall probability of having a brother is 66%. For people who do not have a brother, the probability of recovering from the disease is 33%. For people who have a brother, the probability of recovering from the disease is 66%.",no,"Let V1 = pre-conditions; X = having a brother; Y = disease. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.66 +0.66*0.66 - 0.34*0.33 = 0.55 +0.55 > 0",confounding,simpson_vaccine,1,marginal,P(Y) +23268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on having a brother and disease. Having a brother has a direct effect on disease. Method 1: We look directly at how having a brother correlates with disease in general. Method 2: We look at this correlation case by case according to pre-conditions.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,simpson_vaccine,2,backadj,[backdoor adjustment set for Y given X] +23286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 60%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 86%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 36%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 61%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 43%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 14%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 71%. For infants who have a sister and with good health, the probability of normal infant birth weight is 49%. The overall probability of good health is 15%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.49 +P(V2=1) = 0.15 +0.15 * (0.61 - 0.36) * 0.14 + 0.85 * (0.86 - 0.60) * 0.71 = -0.24 +-0.24 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 94%. The probability of not having a sister and high infant mortality is 4%. The probability of having a sister and high infant mortality is 49%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.49 +0.49/0.94 - 0.04/0.06 = -0.18 +-0.18 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 83%. For infants who have a sister, the probability of high infant mortality is 65%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.65 +0.65 - 0.83 = -0.19 +-0.19 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 69%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 94%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 33%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 68%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 63%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 36%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 95%. For infants who have a sister and with good health, the probability of normal infant birth weight is 63%. The overall probability of good health is 16%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.94 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.68 +P(V3=1 | X=0, V2=0) = 0.63 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.95 +P(V3=1 | X=1, V2=1) = 0.63 +P(V2=1) = 0.16 +0.16 * (0.68 - 0.33) * 0.36 + 0.84 * (0.94 - 0.69) * 0.95 = -0.26 +-0.26 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 43%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 66%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 11%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 35%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 59%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 18%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 88%. For infants who have a sister and with good health, the probability of normal infant birth weight is 51%. The overall probability of good health is 12%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.11 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.18 +P(V3=1 | X=1, V2=0) = 0.88 +P(V3=1 | X=1, V2=1) = 0.51 +P(V2=1) = 0.12 +0.12 * 0.66 * (0.51 - 0.88)+ 0.88 * 0.66 * (0.18 - 0.59)= 0.07 +0.07 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 46%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 74%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 18%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 49%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 45%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 22%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 72%. For infants who have a sister and with good health, the probability of normal infant birth weight is 50%. The overall probability of good health is 14%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.45 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.50 +P(V2=1) = 0.14 +0.14 * 0.74 * (0.50 - 0.72)+ 0.86 * 0.74 * (0.22 - 0.45)= 0.07 +0.07 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 46%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 74%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 18%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 49%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 45%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 22%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 72%. For infants who have a sister and with good health, the probability of normal infant birth weight is 50%. The overall probability of good health is 14%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.45 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.50 +P(V2=1) = 0.14 +0.14 * (0.49 - 0.18) * 0.22 + 0.86 * (0.74 - 0.46) * 0.72 = -0.26 +-0.26 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 40%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 83%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 6%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 43%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 69%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 35%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 96%. For infants who have a sister and with good health, the probability of normal infant birth weight is 67%. The overall probability of good health is 10%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.06 +P(Y=1 | X=1, V3=1) = 0.43 +P(V3=1 | X=0, V2=0) = 0.69 +P(V3=1 | X=0, V2=1) = 0.35 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.67 +P(V2=1) = 0.10 +0.10 * 0.83 * (0.67 - 0.96)+ 0.90 * 0.83 * (0.35 - 0.69)= 0.13 +0.13 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 40%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 83%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 6%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 43%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 69%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 35%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 96%. For infants who have a sister and with good health, the probability of normal infant birth weight is 67%. The overall probability of good health is 10%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.06 +P(Y=1 | X=1, V3=1) = 0.43 +P(V3=1 | X=0, V2=0) = 0.69 +P(V3=1 | X=0, V2=1) = 0.35 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.67 +P(V2=1) = 0.10 +0.10 * (0.43 - 0.06) * 0.35 + 0.90 * (0.83 - 0.40) * 0.96 = -0.37 +-0.37 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 95%. The probability of not having a sister and high infant mortality is 3%. The probability of having a sister and high infant mortality is 39%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.39 +0.39/0.95 - 0.03/0.05 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 59%. For infants who have a sister, the probability of high infant mortality is 43%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.43 +0.43 - 0.59 = -0.16 +-0.16 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 58%. For infants who have a sister, the probability of high infant mortality is 36%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.36 +0.36 - 0.58 = -0.21 +-0.21 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 87%. For infants who do not have a sister, the probability of high infant mortality is 54%. For infants who have a sister, the probability of high infant mortality is 31%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.31 +0.87*0.31 - 0.13*0.54 = 0.34 +0.34 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +23445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 87%. The probability of not having a sister and high infant mortality is 7%. The probability of having a sister and high infant mortality is 27%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.27 +0.27/0.87 - 0.07/0.13 = -0.23 +-0.23 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look at how having a sister correlates with infant mortality case by case according to infant's birth weight. Method 2: We look directly at how having a sister correlates with infant mortality in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 90%. The probability of not having a sister and high infant mortality is 7%. The probability of having a sister and high infant mortality is 42%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.42 +0.42/0.90 - 0.07/0.10 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look at how having a sister correlates with infant mortality case by case according to infant's birth weight. Method 2: We look directly at how having a sister correlates with infant mortality in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 85%. For infants who have a sister, the probability of high infant mortality is 65%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.65 +0.65 - 0.85 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 42%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 69%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 20%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 44%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 62%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 39%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 95%. For infants who have a sister and with good health, the probability of normal infant birth weight is 72%. The overall probability of good health is 3%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.44 +P(V3=1 | X=0, V2=0) = 0.62 +P(V3=1 | X=0, V2=1) = 0.39 +P(V3=1 | X=1, V2=0) = 0.95 +P(V3=1 | X=1, V2=1) = 0.72 +P(V2=1) = 0.03 +0.03 * (0.44 - 0.20) * 0.39 + 0.97 * (0.69 - 0.42) * 0.95 = -0.24 +-0.24 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 87%. For infants who do not have a sister, the probability of high infant mortality is 59%. For infants who have a sister, the probability of high infant mortality is 43%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.43 +0.87*0.43 - 0.13*0.59 = 0.45 +0.45 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +23527,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 87%. For infants who do not have a sister, the probability of high infant mortality is 59%. For infants who have a sister, the probability of high infant mortality is 43%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.43 +0.87*0.43 - 0.13*0.59 = 0.45 +0.45 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +23537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 61%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 89%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 24%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 59%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 67%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 31%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 96%. For infants who have a sister and with good health, the probability of normal infant birth weight is 57%. The overall probability of good health is 13%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.61 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.59 +P(V3=1 | X=0, V2=0) = 0.67 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.57 +P(V2=1) = 0.13 +0.13 * 0.89 * (0.57 - 0.96)+ 0.87 * 0.89 * (0.31 - 0.67)= 0.06 +0.06 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look at how having a sister correlates with infant mortality case by case according to infant's birth weight. Method 2: We look directly at how having a sister correlates with infant mortality in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 52%. For infants who have a sister, the probability of high infant mortality is 32%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.32 +0.32 - 0.52 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 52%. For infants who have a sister, the probability of high infant mortality is 32%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.32 +0.32 - 0.52 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look directly at how having a sister correlates with infant mortality in general. Method 2: We look at this correlation case by case according to infant's birth weight.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 76%. For infants who have a sister, the probability of high infant mortality is 56%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.56 +0.56 - 0.76 = -0.19 +-0.19 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 63%. For infants who have a sister, the probability of high infant mortality is 43%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.43 +0.43 - 0.63 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 63%. For infants who have a sister, the probability of high infant mortality is 43%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.43 +0.43 - 0.63 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 79%. For infants who have a sister, the probability of high infant mortality is 52%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.52 +0.52 - 0.79 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 84%. For infants who do not have a sister, the probability of high infant mortality is 79%. For infants who have a sister, the probability of high infant mortality is 52%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.52 +0.84*0.52 - 0.16*0.79 = 0.56 +0.56 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +23599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 84%. The probability of not having a sister and high infant mortality is 13%. The probability of having a sister and high infant mortality is 43%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.84 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.43 +0.43/0.84 - 0.13/0.16 = -0.27 +-0.27 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look directly at how having a sister correlates with infant mortality in general. Method 2: We look at this correlation case by case according to infant's birth weight.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 70%. For infants who have a sister, the probability of high infant mortality is 53%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.53 +0.53 - 0.70 = -0.17 +-0.17 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 57%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 78%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 32%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 55%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 65%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 40%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 95%. For infants who have a sister and with good health, the probability of normal infant birth weight is 71%. The overall probability of good health is 14%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.40 +P(V3=1 | X=1, V2=0) = 0.95 +P(V3=1 | X=1, V2=1) = 0.71 +P(V2=1) = 0.14 +0.14 * (0.55 - 0.32) * 0.40 + 0.86 * (0.78 - 0.57) * 0.95 = -0.23 +-0.23 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 80%. For infants who do not have a sister, the probability of high infant mortality is 70%. For infants who have a sister, the probability of high infant mortality is 53%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.53 +0.80*0.53 - 0.20*0.70 = 0.56 +0.56 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +23621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 63%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 87%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 39%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 63%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 32%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 1%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 64%. For infants who have a sister and with good health, the probability of normal infant birth weight is 22%. The overall probability of good health is 3%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.63 +P(V3=1 | X=0, V2=0) = 0.32 +P(V3=1 | X=0, V2=1) = 0.01 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.22 +P(V2=1) = 0.03 +0.03 * 0.87 * (0.22 - 0.64)+ 0.97 * 0.87 * (0.01 - 0.32)= 0.07 +0.07 > 0",arrowhead,smoke_birthWeight,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister and low infant birth weight, the probability of high infant mortality is 59%. For infants who do not have a sister and normal infant birth weight, the probability of high infant mortality is 86%. For infants who have a sister and low infant birth weight, the probability of high infant mortality is 21%. For infants who have a sister and normal infant birth weight, the probability of high infant mortality is 60%. For infants who do not have a sister and with poor health, the probability of normal infant birth weight is 67%. For infants who do not have a sister and with good health, the probability of normal infant birth weight is 39%. For infants who have a sister and with poor health, the probability of normal infant birth weight is 99%. For infants who have a sister and with good health, the probability of normal infant birth weight is 68%. The overall probability of good health is 18%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.67 +P(V3=1 | X=0, V2=1) = 0.39 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.68 +P(V2=1) = 0.18 +0.18 * (0.60 - 0.21) * 0.39 + 0.82 * (0.86 - 0.59) * 0.99 = -0.25 +-0.25 < 0",arrowhead,smoke_birthWeight,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +23655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 82%. The probability of not having a sister and high infant mortality is 14%. The probability of having a sister and high infant mortality is 47%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.47 +0.47/0.82 - 0.14/0.18 = -0.18 +-0.18 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look directly at how having a sister correlates with infant mortality in general. Method 2: We look at this correlation case by case according to infant's birth weight.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 79%. For infants who have a sister, the probability of high infant mortality is 46%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.46 +0.46 - 0.79 = -0.34 +-0.34 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 79%. For infants who have a sister, the probability of high infant mortality is 46%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.46 +0.46 - 0.79 = -0.34 +-0.34 < 0",arrowhead,smoke_birthWeight,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 94%. For infants who do not have a sister, the probability of high infant mortality is 79%. For infants who have a sister, the probability of high infant mortality is 46%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.46 +0.94*0.46 - 0.06*0.79 = 0.48 +0.48 > 0",arrowhead,smoke_birthWeight,1,marginal,P(Y) +23673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. For infants who do not have a sister, the probability of high infant mortality is 87%. For infants who have a sister, the probability of high infant mortality is 73%.",yes,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.73 +0.73 - 0.87 = -0.14 +-0.14 < 0",arrowhead,smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. The overall probability of having a sister is 97%. The probability of not having a sister and high infant mortality is 2%. The probability of having a sister and high infant mortality is 38%.",no,"Let V2 = health condition; X = having a sister; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.38 +0.38/0.97 - 0.02/0.03 = -0.20 +-0.20 < 0",arrowhead,smoke_birthWeight,1,correlation,P(Y | X) +23699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. Method 1: We look directly at how having a sister correlates with infant mortality in general. Method 2: We look at this correlation case by case according to infant's birth weight.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +23716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 66%. For smokers, the probability of high tar deposit is 1%. For nonsmokers and with no tar deposit, the probability of freckles is 65%. For nonsmokers and with high tar deposit, the probability of freckles is 34%. For smokers and with no tar deposit, the probability of freckles is 65%. For smokers and with high tar deposit, the probability of freckles is 34%. The overall probability of smoking is 95%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.95 +0.01 - 0.66 * (0.34 * 0.95 + 0.34 * 0.05)= 0.20 +0.20 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look at how smoking correlates with freckles case by case according to gender. Method 2: We look directly at how smoking correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 86%. For smokers, the probability of high tar deposit is 51%. For nonsmokers and with no tar deposit, the probability of freckles is 77%. For nonsmokers and with high tar deposit, the probability of freckles is 42%. For smokers and with no tar deposit, the probability of freckles is 76%. For smokers and with high tar deposit, the probability of freckles is 43%. The overall probability of smoking is 82%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.43 +P(X=1) = 0.82 +(0.51 - 0.86)* (0.43 * 0.82) + (0.49 - 0.14) * (0.42 * 0.18) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 56%. For smokers, the probability of high tar deposit is 10%. For nonsmokers and with no tar deposit, the probability of freckles is 93%. For nonsmokers and with high tar deposit, the probability of freckles is 60%. For smokers and with no tar deposit, the probability of freckles is 88%. For smokers and with high tar deposit, the probability of freckles is 54%. The overall probability of smoking is 55%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.10 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.55 +0.10 - 0.56 * (0.54 * 0.55 + 0.60 * 0.45)= 0.15 +0.15 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 78%. For smokers, the probability of high tar deposit is 32%. For nonsmokers and with no tar deposit, the probability of freckles is 69%. For nonsmokers and with high tar deposit, the probability of freckles is 33%. For smokers and with no tar deposit, the probability of freckles is 76%. For smokers and with high tar deposit, the probability of freckles is 24%. The overall probability of smoking is 97%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.78 +P(V3=1 | X=1) = 0.32 +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.24 +P(X=1) = 0.97 +(0.32 - 0.78)* (0.24 * 0.97) + (0.68 - 0.22) * (0.33 * 0.03) = 0.24 +0.24 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23764,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 78%. For smokers, the probability of high tar deposit is 32%. For nonsmokers and with no tar deposit, the probability of freckles is 69%. For nonsmokers and with high tar deposit, the probability of freckles is 33%. For smokers and with no tar deposit, the probability of freckles is 76%. For smokers and with high tar deposit, the probability of freckles is 24%. The overall probability of smoking is 97%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.78 +P(V3=1 | X=1) = 0.32 +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.24 +P(X=1) = 0.97 +0.32 - 0.78 * (0.24 * 0.97 + 0.33 * 0.03)= 0.24 +0.24 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 39%. For nonsmokers, the probability of freckles is 51%. For smokers, the probability of freckles is 57%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.57 +0.39*0.57 - 0.61*0.51 = 0.53 +0.53 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +23781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 39%. The probability of nonsmoking and freckles is 31%. The probability of smoking and freckles is 22%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.22 +0.22/0.39 - 0.31/0.61 = 0.05 +0.05 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +23782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 69%. For smokers, the probability of high tar deposit is 3%. For nonsmokers and with no tar deposit, the probability of freckles is 72%. For nonsmokers and with high tar deposit, the probability of freckles is 19%. For smokers and with no tar deposit, the probability of freckles is 69%. For smokers and with high tar deposit, the probability of freckles is 18%. The overall probability of smoking is 70%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.19 +P(Y=1 | X=1, V3=0) = 0.69 +P(Y=1 | X=1, V3=1) = 0.18 +P(X=1) = 0.70 +0.03 - 0.69 * (0.18 * 0.70 + 0.19 * 0.30)= 0.34 +0.34 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 61%. For smokers, the probability of high tar deposit is 33%. For nonsmokers and with no tar deposit, the probability of freckles is 76%. For nonsmokers and with high tar deposit, the probability of freckles is 38%. For smokers and with no tar deposit, the probability of freckles is 60%. For smokers and with high tar deposit, the probability of freckles is 26%. The overall probability of smoking is 10%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.33 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.26 +P(X=1) = 0.10 +(0.33 - 0.61)* (0.26 * 0.10) + (0.67 - 0.39) * (0.38 * 0.90) = 0.10 +0.10 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 10%. For nonsmokers, the probability of freckles is 53%. For smokers, the probability of freckles is 49%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.49 +0.10*0.49 - 0.90*0.53 = 0.53 +0.53 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +23803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 10%. For nonsmokers, the probability of freckles is 53%. For smokers, the probability of freckles is 49%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.49 +0.10*0.49 - 0.90*0.53 = 0.53 +0.53 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +23818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 37%. For nonsmokers, the probability of freckles is 57%. For smokers, the probability of freckles is 56%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.56 +0.37*0.56 - 0.63*0.57 = 0.57 +0.57 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +23843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look at how smoking correlates with freckles case by case according to gender. Method 2: We look directly at how smoking correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 96%. For nonsmokers, the probability of freckles is 46%. For smokers, the probability of freckles is 68%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.68 +0.96*0.68 - 0.04*0.46 = 0.67 +0.67 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +23864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 96%. The probability of nonsmoking and freckles is 2%. The probability of smoking and freckles is 65%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.65 +0.65/0.96 - 0.02/0.04 = 0.22 +0.22 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +23887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 57%. For nonsmokers, the probability of freckles is 51%. For smokers, the probability of freckles is 78%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.78 +0.57*0.78 - 0.43*0.51 = 0.67 +0.67 > 0",frontdoor,smoking_frontdoor,1,marginal,P(Y) +23888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 57%. The probability of nonsmoking and freckles is 22%. The probability of smoking and freckles is 45%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.45 +0.45/0.57 - 0.22/0.43 = 0.28 +0.28 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +23889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 57%. The probability of nonsmoking and freckles is 22%. The probability of smoking and freckles is 45%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.45 +0.45/0.57 - 0.22/0.43 = 0.28 +0.28 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +23890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 69%. For smokers, the probability of high tar deposit is 12%. For nonsmokers and with no tar deposit, the probability of freckles is 57%. For nonsmokers and with high tar deposit, the probability of freckles is 27%. For smokers and with no tar deposit, the probability of freckles is 56%. For smokers and with high tar deposit, the probability of freckles is 29%. The overall probability of smoking is 86%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.12 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.29 +P(X=1) = 0.86 +(0.12 - 0.69)* (0.29 * 0.86) + (0.88 - 0.31) * (0.27 * 0.14) = 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 69%. For smokers, the probability of high tar deposit is 12%. For nonsmokers and with no tar deposit, the probability of freckles is 57%. For nonsmokers and with high tar deposit, the probability of freckles is 27%. For smokers and with no tar deposit, the probability of freckles is 56%. For smokers and with high tar deposit, the probability of freckles is 29%. The overall probability of smoking is 86%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.12 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.29 +P(X=1) = 0.86 +0.12 - 0.69 * (0.29 * 0.86 + 0.27 * 0.14)= 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 86%. The probability of nonsmoking and freckles is 5%. The probability of smoking and freckles is 45%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.45 +0.45/0.86 - 0.05/0.14 = 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +23927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look at how smoking correlates with freckles case by case according to gender. Method 2: We look directly at how smoking correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 97%. For smokers, the probability of high tar deposit is 45%. For nonsmokers and with no tar deposit, the probability of freckles is 62%. For nonsmokers and with high tar deposit, the probability of freckles is 28%. For smokers and with no tar deposit, the probability of freckles is 61%. For smokers and with high tar deposit, the probability of freckles is 27%. The overall probability of smoking is 86%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.45 +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.27 +P(X=1) = 0.86 +(0.45 - 0.97)* (0.27 * 0.86) + (0.55 - 0.03) * (0.28 * 0.14) = 0.18 +0.18 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of freckles is 62%. For nonsmokers and with high tar deposit, the probability of freckles is 28%. For smokers and with no tar deposit, the probability of freckles is 61%. For smokers and with high tar deposit, the probability of freckles is 27%. For nonsmokers, the probability of high tar deposit is 97%. For smokers, the probability of high tar deposit is 45%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.27 +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.45 +0.27 * (0.45 - 0.97) + 0.28 * (0.55 - 0.03) = 0.18 +0.18 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 97%. For smokers, the probability of high tar deposit is 45%. For nonsmokers and with no tar deposit, the probability of freckles is 62%. For nonsmokers and with high tar deposit, the probability of freckles is 28%. For smokers and with no tar deposit, the probability of freckles is 61%. For smokers and with high tar deposit, the probability of freckles is 27%. The overall probability of smoking is 86%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.45 +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.27 +P(X=1) = 0.86 +0.45 - 0.97 * (0.27 * 0.86 + 0.28 * 0.14)= 0.18 +0.18 > 0",frontdoor,smoking_frontdoor,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +23966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of freckles is 79%. For nonsmokers and with high tar deposit, the probability of freckles is 49%. For smokers and with no tar deposit, the probability of freckles is 73%. For smokers and with high tar deposit, the probability of freckles is 41%. For nonsmokers, the probability of high tar deposit is 66%. For smokers, the probability of high tar deposit is 29%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.49 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.41 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.29 +0.41 * (0.29 - 0.66) + 0.49 * (0.71 - 0.34) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +23975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look at how smoking correlates with freckles case by case according to gender. Method 2: We look directly at how smoking correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 85%. For smokers, the probability of high tar deposit is 11%. For nonsmokers and with no tar deposit, the probability of freckles is 75%. For nonsmokers and with high tar deposit, the probability of freckles is 35%. For smokers and with no tar deposit, the probability of freckles is 74%. For smokers and with high tar deposit, the probability of freckles is 36%. The overall probability of smoking is 53%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.85 +P(V3=1 | X=1) = 0.11 +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.35 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.36 +P(X=1) = 0.53 +(0.11 - 0.85)* (0.36 * 0.53) + (0.89 - 0.15) * (0.35 * 0.47) = 0.29 +0.29 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +23986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. Method 1: We look directly at how smoking correlates with freckles in general. Method 2: We look at this correlation case by case according to gender.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,smoking_frontdoor,2,backadj,[backdoor adjustment set for Y given X] +23997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 45%. The probability of nonsmoking and freckles is 30%. The probability of smoking and freckles is 26%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.26 +0.26/0.45 - 0.30/0.55 = 0.03 +0.03 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +24032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. The overall probability of smoking is 75%. The probability of nonsmoking and freckles is 6%. The probability of smoking and freckles is 44%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.44 +0.44/0.75 - 0.06/0.25 = 0.32 +0.32 > 0",frontdoor,smoking_frontdoor,1,correlation,P(Y | X) +24038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers and with no tar deposit, the probability of freckles is 65%. For nonsmokers and with high tar deposit, the probability of freckles is 33%. For smokers and with no tar deposit, the probability of freckles is 66%. For smokers and with high tar deposit, the probability of freckles is 34%. For nonsmokers, the probability of high tar deposit is 70%. For smokers, the probability of high tar deposit is 19%.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.19 +0.34 * (0.19 - 0.70) + 0.33 * (0.81 - 0.30) = 0.16 +0.16 > 0",frontdoor,smoking_frontdoor,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and freckles. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on freckles. Gender is unobserved. For nonsmokers, the probability of high tar deposit is 74%. For smokers, the probability of high tar deposit is 29%. For nonsmokers and with no tar deposit, the probability of freckles is 85%. For nonsmokers and with high tar deposit, the probability of freckles is 59%. For smokers and with no tar deposit, the probability of freckles is 84%. For smokers and with high tar deposit, the probability of freckles is 58%. The overall probability of smoking is 63%.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = freckles. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.74 +P(V3=1 | X=1) = 0.29 +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.58 +P(X=1) = 0.63 +(0.29 - 0.74)* (0.58 * 0.63) + (0.71 - 0.26) * (0.59 * 0.37) = 0.12 +0.12 > 0",frontdoor,smoking_frontdoor,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 54%. For people who have a brother, the probability of lung cancer is 62%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.62 +0.62 - 0.54 = 0.08 +0.08 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 46%. For people who have a brother, the probability of lung cancer is 61%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 46%. For people who have a brother, the probability of lung cancer is 61%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 70%. For people who have a brother, the probability of lung cancer is 56%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.56 +0.56 - 0.70 = -0.14 +-0.14 < 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 87%. The probability of not having a brother and lung cancer is 9%. The probability of having a brother and lung cancer is 49%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.49 +0.49/0.87 - 0.09/0.13 = -0.14 +-0.14 < 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look directly at how having a brother correlates with lung cancer in general. Method 2: We look at this correlation case by case according to smoking.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +24153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 82%. For people who do not have a brother, the probability of lung cancer is 55%. For people who have a brother, the probability of lung cancer is 62%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.62 +0.82*0.62 - 0.18*0.55 = 0.60 +0.60 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look at how having a brother correlates with lung cancer case by case according to smoking. Method 2: We look directly at how having a brother correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +24169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 81%. The probability of not having a brother and lung cancer is 11%. The probability of having a brother and lung cancer is 34%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.34 +0.34/0.81 - 0.11/0.19 = -0.18 +-0.18 < 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 59%. For people who do not have a brother and smokers, the probability of lung cancer is 36%. For people who have a brother and nonsmokers, the probability of lung cancer is 67%. For people who have a brother and smokers, the probability of lung cancer is 33%. For people who do not have a brother and with low pollution, the probability of smoking is 89%. For people who do not have a brother and with high pollution, the probability of smoking is 56%. For people who have a brother and with low pollution, the probability of smoking is 60%. For people who have a brother and with high pollution, the probability of smoking is 25%. The overall probability of high pollution is 47%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0, V2=0) = 0.89 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.60 +P(V3=1 | X=1, V2=1) = 0.25 +P(V2=1) = 0.47 +0.47 * 0.36 * (0.25 - 0.60)+ 0.53 * 0.36 * (0.56 - 0.89)= 0.12 +0.12 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +24191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 85%. For people who do not have a brother and smokers, the probability of lung cancer is 63%. For people who have a brother and nonsmokers, the probability of lung cancer is 66%. For people who have a brother and smokers, the probability of lung cancer is 39%. For people who do not have a brother and with low pollution, the probability of smoking is 81%. For people who do not have a brother and with high pollution, the probability of smoking is 60%. For people who have a brother and with low pollution, the probability of smoking is 53%. For people who have a brother and with high pollution, the probability of smoking is 30%. The overall probability of high pollution is 7%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.81 +P(V3=1 | X=0, V2=1) = 0.60 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.07 +0.07 * 0.63 * (0.30 - 0.53)+ 0.93 * 0.63 * (0.60 - 0.81)= 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +24197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 90%. The probability of not having a brother and lung cancer is 7%. The probability of having a brother and lung cancer is 47%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.47 +0.47/0.90 - 0.07/0.10 = -0.15 +-0.15 < 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 61%. For people who have a brother, the probability of lung cancer is 71%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.71 +0.71 - 0.61 = 0.10 +0.10 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 98%. The probability of not having a brother and lung cancer is 1%. The probability of having a brother and lung cancer is 70%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.70 +0.70/0.98 - 0.01/0.02 = 0.09 +0.09 > 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look at how having a brother correlates with lung cancer case by case according to smoking. Method 2: We look directly at how having a brother correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +24217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 56%. For people who have a brother, the probability of lung cancer is 40%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.40 +0.40 - 0.56 = -0.17 +-0.17 < 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 88%. The probability of not having a brother and lung cancer is 7%. The probability of having a brother and lung cancer is 35%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.35 +0.35/0.88 - 0.07/0.12 = -0.17 +-0.17 < 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 56%. For people who have a brother, the probability of lung cancer is 64%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.64 +0.64 - 0.56 = 0.08 +0.08 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 56%. For people who have a brother, the probability of lung cancer is 64%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.64 +0.64 - 0.56 = 0.08 +0.08 > 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 94%. For people who do not have a brother, the probability of lung cancer is 56%. For people who have a brother, the probability of lung cancer is 64%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.64 +0.94*0.64 - 0.06*0.56 = 0.64 +0.64 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look at how having a brother correlates with lung cancer case by case according to smoking. Method 2: We look directly at how having a brother correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +24244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 58%. For people who have a brother, the probability of lung cancer is 41%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.41 +0.41 - 0.58 = -0.16 +-0.16 < 0",arrowhead,smoking_gene_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 75%. For people who do not have a brother and smokers, the probability of lung cancer is 56%. For people who have a brother and nonsmokers, the probability of lung cancer is 54%. For people who have a brother and smokers, the probability of lung cancer is 30%. For people who do not have a brother and with low pollution, the probability of smoking is 93%. For people who do not have a brother and with high pollution, the probability of smoking is 68%. For people who have a brother and with low pollution, the probability of smoking is 57%. For people who have a brother and with high pollution, the probability of smoking is 27%. The overall probability of high pollution is 10%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.93 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.57 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.10 +0.10 * 0.56 * (0.27 - 0.57)+ 0.90 * 0.56 * (0.68 - 0.93)= 0.09 +0.09 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +24249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 75%. For people who do not have a brother and smokers, the probability of lung cancer is 56%. For people who have a brother and nonsmokers, the probability of lung cancer is 54%. For people who have a brother and smokers, the probability of lung cancer is 30%. For people who do not have a brother and with low pollution, the probability of smoking is 93%. For people who do not have a brother and with high pollution, the probability of smoking is 68%. For people who have a brother and with low pollution, the probability of smoking is 57%. For people who have a brother and with high pollution, the probability of smoking is 27%. The overall probability of high pollution is 10%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.93 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.57 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.10 +0.10 * (0.30 - 0.54) * 0.68 + 0.90 * (0.56 - 0.75) * 0.57 = -0.26 +-0.26 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +24264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 81%. For people who do not have a brother, the probability of lung cancer is 44%. For people who have a brother, the probability of lung cancer is 53%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.81*0.53 - 0.19*0.44 = 0.52 +0.52 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 93%. The probability of not having a brother and lung cancer is 5%. The probability of having a brother and lung cancer is 52%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.52 +0.52/0.93 - 0.05/0.07 = -0.15 +-0.15 < 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. Method 1: We look directly at how having a brother correlates with lung cancer in general. Method 2: We look at this correlation case by case according to smoking.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,smoking_gene_cancer,2,backadj,[backdoor adjustment set for Y given X] +24304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 93%. For people who do not have a brother and smokers, the probability of lung cancer is 73%. For people who have a brother and nonsmokers, the probability of lung cancer is 73%. For people who have a brother and smokers, the probability of lung cancer is 36%. For people who do not have a brother and with low pollution, the probability of smoking is 76%. For people who do not have a brother and with high pollution, the probability of smoking is 39%. For people who have a brother and with low pollution, the probability of smoking is 44%. For people who have a brother and with high pollution, the probability of smoking is 8%. The overall probability of high pollution is 11%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.36 +P(V3=1 | X=0, V2=0) = 0.76 +P(V3=1 | X=0, V2=1) = 0.39 +P(V3=1 | X=1, V2=0) = 0.44 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.11 +0.11 * (0.36 - 0.73) * 0.39 + 0.89 * (0.73 - 0.93) * 0.44 = -0.33 +-0.33 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +24316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 57%. For people who do not have a brother and smokers, the probability of lung cancer is 39%. For people who have a brother and nonsmokers, the probability of lung cancer is 63%. For people who have a brother and smokers, the probability of lung cancer is 42%. For people who do not have a brother and with low pollution, the probability of smoking is 75%. For people who do not have a brother and with high pollution, the probability of smoking is 44%. For people who have a brother and with low pollution, the probability of smoking is 53%. For people who have a brother and with high pollution, the probability of smoking is 24%. The overall probability of high pollution is 57%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.75 +P(V3=1 | X=0, V2=1) = 0.44 +P(V3=1 | X=1, V2=0) = 0.53 +P(V3=1 | X=1, V2=1) = 0.24 +P(V2=1) = 0.57 +0.57 * 0.39 * (0.24 - 0.53)+ 0.43 * 0.39 * (0.44 - 0.75)= 0.05 +0.05 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +24323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 90%. The probability of not having a brother and lung cancer is 5%. The probability of having a brother and lung cancer is 50%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.50 +0.50/0.90 - 0.05/0.10 = 0.09 +0.09 > 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 47%. For people who have a brother, the probability of lung cancer is 53%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.06 +0.06 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 90%. For people who do not have a brother, the probability of lung cancer is 54%. For people who have a brother, the probability of lung cancer is 38%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.38 +0.90*0.38 - 0.10*0.54 = 0.40 +0.40 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 55%. For people who have a brother, the probability of lung cancer is 65%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.65 +0.65 - 0.55 = 0.10 +0.10 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 79%. For people who do not have a brother and smokers, the probability of lung cancer is 64%. For people who have a brother and nonsmokers, the probability of lung cancer is 62%. For people who have a brother and smokers, the probability of lung cancer is 38%. For people who do not have a brother and with low pollution, the probability of smoking is 92%. For people who do not have a brother and with high pollution, the probability of smoking is 64%. For people who have a brother and with low pollution, the probability of smoking is 55%. For people who have a brother and with high pollution, the probability of smoking is 29%. The overall probability of high pollution is 11%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.64 +P(V3=1 | X=1, V2=0) = 0.55 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.11 +0.11 * (0.38 - 0.62) * 0.64 + 0.89 * (0.64 - 0.79) * 0.55 = -0.25 +-0.25 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +24432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 92%. For people who do not have a brother, the probability of lung cancer is 47%. For people who have a brother, the probability of lung cancer is 70%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.70 +0.92*0.70 - 0.08*0.47 = 0.68 +0.68 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 92%. The probability of not having a brother and lung cancer is 4%. The probability of having a brother and lung cancer is 64%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.64 +0.64/0.92 - 0.04/0.08 = 0.23 +0.23 > 0",arrowhead,smoking_gene_cancer,1,correlation,P(Y | X) +24452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother, the probability of lung cancer is 62%. For people who have a brother, the probability of lung cancer is 70%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.70 +0.70 - 0.62 = 0.07 +0.07 > 0",arrowhead,smoking_gene_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 83%. For people who do not have a brother and smokers, the probability of lung cancer is 54%. For people who have a brother and nonsmokers, the probability of lung cancer is 78%. For people who have a brother and smokers, the probability of lung cancer is 57%. For people who do not have a brother and with low pollution, the probability of smoking is 80%. For people who do not have a brother and with high pollution, the probability of smoking is 57%. For people who have a brother and with low pollution, the probability of smoking is 48%. For people who have a brother and with high pollution, the probability of smoking is 27%. The overall probability of high pollution is 46%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.57 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.48 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.46 +0.46 * (0.57 - 0.78) * 0.57 + 0.54 * (0.54 - 0.83) * 0.48 = -0.02 +-0.02 < 0",arrowhead,smoking_gene_cancer,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +24461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 85%. For people who do not have a brother, the probability of lung cancer is 62%. For people who have a brother, the probability of lung cancer is 70%.",no,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.70 +0.85*0.70 - 0.15*0.62 = 0.69 +0.69 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. For people who do not have a brother and nonsmokers, the probability of lung cancer is 84%. For people who do not have a brother and smokers, the probability of lung cancer is 60%. For people who have a brother and nonsmokers, the probability of lung cancer is 62%. For people who have a brother and smokers, the probability of lung cancer is 37%. For people who do not have a brother and with low pollution, the probability of smoking is 70%. For people who do not have a brother and with high pollution, the probability of smoking is 45%. For people who have a brother and with low pollution, the probability of smoking is 35%. For people who have a brother and with high pollution, the probability of smoking is 10%. The overall probability of high pollution is 17%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.37 +P(V3=1 | X=0, V2=0) = 0.70 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.35 +P(V3=1 | X=1, V2=1) = 0.10 +P(V2=1) = 0.17 +0.17 * 0.60 * (0.10 - 0.35)+ 0.83 * 0.60 * (0.45 - 0.70)= 0.10 +0.10 > 0",arrowhead,smoking_gene_cancer,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +24474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. The overall probability of having a brother is 90%. For people who do not have a brother, the probability of lung cancer is 68%. For people who have a brother, the probability of lung cancer is 54%.",yes,"Let V2 = pollution; X = having a brother; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.54 +0.90*0.54 - 0.10*0.68 = 0.56 +0.56 > 0",arrowhead,smoking_gene_cancer,1,marginal,P(Y) +24496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 24%. For people who have a sister, the probability of lung cancer is 48%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.48 +0.48 - 0.24 = 0.25 +0.25 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +24506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 62%. For people who have a sister, the probability of lung cancer is 52%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.52 +0.52 - 0.62 = -0.10 +-0.10 < 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 62%. For people who have a sister, the probability of lung cancer is 52%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.52 +0.52 - 0.62 = -0.10 +-0.10 < 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +24528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 34%. For people who have a sister, the probability of lung cancer is 44%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.44 +0.44 - 0.34 = 0.10 +0.10 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look at how having a sister correlates with lung cancer case by case according to tar deposit. Method 2: We look directly at how having a sister correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +24546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 84%. For people who do not have a sister, the probability of lung cancer is 28%. For people who have a sister, the probability of lung cancer is 5%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.05 +0.84*0.05 - 0.16*0.28 = 0.09 +0.09 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +24555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 57%. For people who have a sister, the probability of lung cancer is 76%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.76 +0.76 - 0.57 = 0.18 +0.18 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24563,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look directly at how having a sister correlates with lung cancer in general. Method 2: We look at this correlation case by case according to tar deposit.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +24566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 27%. For people who have a sister, the probability of lung cancer is 57%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.57 +0.57 - 0.27 = 0.30 +0.30 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 27%. For people who have a sister, the probability of lung cancer is 57%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.57 +0.57 - 0.27 = 0.30 +0.30 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +24573,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 99%. The probability of not having a sister and lung cancer is 0%. The probability of having a sister and lung cancer is 56%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.99 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.56 +0.56/0.99 - 0.00/0.01 = 0.30 +0.30 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +24579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 41%. For people who have a sister, the probability of lung cancer is 32%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.32 +0.32 - 0.41 = -0.09 +-0.09 < 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 98%. The probability of not having a sister and lung cancer is 1%. The probability of having a sister and lung cancer is 32%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.32 +0.32/0.98 - 0.01/0.02 = -0.09 +-0.09 < 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +24601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 20%. For people who have a sister, the probability of lung cancer is 80%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.80 +0.80 - 0.20 = 0.60 +0.60 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24643,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 82%. For people who do not have a sister, the probability of lung cancer is 33%. For people who have a sister, the probability of lung cancer is 73%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.73 +0.82*0.73 - 0.18*0.33 = 0.66 +0.66 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +24644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 82%. The probability of not having a sister and lung cancer is 6%. The probability of having a sister and lung cancer is 60%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.60 +0.60/0.82 - 0.06/0.18 = 0.39 +0.39 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +24649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 32%. For people who have a sister, the probability of lung cancer is 14%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.14 +0.14 - 0.32 = -0.18 +-0.18 < 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 32%. For people who have a sister, the probability of lung cancer is 14%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.14 +0.14 - 0.32 = -0.18 +-0.18 < 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 32%. For people who have a sister, the probability of lung cancer is 14%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.14 +0.14 - 0.32 = -0.18 +-0.18 < 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look at how having a sister correlates with lung cancer case by case according to tar deposit. Method 2: We look directly at how having a sister correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +24664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 64%. For people who have a sister, the probability of lung cancer is 89%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.89 +0.89 - 0.64 = 0.25 +0.25 > 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +24671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look directly at how having a sister correlates with lung cancer in general. Method 2: We look at this correlation case by case according to tar deposit.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +24684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 69%. For people who have a sister, the probability of lung cancer is 54%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.54 +0.54 - 0.69 = -0.15 +-0.15 < 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 13%. For people who do not have a sister, the probability of lung cancer is 72%. For people who have a sister, the probability of lung cancer is 93%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.93 +0.13*0.93 - 0.87*0.72 = 0.75 +0.75 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +24747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 30%. For people who have a sister, the probability of lung cancer is 43%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.43 +0.43 - 0.30 = 0.13 +0.13 > 0",chain,smoking_tar_cancer,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +24760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 56%. For people who have a sister, the probability of lung cancer is 29%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.29 +0.29 - 0.56 = -0.27 +-0.27 < 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +24763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 88%. For people who do not have a sister, the probability of lung cancer is 56%. For people who have a sister, the probability of lung cancer is 29%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.29 +0.88*0.29 - 0.12*0.56 = 0.32 +0.32 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +24766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Method 1: We look at how having a sister correlates with lung cancer case by case according to tar deposit. Method 2: We look directly at how having a sister correlates with lung cancer in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,smoking_tar_cancer,2,backadj,[backdoor adjustment set for Y given X] +24789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 81%. The probability of not having a sister and lung cancer is 3%. The probability of having a sister and lung cancer is 40%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.40 +0.40/0.81 - 0.03/0.19 = 0.32 +0.32 > 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +24799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 80%. For people who do not have a sister, the probability of lung cancer is 50%. For people who have a sister, the probability of lung cancer is 33%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.33 +0.80*0.33 - 0.20*0.50 = 0.37 +0.37 > 0",chain,smoking_tar_cancer,1,marginal,P(Y) +24801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. The overall probability of having a sister is 80%. The probability of not having a sister and lung cancer is 10%. The probability of having a sister and lung cancer is 27%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.27 +0.27/0.80 - 0.10/0.20 = -0.17 +-0.17 < 0",chain,smoking_tar_cancer,1,correlation,P(Y | X) +24804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 33%. For people who have a sister, the probability of lung cancer is 47%.",yes,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.47 +0.47 - 0.33 = 0.13 +0.13 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 60%. For people who have a sister, the probability of lung cancer is 74%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.74 +0.74 - 0.60 = 0.14 +0.14 > 0",chain,smoking_tar_cancer,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. For people who do not have a sister, the probability of lung cancer is 73%. For people who have a sister, the probability of lung cancer is 51%.",no,"Let X = having a sister; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.51 +0.51 - 0.73 = -0.23 +-0.23 < 0",chain,smoking_tar_cancer,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +24852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 63%. The probability of not having a brother and normal infant birth weight is 6%. The probability of having a brother and normal infant birth weight is 30%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.30 +0.30/0.63 - 0.06/0.37 = 0.30 +0.30 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +24856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 22%. For areas with high cigarette tax, the probability of normal infant birth weight is 31%. For areas with low cigarette tax, the probability of having a brother is 39%. For areas with high cigarette tax, the probability of having a brother is 75%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.22 +P(Y=1 | V2=1) = 0.31 +P(X=1 | V2=0) = 0.39 +P(X=1 | V2=1) = 0.75 +(0.31 - 0.22) / (0.75 - 0.39) = 0.23 +0.23 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 40%. The probability of not having a brother and normal infant birth weight is 6%. The probability of having a brother and normal infant birth weight is 17%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.17 +0.17/0.40 - 0.06/0.60 = 0.31 +0.31 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +24863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look at how having a brother correlates with infant's birth weight case by case according to unobserved confounders. Method 2: We look directly at how having a brother correlates with infant's birth weight in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +24865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 34%. For areas with high cigarette tax, the probability of normal infant birth weight is 49%. For areas with low cigarette tax, the probability of having a brother is 23%. For areas with high cigarette tax, the probability of having a brother is 67%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.34 +P(Y=1 | V2=1) = 0.49 +P(X=1 | V2=0) = 0.23 +P(X=1 | V2=1) = 0.67 +(0.49 - 0.34) / (0.67 - 0.23) = 0.35 +0.35 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look directly at how having a brother correlates with infant's birth weight in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +24881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 47%. For areas with high cigarette tax, the probability of normal infant birth weight is 57%. For areas with low cigarette tax, the probability of having a brother is 27%. For areas with high cigarette tax, the probability of having a brother is 62%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.47 +P(Y=1 | V2=1) = 0.57 +P(X=1 | V2=0) = 0.27 +P(X=1 | V2=1) = 0.62 +(0.57 - 0.47) / (0.62 - 0.27) = 0.27 +0.27 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 28%. For infants who do not have a brother, the probability of normal infant birth weight is 40%. For infants who have a brother, the probability of normal infant birth weight is 67%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.67 +0.28*0.67 - 0.72*0.40 = 0.47 +0.47 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +24887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look at how having a brother correlates with infant's birth weight case by case according to unobserved confounders. Method 2: We look directly at how having a brother correlates with infant's birth weight in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +24891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 15%. For infants who do not have a brother, the probability of normal infant birth weight is 7%. For infants who have a brother, the probability of normal infant birth weight is 47%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.47 +0.15*0.47 - 0.85*0.07 = 0.13 +0.13 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +24907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 22%. For infants who do not have a brother, the probability of normal infant birth weight is 19%. For infants who have a brother, the probability of normal infant birth weight is 49%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.49 +0.22*0.49 - 0.78*0.19 = 0.26 +0.26 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +24912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 12%. For areas with high cigarette tax, the probability of normal infant birth weight is 26%. For areas with low cigarette tax, the probability of having a brother is 23%. For areas with high cigarette tax, the probability of having a brother is 63%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.12 +P(Y=1 | V2=1) = 0.26 +P(X=1 | V2=0) = 0.23 +P(X=1 | V2=1) = 0.63 +(0.26 - 0.12) / (0.63 - 0.23) = 0.34 +0.34 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 31%. For infants who do not have a brother, the probability of normal infant birth weight is 5%. For infants who have a brother, the probability of normal infant birth weight is 38%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.38 +0.31*0.38 - 0.69*0.05 = 0.15 +0.15 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +24922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 26%. For infants who do not have a brother, the probability of normal infant birth weight is 31%. For infants who have a brother, the probability of normal infant birth weight is 53%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.26 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.53 +0.26*0.53 - 0.74*0.31 = 0.36 +0.36 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +24927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look at how having a brother correlates with infant's birth weight case by case according to unobserved confounders. Method 2: We look directly at how having a brother correlates with infant's birth weight in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +24963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 41%. For infants who do not have a brother, the probability of normal infant birth weight is 27%. For infants who have a brother, the probability of normal infant birth weight is 87%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.87 +0.41*0.87 - 0.59*0.27 = 0.51 +0.51 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +24972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 30%. The probability of not having a brother and normal infant birth weight is 19%. The probability of having a brother and normal infant birth weight is 17%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.17 +0.17/0.30 - 0.19/0.70 = 0.30 +0.30 > 0",IV,tax_smoke_birthWeight,1,correlation,P(Y | X) +24977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 39%. For areas with high cigarette tax, the probability of normal infant birth weight is 53%. For areas with low cigarette tax, the probability of having a brother is 39%. For areas with high cigarette tax, the probability of having a brother is 77%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.53 +P(X=1 | V2=0) = 0.39 +P(X=1 | V2=1) = 0.77 +(0.53 - 0.39) / (0.77 - 0.39) = 0.36 +0.36 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +24990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look directly at how having a brother correlates with infant's birth weight in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +25016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 36%. For areas with high cigarette tax, the probability of normal infant birth weight is 41%. For areas with low cigarette tax, the probability of having a brother is 27%. For areas with high cigarette tax, the probability of having a brother is 51%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.36 +P(Y=1 | V2=1) = 0.41 +P(X=1 | V2=0) = 0.27 +P(X=1 | V2=1) = 0.51 +(0.41 - 0.36) / (0.51 - 0.27) = 0.24 +0.24 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. Method 1: We look directly at how having a brother correlates with infant's birth weight in general. Method 2: We look at this correlation case by case according to unobserved confounders.",no,"nan +nan +nan +nan +nan +nan +nan",IV,tax_smoke_birthWeight,2,backadj,[backdoor adjustment set for Y given X] +25050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. The overall probability of having a brother is 14%. For infants who do not have a brother, the probability of normal infant birth weight is 5%. For infants who have a brother, the probability of normal infant birth weight is 42%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.42 +0.14*0.42 - 0.86*0.05 = 0.10 +0.10 > 0",IV,tax_smoke_birthWeight,1,marginal,P(Y) +25072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 38%. For areas with high cigarette tax, the probability of normal infant birth weight is 44%. For areas with low cigarette tax, the probability of having a brother is 28%. For areas with high cigarette tax, the probability of having a brother is 51%.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.38 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.51 +(0.44 - 0.38) / (0.51 - 0.28) = 0.25 +0.25 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on having a brother and infant's birth weight. Cigarette tax has a direct effect on having a brother. Having a brother has a direct effect on infant's birth weight. Unobserved confounders is unobserved. For areas with low cigarette tax, the probability of normal infant birth weight is 38%. For areas with high cigarette tax, the probability of normal infant birth weight is 44%. For areas with low cigarette tax, the probability of having a brother is 28%. For areas with high cigarette tax, the probability of having a brother is 51%.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = having a brother; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.38 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.51 +(0.44 - 0.38) / (0.51 - 0.28) = 0.25 +0.25 > 0",IV,tax_smoke_birthWeight,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 22%. The probability of polluted water and freckles is 44%. The probability of clean water and freckles is 17%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.17 +0.17/0.22 - 0.44/0.78 = 0.22 +0.22 > 0",IV,water_cholera,1,correlation,P(Y | X) +25086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look directly at how water quality correlates with freckles in general. Method 2: We look at this correlation case by case according to poverty.",no,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 23%. For people with only polluted water, the probability of freckles is 57%. For people with access to clean water, the probability of freckles is 79%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.79 +0.23*0.79 - 0.77*0.57 = 0.62 +0.62 > 0",IV,water_cholera,1,marginal,P(Y) +25100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 48%. The probability of polluted water and freckles is 20%. The probability of clean water and freckles is 36%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.36 +0.36/0.48 - 0.20/0.52 = 0.39 +0.39 > 0",IV,water_cholera,1,correlation,P(Y | X) +25104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. For people served by a local water company, the probability of freckles is 60%. For people served by a global water company, the probability of freckles is 54%. For people served by a local water company, the probability of clean water is 43%. For people served by a global water company, the probability of clean water is 20%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.60 +P(Y=1 | V2=1) = 0.54 +P(X=1 | V2=0) = 0.43 +P(X=1 | V2=1) = 0.20 +(0.54 - 0.60) / (0.20 - 0.43) = 0.26 +0.26 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 21%. The probability of polluted water and freckles is 39%. The probability of clean water and freckles is 15%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.15 +0.15/0.21 - 0.39/0.79 = 0.22 +0.22 > 0",IV,water_cholera,1,correlation,P(Y | X) +25111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look at how water quality correlates with freckles case by case according to poverty. Method 2: We look directly at how water quality correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. For people served by a local water company, the probability of freckles is 78%. For people served by a global water company, the probability of freckles is 71%. For people served by a local water company, the probability of clean water is 48%. For people served by a global water company, the probability of clean water is 24%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.78 +P(Y=1 | V2=1) = 0.71 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.24 +(0.71 - 0.78) / (0.24 - 0.48) = 0.29 +0.29 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look directly at how water quality correlates with freckles in general. Method 2: We look at this correlation case by case according to poverty.",no,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 19%. For people with only polluted water, the probability of freckles is 36%. For people with access to clean water, the probability of freckles is 58%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.58 +0.19*0.58 - 0.81*0.36 = 0.40 +0.40 > 0",IV,water_cholera,1,marginal,P(Y) +25135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look at how water quality correlates with freckles case by case according to poverty. Method 2: We look directly at how water quality correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 40%. For people with only polluted water, the probability of freckles is 61%. For people with access to clean water, the probability of freckles is 84%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.84 +0.40*0.84 - 0.60*0.61 = 0.70 +0.70 > 0",IV,water_cholera,1,marginal,P(Y) +25141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 40%. The probability of polluted water and freckles is 37%. The probability of clean water and freckles is 34%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.34 +0.34/0.40 - 0.37/0.60 = 0.23 +0.23 > 0",IV,water_cholera,1,correlation,P(Y | X) +25147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 30%. For people with only polluted water, the probability of freckles is 45%. For people with access to clean water, the probability of freckles is 82%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.82 +0.30*0.82 - 0.70*0.45 = 0.56 +0.56 > 0",IV,water_cholera,1,marginal,P(Y) +25165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 28%. The probability of polluted water and freckles is 27%. The probability of clean water and freckles is 18%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.18 +0.18/0.28 - 0.27/0.72 = 0.27 +0.27 > 0",IV,water_cholera,1,correlation,P(Y | X) +25167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look at how water quality correlates with freckles case by case according to poverty. Method 2: We look directly at how water quality correlates with freckles in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 24%. The probability of polluted water and freckles is 19%. The probability of clean water and freckles is 13%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.13 +0.13/0.24 - 0.19/0.76 = 0.31 +0.31 > 0",IV,water_cholera,1,correlation,P(Y | X) +25234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 43%. For people with only polluted water, the probability of freckles is 51%. For people with access to clean water, the probability of freckles is 77%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.77 +0.43*0.77 - 0.57*0.51 = 0.62 +0.62 > 0",IV,water_cholera,1,marginal,P(Y) +25252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 26%. The probability of polluted water and freckles is 45%. The probability of clean water and freckles is 23%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.26 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.23 +0.23/0.26 - 0.45/0.74 = 0.28 +0.28 > 0",IV,water_cholera,1,correlation,P(Y | X) +25254,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look directly at how water quality correlates with freckles in general. Method 2: We look at this correlation case by case according to poverty.",no,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. For people served by a local water company, the probability of freckles is 76%. For people served by a global water company, the probability of freckles is 62%. For people served by a local water company, the probability of clean water is 46%. For people served by a global water company, the probability of clean water is 11%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.76 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.46 +P(X=1 | V2=1) = 0.11 +(0.62 - 0.76) / (0.11 - 0.46) = 0.39 +0.39 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. For people served by a local water company, the probability of freckles is 76%. For people served by a global water company, the probability of freckles is 62%. For people served by a local water company, the probability of clean water is 46%. For people served by a global water company, the probability of clean water is 11%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.76 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.46 +P(X=1 | V2=1) = 0.11 +(0.62 - 0.76) / (0.11 - 0.46) = 0.39 +0.39 > 0",IV,water_cholera,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 13%. The probability of polluted water and freckles is 51%. The probability of clean water and freckles is 12%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.12 +0.12/0.13 - 0.51/0.87 = 0.37 +0.37 > 0",IV,water_cholera,1,correlation,P(Y | X) +25262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. Method 1: We look directly at how water quality correlates with freckles in general. Method 2: We look at this correlation case by case according to poverty.",no,"nan +nan +nan +nan +nan +nan +nan",IV,water_cholera,2,backadj,[backdoor adjustment set for Y given X] +25266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 22%. For people with only polluted water, the probability of freckles is 68%. For people with access to clean water, the probability of freckles is 88%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.88 +0.22*0.88 - 0.78*0.68 = 0.73 +0.73 > 0",IV,water_cholera,1,marginal,P(Y) +25283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 23%. For people with only polluted water, the probability of freckles is 52%. For people with access to clean water, the probability of freckles is 81%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.81 +0.23*0.81 - 0.77*0.52 = 0.59 +0.59 > 0",IV,water_cholera,1,marginal,P(Y) +25285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 23%. The probability of polluted water and freckles is 40%. The probability of clean water and freckles is 18%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.23 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.18 +0.18/0.23 - 0.40/0.77 = 0.29 +0.29 > 0",IV,water_cholera,1,correlation,P(Y | X) +25292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 19%. The probability of polluted water and freckles is 33%. The probability of clean water and freckles is 11%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.11 +0.11/0.19 - 0.33/0.81 = 0.17 +0.17 > 0",IV,water_cholera,1,correlation,P(Y | X) +25309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 25%. The probability of polluted water and freckles is 34%. The probability of clean water and freckles is 23%.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.23 +0.23/0.25 - 0.34/0.75 = 0.45 +0.45 > 0",IV,water_cholera,1,correlation,P(Y | X) +25315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and freckles. Water company has a direct effect on water quality. Water quality has a direct effect on freckles. Poverty is unobserved. The overall probability of clean water is 31%. For people with only polluted water, the probability of freckles is 36%. For people with access to clean water, the probability of freckles is 74%.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.74 +0.31*0.74 - 0.69*0.36 = 0.48 +0.48 > 0",IV,water_cholera,1,marginal,P(Y) +25321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 86%. For those who are rixq, the probability of xevu is 86%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.86 - 0.86 = 0.00 +0.00 = 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 86%. For those who are rixq, the probability of xevu is 86%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.86 - 0.86 = 0.00 +0.00 = 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 86%. For those who are rixq, the probability of xevu is 86%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.86 - 0.86 = 0.00 +0.00 = 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 31%. For those who are not rixq, the probability of xevu is 86%. For those who are rixq, the probability of xevu is 86%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.31*0.86 - 0.69*0.86 = 0.86 +0.86 > 0",chain,nonsense0,1,marginal,P(Y) +25331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 53%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.53 +0.53 - 0.63 = -0.10 +-0.10 < 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 53%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.53 +0.53 - 0.63 = -0.10 +-0.10 < 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 53%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.53 +0.53 - 0.63 = -0.10 +-0.10 < 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 53%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.53 +0.53 - 0.63 = -0.10 +-0.10 < 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 10%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 53%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.53 +0.10*0.53 - 0.90*0.63 = 0.62 +0.62 > 0",chain,nonsense0,1,marginal,P(Y) +25341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 10%. The probability of not rixq and xevu is 56%. The probability of rixq and xevu is 5%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.05 +0.05/0.10 - 0.56/0.90 = -0.10 +-0.10 < 0",chain,nonsense0,1,correlation,P(Y | X) +25343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.67 +0.67 - 0.48 = 0.20 +0.20 > 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 67%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.67 +0.67 - 0.48 = 0.20 +0.20 > 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.67 +0.67 - 0.48 = 0.20 +0.20 > 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 67%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.67 +0.67 - 0.48 = 0.20 +0.20 > 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25350,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 48%. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.67 +0.48*0.67 - 0.52*0.48 = 0.57 +0.57 > 0",chain,nonsense0,1,marginal,P(Y) +25351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 48%. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 67%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.67 +0.48*0.67 - 0.52*0.48 = 0.57 +0.57 > 0",chain,nonsense0,1,marginal,P(Y) +25354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 91%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.91 +0.91 - 0.85 = 0.05 +0.05 > 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 91%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.91 +0.91 - 0.85 = 0.05 +0.05 > 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 91%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.91 +0.91 - 0.85 = 0.05 +0.05 > 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 91%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.91 +0.91 - 0.85 = 0.05 +0.05 > 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 11%. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 91%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.91 +0.11*0.91 - 0.89*0.85 = 0.86 +0.86 > 0",chain,nonsense0,1,marginal,P(Y) +25363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 11%. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 91%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.91 +0.11*0.91 - 0.89*0.85 = 0.86 +0.86 > 0",chain,nonsense0,1,marginal,P(Y) +25364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 11%. The probability of not rixq and xevu is 76%. The probability of rixq and xevu is 10%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.76 +P(Y=1, X=1=1) = 0.10 +0.10/0.11 - 0.76/0.89 = 0.05 +0.05 > 0",chain,nonsense0,1,correlation,P(Y | X) +25365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 11%. The probability of not rixq and xevu is 76%. The probability of rixq and xevu is 10%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.76 +P(Y=1, X=1=1) = 0.10 +0.10/0.11 - 0.76/0.89 = 0.05 +0.05 > 0",chain,nonsense0,1,correlation,P(Y | X) +25366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 37%. For those who are rixq, the probability of xevu is 23%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.23 +0.23 - 0.37 = -0.13 +-0.13 < 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 37%. For those who are rixq, the probability of xevu is 23%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.23 +0.23 - 0.37 = -0.13 +-0.13 < 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 37%. For those who are rixq, the probability of xevu is 23%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.23 +0.23 - 0.37 = -0.13 +-0.13 < 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 37%. For those who are rixq, the probability of xevu is 23%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.23 +0.23 - 0.37 = -0.13 +-0.13 < 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 37%. For those who are rixq, the probability of xevu is 23%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.23 +0.23 - 0.37 = -0.13 +-0.13 < 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 20%. The probability of not rixq and xevu is 29%. The probability of rixq and xevu is 5%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.05 +0.05/0.20 - 0.29/0.80 = -0.13 +-0.13 < 0",chain,nonsense0,1,correlation,P(Y | X) +25378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 2%. For those who are rixq, the probability of xevu is 2%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.02 - 0.02 = 0.00 +0.00 = 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 2%. For those who are rixq, the probability of xevu is 2%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.02 - 0.02 = 0.00 +0.00 = 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 2%. For those who are rixq, the probability of xevu is 2%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.02 - 0.02 = 0.00 +0.00 = 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 41%. For those who are not rixq, the probability of xevu is 2%. For those who are rixq, the probability of xevu is 2%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.41*0.02 - 0.59*0.02 = 0.02 +0.02 > 0",chain,nonsense0,1,marginal,P(Y) +25388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 41%. The probability of not rixq and xevu is 1%. The probability of rixq and xevu is 1%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.01 +0.01/0.41 - 0.01/0.59 = 0.00 +0.00 = 0",chain,nonsense0,1,correlation,P(Y | X) +25389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 41%. The probability of not rixq and xevu is 1%. The probability of rixq and xevu is 1%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.01 +0.01/0.41 - 0.01/0.59 = 0.00 +0.00 = 0",chain,nonsense0,1,correlation,P(Y | X) +25391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 50%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.50 +0.50 - 0.52 = -0.01 +-0.01 < 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 50%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.50 +0.50 - 0.52 = -0.01 +-0.01 < 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 50%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.50 +0.50 - 0.52 = -0.01 +-0.01 < 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 62%. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 50%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.50 +0.62*0.50 - 0.38*0.52 = 0.51 +0.51 > 0",chain,nonsense0,1,marginal,P(Y) +25399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 62%. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 50%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.50 +0.62*0.50 - 0.38*0.52 = 0.51 +0.51 > 0",chain,nonsense0,1,marginal,P(Y) +25401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 62%. The probability of not rixq and xevu is 20%. The probability of rixq and xevu is 31%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.31 +0.31/0.62 - 0.20/0.38 = -0.01 +-0.01 < 0",chain,nonsense0,1,correlation,P(Y | X) +25402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 66%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.66 +0.66 - 0.35 = 0.31 +0.31 > 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 66%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.66 +0.66 - 0.35 = 0.31 +0.31 > 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 24%. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 66%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.66 +0.24*0.66 - 0.76*0.35 = 0.43 +0.43 > 0",chain,nonsense0,1,marginal,P(Y) +25411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 24%. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 66%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.66 +0.24*0.66 - 0.76*0.35 = 0.43 +0.43 > 0",chain,nonsense0,1,marginal,P(Y) +25412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 24%. The probability of not rixq and xevu is 27%. The probability of rixq and xevu is 16%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.16 +0.16/0.24 - 0.27/0.76 = 0.31 +0.31 > 0",chain,nonsense0,1,correlation,P(Y | X) +25413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 24%. The probability of not rixq and xevu is 27%. The probability of rixq and xevu is 16%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.16 +0.16/0.24 - 0.27/0.76 = 0.31 +0.31 > 0",chain,nonsense0,1,correlation,P(Y | X) +25414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 13%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.13 +0.13 - 0.16 = -0.03 +-0.03 < 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 13%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.13 +0.13 - 0.16 = -0.03 +-0.03 < 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 13%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.13 +0.13 - 0.16 = -0.03 +-0.03 < 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 13%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.13 +0.13 - 0.16 = -0.03 +-0.03 < 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 51%. The probability of not rixq and xevu is 8%. The probability of rixq and xevu is 7%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.07 +0.07/0.51 - 0.08/0.49 = -0.03 +-0.03 < 0",chain,nonsense0,1,correlation,P(Y | X) +25428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 23%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.23 +0.23 - 0.21 = 0.02 +0.02 > 0",chain,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 23%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.23 +0.23 - 0.21 = 0.02 +0.02 > 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 23%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.23 +0.23 - 0.21 = 0.02 +0.02 > 0",chain,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 23%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.23 +0.23 - 0.21 = 0.02 +0.02 > 0",chain,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 98%. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 23%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.23 +0.98*0.23 - 0.02*0.21 = 0.23 +0.23 > 0",chain,nonsense0,1,marginal,P(Y) +25436,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 98%. The probability of not rixq and xevu is 0%. The probability of rixq and xevu is 22%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.22 +0.22/0.98 - 0.00/0.02 = 0.02 +0.02 > 0",chain,nonsense0,1,correlation,P(Y | X) +25437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. The overall probability of rixq is 98%. The probability of not rixq and xevu is 0%. The probability of rixq and xevu is 22%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.22 +0.22/0.98 - 0.00/0.02 = 0.02 +0.02 > 0",chain,nonsense0,1,correlation,P(Y | X) +25438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 80%. For those who are not rixq, the probability of xevu is 2%. For those who are rixq, the probability of xevu is 2%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.80*0.02 - 0.20*0.02 = 0.02 +0.02 > 0",collision,nonsense0,1,marginal,P(Y) +25444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is 0.57.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 80%. For those who are not rixq and are not zuph, the probability of xevu is 0%. For those who are not rixq and are zuph, the probability of xevu is 4%. For those who are rixq and are not zuph, the probability of xevu is 0%. For those who are rixq and are zuph, the probability of xevu is 53%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.80 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.04 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.53 +0.53 - (0.80*0.53 + 0.20*0.04) = 0.38 +0.38 > 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 99%. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 16%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.16 +0.99*0.16 - 0.01*0.16 = 0.16 +0.16 > 0",collision,nonsense0,1,marginal,P(Y) +25451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 99%. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 16%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.16 +0.99*0.16 - 0.01*0.16 = 0.16 +0.16 > 0",collision,nonsense0,1,marginal,P(Y) +25454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.01.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.01.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 99%. For those who are not rixq and are not zuph, the probability of xevu is 15%. For those who are not rixq and are zuph, the probability of xevu is 23%. For those who are rixq and are not zuph, the probability of xevu is 15%. For those who are rixq and are zuph, the probability of xevu is 18%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.99 +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.15 +P(Y=1 | X=1, V3=1) = 0.18 +0.18 - (0.99*0.18 + 0.01*0.23) = -0.00 +0.00 = 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 72%. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 16%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.16 +0.72*0.16 - 0.28*0.16 = 0.16 +0.16 > 0",collision,nonsense0,1,marginal,P(Y) +25461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 72%. For those who are not rixq, the probability of xevu is 16%. For those who are rixq, the probability of xevu is 16%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.16 +0.72*0.16 - 0.28*0.16 = 0.16 +0.16 > 0",collision,nonsense0,1,marginal,P(Y) +25465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is 0.53.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is 0.53.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 72%. For those who are not rixq and are not zuph, the probability of xevu is 66%. For those who are not rixq and are zuph, the probability of xevu is 2%. For those who are rixq and are not zuph, the probability of xevu is 5%. For those who are rixq and are zuph, the probability of xevu is 47%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.47 +0.47 - (0.72*0.47 + 0.28*0.02) = 0.23 +0.23 > 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 72%. For those who are not rixq and are not zuph, the probability of xevu is 66%. For those who are not rixq and are zuph, the probability of xevu is 2%. For those who are rixq and are not zuph, the probability of xevu is 5%. For those who are rixq and are zuph, the probability of xevu is 47%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.47 +0.47 - (0.72*0.47 + 0.28*0.02) = 0.23 +0.23 > 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.07.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 27%. For those who are not rixq, the probability of xevu is 9%. For those who are rixq, the probability of xevu is 9%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.09 +0.27*0.09 - 0.73*0.09 = 0.09 +0.09 > 0",collision,nonsense0,1,marginal,P(Y) +25481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 27%. For those who are not rixq, the probability of xevu is 9%. For those who are rixq, the probability of xevu is 9%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.09 +0.27*0.09 - 0.73*0.09 = 0.09 +0.09 > 0",collision,nonsense0,1,marginal,P(Y) +25484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is 0.38.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 27%. For those who are not rixq and are not zuph, the probability of xevu is 6%. For those who are not rixq and are zuph, the probability of xevu is 26%. For those who are rixq and are not zuph, the probability of xevu is 2%. For those who are rixq and are zuph, the probability of xevu is 75%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.27 +P(Y=1 | X=0, V3=0) = 0.06 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.02 +P(Y=1 | X=1, V3=1) = 0.75 +0.75 - (0.27*0.75 + 0.73*0.26) = 0.41 +0.41 > 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 15%. For those who are not rixq, the probability of xevu is 99%. For those who are rixq, the probability of xevu is 99%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.99 +P(Y=1 | X=1) = 0.99 +0.15*0.99 - 0.85*0.99 = 0.99 +0.99 > 0",collision,nonsense0,1,marginal,P(Y) +25495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 15%. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 99%. For those who are rixq and are not zuph, the probability of xevu is 93%. For those who are rixq and are zuph, the probability of xevu is 100%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 1.00 +1.00 - (0.15*1.00 + 0.85*0.99) = 0.00 +0.00 = 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 15%. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 99%. For those who are rixq and are not zuph, the probability of xevu is 93%. For those who are rixq and are zuph, the probability of xevu is 100%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 1.00 +1.00 - (0.15*1.00 + 0.85*0.99) = 0.00 +0.00 = 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 76%. For those who are not rixq, the probability of xevu is 73%. For those who are rixq, the probability of xevu is 73%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.73 +0.76*0.73 - 0.24*0.73 = 0.73 +0.73 > 0",collision,nonsense0,1,marginal,P(Y) +25505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.12.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 76%. For those who are not rixq and are not zuph, the probability of xevu is 51%. For those who are not rixq and are zuph, the probability of xevu is 88%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 75%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.76 +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.75 +0.75 - (0.76*0.75 + 0.24*0.88) = -0.02 +-0.02 < 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 10%. For those who are not rixq, the probability of xevu is 56%. For those who are rixq, the probability of xevu is 56%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.56 +0.10*0.56 - 0.90*0.56 = 0.56 +0.56 > 0",collision,nonsense0,1,marginal,P(Y) +25511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 10%. For those who are not rixq, the probability of xevu is 56%. For those who are rixq, the probability of xevu is 56%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.56 +0.10*0.56 - 0.90*0.56 = 0.56 +0.56 > 0",collision,nonsense0,1,marginal,P(Y) +25515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 10%. For those who are not rixq and are not zuph, the probability of xevu is 69%. For those who are not rixq and are zuph, the probability of xevu is 45%. For those who are rixq and are not zuph, the probability of xevu is 88%. For those who are rixq and are zuph, the probability of xevu is 34%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.10 +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.34 +0.34 - (0.10*0.34 + 0.90*0.45) = -0.10 +-0.10 < 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.30.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25527,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.30.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 54%. For those who are not rixq and are not zuph, the probability of xevu is 32%. For those who are not rixq and are zuph, the probability of xevu is 90%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 64%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.54 +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.64 +0.64 - (0.54*0.64 + 0.46*0.90) = -0.12 +-0.12 < 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 54%. For those who are not rixq and are not zuph, the probability of xevu is 32%. For those who are not rixq and are zuph, the probability of xevu is 90%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 64%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.54 +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.64 +0.64 - (0.54*0.64 + 0.46*0.90) = -0.12 +-0.12 < 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 3%. For those who are not rixq, the probability of xevu is 43%. For those who are rixq, the probability of xevu is 43%.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.43 +0.03*0.43 - 0.97*0.43 = 0.43 +0.43 > 0",collision,nonsense0,1,marginal,P(Y) +25534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.16.",no,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. For those who are zuph, the correlation between rixq and xevu is -0.16.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense0,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +25539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Xevu has a direct effect on zuph. The overall probability of rixq is 3%. For those who are not rixq and are not zuph, the probability of xevu is 29%. For those who are not rixq and are zuph, the probability of xevu is 77%. For those who are rixq and are not zuph, the probability of xevu is 43%. For those who are rixq and are zuph, the probability of xevu is 43%.",yes,"Let Y = xevu; X = rixq; V3 = zuph. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.77 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.43 +0.43 - (0.03*0.43 + 0.97*0.77) = -0.32 +-0.32 < 0",collision,nonsense0,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +25541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 51%. For those who are not zuph and are rixq, the probability of xevu is 62%. For those who are zuph and are not rixq, the probability of xevu is 98%. For those who are zuph and are rixq, the probability of xevu is 72%. The overall probability of zuph is 22%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.51 +P(Y=1 | V1=0, X=1) = 0.62 +P(Y=1 | V1=1, X=0) = 0.98 +P(Y=1 | V1=1, X=1) = 0.72 +P(V1=1) = 0.22 +0.78 * (0.62 - 0.51) + 0.22 * (0.72 - 0.98) = 0.03 +0.03 > 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 51%. For those who are not zuph and are rixq, the probability of xevu is 62%. For those who are zuph and are not rixq, the probability of xevu is 98%. For those who are zuph and are rixq, the probability of xevu is 72%. The overall probability of zuph is 22%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.51 +P(Y=1 | V1=0, X=1) = 0.62 +P(Y=1 | V1=1, X=0) = 0.98 +P(Y=1 | V1=1, X=1) = 0.72 +P(V1=1) = 0.22 +0.78 * (0.62 - 0.51) + 0.22 * (0.72 - 0.98) = 0.04 +0.04 > 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 54%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 63%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.63 +0.54*0.63 - 0.46*0.63 = 0.63 +0.63 > 0",confounding,nonsense0,1,marginal,P(Y) +25547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 54%. The probability of not rixq and xevu is 29%. The probability of rixq and xevu is 35%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.35 +0.35/0.54 - 0.29/0.46 = 0.00 +0.00 = 0",confounding,nonsense0,1,correlation,P(Y | X) +25548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 76%. For those who are not zuph and are rixq, the probability of xevu is 25%. For those who are zuph and are not rixq, the probability of xevu is 67%. For those who are zuph and are rixq, the probability of xevu is 22%. The overall probability of zuph is 62%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.67 +P(Y=1 | V1=1, X=1) = 0.22 +P(V1=1) = 0.62 +0.38 * (0.25 - 0.76) + 0.62 * (0.22 - 0.67) = -0.47 +-0.47 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 76%. For those who are not zuph and are rixq, the probability of xevu is 25%. For those who are zuph and are not rixq, the probability of xevu is 67%. For those who are zuph and are rixq, the probability of xevu is 22%. The overall probability of zuph is 62%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.67 +P(Y=1 | V1=1, X=1) = 0.22 +P(V1=1) = 0.62 +0.38 * (0.25 - 0.76) + 0.62 * (0.22 - 0.67) = -0.48 +-0.48 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 43%. The probability of not rixq and xevu is 39%. The probability of rixq and xevu is 10%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.10 +0.10/0.43 - 0.39/0.57 = -0.45 +-0.45 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 43%. The probability of not rixq and xevu is 39%. The probability of rixq and xevu is 10%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.10 +0.10/0.43 - 0.39/0.57 = -0.45 +-0.45 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 80%. For those who are not zuph and are rixq, the probability of xevu is 94%. For those who are zuph and are not rixq, the probability of xevu is 77%. For those who are zuph and are rixq, the probability of xevu is 36%. The overall probability of zuph is 80%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.94 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.36 +P(V1=1) = 0.80 +0.20 * (0.94 - 0.80) + 0.80 * (0.36 - 0.77) = -0.30 +-0.30 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 80%. For those who are not zuph and are rixq, the probability of xevu is 94%. For those who are zuph and are not rixq, the probability of xevu is 77%. For those who are zuph and are rixq, the probability of xevu is 36%. The overall probability of zuph is 80%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.94 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.36 +P(V1=1) = 0.80 +0.20 * (0.94 - 0.80) + 0.80 * (0.36 - 0.77) = -0.36 +-0.36 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 80%. For those who are not rixq, the probability of xevu is 79%. For those who are rixq, the probability of xevu is 41%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.41 +0.80*0.41 - 0.20*0.79 = 0.53 +0.53 > 0",confounding,nonsense0,1,marginal,P(Y) +25567,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 80%. The probability of not rixq and xevu is 15%. The probability of rixq and xevu is 33%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.33 +0.33/0.80 - 0.15/0.20 = -0.37 +-0.37 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 96%. For those who are not zuph and are rixq, the probability of xevu is 16%. For those who are zuph and are not rixq, the probability of xevu is 59%. For those who are zuph and are rixq, the probability of xevu is 51%. The overall probability of zuph is 19%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.59 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.19 +0.81 * (0.16 - 0.96) + 0.19 * (0.51 - 0.59) = -0.66 +-0.66 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 96%. For those who are not zuph and are rixq, the probability of xevu is 16%. For those who are zuph and are not rixq, the probability of xevu is 59%. For those who are zuph and are rixq, the probability of xevu is 51%. The overall probability of zuph is 19%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.59 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.19 +0.81 * (0.16 - 0.96) + 0.19 * (0.51 - 0.59) = -0.66 +-0.66 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 96%. For those who are not zuph and are rixq, the probability of xevu is 16%. For those who are zuph and are not rixq, the probability of xevu is 59%. For those who are zuph and are rixq, the probability of xevu is 51%. The overall probability of zuph is 19%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.59 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.19 +0.81 * (0.16 - 0.96) + 0.19 * (0.51 - 0.59) = -0.79 +-0.79 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25573,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 96%. For those who are not zuph and are rixq, the probability of xevu is 16%. For those who are zuph and are not rixq, the probability of xevu is 59%. For those who are zuph and are rixq, the probability of xevu is 51%. The overall probability of zuph is 19%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.59 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.19 +0.81 * (0.16 - 0.96) + 0.19 * (0.51 - 0.59) = -0.79 +-0.79 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 74%. For those who are not rixq, the probability of xevu is 70%. For those who are rixq, the probability of xevu is 17%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.17 +0.74*0.17 - 0.26*0.70 = 0.40 +0.40 > 0",confounding,nonsense0,1,marginal,P(Y) +25575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 74%. For those who are not rixq, the probability of xevu is 70%. For those who are rixq, the probability of xevu is 17%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.17 +0.74*0.17 - 0.26*0.70 = 0.40 +0.40 > 0",confounding,nonsense0,1,marginal,P(Y) +25576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 74%. The probability of not rixq and xevu is 18%. The probability of rixq and xevu is 12%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.12 +0.12/0.74 - 0.18/0.26 = -0.54 +-0.54 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25582,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 58%. For those who are not zuph and are rixq, the probability of xevu is 80%. For those who are zuph and are not rixq, the probability of xevu is 58%. For those who are zuph and are rixq, the probability of xevu is 67%. The overall probability of zuph is 69%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.58 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.67 +P(V1=1) = 0.69 +0.31 * (0.80 - 0.58) + 0.69 * (0.67 - 0.58) = 0.11 +0.11 > 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25583,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 58%. For those who are not zuph and are rixq, the probability of xevu is 80%. For those who are zuph and are not rixq, the probability of xevu is 58%. For those who are zuph and are rixq, the probability of xevu is 67%. The overall probability of zuph is 69%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.58 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.67 +P(V1=1) = 0.69 +0.31 * (0.80 - 0.58) + 0.69 * (0.67 - 0.58) = 0.11 +0.11 > 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 31%. For those who are not rixq, the probability of xevu is 58%. For those who are rixq, the probability of xevu is 69%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.69 +0.31*0.69 - 0.69*0.58 = 0.62 +0.62 > 0",confounding,nonsense0,1,marginal,P(Y) +25586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 31%. The probability of not rixq and xevu is 40%. The probability of rixq and xevu is 21%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.21 +0.21/0.31 - 0.40/0.69 = 0.11 +0.11 > 0",confounding,nonsense0,1,correlation,P(Y | X) +25587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 31%. The probability of not rixq and xevu is 40%. The probability of rixq and xevu is 21%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.21 +0.21/0.31 - 0.40/0.69 = 0.11 +0.11 > 0",confounding,nonsense0,1,correlation,P(Y | X) +25588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 35%. For those who are not zuph and are rixq, the probability of xevu is 80%. For those who are zuph and are not rixq, the probability of xevu is 85%. For those who are zuph and are rixq, the probability of xevu is 1%. The overall probability of zuph is 26%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.35 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.26 +0.74 * (0.80 - 0.35) + 0.26 * (0.01 - 0.85) = 0.11 +0.11 > 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 35%. For those who are not zuph and are rixq, the probability of xevu is 80%. For those who are zuph and are not rixq, the probability of xevu is 85%. For those who are zuph and are rixq, the probability of xevu is 1%. The overall probability of zuph is 26%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.35 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.26 +0.74 * (0.80 - 0.35) + 0.26 * (0.01 - 0.85) = 0.11 +0.11 > 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 35%. For those who are not zuph and are rixq, the probability of xevu is 80%. For those who are zuph and are not rixq, the probability of xevu is 85%. For those who are zuph and are rixq, the probability of xevu is 1%. The overall probability of zuph is 26%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.35 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.26 +0.74 * (0.80 - 0.35) + 0.26 * (0.01 - 0.85) = 0.00 +0.00 = 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 47%. The probability of not rixq and xevu is 24%. The probability of rixq and xevu is 25%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.25 +0.25/0.47 - 0.24/0.53 = 0.08 +0.08 > 0",confounding,nonsense0,1,correlation,P(Y | X) +25598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 91%. For those who are not zuph and are rixq, the probability of xevu is 29%. For those who are zuph and are not rixq, the probability of xevu is 34%. For those who are zuph and are rixq, the probability of xevu is 43%. The overall probability of zuph is 43%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.29 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.43 +P(V1=1) = 0.43 +0.57 * (0.29 - 0.91) + 0.43 * (0.43 - 0.34) = -0.31 +-0.31 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 76%. For those who are rixq, the probability of xevu is 38%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.38 +0.40*0.38 - 0.60*0.76 = 0.53 +0.53 > 0",confounding,nonsense0,1,marginal,P(Y) +25605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 76%. For those who are rixq, the probability of xevu is 38%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.38 +0.40*0.38 - 0.60*0.76 = 0.53 +0.53 > 0",confounding,nonsense0,1,marginal,P(Y) +25606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 40%. The probability of not rixq and xevu is 45%. The probability of rixq and xevu is 15%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.15 +0.15/0.40 - 0.45/0.60 = -0.37 +-0.37 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 40%. The probability of not rixq and xevu is 45%. The probability of rixq and xevu is 15%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.15 +0.15/0.40 - 0.45/0.60 = -0.37 +-0.37 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 82%. For those who are not zuph and are rixq, the probability of xevu is 33%. For those who are zuph and are not rixq, the probability of xevu is 52%. For those who are zuph and are rixq, the probability of xevu is 19%. The overall probability of zuph is 50%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.82 +P(Y=1 | V1=0, X=1) = 0.33 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.19 +P(V1=1) = 0.50 +0.50 * (0.33 - 0.82) + 0.50 * (0.19 - 0.52) = -0.41 +-0.41 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 82%. For those who are not zuph and are rixq, the probability of xevu is 33%. For those who are zuph and are not rixq, the probability of xevu is 52%. For those who are zuph and are rixq, the probability of xevu is 19%. The overall probability of zuph is 50%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.82 +P(Y=1 | V1=0, X=1) = 0.33 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.19 +P(V1=1) = 0.50 +0.50 * (0.33 - 0.82) + 0.50 * (0.19 - 0.52) = -0.41 +-0.41 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 82%. For those who are not zuph and are rixq, the probability of xevu is 33%. For those who are zuph and are not rixq, the probability of xevu is 52%. For those who are zuph and are rixq, the probability of xevu is 19%. The overall probability of zuph is 50%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.82 +P(Y=1 | V1=0, X=1) = 0.33 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.19 +P(V1=1) = 0.50 +0.50 * (0.33 - 0.82) + 0.50 * (0.19 - 0.52) = -0.41 +-0.41 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 49%. For those who are not rixq, the probability of xevu is 67%. For those who are rixq, the probability of xevu is 26%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.26 +0.49*0.26 - 0.51*0.67 = 0.47 +0.47 > 0",confounding,nonsense0,1,marginal,P(Y) +25615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 49%. For those who are not rixq, the probability of xevu is 67%. For those who are rixq, the probability of xevu is 26%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.26 +0.49*0.26 - 0.51*0.67 = 0.47 +0.47 > 0",confounding,nonsense0,1,marginal,P(Y) +25617,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 49%. The probability of not rixq and xevu is 34%. The probability of rixq and xevu is 13%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.13 +0.13/0.49 - 0.34/0.51 = -0.41 +-0.41 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 75%. For those who are not zuph and are rixq, the probability of xevu is 26%. For those who are zuph and are not rixq, the probability of xevu is 93%. For those who are zuph and are rixq, the probability of xevu is 80%. The overall probability of zuph is 37%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.75 +P(Y=1 | V1=0, X=1) = 0.26 +P(Y=1 | V1=1, X=0) = 0.93 +P(Y=1 | V1=1, X=1) = 0.80 +P(V1=1) = 0.37 +0.63 * (0.26 - 0.75) + 0.37 * (0.80 - 0.93) = -0.36 +-0.36 < 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 75%. For those who are not zuph and are rixq, the probability of xevu is 26%. For those who are zuph and are not rixq, the probability of xevu is 93%. For those who are zuph and are rixq, the probability of xevu is 80%. The overall probability of zuph is 37%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.75 +P(Y=1 | V1=0, X=1) = 0.26 +P(Y=1 | V1=1, X=0) = 0.93 +P(Y=1 | V1=1, X=1) = 0.80 +P(V1=1) = 0.37 +0.63 * (0.26 - 0.75) + 0.37 * (0.80 - 0.93) = -0.29 +-0.29 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 64%. For those who are not rixq, the probability of xevu is 76%. For those who are rixq, the probability of xevu is 55%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.55 +0.64*0.55 - 0.36*0.76 = 0.59 +0.59 > 0",confounding,nonsense0,1,marginal,P(Y) +25627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 64%. The probability of not rixq and xevu is 27%. The probability of rixq and xevu is 36%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.36 +0.36/0.64 - 0.27/0.36 = -0.20 +-0.20 < 0",confounding,nonsense0,1,correlation,P(Y | X) +25629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 32%. For those who are not zuph and are rixq, the probability of xevu is 11%. For those who are zuph and are not rixq, the probability of xevu is 65%. For those who are zuph and are rixq, the probability of xevu is 77%. The overall probability of zuph is 87%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.32 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.65 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.87 +0.13 * (0.11 - 0.32) + 0.87 * (0.77 - 0.65) = 0.08 +0.08 > 0",confounding,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 32%. For those who are not zuph and are rixq, the probability of xevu is 11%. For those who are zuph and are not rixq, the probability of xevu is 65%. For those who are zuph and are rixq, the probability of xevu is 77%. The overall probability of zuph is 87%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.32 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.65 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.87 +0.13 * (0.11 - 0.32) + 0.87 * (0.77 - 0.65) = -0.02 +-0.02 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25633,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 32%. For those who are not zuph and are rixq, the probability of xevu is 11%. For those who are zuph and are not rixq, the probability of xevu is 65%. For those who are zuph and are rixq, the probability of xevu is 77%. The overall probability of zuph is 87%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.32 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.65 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.87 +0.13 * (0.11 - 0.32) + 0.87 * (0.77 - 0.65) = -0.02 +-0.02 < 0",confounding,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 23%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 48%.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.48 +0.23*0.48 - 0.77*0.63 = 0.62 +0.62 > 0",confounding,nonsense0,1,marginal,P(Y) +25635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. The overall probability of rixq is 23%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 48%.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.48 +0.23*0.48 - 0.77*0.63 = 0.62 +0.62 > 0",confounding,nonsense0,1,marginal,P(Y) +25647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 44%. For those who are not rixq and are zuph, the probability of xevu is 3%. For those who are rixq and are not zuph, the probability of xevu is 20%. For those who are rixq and are zuph, the probability of xevu is 64%. For those who are not rixq, the probability of zuph is 55%. For those who are rixq, the probability of zuph is 5%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.44 +P(Y=1 | X=0, V2=1) = 0.03 +P(Y=1 | X=1, V2=0) = 0.20 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.55 +P(V2=1 | X=1) = 0.05 +0.55 * (0.64 - 0.20) + 0.05 * (0.03 - 0.44) = 0.22 +0.22 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 25%. For those who are not rixq, the probability of xevu is 22%. For those who are rixq, the probability of xevu is 22%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.22 +0.25*0.22 - 0.75*0.22 = 0.30 +0.30 > 0",mediation,nonsense0,1,marginal,P(Y) +25650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 25%. The probability of not rixq and xevu is 16%. The probability of rixq and xevu is 5%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.05 +0.05/0.25 - 0.16/0.75 = 0.00 +0.00 = 0",mediation,nonsense0,1,correlation,P(Y | X) +25651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 25%. The probability of not rixq and xevu is 16%. The probability of rixq and xevu is 5%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.05 +0.05/0.25 - 0.16/0.75 = 0.00 +0.00 = 0",mediation,nonsense0,1,correlation,P(Y | X) +25652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 17%. For those who are rixq, the probability of xevu is 78%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.78 +0.78 - 0.17 = 0.61 +0.61 > 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 17%. For those who are rixq, the probability of xevu is 78%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.78 +0.78 - 0.17 = 0.61 +0.61 > 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 17%. For those who are rixq, the probability of xevu is 78%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.78 +0.78 - 0.17 = 0.61 +0.61 > 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 41%. For those who are not rixq and are zuph, the probability of xevu is 11%. For those who are rixq and are not zuph, the probability of xevu is 85%. For those who are rixq and are zuph, the probability of xevu is 74%. For those who are not rixq, the probability of zuph is 81%. For those who are rixq, the probability of zuph is 67%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.41 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.74 +P(V2=1 | X=0) = 0.81 +P(V2=1 | X=1) = 0.67 +0.67 * (0.11 - 0.41)+ 0.81 * (0.74 - 0.85)= 0.04 +0.04 > 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 41%. For those who are not rixq and are zuph, the probability of xevu is 11%. For those who are rixq and are not zuph, the probability of xevu is 85%. For those who are rixq and are zuph, the probability of xevu is 74%. For those who are not rixq, the probability of zuph is 81%. For those who are rixq, the probability of zuph is 67%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.41 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.74 +P(V2=1 | X=0) = 0.81 +P(V2=1 | X=1) = 0.67 +0.81 * (0.74 - 0.85) + 0.67 * (0.11 - 0.41) = 0.59 +0.59 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 94%. The probability of not rixq and xevu is 1%. The probability of rixq and xevu is 73%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.73 +0.73/0.94 - 0.01/0.06 = 0.61 +0.61 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 94%. The probability of not rixq and xevu is 1%. The probability of rixq and xevu is 73%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.73 +0.73/0.94 - 0.01/0.06 = 0.61 +0.61 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 30%. For those who are not rixq and are zuph, the probability of xevu is 35%. For those who are rixq and are not zuph, the probability of xevu is 65%. For those who are rixq and are zuph, the probability of xevu is 68%. For those who are not rixq, the probability of zuph is 23%. For those who are rixq, the probability of zuph is 49%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.35 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.68 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.49 +0.49 * (0.35 - 0.30)+ 0.23 * (0.68 - 0.65)= 0.01 +0.01 > 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 30%. For those who are not rixq and are zuph, the probability of xevu is 35%. For those who are rixq and are not zuph, the probability of xevu is 65%. For those who are rixq and are zuph, the probability of xevu is 68%. For those who are not rixq, the probability of zuph is 23%. For those who are rixq, the probability of zuph is 49%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.35 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.68 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.49 +0.49 * (0.35 - 0.30)+ 0.23 * (0.68 - 0.65)= 0.01 +0.01 > 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 30%. For those who are not rixq and are zuph, the probability of xevu is 35%. For those who are rixq and are not zuph, the probability of xevu is 65%. For those who are rixq and are zuph, the probability of xevu is 68%. For those who are not rixq, the probability of zuph is 23%. For those who are rixq, the probability of zuph is 49%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.35 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.68 +P(V2=1 | X=0) = 0.23 +P(V2=1 | X=1) = 0.49 +0.23 * (0.68 - 0.65) + 0.49 * (0.35 - 0.30) = 0.34 +0.34 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 69%. For those who are not rixq, the probability of xevu is 31%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.67 +0.69*0.67 - 0.31*0.31 = 0.56 +0.56 > 0",mediation,nonsense0,1,marginal,P(Y) +25677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 69%. For those who are not rixq, the probability of xevu is 31%. For those who are rixq, the probability of xevu is 67%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.67 +0.69*0.67 - 0.31*0.31 = 0.56 +0.56 > 0",mediation,nonsense0,1,marginal,P(Y) +25678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 69%. The probability of not rixq and xevu is 10%. The probability of rixq and xevu is 46%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.46 +0.46/0.69 - 0.10/0.31 = 0.35 +0.35 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 69%. The probability of not rixq and xevu is 10%. The probability of rixq and xevu is 46%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.46 +0.46/0.69 - 0.10/0.31 = 0.35 +0.35 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 14%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.14 +0.14 - 0.61 = -0.47 +-0.47 < 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 14%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.14 +0.14 - 0.61 = -0.47 +-0.47 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 89%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 11%. For those who are rixq and are zuph, the probability of xevu is 27%. For those who are not rixq, the probability of zuph is 72%. For those who are rixq, the probability of zuph is 21%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.11 +P(Y=1 | X=1, V2=1) = 0.27 +P(V2=1 | X=0) = 0.72 +P(V2=1 | X=1) = 0.21 +0.21 * (0.51 - 0.89)+ 0.72 * (0.27 - 0.11)= 0.20 +0.20 > 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 89%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 11%. For those who are rixq and are zuph, the probability of xevu is 27%. For those who are not rixq, the probability of zuph is 72%. For those who are rixq, the probability of zuph is 21%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.11 +P(Y=1 | X=1, V2=1) = 0.27 +P(V2=1 | X=0) = 0.72 +P(V2=1 | X=1) = 0.21 +0.72 * (0.27 - 0.11) + 0.21 * (0.51 - 0.89) = -0.39 +-0.39 < 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 89%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 11%. For those who are rixq and are zuph, the probability of xevu is 27%. For those who are not rixq, the probability of zuph is 72%. For those who are rixq, the probability of zuph is 21%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.11 +P(Y=1 | X=1, V2=1) = 0.27 +P(V2=1 | X=0) = 0.72 +P(V2=1 | X=1) = 0.21 +0.72 * (0.27 - 0.11) + 0.21 * (0.51 - 0.89) = -0.39 +-0.39 < 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 33%. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 14%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.14 +0.33*0.14 - 0.67*0.61 = 0.52 +0.52 > 0",mediation,nonsense0,1,marginal,P(Y) +25691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 33%. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 14%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.14 +0.33*0.14 - 0.67*0.61 = 0.52 +0.52 > 0",mediation,nonsense0,1,marginal,P(Y) +25694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 40%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.40 +0.40 - 0.52 = -0.11 +-0.11 < 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 40%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.40 +0.40 - 0.52 = -0.11 +-0.11 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 40%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.40 +0.40 - 0.52 = -0.11 +-0.11 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 55%. For those who are not rixq and are zuph, the probability of xevu is 46%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 23%. For those who are not rixq, the probability of zuph is 32%. For those who are rixq, the probability of zuph is 65%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.46 +P(Y=1 | X=1, V2=0) = 0.73 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.32 +P(V2=1 | X=1) = 0.65 +0.65 * (0.46 - 0.55)+ 0.32 * (0.23 - 0.73)= -0.03 +-0.03 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 55%. For those who are not rixq and are zuph, the probability of xevu is 46%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 23%. For those who are not rixq, the probability of zuph is 32%. For those who are rixq, the probability of zuph is 65%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.46 +P(Y=1 | X=1, V2=0) = 0.73 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.32 +P(V2=1 | X=1) = 0.65 +0.65 * (0.46 - 0.55)+ 0.32 * (0.23 - 0.73)= -0.03 +-0.03 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 49%. For those who are not rixq, the probability of xevu is 52%. For those who are rixq, the probability of xevu is 40%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.40 +0.49*0.40 - 0.51*0.52 = 0.50 +0.50 > 0",mediation,nonsense0,1,marginal,P(Y) +25707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 49%. The probability of not rixq and xevu is 27%. The probability of rixq and xevu is 20%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.20 +0.20/0.49 - 0.27/0.51 = -0.11 +-0.11 < 0",mediation,nonsense0,1,correlation,P(Y | X) +25709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 96%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.47 +0.47 - 0.96 = -0.49 +-0.49 < 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 96%. For those who are rixq, the probability of xevu is 47%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.47 +0.47 - 0.96 = -0.49 +-0.49 < 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 96%. For those who are rixq, the probability of xevu is 47%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.47 +0.47 - 0.96 = -0.49 +-0.49 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 96%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.47 +0.47 - 0.96 = -0.49 +-0.49 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 92%. For those who are not rixq and are zuph, the probability of xevu is 96%. For those who are rixq and are not zuph, the probability of xevu is 77%. For those who are rixq and are zuph, the probability of xevu is 5%. For those who are not rixq, the probability of zuph is 86%. For those who are rixq, the probability of zuph is 41%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.92 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.86 +P(V2=1 | X=1) = 0.41 +0.41 * (0.96 - 0.92)+ 0.86 * (0.05 - 0.77)= -0.02 +-0.02 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 92%. For those who are not rixq and are zuph, the probability of xevu is 96%. For those who are rixq and are not zuph, the probability of xevu is 77%. For those who are rixq and are zuph, the probability of xevu is 5%. For those who are not rixq, the probability of zuph is 86%. For those who are rixq, the probability of zuph is 41%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.92 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.86 +P(V2=1 | X=1) = 0.41 +0.41 * (0.96 - 0.92)+ 0.86 * (0.05 - 0.77)= -0.02 +-0.02 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 92%. For those who are not rixq and are zuph, the probability of xevu is 96%. For those who are rixq and are not zuph, the probability of xevu is 77%. For those who are rixq and are zuph, the probability of xevu is 5%. For those who are not rixq, the probability of zuph is 86%. For those who are rixq, the probability of zuph is 41%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.92 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.86 +P(V2=1 | X=1) = 0.41 +0.86 * (0.05 - 0.77) + 0.41 * (0.96 - 0.92) = -0.81 +-0.81 < 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 24%. For those who are not rixq, the probability of xevu is 96%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.47 +0.24*0.47 - 0.76*0.96 = 0.78 +0.78 > 0",mediation,nonsense0,1,marginal,P(Y) +25721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 24%. The probability of not rixq and xevu is 73%. The probability of rixq and xevu is 11%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.73 +P(Y=1, X=1=1) = 0.11 +0.11/0.24 - 0.73/0.76 = -0.49 +-0.49 < 0",mediation,nonsense0,1,correlation,P(Y | X) +25723,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 20%. For those who are rixq, the probability of xevu is 77%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.77 +0.77 - 0.20 = 0.57 +0.57 > 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 20%. For those who are rixq, the probability of xevu is 77%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.77 +0.77 - 0.20 = 0.57 +0.57 > 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 20%. For those who are rixq, the probability of xevu is 77%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.77 +0.77 - 0.20 = 0.57 +0.57 > 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 1%. For those who are rixq and are not zuph, the probability of xevu is 87%. For those who are rixq and are zuph, the probability of xevu is 31%. For those who are not rixq, the probability of zuph is 80%. For those who are rixq, the probability of zuph is 18%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.97 +P(Y=1 | X=0, V2=1) = 0.01 +P(Y=1 | X=1, V2=0) = 0.87 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.18 +0.80 * (0.31 - 0.87) + 0.18 * (0.01 - 0.97) = 0.22 +0.22 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 1%. For those who are rixq and are not zuph, the probability of xevu is 87%. For those who are rixq and are zuph, the probability of xevu is 31%. For those who are not rixq, the probability of zuph is 80%. For those who are rixq, the probability of zuph is 18%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.97 +P(Y=1 | X=0, V2=1) = 0.01 +P(Y=1 | X=1, V2=0) = 0.87 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.18 +0.80 * (0.31 - 0.87) + 0.18 * (0.01 - 0.97) = 0.22 +0.22 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 31%. For those who are not rixq, the probability of xevu is 20%. For those who are rixq, the probability of xevu is 77%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.77 +0.31*0.77 - 0.69*0.20 = 0.43 +0.43 > 0",mediation,nonsense0,1,marginal,P(Y) +25736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 87%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.87 +0.87 - 0.61 = 0.26 +0.26 > 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 87%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.87 +0.87 - 0.61 = 0.26 +0.26 > 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 87%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.87 +0.87 - 0.61 = 0.26 +0.26 > 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 63%. For those who are not rixq and are zuph, the probability of xevu is 59%. For those who are rixq and are not zuph, the probability of xevu is 91%. For those who are rixq and are zuph, the probability of xevu is 36%. For those who are not rixq, the probability of zuph is 51%. For those who are rixq, the probability of zuph is 6%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.63 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.91 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.06 +0.06 * (0.59 - 0.63)+ 0.51 * (0.36 - 0.91)= 0.02 +0.02 > 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 63%. For those who are not rixq and are zuph, the probability of xevu is 59%. For those who are rixq and are not zuph, the probability of xevu is 91%. For those who are rixq and are zuph, the probability of xevu is 36%. For those who are not rixq, the probability of zuph is 51%. For those who are rixq, the probability of zuph is 6%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.63 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.91 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.06 +0.51 * (0.36 - 0.91) + 0.06 * (0.59 - 0.63) = 0.01 +0.01 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 63%. For those who are not rixq and are zuph, the probability of xevu is 59%. For those who are rixq and are not zuph, the probability of xevu is 91%. For those who are rixq and are zuph, the probability of xevu is 36%. For those who are not rixq, the probability of zuph is 51%. For those who are rixq, the probability of zuph is 6%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.63 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.91 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.06 +0.51 * (0.36 - 0.91) + 0.06 * (0.59 - 0.63) = 0.01 +0.01 > 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 50%. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 87%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.87 +0.50*0.87 - 0.50*0.61 = 0.69 +0.69 > 0",mediation,nonsense0,1,marginal,P(Y) +25748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 50%. The probability of not rixq and xevu is 31%. The probability of rixq and xevu is 43%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.43 +0.43/0.50 - 0.31/0.50 = 0.26 +0.26 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 50%. The probability of not rixq and xevu is 31%. The probability of rixq and xevu is 43%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.43 +0.43/0.50 - 0.31/0.50 = 0.26 +0.26 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25751,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 92%. For those who are rixq, the probability of xevu is 30%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.30 +0.30 - 0.92 = -0.63 +-0.63 < 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 92%. For those who are rixq, the probability of xevu is 30%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.30 +0.30 - 0.92 = -0.63 +-0.63 < 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 92%. For those who are rixq, the probability of xevu is 30%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.30 +0.30 - 0.92 = -0.63 +-0.63 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 92%. For those who are rixq, the probability of xevu is 30%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.30 +0.30 - 0.92 = -0.63 +-0.63 < 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 95%. For those who are not rixq and are zuph, the probability of xevu is 49%. For those who are rixq and are not zuph, the probability of xevu is 93%. For those who are rixq and are zuph, the probability of xevu is 28%. For those who are not rixq, the probability of zuph is 5%. For those who are rixq, the probability of zuph is 98%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.49 +P(Y=1 | X=1, V2=0) = 0.93 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.98 +0.98 * (0.49 - 0.95)+ 0.05 * (0.28 - 0.93)= -0.43 +-0.43 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 95%. For those who are not rixq and are zuph, the probability of xevu is 49%. For those who are rixq and are not zuph, the probability of xevu is 93%. For those who are rixq and are zuph, the probability of xevu is 28%. For those who are not rixq, the probability of zuph is 5%. For those who are rixq, the probability of zuph is 98%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.49 +P(Y=1 | X=1, V2=0) = 0.93 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.98 +0.05 * (0.28 - 0.93) + 0.98 * (0.49 - 0.95) = -0.03 +-0.03 < 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 95%. For those who are not rixq and are zuph, the probability of xevu is 49%. For those who are rixq and are not zuph, the probability of xevu is 93%. For those who are rixq and are zuph, the probability of xevu is 28%. For those who are not rixq, the probability of zuph is 5%. For those who are rixq, the probability of zuph is 98%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.49 +P(Y=1 | X=1, V2=0) = 0.93 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.98 +0.05 * (0.28 - 0.93) + 0.98 * (0.49 - 0.95) = -0.03 +-0.03 < 0",mediation,nonsense0,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +25761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 98%. For those who are not rixq, the probability of xevu is 92%. For those who are rixq, the probability of xevu is 30%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.30 +0.98*0.30 - 0.02*0.92 = 0.31 +0.31 > 0",mediation,nonsense0,1,marginal,P(Y) +25766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 14%. For those who are rixq, the probability of xevu is 55%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.55 +0.55 - 0.14 = 0.40 +0.40 > 0",mediation,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 14%. For those who are rixq, the probability of xevu is 55%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.55 +0.55 - 0.14 = 0.40 +0.40 > 0",mediation,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 17%. For those who are not rixq and are zuph, the probability of xevu is 8%. For those who are rixq and are not zuph, the probability of xevu is 1%. For those who are rixq and are zuph, the probability of xevu is 58%. For those who are not rixq, the probability of zuph is 28%. For those who are rixq, the probability of zuph is 93%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.17 +P(Y=1 | X=0, V2=1) = 0.08 +P(Y=1 | X=1, V2=0) = 0.01 +P(Y=1 | X=1, V2=1) = 0.58 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.93 +0.93 * (0.08 - 0.17)+ 0.28 * (0.58 - 0.01)= -0.06 +-0.06 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. For those who are not rixq and are not zuph, the probability of xevu is 17%. For those who are not rixq and are zuph, the probability of xevu is 8%. For those who are rixq and are not zuph, the probability of xevu is 1%. For those who are rixq and are zuph, the probability of xevu is 58%. For those who are not rixq, the probability of zuph is 28%. For those who are rixq, the probability of zuph is 93%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.17 +P(Y=1 | X=0, V2=1) = 0.08 +P(Y=1 | X=1, V2=0) = 0.01 +P(Y=1 | X=1, V2=1) = 0.58 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.93 +0.93 * (0.08 - 0.17)+ 0.28 * (0.58 - 0.01)= -0.06 +-0.06 < 0",mediation,nonsense0,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +25774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 44%. For those who are not rixq, the probability of xevu is 14%. For those who are rixq, the probability of xevu is 55%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.55 +0.44*0.55 - 0.56*0.14 = 0.22 +0.22 > 0",mediation,nonsense0,1,marginal,P(Y) +25775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 44%. For those who are not rixq, the probability of xevu is 14%. For those who are rixq, the probability of xevu is 55%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.55 +0.44*0.55 - 0.56*0.14 = 0.22 +0.22 > 0",mediation,nonsense0,1,marginal,P(Y) +25776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 44%. The probability of not rixq and xevu is 8%. The probability of rixq and xevu is 24%.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.24 +0.24/0.44 - 0.08/0.56 = 0.40 +0.40 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 44%. The probability of not rixq and xevu is 8%. The probability of rixq and xevu is 24%.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.24 +0.24/0.44 - 0.08/0.56 = 0.40 +0.40 > 0",mediation,nonsense0,1,correlation,P(Y | X) +25778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 54%. For those who are not rixq and are zuph, the probability of xevu is 32%. For those who are rixq and are not zuph, the probability of xevu is 39%. For those who are rixq and are zuph, the probability of xevu is 25%. For those who are not rixq, the probability of zuph is 90%. For those who are rixq, the probability of zuph is 94%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0) = 0.90 +P(V3=1 | X=1) = 0.94 +0.25 * (0.94 - 0.90) + 0.32 * (0.06 - 0.10) = -0.01 +-0.01 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 54%. For those who are not rixq and are zuph, the probability of xevu is 32%. For those who are rixq and are not zuph, the probability of xevu is 39%. For those who are rixq and are zuph, the probability of xevu is 25%. For those who are not rixq, the probability of zuph is 90%. For those who are rixq, the probability of zuph is 94%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0) = 0.90 +P(V3=1 | X=1) = 0.94 +0.25 * (0.94 - 0.90) + 0.32 * (0.06 - 0.10) = -0.01 +-0.01 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 22%. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 26%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.26 +0.22*0.26 - 0.78*0.34 = 0.32 +0.32 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 22%. The probability of not rixq and xevu is 27%. The probability of rixq and xevu is 6%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.06 +0.06/0.22 - 0.27/0.78 = -0.08 +-0.08 < 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 22%. The probability of not rixq and xevu is 27%. The probability of rixq and xevu is 6%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.06 +0.06/0.22 - 0.27/0.78 = -0.08 +-0.08 < 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 29%. For those who are rixq, the probability of zuph is 59%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 58%. The overall probability of rixq is 64%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.58 +P(X=1) = 0.64 +(0.59 - 0.29)* (0.58 * 0.64) + (0.41 - 0.71) * (0.57 * 0.36) = -0.05 +-0.05 < 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 58%. For those who are not rixq, the probability of zuph is 29%. For those who are rixq, the probability of zuph is 59%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.58 +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.59 +0.58 * (0.59 - 0.29) + 0.57 * (0.41 - 0.71) = -0.05 +-0.05 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25796,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 29%. For those who are rixq, the probability of zuph is 59%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 58%. The overall probability of rixq is 64%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.58 +P(X=1) = 0.64 +0.59 - 0.29 * (0.58 * 0.64 + 0.57 * 0.36)= -0.05 +-0.05 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 29%. For those who are rixq, the probability of zuph is 59%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 58%. The overall probability of rixq is 64%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.58 +P(X=1) = 0.64 +0.59 - 0.29 * (0.58 * 0.64 + 0.57 * 0.36)= -0.05 +-0.05 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 64%. For those who are not rixq, the probability of xevu is 71%. For those who are rixq, the probability of xevu is 64%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.64 +0.64*0.64 - 0.36*0.71 = 0.66 +0.66 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 64%. The probability of not rixq and xevu is 25%. The probability of rixq and xevu is 41%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.41 +0.41/0.64 - 0.25/0.36 = -0.07 +-0.07 < 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 27%. For those who are rixq, the probability of zuph is 23%. For those who are not rixq and are not zuph, the probability of xevu is 56%. For those who are not rixq and are zuph, the probability of xevu is 80%. For those who are rixq and are not zuph, the probability of xevu is 81%. For those who are rixq and are zuph, the probability of xevu is 70%. The overall probability of rixq is 73%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.27 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.80 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.70 +P(X=1) = 0.73 +(0.23 - 0.27)* (0.70 * 0.73) + (0.77 - 0.73) * (0.80 * 0.27) = 0.00 +0.00 = 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 56%. For those who are not rixq and are zuph, the probability of xevu is 80%. For those who are rixq and are not zuph, the probability of xevu is 81%. For those who are rixq and are zuph, the probability of xevu is 70%. For those who are not rixq, the probability of zuph is 27%. For those who are rixq, the probability of zuph is 23%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.80 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0) = 0.27 +P(V3=1 | X=1) = 0.23 +0.70 * (0.23 - 0.27) + 0.80 * (0.77 - 0.73) = 0.00 +0.00 = 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 27%. For those who are rixq, the probability of zuph is 23%. For those who are not rixq and are not zuph, the probability of xevu is 56%. For those who are not rixq and are zuph, the probability of xevu is 80%. For those who are rixq and are not zuph, the probability of xevu is 81%. For those who are rixq and are zuph, the probability of xevu is 70%. The overall probability of rixq is 73%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.27 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.80 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.70 +P(X=1) = 0.73 +0.23 - 0.27 * (0.70 * 0.73 + 0.80 * 0.27)= 0.00 +0.00 = 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 78%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.78 +0.73*0.78 - 0.27*0.63 = 0.74 +0.74 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 78%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.78 +0.73*0.78 - 0.27*0.63 = 0.74 +0.74 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. The probability of not rixq and xevu is 17%. The probability of rixq and xevu is 57%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.57 +0.57/0.73 - 0.17/0.27 = 0.15 +0.15 > 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25816,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 39%. For those who are rixq, the probability of zuph is 23%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 78%. For those who are rixq and are zuph, the probability of xevu is 54%. The overall probability of rixq is 36%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.36 +(0.23 - 0.39)* (0.54 * 0.36) + (0.77 - 0.61) * (0.57 * 0.64) = 0.03 +0.03 > 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 39%. For those who are rixq, the probability of zuph is 23%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 78%. For those who are rixq and are zuph, the probability of xevu is 54%. The overall probability of rixq is 36%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.36 +(0.23 - 0.39)* (0.54 * 0.36) + (0.77 - 0.61) * (0.57 * 0.64) = 0.03 +0.03 > 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25819,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 78%. For those who are rixq and are zuph, the probability of xevu is 54%. For those who are not rixq, the probability of zuph is 39%. For those who are rixq, the probability of zuph is 23%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.23 +0.54 * (0.23 - 0.39) + 0.57 * (0.77 - 0.61) = 0.04 +0.04 > 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 39%. For those who are rixq, the probability of zuph is 23%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 78%. For those who are rixq and are zuph, the probability of xevu is 54%. The overall probability of rixq is 36%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.36 +0.23 - 0.39 * (0.54 * 0.36 + 0.57 * 0.64)= 0.03 +0.03 > 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 39%. For those who are rixq, the probability of zuph is 23%. For those who are not rixq and are not zuph, the probability of xevu is 77%. For those who are not rixq and are zuph, the probability of xevu is 57%. For those who are rixq and are not zuph, the probability of xevu is 78%. For those who are rixq and are zuph, the probability of xevu is 54%. The overall probability of rixq is 36%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.36 +0.23 - 0.39 * (0.54 * 0.36 + 0.57 * 0.64)= 0.03 +0.03 > 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 36%. For those who are not rixq, the probability of xevu is 69%. For those who are rixq, the probability of xevu is 73%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.73 +0.36*0.73 - 0.64*0.69 = 0.70 +0.70 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 36%. The probability of not rixq and xevu is 44%. The probability of rixq and xevu is 26%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.26 +0.26/0.36 - 0.44/0.64 = 0.03 +0.03 > 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 36%. The probability of not rixq and xevu is 44%. The probability of rixq and xevu is 26%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.26 +0.26/0.36 - 0.44/0.64 = 0.03 +0.03 > 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 14%. For those who are rixq, the probability of zuph is 37%. For those who are not rixq and are not zuph, the probability of xevu is 52%. For those who are not rixq and are zuph, the probability of xevu is 99%. For those who are rixq and are not zuph, the probability of xevu is 53%. For those who are rixq and are zuph, the probability of xevu is 89%. The overall probability of rixq is 8%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.37 +P(Y=1 | X=0, V3=0) = 0.52 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.89 +P(X=1) = 0.08 +(0.37 - 0.14)* (0.89 * 0.08) + (0.63 - 0.86) * (0.99 * 0.92) = 0.10 +0.10 > 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 14%. For those who are rixq, the probability of zuph is 37%. For those who are not rixq and are not zuph, the probability of xevu is 52%. For those who are not rixq and are zuph, the probability of xevu is 99%. For those who are rixq and are not zuph, the probability of xevu is 53%. For those who are rixq and are zuph, the probability of xevu is 89%. The overall probability of rixq is 8%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.37 +P(Y=1 | X=0, V3=0) = 0.52 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.89 +P(X=1) = 0.08 +0.37 - 0.14 * (0.89 * 0.08 + 0.99 * 0.92)= 0.10 +0.10 > 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 8%. For those who are not rixq, the probability of xevu is 59%. For those who are rixq, the probability of xevu is 66%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.08*0.66 - 0.92*0.59 = 0.60 +0.60 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 8%. For those who are not rixq, the probability of xevu is 59%. For those who are rixq, the probability of xevu is 66%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.08*0.66 - 0.92*0.59 = 0.60 +0.60 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 13%. For those who are rixq, the probability of zuph is 57%. For those who are not rixq and are not zuph, the probability of xevu is 90%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 60%. The overall probability of rixq is 40%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.13 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.40 +(0.57 - 0.13)* (0.60 * 0.40) + (0.43 - 0.87) * (0.51 * 0.60) = -0.12 +-0.12 < 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 90%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 60%. For those who are not rixq, the probability of zuph is 13%. For those who are rixq, the probability of zuph is 57%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0) = 0.13 +P(V3=1 | X=1) = 0.57 +0.60 * (0.57 - 0.13) + 0.51 * (0.43 - 0.87) = -0.06 +-0.06 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 13%. For those who are rixq, the probability of zuph is 57%. For those who are not rixq and are not zuph, the probability of xevu is 90%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 60%. The overall probability of rixq is 40%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.13 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.40 +0.57 - 0.13 * (0.60 * 0.40 + 0.51 * 0.60)= -0.12 +-0.12 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 13%. For those who are rixq, the probability of zuph is 57%. For those who are not rixq and are not zuph, the probability of xevu is 90%. For those who are not rixq and are zuph, the probability of xevu is 51%. For those who are rixq and are not zuph, the probability of xevu is 73%. For those who are rixq and are zuph, the probability of xevu is 60%. The overall probability of rixq is 40%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.13 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.40 +0.57 - 0.13 * (0.60 * 0.40 + 0.51 * 0.60)= -0.12 +-0.12 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25846,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 66%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.66 +0.40*0.66 - 0.60*0.85 = 0.75 +0.75 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 85%. For those who are rixq, the probability of xevu is 66%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.66 +0.40*0.66 - 0.60*0.85 = 0.75 +0.75 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. The probability of not rixq and xevu is 51%. The probability of rixq and xevu is 26%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.26 +0.26/0.40 - 0.51/0.60 = -0.19 +-0.19 < 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. The probability of not rixq and xevu is 51%. The probability of rixq and xevu is 26%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.26 +0.26/0.40 - 0.51/0.60 = -0.19 +-0.19 < 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 20%. For those who are rixq, the probability of zuph is 83%. For those who are not rixq and are not zuph, the probability of xevu is 81%. For those who are not rixq and are zuph, the probability of xevu is 37%. For those who are rixq and are not zuph, the probability of xevu is 97%. For those who are rixq and are zuph, the probability of xevu is 19%. The overall probability of rixq is 70%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.19 +P(X=1) = 0.70 +(0.83 - 0.20)* (0.19 * 0.70) + (0.17 - 0.80) * (0.37 * 0.30) = -0.43 +-0.43 < 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 20%. For those who are rixq, the probability of zuph is 83%. For those who are not rixq and are not zuph, the probability of xevu is 81%. For those who are not rixq and are zuph, the probability of xevu is 37%. For those who are rixq and are not zuph, the probability of xevu is 97%. For those who are rixq and are zuph, the probability of xevu is 19%. The overall probability of rixq is 70%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.19 +P(X=1) = 0.70 +(0.83 - 0.20)* (0.19 * 0.70) + (0.17 - 0.80) * (0.37 * 0.30) = -0.43 +-0.43 < 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 81%. For those who are not rixq and are zuph, the probability of xevu is 37%. For those who are rixq and are not zuph, the probability of xevu is 97%. For those who are rixq and are zuph, the probability of xevu is 19%. For those who are not rixq, the probability of zuph is 20%. For those who are rixq, the probability of zuph is 83%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.83 +0.19 * (0.83 - 0.20) + 0.37 * (0.17 - 0.80) = -0.49 +-0.49 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 20%. For those who are rixq, the probability of zuph is 83%. For those who are not rixq and are not zuph, the probability of xevu is 81%. For those who are not rixq and are zuph, the probability of xevu is 37%. For those who are rixq and are not zuph, the probability of xevu is 97%. For those who are rixq and are zuph, the probability of xevu is 19%. The overall probability of rixq is 70%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.19 +P(X=1) = 0.70 +0.83 - 0.20 * (0.19 * 0.70 + 0.37 * 0.30)= -0.43 +-0.43 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 70%. The probability of not rixq and xevu is 22%. The probability of rixq and xevu is 23%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.23 +0.23/0.70 - 0.22/0.30 = -0.39 +-0.39 < 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 72%. For those who are not rixq and are zuph, the probability of xevu is 52%. For those who are rixq and are not zuph, the probability of xevu is 72%. For those who are rixq and are zuph, the probability of xevu is 53%. For those who are not rixq, the probability of zuph is 11%. For those who are rixq, the probability of zuph is 64%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.11 +P(V3=1 | X=1) = 0.64 +0.53 * (0.64 - 0.11) + 0.52 * (0.36 - 0.89) = -0.10 +-0.10 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 72%. For those who are not rixq and are zuph, the probability of xevu is 52%. For those who are rixq and are not zuph, the probability of xevu is 72%. For those who are rixq and are zuph, the probability of xevu is 53%. For those who are not rixq, the probability of zuph is 11%. For those who are rixq, the probability of zuph is 64%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.11 +P(V3=1 | X=1) = 0.64 +0.53 * (0.64 - 0.11) + 0.52 * (0.36 - 0.89) = -0.10 +-0.10 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 11%. For those who are rixq, the probability of zuph is 64%. For those who are not rixq and are not zuph, the probability of xevu is 72%. For those who are not rixq and are zuph, the probability of xevu is 52%. For those who are rixq and are not zuph, the probability of xevu is 72%. For those who are rixq and are zuph, the probability of xevu is 53%. The overall probability of rixq is 85%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.11 +P(V3=1 | X=1) = 0.64 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.85 +0.64 - 0.11 * (0.53 * 0.85 + 0.52 * 0.15)= -0.10 +-0.10 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 85%. For those who are not rixq, the probability of xevu is 70%. For those who are rixq, the probability of xevu is 60%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.60 +0.85*0.60 - 0.15*0.70 = 0.61 +0.61 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25875,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 76%. For those who are rixq, the probability of zuph is 55%. For those who are not rixq and are not zuph, the probability of xevu is 28%. For those who are not rixq and are zuph, the probability of xevu is 29%. For those who are rixq and are not zuph, the probability of xevu is 12%. For those who are rixq and are zuph, the probability of xevu is 46%. The overall probability of rixq is 43%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.76 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.43 +(0.55 - 0.76)* (0.46 * 0.43) + (0.45 - 0.24) * (0.29 * 0.57) = -0.03 +-0.03 < 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 76%. For those who are rixq, the probability of zuph is 55%. For those who are not rixq and are not zuph, the probability of xevu is 28%. For those who are not rixq and are zuph, the probability of xevu is 29%. For those who are rixq and are not zuph, the probability of xevu is 12%. For those who are rixq and are zuph, the probability of xevu is 46%. The overall probability of rixq is 43%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.76 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.43 +(0.55 - 0.76)* (0.46 * 0.43) + (0.45 - 0.24) * (0.29 * 0.57) = -0.03 +-0.03 < 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 28%. For those who are not rixq and are zuph, the probability of xevu is 29%. For those who are rixq and are not zuph, the probability of xevu is 12%. For those who are rixq and are zuph, the probability of xevu is 46%. For those who are not rixq, the probability of zuph is 76%. For those who are rixq, the probability of zuph is 55%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.76 +P(V3=1 | X=1) = 0.55 +0.46 * (0.55 - 0.76) + 0.29 * (0.45 - 0.24) = -0.07 +-0.07 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 28%. For those who are not rixq and are zuph, the probability of xevu is 29%. For those who are rixq and are not zuph, the probability of xevu is 12%. For those who are rixq and are zuph, the probability of xevu is 46%. For those who are not rixq, the probability of zuph is 76%. For those who are rixq, the probability of zuph is 55%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.76 +P(V3=1 | X=1) = 0.55 +0.46 * (0.55 - 0.76) + 0.29 * (0.45 - 0.24) = -0.07 +-0.07 < 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 76%. For those who are rixq, the probability of zuph is 55%. For those who are not rixq and are not zuph, the probability of xevu is 28%. For those who are not rixq and are zuph, the probability of xevu is 29%. For those who are rixq and are not zuph, the probability of xevu is 12%. For those who are rixq and are zuph, the probability of xevu is 46%. The overall probability of rixq is 43%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.76 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.43 +0.55 - 0.76 * (0.46 * 0.43 + 0.29 * 0.57)= -0.03 +-0.03 < 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 43%. For those who are not rixq, the probability of xevu is 29%. For those who are rixq, the probability of xevu is 30%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.30 +0.43*0.30 - 0.57*0.29 = 0.31 +0.31 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 43%. The probability of not rixq and xevu is 16%. The probability of rixq and xevu is 13%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.13 +0.13/0.43 - 0.16/0.57 = 0.02 +0.02 > 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 43%. The probability of not rixq and xevu is 16%. The probability of rixq and xevu is 13%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.13 +0.13/0.43 - 0.16/0.57 = 0.02 +0.02 > 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 17%. For those who are rixq, the probability of zuph is 57%. For those who are not rixq and are not zuph, the probability of xevu is 12%. For those who are not rixq and are zuph, the probability of xevu is 93%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 82%. The overall probability of rixq is 81%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.81 +(0.57 - 0.17)* (0.82 * 0.81) + (0.43 - 0.83) * (0.93 * 0.19) = 0.14 +0.14 > 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 17%. For those who are rixq, the probability of zuph is 57%. For those who are not rixq and are not zuph, the probability of xevu is 12%. For those who are not rixq and are zuph, the probability of xevu is 93%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 82%. The overall probability of rixq is 81%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.81 +(0.57 - 0.17)* (0.82 * 0.81) + (0.43 - 0.83) * (0.93 * 0.19) = 0.14 +0.14 > 0",frontdoor,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 12%. For those who are not rixq and are zuph, the probability of xevu is 93%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 82%. For those who are not rixq, the probability of zuph is 17%. For those who are rixq, the probability of zuph is 57%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.57 +0.82 * (0.57 - 0.17) + 0.93 * (0.43 - 0.83) = 0.10 +0.10 > 0",frontdoor,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of zuph is 17%. For those who are rixq, the probability of zuph is 57%. For those who are not rixq and are not zuph, the probability of xevu is 12%. For those who are not rixq and are zuph, the probability of xevu is 93%. For those who are rixq and are not zuph, the probability of xevu is 57%. For those who are rixq and are zuph, the probability of xevu is 82%. The overall probability of rixq is 81%.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.81 +0.57 - 0.17 * (0.82 * 0.81 + 0.93 * 0.19)= 0.14 +0.14 > 0",frontdoor,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 81%. For those who are not rixq, the probability of xevu is 25%. For those who are rixq, the probability of xevu is 71%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.71 +0.81*0.71 - 0.19*0.25 = 0.66 +0.66 > 0",frontdoor,nonsense0,1,marginal,P(Y) +25897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 81%. The probability of not rixq and xevu is 5%. The probability of rixq and xevu is 58%.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.58 +0.58/0.81 - 0.05/0.19 = 0.46 +0.46 > 0",frontdoor,nonsense0,1,correlation,P(Y | X) +25898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 17%. For those who are not rixq, the probability of xevu is 62%. For those who are rixq, the probability of xevu is 69%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.69 +0.17*0.69 - 0.83*0.62 = 0.63 +0.63 > 0",IV,nonsense0,1,marginal,P(Y) +25903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 17%. For those who are not rixq, the probability of xevu is 62%. For those who are rixq, the probability of xevu is 69%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.69 +0.17*0.69 - 0.83*0.62 = 0.63 +0.63 > 0",IV,nonsense0,1,marginal,P(Y) +25905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 17%. The probability of not rixq and xevu is 51%. The probability of rixq and xevu is 12%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.12 +0.12/0.17 - 0.51/0.83 = 0.07 +0.07 > 0",IV,nonsense0,1,correlation,P(Y | X) +25906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 16%. For those who are zuph, the probability of xevu is 22%. For those who are not zuph, the probability of rixq is 18%. For those who are zuph, the probability of rixq is 84%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.16 +P(Y=1 | V2=1) = 0.22 +P(X=1 | V2=0) = 0.18 +P(X=1 | V2=1) = 0.84 +(0.22 - 0.16) / (0.84 - 0.18) = 0.09 +0.09 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 43%. The probability of not rixq and xevu is 8%. The probability of rixq and xevu is 10%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.10 +0.10/0.43 - 0.08/0.57 = 0.08 +0.08 > 0",IV,nonsense0,1,correlation,P(Y | X) +25914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 37%. For those who are zuph, the probability of xevu is 42%. For those who are not zuph, the probability of rixq is 96%. For those who are zuph, the probability of rixq is 54%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.37 +P(Y=1 | V2=1) = 0.42 +P(X=1 | V2=0) = 0.96 +P(X=1 | V2=1) = 0.54 +(0.42 - 0.37) / (0.54 - 0.96) = -0.10 +-0.10 < 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 72%. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 37%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.37 +0.72*0.37 - 0.28*0.47 = 0.40 +0.40 > 0",IV,nonsense0,1,marginal,P(Y) +25920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 72%. The probability of not rixq and xevu is 13%. The probability of rixq and xevu is 27%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.27 +0.27/0.72 - 0.13/0.28 = -0.10 +-0.10 < 0",IV,nonsense0,1,correlation,P(Y | X) +25923,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 35%. For those who are zuph, the probability of xevu is 39%. For those who are not zuph, the probability of rixq is 28%. For those who are zuph, the probability of rixq is 38%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.35 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.38 +(0.39 - 0.35) / (0.38 - 0.28) = 0.41 +0.41 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 35%. For those who are zuph, the probability of xevu is 39%. For those who are not zuph, the probability of rixq is 28%. For those who are zuph, the probability of rixq is 38%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.35 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.38 +(0.39 - 0.35) / (0.38 - 0.28) = 0.41 +0.41 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 32%. For those who are not rixq, the probability of xevu is 23%. For those who are rixq, the probability of xevu is 67%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.67 +0.32*0.67 - 0.68*0.23 = 0.37 +0.37 > 0",IV,nonsense0,1,marginal,P(Y) +25930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 50%. For those who are zuph, the probability of xevu is 49%. For those who are not zuph, the probability of rixq is 57%. For those who are zuph, the probability of rixq is 36%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.49 +P(X=1 | V2=0) = 0.57 +P(X=1 | V2=1) = 0.36 +(0.49 - 0.50) / (0.36 - 0.57) = 0.06 +0.06 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 50%. For those who are zuph, the probability of xevu is 49%. For those who are not zuph, the probability of rixq is 57%. For those who are zuph, the probability of rixq is 36%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.49 +P(X=1 | V2=0) = 0.57 +P(X=1 | V2=1) = 0.36 +(0.49 - 0.50) / (0.36 - 0.57) = 0.06 +0.06 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 40%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.40 +0.40*0.40 - 0.60*0.34 = 0.50 +0.50 > 0",IV,nonsense0,1,marginal,P(Y) +25936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. The probability of not rixq and xevu is 21%. The probability of rixq and xevu is 16%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.16 +0.16/0.40 - 0.21/0.60 = 0.05 +0.05 > 0",IV,nonsense0,1,correlation,P(Y | X) +25937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 40%. The probability of not rixq and xevu is 21%. The probability of rixq and xevu is 16%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.16 +0.16/0.40 - 0.21/0.60 = 0.05 +0.05 > 0",IV,nonsense0,1,correlation,P(Y | X) +25939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 21%. For those who are zuph, the probability of xevu is 17%. For those who are not zuph, the probability of rixq is 22%. For those who are zuph, the probability of rixq is 46%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.21 +P(Y=1 | V2=1) = 0.17 +P(X=1 | V2=0) = 0.22 +P(X=1 | V2=1) = 0.46 +(0.17 - 0.21) / (0.46 - 0.22) = -0.14 +-0.14 < 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 33%. For those who are not rixq, the probability of xevu is 24%. For those who are rixq, the probability of xevu is 9%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.09 +0.33*0.09 - 0.67*0.24 = 0.19 +0.19 > 0",IV,nonsense0,1,marginal,P(Y) +25944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 33%. The probability of not rixq and xevu is 16%. The probability of rixq and xevu is 3%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.03 +0.03/0.33 - 0.16/0.67 = -0.15 +-0.15 < 0",IV,nonsense0,1,correlation,P(Y | X) +25946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 51%. For those who are zuph, the probability of xevu is 55%. For those who are not zuph, the probability of rixq is 48%. For those who are zuph, the probability of rixq is 34%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.51 +P(Y=1 | V2=1) = 0.55 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.34 +(0.55 - 0.51) / (0.34 - 0.48) = -0.25 +-0.25 < 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 42%. For those who are not rixq, the probability of xevu is 63%. For those who are rixq, the probability of xevu is 38%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.38 +0.42*0.38 - 0.58*0.63 = 0.53 +0.53 > 0",IV,nonsense0,1,marginal,P(Y) +25952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 42%. The probability of not rixq and xevu is 36%. The probability of rixq and xevu is 16%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.16 +0.16/0.42 - 0.36/0.58 = -0.25 +-0.25 < 0",IV,nonsense0,1,correlation,P(Y | X) +25953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 42%. The probability of not rixq and xevu is 36%. The probability of rixq and xevu is 16%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.16 +0.16/0.42 - 0.36/0.58 = -0.25 +-0.25 < 0",IV,nonsense0,1,correlation,P(Y | X) +25954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 43%. For those who are zuph, the probability of xevu is 27%. For those who are not zuph, the probability of rixq is 86%. For those who are zuph, the probability of rixq is 23%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.43 +P(Y=1 | V2=1) = 0.27 +P(X=1 | V2=0) = 0.86 +P(X=1 | V2=1) = 0.23 +(0.27 - 0.43) / (0.23 - 0.86) = 0.25 +0.25 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 43%. For those who are zuph, the probability of xevu is 27%. For those who are not zuph, the probability of rixq is 86%. For those who are zuph, the probability of rixq is 23%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.43 +P(Y=1 | V2=1) = 0.27 +P(X=1 | V2=0) = 0.86 +P(X=1 | V2=1) = 0.23 +(0.27 - 0.43) / (0.23 - 0.86) = 0.25 +0.25 > 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 24%. For those who are not rixq, the probability of xevu is 23%. For those who are rixq, the probability of xevu is 47%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.47 +0.24*0.47 - 0.76*0.23 = 0.27 +0.27 > 0",IV,nonsense0,1,marginal,P(Y) +25959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 24%. For those who are not rixq, the probability of xevu is 23%. For those who are rixq, the probability of xevu is 47%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.47 +0.24*0.47 - 0.76*0.23 = 0.27 +0.27 > 0",IV,nonsense0,1,marginal,P(Y) +25960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 24%. The probability of not rixq and xevu is 17%. The probability of rixq and xevu is 11%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.11 +0.11/0.24 - 0.17/0.76 = 0.25 +0.25 > 0",IV,nonsense0,1,correlation,P(Y | X) +25963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 63%. For those who are zuph, the probability of xevu is 62%. For those who are not zuph, the probability of rixq is 25%. For those who are zuph, the probability of rixq is 37%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.25 +P(X=1 | V2=1) = 0.37 +(0.62 - 0.63) / (0.37 - 0.25) = -0.04 +-0.04 < 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 32%. For those who are not rixq, the probability of xevu is 66%. For those who are rixq, the probability of xevu is 55%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.55 +0.32*0.55 - 0.68*0.66 = 0.62 +0.62 > 0",IV,nonsense0,1,marginal,P(Y) +25968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 32%. The probability of not rixq and xevu is 45%. The probability of rixq and xevu is 18%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.18 +0.18/0.32 - 0.45/0.68 = -0.11 +-0.11 < 0",IV,nonsense0,1,correlation,P(Y | X) +25969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 32%. The probability of not rixq and xevu is 45%. The probability of rixq and xevu is 18%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.18 +0.18/0.32 - 0.45/0.68 = -0.11 +-0.11 < 0",IV,nonsense0,1,correlation,P(Y | X) +25973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. For those who are not zuph, the probability of xevu is 39%. For those who are zuph, the probability of xevu is 70%. For those who are not zuph, the probability of rixq is 81%. For those who are zuph, the probability of rixq is 19%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.70 +P(X=1 | V2=0) = 0.81 +P(X=1 | V2=1) = 0.19 +(0.70 - 0.39) / (0.19 - 0.81) = -0.51 +-0.51 < 0",IV,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 78%. For those who are not rixq, the probability of xevu is 64%. For those who are rixq, the probability of xevu is 26%.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.26 +0.78*0.26 - 0.22*0.64 = 0.40 +0.40 > 0",IV,nonsense0,1,marginal,P(Y) +25975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 78%. For those who are not rixq, the probability of xevu is 64%. For those who are rixq, the probability of xevu is 26%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.26 +0.78*0.26 - 0.22*0.64 = 0.40 +0.40 > 0",IV,nonsense0,1,marginal,P(Y) +25977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 78%. The probability of not rixq and xevu is 14%. The probability of rixq and xevu is 21%.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.21 +0.21/0.78 - 0.14/0.22 = -0.38 +-0.38 < 0",IV,nonsense0,1,correlation,P(Y | X) +25978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 68%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.68 +0.68 - 0.81 = -0.13 +-0.13 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 68%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.68 +0.68 - 0.81 = -0.13 +-0.13 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 68%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.68 +0.68 - 0.81 = -0.13 +-0.13 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 71%. For those who are rixq and are not zuph, the probability of xevu is 67%. For those who are rixq and are zuph, the probability of xevu is 78%. For those who are not rixq and are not swoy, the probability of zuph is 41%. For those who are not rixq and are swoy, the probability of zuph is 94%. For those who are rixq and are not swoy, the probability of zuph is 6%. For those who are rixq and are swoy, the probability of zuph is 13%. The overall probability of swoy is 44%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.94 +P(V3=1 | X=1, V2=0) = 0.06 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.44 +0.44 * 0.71 * (0.13 - 0.06)+ 0.56 * 0.71 * (0.94 - 0.41)= 0.05 +0.05 > 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 71%. For those who are rixq and are not zuph, the probability of xevu is 67%. For those who are rixq and are zuph, the probability of xevu is 78%. For those who are not rixq and are not swoy, the probability of zuph is 41%. For those who are not rixq and are swoy, the probability of zuph is 94%. For those who are rixq and are not swoy, the probability of zuph is 6%. For those who are rixq and are swoy, the probability of zuph is 13%. The overall probability of swoy is 44%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.94 +P(V3=1 | X=1, V2=0) = 0.06 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.44 +0.44 * (0.78 - 0.67) * 0.94 + 0.56 * (0.71 - 0.97) * 0.06 = -0.13 +-0.13 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +25987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 97%. For those who are not rixq and are zuph, the probability of xevu is 71%. For those who are rixq and are not zuph, the probability of xevu is 67%. For those who are rixq and are zuph, the probability of xevu is 78%. For those who are not rixq and are not swoy, the probability of zuph is 41%. For those who are not rixq and are swoy, the probability of zuph is 94%. For those who are rixq and are not swoy, the probability of zuph is 6%. For those who are rixq and are swoy, the probability of zuph is 13%. The overall probability of swoy is 44%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.94 +P(V3=1 | X=1, V2=0) = 0.06 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.44 +0.44 * (0.78 - 0.67) * 0.94 + 0.56 * (0.71 - 0.97) * 0.06 = -0.13 +-0.13 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +25988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 3%. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 68%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.68 +0.03*0.68 - 0.97*0.81 = 0.80 +0.80 > 0",arrowhead,nonsense0,1,marginal,P(Y) +25989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 3%. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 68%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.68 +0.03*0.68 - 0.97*0.81 = 0.80 +0.80 > 0",arrowhead,nonsense0,1,marginal,P(Y) +25992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +25994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 31%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.16 +-0.16 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 31%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.16 +-0.16 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +25997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 31%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.16 +-0.16 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +25998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 1%. For those who are not rixq and are zuph, the probability of xevu is 68%. For those who are rixq and are not zuph, the probability of xevu is 63%. For those who are rixq and are zuph, the probability of xevu is 10%. For those who are not rixq and are not swoy, the probability of zuph is 74%. For those who are not rixq and are swoy, the probability of zuph is 24%. For those who are rixq and are not swoy, the probability of zuph is 45%. For those who are rixq and are swoy, the probability of zuph is 91%. The overall probability of swoy is 14%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0, V2=0) = 0.74 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.45 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.14 +0.14 * 0.68 * (0.91 - 0.45)+ 0.86 * 0.68 * (0.24 - 0.74)= -0.11 +-0.11 < 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +25999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 1%. For those who are not rixq and are zuph, the probability of xevu is 68%. For those who are rixq and are not zuph, the probability of xevu is 63%. For those who are rixq and are zuph, the probability of xevu is 10%. For those who are not rixq and are not swoy, the probability of zuph is 74%. For those who are not rixq and are swoy, the probability of zuph is 24%. For those who are rixq and are not swoy, the probability of zuph is 45%. For those who are rixq and are swoy, the probability of zuph is 91%. The overall probability of swoy is 14%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0, V2=0) = 0.74 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.45 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.14 +0.14 * 0.68 * (0.91 - 0.45)+ 0.86 * 0.68 * (0.24 - 0.74)= -0.11 +-0.11 < 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 1%. For those who are not rixq and are zuph, the probability of xevu is 68%. For those who are rixq and are not zuph, the probability of xevu is 63%. For those who are rixq and are zuph, the probability of xevu is 10%. For those who are not rixq and are not swoy, the probability of zuph is 74%. For those who are not rixq and are swoy, the probability of zuph is 24%. For those who are rixq and are not swoy, the probability of zuph is 45%. For those who are rixq and are swoy, the probability of zuph is 91%. The overall probability of swoy is 14%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0, V2=0) = 0.74 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.45 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.14 +0.14 * (0.10 - 0.63) * 0.24 + 0.86 * (0.68 - 0.01) * 0.45 = -0.23 +-0.23 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 76%. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 31%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.76*0.31 - 0.24*0.47 = 0.31 +0.31 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 76%. The probability of not rixq and xevu is 11%. The probability of rixq and xevu is 27%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.27 +0.27/0.76 - 0.11/0.24 = -0.11 +-0.11 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 55%. For those who are rixq, the probability of xevu is 56%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.56 +0.56 - 0.55 = 0.01 +0.01 > 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26012,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 42%. For those who are not rixq and are zuph, the probability of xevu is 82%. For those who are rixq and are not zuph, the probability of xevu is 19%. For those who are rixq and are zuph, the probability of xevu is 65%. For those who are not rixq and are not swoy, the probability of zuph is 20%. For those who are not rixq and are swoy, the probability of zuph is 57%. For those who are rixq and are not swoy, the probability of zuph is 37%. For those who are rixq and are swoy, the probability of zuph is 92%. The overall probability of swoy is 70%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.65 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.37 +P(V3=1 | X=1, V2=1) = 0.92 +P(V2=1) = 0.70 +0.70 * 0.82 * (0.92 - 0.37)+ 0.30 * 0.82 * (0.57 - 0.20)= 0.08 +0.08 > 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 42%. For those who are not rixq and are zuph, the probability of xevu is 82%. For those who are rixq and are not zuph, the probability of xevu is 19%. For those who are rixq and are zuph, the probability of xevu is 65%. For those who are not rixq and are not swoy, the probability of zuph is 20%. For those who are not rixq and are swoy, the probability of zuph is 57%. For those who are rixq and are not swoy, the probability of zuph is 37%. For those who are rixq and are swoy, the probability of zuph is 92%. The overall probability of swoy is 70%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.65 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.37 +P(V3=1 | X=1, V2=1) = 0.92 +P(V2=1) = 0.70 +0.70 * (0.65 - 0.19) * 0.57 + 0.30 * (0.82 - 0.42) * 0.37 = -0.13 +-0.13 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 77%. For those who are not rixq, the probability of xevu is 55%. For those who are rixq, the probability of xevu is 56%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.56 +0.77*0.56 - 0.23*0.55 = 0.54 +0.54 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 77%. For those who are not rixq, the probability of xevu is 55%. For those who are rixq, the probability of xevu is 56%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.56 +0.77*0.56 - 0.23*0.55 = 0.54 +0.54 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 77%. The probability of not rixq and xevu is 14%. The probability of rixq and xevu is 42%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.42 +0.42/0.77 - 0.14/0.23 = -0.06 +-0.06 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 77%. The probability of not rixq and xevu is 14%. The probability of rixq and xevu is 42%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.42 +0.42/0.77 - 0.14/0.23 = -0.06 +-0.06 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 26%. For those who are rixq, the probability of xevu is 14%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.14 +0.14 - 0.26 = -0.12 +-0.12 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 26%. For those who are rixq, the probability of xevu is 14%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.14 +0.14 - 0.26 = -0.12 +-0.12 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 96%. For those who are not rixq and are zuph, the probability of xevu is 14%. For those who are rixq and are not zuph, the probability of xevu is 50%. For those who are rixq and are zuph, the probability of xevu is 7%. For those who are not rixq and are not swoy, the probability of zuph is 31%. For those who are not rixq and are swoy, the probability of zuph is 94%. For those who are rixq and are not swoy, the probability of zuph is 88%. For those who are rixq and are swoy, the probability of zuph is 82%. The overall probability of swoy is 90%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.07 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.94 +P(V3=1 | X=1, V2=0) = 0.88 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.90 +0.90 * 0.14 * (0.82 - 0.88)+ 0.10 * 0.14 * (0.94 - 0.31)= 0.04 +0.04 > 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 74%. For those who are not rixq, the probability of xevu is 26%. For those who are rixq, the probability of xevu is 14%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.14 +0.74*0.14 - 0.26*0.26 = 0.18 +0.18 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 74%. For those who are not rixq, the probability of xevu is 26%. For those who are rixq, the probability of xevu is 14%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.14 +0.74*0.14 - 0.26*0.26 = 0.18 +0.18 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 74%. The probability of not rixq and xevu is 6%. The probability of rixq and xevu is 11%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.11 +0.11/0.74 - 0.06/0.26 = -0.10 +-0.10 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 55%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.55 +0.55 - 0.47 = 0.08 +0.08 > 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 55%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.55 +0.55 - 0.47 = 0.08 +0.08 > 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 47%. For those who are rixq, the probability of xevu is 55%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.55 +0.55 - 0.47 = 0.08 +0.08 > 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 23%. For those who are not rixq and are zuph, the probability of xevu is 67%. For those who are rixq and are not zuph, the probability of xevu is 72%. For those who are rixq and are zuph, the probability of xevu is 27%. For those who are not rixq and are not swoy, the probability of zuph is 64%. For those who are not rixq and are swoy, the probability of zuph is 51%. For those who are rixq and are not swoy, the probability of zuph is 82%. For those who are rixq and are swoy, the probability of zuph is 4%. The overall probability of swoy is 81%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.27 +P(V3=1 | X=0, V2=0) = 0.64 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.82 +P(V3=1 | X=1, V2=1) = 0.04 +P(V2=1) = 0.81 +0.81 * 0.67 * (0.04 - 0.82)+ 0.19 * 0.67 * (0.51 - 0.64)= -0.14 +-0.14 < 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 23%. For those who are not rixq and are zuph, the probability of xevu is 67%. For those who are rixq and are not zuph, the probability of xevu is 72%. For those who are rixq and are zuph, the probability of xevu is 27%. For those who are not rixq and are not swoy, the probability of zuph is 64%. For those who are not rixq and are swoy, the probability of zuph is 51%. For those who are rixq and are not swoy, the probability of zuph is 82%. For those who are rixq and are swoy, the probability of zuph is 4%. The overall probability of swoy is 81%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.27 +P(V3=1 | X=0, V2=0) = 0.64 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.82 +P(V3=1 | X=1, V2=1) = 0.04 +P(V2=1) = 0.81 +0.81 * 0.67 * (0.04 - 0.82)+ 0.19 * 0.67 * (0.51 - 0.64)= -0.14 +-0.14 < 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 23%. For those who are not rixq and are zuph, the probability of xevu is 67%. For those who are rixq and are not zuph, the probability of xevu is 72%. For those who are rixq and are zuph, the probability of xevu is 27%. For those who are not rixq and are not swoy, the probability of zuph is 64%. For those who are not rixq and are swoy, the probability of zuph is 51%. For those who are rixq and are not swoy, the probability of zuph is 82%. For those who are rixq and are swoy, the probability of zuph is 4%. The overall probability of swoy is 81%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.27 +P(V3=1 | X=0, V2=0) = 0.64 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.82 +P(V3=1 | X=1, V2=1) = 0.04 +P(V2=1) = 0.81 +0.81 * (0.27 - 0.72) * 0.51 + 0.19 * (0.67 - 0.23) * 0.82 = -0.12 +-0.12 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 44%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.44 +0.44 - 0.35 = 0.08 +0.08 > 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 44%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.44 +0.44 - 0.35 = 0.08 +0.08 > 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26052,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 44%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.44 +0.44 - 0.35 = 0.08 +0.08 > 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 59%. For those who are not rixq and are zuph, the probability of xevu is 27%. For those who are rixq and are not zuph, the probability of xevu is 44%. For those who are rixq and are zuph, the probability of xevu is 30%. For those who are not rixq and are not swoy, the probability of zuph is 72%. For those who are not rixq and are swoy, the probability of zuph is 57%. For those who are rixq and are not swoy, the probability of zuph is 22%. For those who are rixq and are swoy, the probability of zuph is 16%. The overall probability of swoy is 42%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.22 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.42 +0.42 * 0.27 * (0.16 - 0.22)+ 0.58 * 0.27 * (0.57 - 0.72)= 0.12 +0.12 > 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 59%. For those who are not rixq and are zuph, the probability of xevu is 27%. For those who are rixq and are not zuph, the probability of xevu is 44%. For those who are rixq and are zuph, the probability of xevu is 30%. For those who are not rixq and are not swoy, the probability of zuph is 72%. For those who are not rixq and are swoy, the probability of zuph is 57%. For those who are rixq and are not swoy, the probability of zuph is 22%. For those who are rixq and are swoy, the probability of zuph is 16%. The overall probability of swoy is 42%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.22 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.42 +0.42 * 0.27 * (0.16 - 0.22)+ 0.58 * 0.27 * (0.57 - 0.72)= 0.12 +0.12 > 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 59%. For those who are not rixq and are zuph, the probability of xevu is 27%. For those who are rixq and are not zuph, the probability of xevu is 44%. For those who are rixq and are zuph, the probability of xevu is 30%. For those who are not rixq and are not swoy, the probability of zuph is 72%. For those who are not rixq and are swoy, the probability of zuph is 57%. For those who are rixq and are not swoy, the probability of zuph is 22%. For those who are rixq and are swoy, the probability of zuph is 16%. The overall probability of swoy is 42%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.22 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.42 +0.42 * (0.30 - 0.44) * 0.57 + 0.58 * (0.27 - 0.59) * 0.22 = 0.04 +0.04 > 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 59%. For those who are not rixq and are zuph, the probability of xevu is 27%. For those who are rixq and are not zuph, the probability of xevu is 44%. For those who are rixq and are zuph, the probability of xevu is 30%. For those who are not rixq and are not swoy, the probability of zuph is 72%. For those who are not rixq and are swoy, the probability of zuph is 57%. For those who are rixq and are not swoy, the probability of zuph is 22%. For those who are rixq and are swoy, the probability of zuph is 16%. The overall probability of swoy is 42%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.22 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.42 +0.42 * (0.30 - 0.44) * 0.57 + 0.58 * (0.27 - 0.59) * 0.22 = 0.04 +0.04 > 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 20%. For those who are not rixq, the probability of xevu is 35%. For those who are rixq, the probability of xevu is 44%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.44 +0.20*0.44 - 0.80*0.35 = 0.38 +0.38 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 20%. The probability of not rixq and xevu is 31%. The probability of rixq and xevu is 8%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.08 +0.08/0.20 - 0.31/0.80 = 0.04 +0.04 > 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 20%. The probability of not rixq and xevu is 31%. The probability of rixq and xevu is 8%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.08 +0.08/0.20 - 0.31/0.80 = 0.04 +0.04 > 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 32%. For those who are rixq, the probability of xevu is 32%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = -0.01 +-0.01 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 32%. For those who are rixq, the probability of xevu is 32%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = -0.01 +-0.01 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 32%. For those who are rixq, the probability of xevu is 32%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = -0.01 +-0.01 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 32%. For those who are rixq, the probability of xevu is 32%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = -0.01 +-0.01 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 52%. The probability of not rixq and xevu is 15%. The probability of rixq and xevu is 16%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.16 +0.16/0.52 - 0.15/0.48 = 0.00 +0.00 = 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 52%. The probability of not rixq and xevu is 15%. The probability of rixq and xevu is 16%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.16 +0.16/0.52 - 0.15/0.48 = 0.00 +0.00 = 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 64%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.64 +0.64 - 0.74 = -0.10 +-0.10 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 64%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.64 +0.64 - 0.74 = -0.10 +-0.10 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26083,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 68%. For those who are not rixq and are zuph, the probability of xevu is 82%. For those who are rixq and are not zuph, the probability of xevu is 70%. For those who are rixq and are zuph, the probability of xevu is 39%. For those who are not rixq and are not swoy, the probability of zuph is 56%. For those who are not rixq and are swoy, the probability of zuph is 1%. For those who are rixq and are not swoy, the probability of zuph is 3%. For those who are rixq and are swoy, the probability of zuph is 81%. The overall probability of swoy is 15%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.56 +P(V3=1 | X=0, V2=1) = 0.01 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.81 +P(V2=1) = 0.15 +0.15 * 0.82 * (0.81 - 0.03)+ 0.85 * 0.82 * (0.01 - 0.56)= 0.02 +0.02 > 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 68%. For those who are not rixq and are zuph, the probability of xevu is 82%. For those who are rixq and are not zuph, the probability of xevu is 70%. For those who are rixq and are zuph, the probability of xevu is 39%. For those who are not rixq and are not swoy, the probability of zuph is 56%. For those who are not rixq and are swoy, the probability of zuph is 1%. For those who are rixq and are not swoy, the probability of zuph is 3%. For those who are rixq and are swoy, the probability of zuph is 81%. The overall probability of swoy is 15%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.56 +P(V3=1 | X=0, V2=1) = 0.01 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.81 +P(V2=1) = 0.15 +0.15 * (0.39 - 0.70) * 0.01 + 0.85 * (0.82 - 0.68) * 0.03 = -0.21 +-0.21 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 68%. For those who are not rixq and are zuph, the probability of xevu is 82%. For those who are rixq and are not zuph, the probability of xevu is 70%. For those who are rixq and are zuph, the probability of xevu is 39%. For those who are not rixq and are not swoy, the probability of zuph is 56%. For those who are not rixq and are swoy, the probability of zuph is 1%. For those who are rixq and are not swoy, the probability of zuph is 3%. For those who are rixq and are swoy, the probability of zuph is 81%. The overall probability of swoy is 15%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0, V2=0) = 0.56 +P(V3=1 | X=0, V2=1) = 0.01 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.81 +P(V2=1) = 0.15 +0.15 * (0.39 - 0.70) * 0.01 + 0.85 * (0.82 - 0.68) * 0.03 = -0.21 +-0.21 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 17%. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 64%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.64 +0.17*0.64 - 0.83*0.74 = 0.71 +0.71 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 17%. The probability of not rixq and xevu is 62%. The probability of rixq and xevu is 11%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.62 +P(Y=1, X=1=1) = 0.11 +0.11/0.17 - 0.62/0.83 = -0.09 +-0.09 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 88%. For those who are not rixq and are zuph, the probability of xevu is 87%. For those who are rixq and are not zuph, the probability of xevu is 53%. For those who are rixq and are zuph, the probability of xevu is 24%. For those who are not rixq and are not swoy, the probability of zuph is 46%. For those who are not rixq and are swoy, the probability of zuph is 42%. For those who are rixq and are not swoy, the probability of zuph is 10%. For those who are rixq and are swoy, the probability of zuph is 49%. The overall probability of swoy is 8%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.46 +P(V3=1 | X=0, V2=1) = 0.42 +P(V3=1 | X=1, V2=0) = 0.10 +P(V3=1 | X=1, V2=1) = 0.49 +P(V2=1) = 0.08 +0.08 * 0.87 * (0.49 - 0.10)+ 0.92 * 0.87 * (0.42 - 0.46)= 0.00 +0.00 = 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 88%. For those who are not rixq and are zuph, the probability of xevu is 87%. For those who are rixq and are not zuph, the probability of xevu is 53%. For those who are rixq and are zuph, the probability of xevu is 24%. For those who are not rixq and are not swoy, the probability of zuph is 46%. For those who are not rixq and are swoy, the probability of zuph is 42%. For those who are rixq and are not swoy, the probability of zuph is 10%. For those who are rixq and are swoy, the probability of zuph is 49%. The overall probability of swoy is 8%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.46 +P(V3=1 | X=0, V2=1) = 0.42 +P(V3=1 | X=1, V2=0) = 0.10 +P(V3=1 | X=1, V2=1) = 0.49 +P(V2=1) = 0.08 +0.08 * (0.24 - 0.53) * 0.42 + 0.92 * (0.87 - 0.88) * 0.10 = -0.51 +-0.51 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 64%. For those who are not rixq, the probability of xevu is 87%. For those who are rixq, the probability of xevu is 48%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.48 +0.64*0.48 - 0.36*0.87 = 0.60 +0.60 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 64%. The probability of not rixq and xevu is 31%. The probability of rixq and xevu is 31%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.31 +0.31/0.64 - 0.31/0.36 = -0.38 +-0.38 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 23%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.23 +0.23 - 0.44 = -0.21 +-0.21 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 23%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.23 +0.23 - 0.44 = -0.21 +-0.21 < 0",arrowhead,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 23%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.23 +0.23 - 0.44 = -0.21 +-0.21 < 0",arrowhead,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 41%. For those who are not rixq and are zuph, the probability of xevu is 48%. For those who are rixq and are not zuph, the probability of xevu is 19%. For those who are rixq and are zuph, the probability of xevu is 54%. For those who are not rixq and are not swoy, the probability of zuph is 1%. For those who are not rixq and are swoy, the probability of zuph is 58%. For those who are rixq and are not swoy, the probability of zuph is 13%. For those who are rixq and are swoy, the probability of zuph is 12%. The overall probability of swoy is 95%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.41 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0, V2=0) = 0.01 +P(V3=1 | X=0, V2=1) = 0.58 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.95 +0.95 * 0.48 * (0.12 - 0.13)+ 0.05 * 0.48 * (0.58 - 0.01)= -0.02 +-0.02 < 0",arrowhead,nonsense0,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 41%. For those who are not rixq and are zuph, the probability of xevu is 48%. For those who are rixq and are not zuph, the probability of xevu is 19%. For those who are rixq and are zuph, the probability of xevu is 54%. For those who are not rixq and are not swoy, the probability of zuph is 1%. For those who are not rixq and are swoy, the probability of zuph is 58%. For those who are rixq and are not swoy, the probability of zuph is 13%. For those who are rixq and are swoy, the probability of zuph is 12%. The overall probability of swoy is 95%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.41 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0, V2=0) = 0.01 +P(V3=1 | X=0, V2=1) = 0.58 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.95 +0.95 * (0.54 - 0.19) * 0.58 + 0.05 * (0.48 - 0.41) * 0.13 = -0.06 +-0.06 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. For those who are not rixq and are not zuph, the probability of xevu is 41%. For those who are not rixq and are zuph, the probability of xevu is 48%. For those who are rixq and are not zuph, the probability of xevu is 19%. For those who are rixq and are zuph, the probability of xevu is 54%. For those who are not rixq and are not swoy, the probability of zuph is 1%. For those who are not rixq and are swoy, the probability of zuph is 58%. For those who are rixq and are not swoy, the probability of zuph is 13%. For those who are rixq and are swoy, the probability of zuph is 12%. The overall probability of swoy is 95%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.41 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0, V2=0) = 0.01 +P(V3=1 | X=0, V2=1) = 0.58 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.95 +0.95 * (0.54 - 0.19) * 0.58 + 0.05 * (0.48 - 0.41) * 0.13 = -0.06 +-0.06 < 0",arrowhead,nonsense0,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +26114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 23%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.23 +0.73*0.23 - 0.27*0.44 = 0.32 +0.32 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 23%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.23 +0.73*0.23 - 0.27*0.44 = 0.32 +0.32 > 0",arrowhead,nonsense0,1,marginal,P(Y) +26116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. The probability of not rixq and xevu is 12%. The probability of rixq and xevu is 17%.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.17 +0.17/0.73 - 0.12/0.27 = -0.22 +-0.22 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. The overall probability of rixq is 73%. The probability of not rixq and xevu is 12%. The probability of rixq and xevu is 17%.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.17 +0.17/0.73 - 0.12/0.27 = -0.22 +-0.22 < 0",arrowhead,nonsense0,1,correlation,P(Y | X) +26118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 21%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.21 +0.21 - 0.48 = -0.27 +-0.27 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 21%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.21 +0.21 - 0.48 = -0.27 +-0.27 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 21%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.21 +0.21 - 0.48 = -0.27 +-0.27 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 48%. For those who are rixq, the probability of xevu is 21%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.21 +0.21 - 0.48 = -0.27 +-0.27 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 17%. The probability of not rixq and xevu is 40%. The probability of rixq and xevu is 4%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.04 +0.04/0.17 - 0.40/0.83 = -0.27 +-0.27 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 17%. The probability of not rixq and xevu is 40%. The probability of rixq and xevu is 4%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.04 +0.04/0.17 - 0.40/0.83 = -0.27 +-0.27 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 88%. For those who are rixq, the probability of xevu is 92%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.92 +0.92 - 0.88 = 0.04 +0.04 > 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 88%. For those who are rixq, the probability of xevu is 92%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.92 +0.92 - 0.88 = 0.04 +0.04 > 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 88%. For those who are rixq, the probability of xevu is 92%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.92 +0.92 - 0.88 = 0.04 +0.04 > 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 88%. For those who are rixq, the probability of xevu is 92%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.92 +0.92 - 0.88 = 0.04 +0.04 > 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 42%. For those who are not rixq, the probability of xevu is 88%. For those who are rixq, the probability of xevu is 92%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.92 +0.42*0.92 - 0.58*0.88 = 0.90 +0.90 > 0",diamond,nonsense0,1,marginal,P(Y) +26139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 42%. For those who are not rixq, the probability of xevu is 88%. For those who are rixq, the probability of xevu is 92%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.92 +0.42*0.92 - 0.58*0.88 = 0.90 +0.90 > 0",diamond,nonsense0,1,marginal,P(Y) +26140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 42%. The probability of not rixq and xevu is 51%. The probability of rixq and xevu is 39%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.39 +0.39/0.42 - 0.51/0.58 = 0.04 +0.04 > 0",diamond,nonsense0,1,correlation,P(Y | X) +26141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 42%. The probability of not rixq and xevu is 51%. The probability of rixq and xevu is 39%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.39 +0.39/0.42 - 0.51/0.58 = 0.04 +0.04 > 0",diamond,nonsense0,1,correlation,P(Y | X) +26142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.66*0.47 - 0.34*0.51 = 0.49 +0.49 > 0",diamond,nonsense0,1,marginal,P(Y) +26151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. For those who are not rixq, the probability of xevu is 51%. For those who are rixq, the probability of xevu is 47%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.66*0.47 - 0.34*0.51 = 0.49 +0.49 > 0",diamond,nonsense0,1,marginal,P(Y) +26152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. The probability of not rixq and xevu is 17%. The probability of rixq and xevu is 31%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.31 +0.31/0.66 - 0.17/0.34 = -0.04 +-0.04 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. The probability of not rixq and xevu is 17%. The probability of rixq and xevu is 31%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.31 +0.31/0.66 - 0.17/0.34 = -0.04 +-0.04 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 57%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.57 +0.57 - 0.34 = 0.23 +0.23 > 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 57%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.57 +0.57 - 0.34 = 0.23 +0.23 > 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 57%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.57 +0.57 - 0.34 = 0.23 +0.23 > 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 58%. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 57%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.57 +0.58*0.57 - 0.42*0.34 = 0.47 +0.47 > 0",diamond,nonsense0,1,marginal,P(Y) +26164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 58%. The probability of not rixq and xevu is 15%. The probability of rixq and xevu is 33%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.33 +0.33/0.58 - 0.15/0.42 = 0.23 +0.23 > 0",diamond,nonsense0,1,correlation,P(Y | X) +26166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 66%. For those who are rixq, the probability of xevu is 70%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.70 +0.70 - 0.66 = 0.04 +0.04 > 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 66%. For those who are rixq, the probability of xevu is 70%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.70 +0.70 - 0.66 = 0.04 +0.04 > 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 66%. For those who are rixq, the probability of xevu is 70%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.70 +0.70 - 0.66 = 0.04 +0.04 > 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 13%. For those who are not rixq, the probability of xevu is 66%. For those who are rixq, the probability of xevu is 70%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.70 +0.13*0.70 - 0.87*0.66 = 0.67 +0.67 > 0",diamond,nonsense0,1,marginal,P(Y) +26175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 13%. For those who are not rixq, the probability of xevu is 66%. For those who are rixq, the probability of xevu is 70%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.70 +0.13*0.70 - 0.87*0.66 = 0.67 +0.67 > 0",diamond,nonsense0,1,marginal,P(Y) +26177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 13%. The probability of not rixq and xevu is 58%. The probability of rixq and xevu is 9%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.09 +0.09/0.13 - 0.58/0.87 = 0.04 +0.04 > 0",diamond,nonsense0,1,correlation,P(Y | X) +26179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 91%. For those who are rixq, the probability of xevu is 61%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.61 +0.61 - 0.91 = -0.29 +-0.29 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 91%. For those who are rixq, the probability of xevu is 61%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.61 +0.61 - 0.91 = -0.29 +-0.29 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 91%. For those who are rixq, the probability of xevu is 61%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.61 +0.61 - 0.91 = -0.29 +-0.29 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 91%. For those who are rixq, the probability of xevu is 61%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.61 +0.61 - 0.91 = -0.29 +-0.29 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 53%. For those who are not rixq, the probability of xevu is 91%. For those who are rixq, the probability of xevu is 61%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.61 +0.53*0.61 - 0.47*0.91 = 0.76 +0.76 > 0",diamond,nonsense0,1,marginal,P(Y) +26187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 53%. For those who are not rixq, the probability of xevu is 91%. For those who are rixq, the probability of xevu is 61%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.61 +0.53*0.61 - 0.47*0.91 = 0.76 +0.76 > 0",diamond,nonsense0,1,marginal,P(Y) +26189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 53%. The probability of not rixq and xevu is 43%. The probability of rixq and xevu is 32%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.32 +0.32/0.53 - 0.43/0.47 = -0.29 +-0.29 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 11%. For those who are rixq, the probability of xevu is 28%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.28 +0.28 - 0.11 = 0.17 +0.17 > 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 11%. For those who are rixq, the probability of xevu is 28%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.28 +0.28 - 0.11 = 0.17 +0.17 > 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 11%. For those who are rixq, the probability of xevu is 28%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.28 +0.28 - 0.11 = 0.17 +0.17 > 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 69%. The probability of not rixq and xevu is 3%. The probability of rixq and xevu is 19%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.19 +0.19/0.69 - 0.03/0.31 = 0.17 +0.17 > 0",diamond,nonsense0,1,correlation,P(Y | X) +26202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 72%. For those who are rixq, the probability of xevu is 67%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.67 +0.67 - 0.72 = -0.05 +-0.05 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 72%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.67 +0.67 - 0.72 = -0.05 +-0.05 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 72%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.67 +0.67 - 0.72 = -0.05 +-0.05 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 72%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.67 +0.67 - 0.72 = -0.05 +-0.05 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 79%. For those who are not rixq, the probability of xevu is 72%. For those who are rixq, the probability of xevu is 67%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.67 +0.79*0.67 - 0.21*0.72 = 0.68 +0.68 > 0",diamond,nonsense0,1,marginal,P(Y) +26211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 79%. For those who are not rixq, the probability of xevu is 72%. For those who are rixq, the probability of xevu is 67%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.67 +0.79*0.67 - 0.21*0.72 = 0.68 +0.68 > 0",diamond,nonsense0,1,marginal,P(Y) +26218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 64%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.64 +0.64 - 0.81 = -0.17 +-0.17 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 81%. For those who are rixq, the probability of xevu is 64%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.64 +0.64 - 0.81 = -0.17 +-0.17 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 97%. The probability of not rixq and xevu is 2%. The probability of rixq and xevu is 62%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.62 +0.62/0.97 - 0.02/0.03 = -0.17 +-0.17 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 19%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.19 +0.19 - 0.21 = -0.02 +-0.02 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 19%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.19 +0.19 - 0.21 = -0.02 +-0.02 < 0",diamond,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 19%.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.19 +0.19 - 0.21 = -0.02 +-0.02 < 0",diamond,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 19%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.19 +0.19 - 0.21 = -0.02 +-0.02 < 0",diamond,nonsense0,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +26234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 72%. For those who are not rixq, the probability of xevu is 21%. For those who are rixq, the probability of xevu is 19%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.19 +0.72*0.19 - 0.28*0.21 = 0.20 +0.20 > 0",diamond,nonsense0,1,marginal,P(Y) +26236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 72%. The probability of not rixq and xevu is 6%. The probability of rixq and xevu is 14%.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.14 +0.14/0.72 - 0.06/0.28 = -0.02 +-0.02 < 0",diamond,nonsense0,1,correlation,P(Y | X) +26238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 60%. For those who are not zuph and are rixq, the probability of xevu is 54%. For those who are zuph and are not rixq, the probability of xevu is 57%. For those who are zuph and are rixq, the probability of xevu is 36%. The overall probability of zuph is 78%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.60 +P(Y=1 | V1=0, X=1) = 0.54 +P(Y=1 | V1=1, X=0) = 0.57 +P(Y=1 | V1=1, X=1) = 0.36 +P(V1=1) = 0.78 +0.22 * (0.54 - 0.60) 0.78 * (0.36 - 0.57) = -0.17 +-0.17 < 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 60%. For those who are not zuph and are rixq, the probability of xevu is 54%. For those who are zuph and are not rixq, the probability of xevu is 57%. For those who are zuph and are rixq, the probability of xevu is 36%. The overall probability of zuph is 78%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.60 +P(Y=1 | V1=0, X=1) = 0.54 +P(Y=1 | V1=1, X=0) = 0.57 +P(Y=1 | V1=1, X=1) = 0.36 +P(V1=1) = 0.78 +0.22 * (0.54 - 0.60) 0.78 * (0.36 - 0.57) = -0.17 +-0.17 < 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 54%. For those who are not rixq and are swoy, the probability of xevu is 64%. For those who are rixq and are not swoy, the probability of xevu is 18%. For those who are rixq and are swoy, the probability of xevu is 81%. For those who are not rixq, the probability of swoy is 29%. For those who are rixq, the probability of swoy is 45%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.45 +0.45 * (0.81 - 0.18) + 0.29 * (0.64 - 0.54) = -0.12 +-0.12 < 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 54%. For those who are not rixq and are swoy, the probability of xevu is 64%. For those who are rixq and are not swoy, the probability of xevu is 18%. For those who are rixq and are swoy, the probability of xevu is 81%. For those who are not rixq, the probability of swoy is 29%. For those who are rixq, the probability of swoy is 45%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.45 +0.45 * (0.81 - 0.18) + 0.29 * (0.64 - 0.54) = -0.12 +-0.12 < 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 33%. For those who are not rixq, the probability of xevu is 57%. For those who are rixq, the probability of xevu is 47%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.47 +0.33*0.47 - 0.67*0.57 = 0.52 +0.52 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 33%. For those who are not rixq, the probability of xevu is 57%. For those who are rixq, the probability of xevu is 47%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.47 +0.33*0.47 - 0.67*0.57 = 0.52 +0.52 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 33%. The probability of not rixq and xevu is 38%. The probability of rixq and xevu is 15%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.15 +0.15/0.33 - 0.38/0.67 = -0.10 +-0.10 < 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 83%. For those who are not rixq and are swoy, the probability of xevu is 15%. For those who are rixq and are not swoy, the probability of xevu is 97%. For those who are rixq and are swoy, the probability of xevu is 89%. For those who are not rixq, the probability of swoy is 54%. For those who are rixq, the probability of swoy is 49%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.89 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.49 +0.49 * (0.89 - 0.97) + 0.54 * (0.15 - 0.83) = 0.43 +0.43 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 97%. For those who are not rixq, the probability of xevu is 46%. For those who are rixq, the probability of xevu is 93%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.93 +0.97*0.93 - 0.03*0.46 = 0.91 +0.91 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 97%. The probability of not rixq and xevu is 2%. The probability of rixq and xevu is 90%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.90 +0.90/0.97 - 0.02/0.03 = 0.47 +0.47 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 97%. The probability of not rixq and xevu is 2%. The probability of rixq and xevu is 90%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.90 +0.90/0.97 - 0.02/0.03 = 0.47 +0.47 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 43%. For those who are not zuph and are rixq, the probability of xevu is 52%. For those who are zuph and are not rixq, the probability of xevu is 56%. For those who are zuph and are rixq, the probability of xevu is 61%. The overall probability of zuph is 53%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.43 +P(Y=1 | V1=0, X=1) = 0.52 +P(Y=1 | V1=1, X=0) = 0.56 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.53 +0.47 * (0.52 - 0.43) 0.53 * (0.61 - 0.56) = 0.08 +0.08 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 21%. For those who are not rixq and are swoy, the probability of xevu is 58%. For those who are rixq and are not swoy, the probability of xevu is 38%. For those who are rixq and are swoy, the probability of xevu is 63%. For those who are not rixq, the probability of swoy is 69%. For those who are rixq, the probability of swoy is 90%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.63 +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.90 +0.90 * (0.63 - 0.38) + 0.69 * (0.58 - 0.21) = 0.06 +0.06 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 36%. The probability of not rixq and xevu is 30%. The probability of rixq and xevu is 22%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.22 +0.22/0.36 - 0.30/0.64 = 0.14 +0.14 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 36%. The probability of not rixq and xevu is 30%. The probability of rixq and xevu is 22%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.22 +0.22/0.36 - 0.30/0.64 = 0.14 +0.14 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 67%. For those who are not rixq and are swoy, the probability of xevu is 1%. For those who are rixq and are not swoy, the probability of xevu is 77%. For those who are rixq and are swoy, the probability of xevu is 74%. For those who are not rixq, the probability of swoy is 8%. For those who are rixq, the probability of swoy is 9%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.01 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.09 +0.09 * (0.74 - 0.77) + 0.08 * (0.01 - 0.67) = 0.16 +0.16 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 67%. For those who are not rixq and are swoy, the probability of xevu is 1%. For those who are rixq and are not swoy, the probability of xevu is 77%. For those who are rixq and are swoy, the probability of xevu is 74%. For those who are not rixq, the probability of swoy is 8%. For those who are rixq, the probability of swoy is 9%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.01 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.09 +0.09 * (0.74 - 0.77) + 0.08 * (0.01 - 0.67) = 0.16 +0.16 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. For those who are not rixq, the probability of xevu is 61%. For those who are rixq, the probability of xevu is 77%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.77 +0.66*0.77 - 0.34*0.61 = 0.71 +0.71 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. The probability of not rixq and xevu is 21%. The probability of rixq and xevu is 51%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.51 +0.51/0.66 - 0.21/0.34 = 0.16 +0.16 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 66%. The probability of not rixq and xevu is 21%. The probability of rixq and xevu is 51%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.51 +0.51/0.66 - 0.21/0.34 = 0.16 +0.16 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 36%. For those who are not zuph and are rixq, the probability of xevu is 49%. For those who are zuph and are not rixq, the probability of xevu is 56%. For those who are zuph and are rixq, the probability of xevu is 43%. The overall probability of zuph is 36%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.36 +P(Y=1 | V1=0, X=1) = 0.49 +P(Y=1 | V1=1, X=0) = 0.56 +P(Y=1 | V1=1, X=1) = 0.43 +P(V1=1) = 0.36 +0.64 * (0.49 - 0.36) 0.36 * (0.43 - 0.56) = 0.04 +0.04 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 1%. For those who are not rixq and are swoy, the probability of xevu is 82%. For those who are rixq and are not swoy, the probability of xevu is 60%. For those who are rixq and are swoy, the probability of xevu is 35%. For those who are not rixq, the probability of swoy is 51%. For those who are rixq, the probability of swoy is 54%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0) = 0.51 +P(V3=1 | X=1) = 0.54 +0.54 * (0.35 - 0.60) + 0.51 * (0.82 - 0.01) = 0.02 +0.02 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 38%. For those who are not rixq, the probability of xevu is 42%. For those who are rixq, the probability of xevu is 47%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.38*0.47 - 0.62*0.42 = 0.45 +0.45 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 54%. For those who are not zuph and are rixq, the probability of xevu is 93%. For those who are zuph and are not rixq, the probability of xevu is 49%. For those who are zuph and are rixq, the probability of xevu is 79%. The overall probability of zuph is 54%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.54 +P(Y=1 | V1=0, X=1) = 0.93 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.54 +0.46 * (0.93 - 0.54) 0.54 * (0.79 - 0.49) = 0.34 +0.34 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 54%. For those who are not zuph and are rixq, the probability of xevu is 93%. For those who are zuph and are not rixq, the probability of xevu is 49%. For those who are zuph and are rixq, the probability of xevu is 79%. The overall probability of zuph is 54%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.54 +P(Y=1 | V1=0, X=1) = 0.93 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.54 +0.46 * (0.93 - 0.54) 0.54 * (0.79 - 0.49) = 0.34 +0.34 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 45%. For those who are not rixq, the probability of xevu is 53%. For those who are rixq, the probability of xevu is 81%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.81 +0.45*0.81 - 0.55*0.53 = 0.67 +0.67 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 45%. The probability of not rixq and xevu is 29%. The probability of rixq and xevu is 36%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.36 +0.36/0.45 - 0.29/0.55 = 0.28 +0.28 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 45%. The probability of not rixq and xevu is 29%. The probability of rixq and xevu is 36%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.36 +0.36/0.45 - 0.29/0.55 = 0.28 +0.28 > 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 97%. For those who are not zuph and are rixq, the probability of xevu is 89%. For those who are zuph and are not rixq, the probability of xevu is 86%. For those who are zuph and are rixq, the probability of xevu is 72%. The overall probability of zuph is 2%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.89 +P(Y=1 | V1=1, X=0) = 0.86 +P(Y=1 | V1=1, X=1) = 0.72 +P(V1=1) = 0.02 +0.98 * (0.89 - 0.97) 0.02 * (0.72 - 0.86) = -0.09 +-0.09 < 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 70%. For those who are not rixq and are swoy, the probability of xevu is 99%. For those who are rixq and are not swoy, the probability of xevu is 47%. For those who are rixq and are swoy, the probability of xevu is 92%. For those who are not rixq, the probability of swoy is 92%. For those who are rixq, the probability of swoy is 91%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.92 +P(V3=1 | X=0) = 0.92 +P(V3=1 | X=1) = 0.91 +0.91 * (0.92 - 0.47) + 0.92 * (0.99 - 0.70) = -0.09 +-0.09 < 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 70%. For those who are not rixq and are swoy, the probability of xevu is 99%. For those who are rixq and are not swoy, the probability of xevu is 47%. For those who are rixq and are swoy, the probability of xevu is 92%. For those who are not rixq, the probability of swoy is 92%. For those who are rixq, the probability of swoy is 91%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.92 +P(V3=1 | X=0) = 0.92 +P(V3=1 | X=1) = 0.91 +0.91 * (0.92 - 0.47) + 0.92 * (0.99 - 0.70) = -0.09 +-0.09 < 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 50%. For those who are not rixq, the probability of xevu is 97%. For those who are rixq, the probability of xevu is 88%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.88 +0.50*0.88 - 0.50*0.97 = 0.93 +0.93 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 50%. For those who are not rixq, the probability of xevu is 97%. For those who are rixq, the probability of xevu is 88%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.88 +0.50*0.88 - 0.50*0.97 = 0.93 +0.93 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 50%. The probability of not rixq and xevu is 49%. The probability of rixq and xevu is 44%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.44 +0.44/0.50 - 0.49/0.50 = -0.09 +-0.09 < 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 77%. For those who are not zuph and are rixq, the probability of xevu is 91%. For those who are zuph and are not rixq, the probability of xevu is 55%. For those who are zuph and are rixq, the probability of xevu is 75%. The overall probability of zuph is 57%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.91 +P(Y=1 | V1=1, X=0) = 0.55 +P(Y=1 | V1=1, X=1) = 0.75 +P(V1=1) = 0.57 +0.43 * (0.91 - 0.77) 0.57 * (0.75 - 0.55) = 0.17 +0.17 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26314,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 88%. For those who are not rixq, the probability of xevu is 67%. For those who are rixq, the probability of xevu is 82%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.82 +0.88*0.82 - 0.12*0.67 = 0.80 +0.80 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to swoy. Method 2: We look directly at how rixq correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 80%. For those who are not zuph and are rixq, the probability of xevu is 85%. For those who are zuph and are not rixq, the probability of xevu is 83%. For those who are zuph and are rixq, the probability of xevu is 79%. The overall probability of zuph is 14%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.85 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.14 +0.86 * (0.85 - 0.80) 0.14 * (0.79 - 0.83) = 0.04 +0.04 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 80%. For those who are not zuph and are rixq, the probability of xevu is 85%. For those who are zuph and are not rixq, the probability of xevu is 83%. For those who are zuph and are rixq, the probability of xevu is 79%. The overall probability of zuph is 14%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.85 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.14 +0.86 * (0.85 - 0.80) 0.14 * (0.79 - 0.83) = 0.04 +0.04 > 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 78%. For those who are not rixq and are swoy, the probability of xevu is 93%. For those who are rixq and are not swoy, the probability of xevu is 89%. For those who are rixq and are swoy, the probability of xevu is 61%. For those who are not rixq, the probability of swoy is 28%. For those who are rixq, the probability of swoy is 12%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.89 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0) = 0.28 +P(V3=1 | X=1) = 0.12 +0.12 * (0.61 - 0.89) + 0.28 * (0.93 - 0.78) = 0.05 +0.05 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 78%. For those who are not rixq and are swoy, the probability of xevu is 93%. For those who are rixq and are not swoy, the probability of xevu is 89%. For those who are rixq and are swoy, the probability of xevu is 61%. For those who are not rixq, the probability of swoy is 28%. For those who are rixq, the probability of swoy is 12%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.89 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0) = 0.28 +P(V3=1 | X=1) = 0.12 +0.12 * (0.61 - 0.89) + 0.28 * (0.93 - 0.78) = 0.05 +0.05 > 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 81%. For those who are not rixq, the probability of xevu is 82%. For those who are rixq, the probability of xevu is 85%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.85 +0.81*0.85 - 0.19*0.82 = 0.84 +0.84 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 81%. For those who are not zuph and are rixq, the probability of xevu is 50%. For those who are zuph and are not rixq, the probability of xevu is 76%. For those who are zuph and are rixq, the probability of xevu is 49%. The overall probability of zuph is 54%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.50 +P(Y=1 | V1=1, X=0) = 0.76 +P(Y=1 | V1=1, X=1) = 0.49 +P(V1=1) = 0.54 +0.46 * (0.50 - 0.81) 0.54 * (0.49 - 0.76) = -0.29 +-0.29 < 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not zuph and are not rixq, the probability of xevu is 81%. For those who are not zuph and are rixq, the probability of xevu is 50%. For those who are zuph and are not rixq, the probability of xevu is 76%. For those who are zuph and are rixq, the probability of xevu is 49%. The overall probability of zuph is 54%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.50 +P(Y=1 | V1=1, X=0) = 0.76 +P(Y=1 | V1=1, X=1) = 0.49 +P(V1=1) = 0.54 +0.46 * (0.50 - 0.81) 0.54 * (0.49 - 0.76) = -0.29 +-0.29 < 0",diamondcut,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. For those who are not rixq and are not swoy, the probability of xevu is 84%. For those who are not rixq and are swoy, the probability of xevu is 53%. For those who are rixq and are not swoy, the probability of xevu is 50%. For those who are rixq and are swoy, the probability of xevu is 44%. For those who are not rixq, the probability of swoy is 13%. For those who are rixq, the probability of swoy is 23%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.44 +P(V3=1 | X=0) = 0.13 +P(V3=1 | X=1) = 0.23 +0.23 * (0.44 - 0.50) + 0.13 * (0.53 - 0.84) = -0.28 +-0.28 < 0",diamondcut,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 80%. For those who are rixq, the probability of xevu is 49%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.49 +0.40*0.49 - 0.60*0.80 = 0.67 +0.67 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 40%. For those who are not rixq, the probability of xevu is 80%. For those who are rixq, the probability of xevu is 49%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.49 +0.40*0.49 - 0.60*0.80 = 0.67 +0.67 > 0",diamondcut,nonsense0,1,marginal,P(Y) +26336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 40%. The probability of not rixq and xevu is 48%. The probability of rixq and xevu is 19%.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.19 +0.19/0.40 - 0.48/0.60 = -0.31 +-0.31 < 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. The overall probability of rixq is 40%. The probability of not rixq and xevu is 48%. The probability of rixq and xevu is 19%.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.19 +0.19/0.40 - 0.48/0.60 = -0.31 +-0.31 < 0",diamondcut,nonsense0,1,correlation,P(Y | X) +26338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to swoy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 66%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.66 +0.66 - 0.34 = 0.31 +0.31 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 66%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.66 +0.66 - 0.34 = 0.31 +0.31 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 34%. For those who are rixq, the probability of xevu is 66%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.66 +0.66 - 0.34 = 0.31 +0.31 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 55%. The probability of not rixq and xevu is 15%. The probability of rixq and xevu is 36%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.36 +0.36/0.55 - 0.15/0.45 = 0.31 +0.31 > 0",fork,nonsense0,1,correlation,P(Y | X) +26349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 49%. For those who are rixq, the probability of xevu is 45%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.45 +0.45 - 0.49 = -0.04 +-0.04 < 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 49%. For those who are rixq, the probability of xevu is 45%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.45 +0.45 - 0.49 = -0.04 +-0.04 < 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 49%. For those who are rixq, the probability of xevu is 45%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.45 +0.45 - 0.49 = -0.04 +-0.04 < 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 15%. For those who are not rixq, the probability of xevu is 49%. For those who are rixq, the probability of xevu is 45%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.45 +0.15*0.45 - 0.85*0.49 = 0.48 +0.48 > 0",fork,nonsense0,1,marginal,P(Y) +26356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 15%. The probability of not rixq and xevu is 42%. The probability of rixq and xevu is 7%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.07 +0.07/0.15 - 0.42/0.85 = -0.04 +-0.04 < 0",fork,nonsense0,1,correlation,P(Y | X) +26357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 15%. The probability of not rixq and xevu is 42%. The probability of rixq and xevu is 7%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.07 +0.07/0.15 - 0.42/0.85 = -0.04 +-0.04 < 0",fork,nonsense0,1,correlation,P(Y | X) +26360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 78%. For those who are rixq, the probability of xevu is 64%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.64 +0.64 - 0.78 = -0.14 +-0.14 < 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 78%. For those who are rixq, the probability of xevu is 64%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.64 +0.64 - 0.78 = -0.14 +-0.14 < 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 78%. For those who are rixq, the probability of xevu is 64%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.64 +0.64 - 0.78 = -0.14 +-0.14 < 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 2%. For those who are not rixq, the probability of xevu is 78%. For those who are rixq, the probability of xevu is 64%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.64 +0.02*0.64 - 0.98*0.78 = 0.77 +0.77 > 0",fork,nonsense0,1,marginal,P(Y) +26365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 2%. For those who are not rixq, the probability of xevu is 78%. For those who are rixq, the probability of xevu is 64%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.64 +0.02*0.64 - 0.98*0.78 = 0.77 +0.77 > 0",fork,nonsense0,1,marginal,P(Y) +26367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 2%. The probability of not rixq and xevu is 76%. The probability of rixq and xevu is 2%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.76 +P(Y=1, X=1=1) = 0.02 +0.02/0.02 - 0.76/0.98 = -0.14 +-0.14 < 0",fork,nonsense0,1,correlation,P(Y | X) +26368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 41%. For those who are rixq, the probability of xevu is 54%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.54 +0.54 - 0.41 = 0.13 +0.13 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 23%. For those who are not rixq, the probability of xevu is 41%. For those who are rixq, the probability of xevu is 54%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.54 +0.23*0.54 - 0.77*0.41 = 0.44 +0.44 > 0",fork,nonsense0,1,marginal,P(Y) +26375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 23%. For those who are not rixq, the probability of xevu is 41%. For those who are rixq, the probability of xevu is 54%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.54 +0.23*0.54 - 0.77*0.41 = 0.44 +0.44 > 0",fork,nonsense0,1,marginal,P(Y) +26377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 23%. The probability of not rixq and xevu is 31%. The probability of rixq and xevu is 13%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.23 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.13 +0.13/0.23 - 0.31/0.77 = 0.13 +0.13 > 0",fork,nonsense0,1,correlation,P(Y | X) +26379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 5%. For those who are rixq, the probability of xevu is 8%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.08 +0.08 - 0.05 = 0.04 +0.04 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 5%. For those who are rixq, the probability of xevu is 8%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.08 +0.08 - 0.05 = 0.04 +0.04 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 18%. The probability of not rixq and xevu is 4%. The probability of rixq and xevu is 2%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.02 +0.02/0.18 - 0.04/0.82 = 0.04 +0.04 > 0",fork,nonsense0,1,correlation,P(Y | X) +26388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 21%. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 24%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.24 +0.21*0.24 - 0.79*0.44 = 0.40 +0.40 > 0",fork,nonsense0,1,marginal,P(Y) +26395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 21%. For those who are not rixq, the probability of xevu is 44%. For those who are rixq, the probability of xevu is 24%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.24 +0.21*0.24 - 0.79*0.44 = 0.40 +0.40 > 0",fork,nonsense0,1,marginal,P(Y) +26396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 21%. The probability of not rixq and xevu is 34%. The probability of rixq and xevu is 5%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.05 +0.05/0.21 - 0.34/0.79 = -0.19 +-0.19 < 0",fork,nonsense0,1,correlation,P(Y | X) +26397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 21%. The probability of not rixq and xevu is 34%. The probability of rixq and xevu is 5%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.05 +0.05/0.21 - 0.34/0.79 = -0.19 +-0.19 < 0",fork,nonsense0,1,correlation,P(Y | X) +26398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 26%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.26 +0.26 - 0.74 = -0.48 +-0.48 < 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 26%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.26 +0.26 - 0.74 = -0.48 +-0.48 < 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 26%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.26 +0.26 - 0.74 = -0.48 +-0.48 < 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 5%. For those who are not rixq, the probability of xevu is 74%. For those who are rixq, the probability of xevu is 26%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.26 +0.05*0.26 - 0.95*0.74 = 0.72 +0.72 > 0",fork,nonsense0,1,marginal,P(Y) +26406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 5%. The probability of not rixq and xevu is 71%. The probability of rixq and xevu is 1%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.01 +0.01/0.05 - 0.71/0.95 = -0.48 +-0.48 < 0",fork,nonsense0,1,correlation,P(Y | X) +26408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 59%. For those who are rixq, the probability of xevu is 90%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.90 +0.90 - 0.59 = 0.31 +0.31 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 65%. For those who are not rixq, the probability of xevu is 59%. For those who are rixq, the probability of xevu is 90%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.90 +0.65*0.90 - 0.35*0.59 = 0.79 +0.79 > 0",fork,nonsense0,1,marginal,P(Y) +26415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 65%. For those who are not rixq, the probability of xevu is 59%. For those who are rixq, the probability of xevu is 90%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.90 +0.65*0.90 - 0.35*0.59 = 0.79 +0.79 > 0",fork,nonsense0,1,marginal,P(Y) +26416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 65%. The probability of not rixq and xevu is 21%. The probability of rixq and xevu is 58%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.58 +0.58/0.65 - 0.21/0.35 = 0.31 +0.31 > 0",fork,nonsense0,1,correlation,P(Y | X) +26417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 65%. The probability of not rixq and xevu is 21%. The probability of rixq and xevu is 58%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.58 +0.58/0.65 - 0.21/0.35 = 0.31 +0.31 > 0",fork,nonsense0,1,correlation,P(Y | X) +26418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 22%. For those who are rixq, the probability of xevu is 74%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.74 +0.74 - 0.22 = 0.52 +0.52 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 22%. For those who are rixq, the probability of xevu is 74%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.74 +0.74 - 0.22 = 0.52 +0.52 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 22%. For those who are rixq, the probability of xevu is 74%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.74 +0.74 - 0.22 = 0.52 +0.52 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 22%. For those who are rixq, the probability of xevu is 74%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.74 +0.74 - 0.22 = 0.52 +0.52 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 53%. For those who are not rixq, the probability of xevu is 22%. For those who are rixq, the probability of xevu is 74%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.74 +0.53*0.74 - 0.47*0.22 = 0.49 +0.49 > 0",fork,nonsense0,1,marginal,P(Y) +26426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 53%. The probability of not rixq and xevu is 10%. The probability of rixq and xevu is 39%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.39 +0.39/0.53 - 0.10/0.47 = 0.52 +0.52 > 0",fork,nonsense0,1,correlation,P(Y | X) +26428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look at how rixq correlates with xevu case by case according to zuph. Method 2: We look directly at how rixq correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 25%. For those who are rixq, the probability of xevu is 56%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.56 +0.56 - 0.25 = 0.31 +0.31 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 25%. For those who are rixq, the probability of xevu is 56%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.56 +0.56 - 0.25 = 0.31 +0.31 > 0",fork,nonsense0,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 25%. For those who are rixq, the probability of xevu is 56%.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.56 +0.56 - 0.25 = 0.31 +0.31 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. For those who are not rixq, the probability of xevu is 25%. For those who are rixq, the probability of xevu is 56%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.56 +0.56 - 0.25 = 0.31 +0.31 > 0",fork,nonsense0,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. The overall probability of rixq is 30%. For those who are not rixq, the probability of xevu is 25%. For those who are rixq, the probability of xevu is 56%.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.56 +0.30*0.56 - 0.70*0.25 = 0.35 +0.35 > 0",fork,nonsense0,1,marginal,P(Y) +26439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. Method 1: We look directly at how rixq correlates with xevu in general. Method 2: We look at this correlation case by case according to zuph.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense0,2,backadj,[backdoor adjustment set for Y given X] +26440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 34%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.34 +0.34 - 0.15 = 0.19 +0.19 > 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 34%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.34 +0.34 - 0.15 = 0.19 +0.19 > 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 34%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.34 +0.34 - 0.15 = 0.19 +0.19 > 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 77%. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 34%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.34 +0.77*0.34 - 0.23*0.15 = 0.30 +0.30 > 0",chain,nonsense1,1,marginal,P(Y) +26448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 77%. The probability of not kwox and kwoz is 3%. The probability of kwox and kwoz is 26%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.26 +0.26/0.77 - 0.03/0.23 = 0.19 +0.19 > 0",chain,nonsense1,1,correlation,P(Y | X) +26450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 87%. For those who are kwox, the probability of kwoz is 87%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.87 - 0.87 = 0.00 +0.00 = 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 87%. For those who are kwox, the probability of kwoz is 87%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.87 - 0.87 = 0.00 +0.00 = 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 87%. For those who are kwox, the probability of kwoz is 87%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.87 - 0.87 = 0.00 +0.00 = 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. For those who are not kwox, the probability of kwoz is 87%. For those who are kwox, the probability of kwoz is 87%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.31*0.87 - 0.69*0.87 = 0.87 +0.87 > 0",chain,nonsense1,1,marginal,P(Y) +26459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. For those who are not kwox, the probability of kwoz is 87%. For those who are kwox, the probability of kwoz is 87%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.31*0.87 - 0.69*0.87 = 0.87 +0.87 > 0",chain,nonsense1,1,marginal,P(Y) +26461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 60%. The probability of kwox and kwoz is 27%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.60 +P(Y=1, X=1=1) = 0.27 +0.27/0.31 - 0.60/0.69 = 0.00 +0.00 = 0",chain,nonsense1,1,correlation,P(Y | X) +26462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 64%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.64 +0.64 - 0.64 = -0.00 +0.00 = 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 64%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.64 +0.64 - 0.64 = -0.00 +0.00 = 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 64%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.64 +0.64 - 0.64 = -0.00 +0.00 = 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 64%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.64 +0.64 - 0.64 = -0.00 +0.00 = 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 64%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.64 +0.64 - 0.64 = -0.00 +0.00 = 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 82%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 53%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.53 +0.53/0.82 - 0.11/0.18 = -0.00 +0.00 = 0",chain,nonsense1,1,correlation,P(Y | X) +26475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.27 +0.27 - 0.54 = -0.27 +-0.27 < 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.27 +0.27 - 0.54 = -0.27 +-0.27 < 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 27%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.27 +0.27 - 0.54 = -0.27 +-0.27 < 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.27 +0.27 - 0.54 = -0.27 +-0.27 < 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26482,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 6%. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.27 +0.06*0.27 - 0.94*0.54 = 0.52 +0.52 > 0",chain,nonsense1,1,marginal,P(Y) +26483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 6%. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 27%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.27 +0.06*0.27 - 0.94*0.54 = 0.52 +0.52 > 0",chain,nonsense1,1,marginal,P(Y) +26485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 6%. The probability of not kwox and kwoz is 51%. The probability of kwox and kwoz is 2%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.02 +0.02/0.06 - 0.51/0.94 = -0.27 +-0.27 < 0",chain,nonsense1,1,correlation,P(Y | X) +26490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 66%. For those who are kwox, the probability of kwoz is 66%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.66 +0.66 - 0.66 = -0.00 +0.00 = 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 66%. For those who are kwox, the probability of kwoz is 66%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.66 +0.66 - 0.66 = -0.00 +0.00 = 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 66%. For those who are kwox, the probability of kwoz is 66%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.66 +0.66 - 0.66 = -0.00 +0.00 = 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 88%. For those who are not kwox, the probability of kwoz is 66%. For those who are kwox, the probability of kwoz is 66%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.66 +0.88*0.66 - 0.12*0.66 = 0.66 +0.66 > 0",chain,nonsense1,1,marginal,P(Y) +26498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 56%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.56 - 0.52 = 0.04 +0.04 > 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 56%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.56 - 0.52 = 0.04 +0.04 > 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 56%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.56 - 0.52 = 0.04 +0.04 > 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 56%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.56 - 0.52 = 0.04 +0.04 > 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 56%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.54*0.56 - 0.46*0.52 = 0.54 +0.54 > 0",chain,nonsense1,1,marginal,P(Y) +26507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 56%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.54*0.56 - 0.46*0.52 = 0.54 +0.54 > 0",chain,nonsense1,1,marginal,P(Y) +26508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 54%. The probability of not kwox and kwoz is 24%. The probability of kwox and kwoz is 31%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.31 +0.31/0.54 - 0.24/0.46 = 0.04 +0.04 > 0",chain,nonsense1,1,correlation,P(Y | X) +26511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 50%. For those who are kwox, the probability of kwoz is 28%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.28 +0.28 - 0.50 = -0.23 +-0.23 < 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 50%. For those who are kwox, the probability of kwoz is 28%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.28 +0.28 - 0.50 = -0.23 +-0.23 < 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 50%. For those who are kwox, the probability of kwoz is 28%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.28 +0.28 - 0.50 = -0.23 +-0.23 < 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 50%. For those who are kwox, the probability of kwoz is 28%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.28 +0.28 - 0.50 = -0.23 +-0.23 < 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 0%. For those who are not kwox, the probability of kwoz is 50%. For those who are kwox, the probability of kwoz is 28%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.00 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.28 +0.00*0.28 - 1.00*0.50 = 0.50 +0.50 > 0",chain,nonsense1,1,marginal,P(Y) +26521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 0%. The probability of not kwox and kwoz is 50%. The probability of kwox and kwoz is 0%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.00 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.00 +0.00/0.00 - 0.50/1.00 = -0.23 +-0.23 < 0",chain,nonsense1,1,correlation,P(Y | X) +26522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 44%. For those who are kwox, the probability of kwoz is 26%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.26 +0.26 - 0.44 = -0.17 +-0.17 < 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 44%. For those who are kwox, the probability of kwoz is 26%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.26 +0.26 - 0.44 = -0.17 +-0.17 < 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 44%. For those who are kwox, the probability of kwoz is 26%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.26 +0.26 - 0.44 = -0.17 +-0.17 < 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 96%. The probability of not kwox and kwoz is 2%. The probability of kwox and kwoz is 25%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.25 +0.25/0.96 - 0.02/0.04 = -0.17 +-0.17 < 0",chain,nonsense1,1,correlation,P(Y | X) +26533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 96%. The probability of not kwox and kwoz is 2%. The probability of kwox and kwoz is 25%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.96 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.25 +0.25/0.96 - 0.02/0.04 = -0.17 +-0.17 < 0",chain,nonsense1,1,correlation,P(Y | X) +26535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 3%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.03 +0.03 - 0.04 = -0.00 +0.00 = 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 3%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.03 +0.03 - 0.04 = -0.00 +0.00 = 0",chain,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 43%. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 3%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.03 +0.43*0.03 - 0.57*0.04 = 0.03 +0.03 > 0",chain,nonsense1,1,marginal,P(Y) +26544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 43%. The probability of not kwox and kwoz is 2%. The probability of kwox and kwoz is 1%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.01 +0.01/0.43 - 0.02/0.57 = -0.00 +0.00 = 0",chain,nonsense1,1,correlation,P(Y | X) +26545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 43%. The probability of not kwox and kwoz is 2%. The probability of kwox and kwoz is 1%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.01 +0.01/0.43 - 0.02/0.57 = -0.00 +0.00 = 0",chain,nonsense1,1,correlation,P(Y | X) +26546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 43%. For those who are kwox, the probability of kwoz is 43%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.43 +0.43 - 0.43 = -0.00 +0.00 = 0",chain,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 43%. For those who are kwox, the probability of kwoz is 43%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.43 +0.43 - 0.43 = -0.00 +0.00 = 0",chain,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 51%. For those who are not kwox, the probability of kwoz is 43%. For those who are kwox, the probability of kwoz is 43%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.43 +0.51*0.43 - 0.49*0.43 = 0.43 +0.43 > 0",chain,nonsense1,1,marginal,P(Y) +26555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 51%. For those who are not kwox, the probability of kwoz is 43%. For those who are kwox, the probability of kwoz is 43%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.43 +0.51*0.43 - 0.49*0.43 = 0.43 +0.43 > 0",chain,nonsense1,1,marginal,P(Y) +26556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. The overall probability of kwox is 51%. The probability of not kwox and kwoz is 21%. The probability of kwox and kwoz is 22%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.22 +0.22/0.51 - 0.21/0.49 = -0.00 +0.00 = 0",chain,nonsense1,1,correlation,P(Y | X) +26558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 19%. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 46%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.46 +0.19*0.46 - 0.81*0.46 = 0.46 +0.46 > 0",collision,nonsense1,1,marginal,P(Y) +26564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.35.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26567,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.35.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 19%. For those who are not kwox and are not swoq, the probability of kwoz is 76%. For those who are not kwox and are swoq, the probability of kwoz is 36%. For those who are kwox and are not swoq, the probability of kwoz is 21%. For those who are kwox and are swoq, the probability of kwoz is 93%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.93 +0.93 - (0.19*0.93 + 0.81*0.36) = 0.52 +0.52 > 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 46%. For those who are not kwox, the probability of kwoz is 25%. For those who are kwox, the probability of kwoz is 25%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.46*0.25 - 0.54*0.25 = 0.25 +0.25 > 0",collision,nonsense1,1,marginal,P(Y) +26574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is -0.25.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 46%. For those who are not kwox and are not swoq, the probability of kwoz is 2%. For those who are not kwox and are swoq, the probability of kwoz is 72%. For those who are kwox and are not swoq, the probability of kwoz is 3%. For those who are kwox and are swoq, the probability of kwoz is 47%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.46 +P(Y=1 | X=0, V3=0) = 0.02 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.03 +P(Y=1 | X=1, V3=1) = 0.47 +0.47 - (0.46*0.47 + 0.54*0.72) = -0.11 +-0.11 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 8%. For those who are not kwox, the probability of kwoz is 37%. For those who are kwox, the probability of kwoz is 37%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.37 +0.08*0.37 - 0.92*0.37 = 0.37 +0.37 > 0",collision,nonsense1,1,marginal,P(Y) +26581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 8%. For those who are not kwox, the probability of kwoz is 37%. For those who are kwox, the probability of kwoz is 37%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.37 +0.08*0.37 - 0.92*0.37 = 0.37 +0.37 > 0",collision,nonsense1,1,marginal,P(Y) +26584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is -0.09.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is -0.09.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 8%. For those who are not kwox and are not swoq, the probability of kwoz is 30%. For those who are not kwox and are swoq, the probability of kwoz is 52%. For those who are kwox and are not swoq, the probability of kwoz is 33%. For those who are kwox and are swoq, the probability of kwoz is 40%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.40 +0.40 - (0.08*0.40 + 0.92*0.52) = -0.11 +-0.11 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 19%. For those who are not kwox, the probability of kwoz is 30%. For those who are kwox, the probability of kwoz is 30%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.30 +0.19*0.30 - 0.81*0.30 = 0.30 +0.30 > 0",collision,nonsense1,1,marginal,P(Y) +26591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 19%. For those who are not kwox, the probability of kwoz is 30%. For those who are kwox, the probability of kwoz is 30%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.30 +0.19*0.30 - 0.81*0.30 = 0.30 +0.30 > 0",collision,nonsense1,1,marginal,P(Y) +26594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.06.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 19%. For those who are not kwox and are not swoq, the probability of kwoz is 33%. For those who are not kwox and are swoq, the probability of kwoz is 29%. For those who are kwox and are not swoq, the probability of kwoz is 15%. For those who are kwox and are swoq, the probability of kwoz is 36%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.33 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.15 +P(Y=1 | X=1, V3=1) = 0.36 +0.36 - (0.19*0.36 + 0.81*0.29) = 0.06 +0.06 > 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 19%. For those who are not kwox and are not swoq, the probability of kwoz is 33%. For those who are not kwox and are swoq, the probability of kwoz is 29%. For those who are kwox and are not swoq, the probability of kwoz is 15%. For those who are kwox and are swoq, the probability of kwoz is 36%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.33 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.15 +P(Y=1 | X=1, V3=1) = 0.36 +0.36 - (0.19*0.36 + 0.81*0.29) = 0.06 +0.06 > 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 73%. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 54%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.54 +0.73*0.54 - 0.27*0.54 = 0.54 +0.54 > 0",collision,nonsense1,1,marginal,P(Y) +26601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 73%. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 54%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.54 +0.73*0.54 - 0.27*0.54 = 0.54 +0.54 > 0",collision,nonsense1,1,marginal,P(Y) +26606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.27.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.27.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26617,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.02.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 12%. For those who are not kwox and are not swoq, the probability of kwoz is 47%. For those who are not kwox and are swoq, the probability of kwoz is 26%. For those who are kwox and are not swoq, the probability of kwoz is 27%. For those who are kwox and are swoq, the probability of kwoz is 29%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.12 +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.29 +0.29 - (0.12*0.29 + 0.88*0.26) = 0.03 +0.03 > 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 12%. For those who are not kwox and are not swoq, the probability of kwoz is 47%. For those who are not kwox and are swoq, the probability of kwoz is 26%. For those who are kwox and are not swoq, the probability of kwoz is 27%. For those who are kwox and are swoq, the probability of kwoz is 29%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.12 +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.29 +0.29 - (0.12*0.29 + 0.88*0.26) = 0.03 +0.03 > 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 60%. For those who are not kwox, the probability of kwoz is 59%. For those who are kwox, the probability of kwoz is 59%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.59 +0.60*0.59 - 0.40*0.59 = 0.59 +0.59 > 0",collision,nonsense1,1,marginal,P(Y) +26626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is 0.57.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 55%. For those who are not kwox, the probability of kwoz is 7%. For those who are kwox, the probability of kwoz is 7%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.07 +0.55*0.07 - 0.45*0.07 = 0.07 +0.07 > 0",collision,nonsense1,1,marginal,P(Y) +26634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is -0.38.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 55%. For those who are not kwox and are not swoq, the probability of kwoz is 6%. For those who are not kwox and are swoq, the probability of kwoz is 18%. For those who are kwox and are not swoq, the probability of kwoz is 9%. For those who are kwox and are swoq, the probability of kwoz is 0%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.06 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.00 +0.00 - (0.55*0.00 + 0.45*0.18) = -0.03 +-0.03 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 23%. For those who are not kwox, the probability of kwoz is 40%. For those who are kwox, the probability of kwoz is 40%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.40 +0.23*0.40 - 0.77*0.40 = 0.40 +0.40 > 0",collision,nonsense1,1,marginal,P(Y) +26644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 23%. For those who are not kwox and are not swoq, the probability of kwoz is 3%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 74%. For those who are kwox and are swoq, the probability of kwoz is 6%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.03 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.06 +0.06 - (0.23*0.06 + 0.77*0.96) = -0.65 +-0.65 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 23%. For those who are not kwox and are not swoq, the probability of kwoz is 3%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 74%. For those who are kwox and are swoq, the probability of kwoz is 6%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.03 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.06 +0.06 - (0.23*0.06 + 0.77*0.96) = -0.65 +-0.65 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 4%. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 52%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.04*0.52 - 0.96*0.52 = 0.52 +0.52 > 0",collision,nonsense1,1,marginal,P(Y) +26655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. For those who are swoq, the correlation between kwox and kwoz is -0.12.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense1,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +26658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 4%. For those who are not kwox and are not swoq, the probability of kwoz is 30%. For those who are not kwox and are swoq, the probability of kwoz is 64%. For those who are kwox and are not swoq, the probability of kwoz is 82%. For those who are kwox and are swoq, the probability of kwoz is 32%.",no,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.04 +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.32 +0.32 - (0.04*0.32 + 0.96*0.64) = -0.30 +-0.30 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Kwoz has a direct effect on swoq. The overall probability of kwox is 4%. For those who are not kwox and are not swoq, the probability of kwoz is 30%. For those who are not kwox and are swoq, the probability of kwoz is 64%. For those who are kwox and are not swoq, the probability of kwoz is 82%. For those who are kwox and are swoq, the probability of kwoz is 32%.",yes,"Let Y = kwoz; X = kwox; V3 = swoq. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.04 +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.32 +0.32 - (0.04*0.32 + 0.96*0.64) = -0.30 +-0.30 < 0",collision,nonsense1,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +26660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 76%. For those who are not swoq and are kwox, the probability of kwoz is 21%. For those who are swoq and are not kwox, the probability of kwoz is 2%. For those who are swoq and are kwox, the probability of kwoz is 53%. The overall probability of swoq is 27%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.21 +P(Y=1 | V1=1, X=0) = 0.02 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.27 +0.73 * (0.21 - 0.76) + 0.27 * (0.53 - 0.02) = -0.27 +-0.27 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 76%. For those who are not swoq and are kwox, the probability of kwoz is 21%. For those who are swoq and are not kwox, the probability of kwoz is 2%. For those who are swoq and are kwox, the probability of kwoz is 53%. The overall probability of swoq is 27%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.21 +P(Y=1 | V1=1, X=0) = 0.02 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.27 +0.73 * (0.21 - 0.76) + 0.27 * (0.53 - 0.02) = -0.27 +-0.27 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 76%. For those who are not swoq and are kwox, the probability of kwoz is 21%. For those who are swoq and are not kwox, the probability of kwoz is 2%. For those who are swoq and are kwox, the probability of kwoz is 53%. The overall probability of swoq is 27%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.21 +P(Y=1 | V1=1, X=0) = 0.02 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.27 +0.73 * (0.21 - 0.76) + 0.27 * (0.53 - 0.02) = -0.23 +-0.23 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 86%. For those who are not kwox, the probability of kwoz is 71%. For those who are kwox, the probability of kwoz is 31%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.31 +0.86*0.31 - 0.14*0.71 = 0.34 +0.34 > 0",confounding,nonsense1,1,marginal,P(Y) +26666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 86%. The probability of not kwox and kwoz is 10%. The probability of kwox and kwoz is 26%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.26 +0.26/0.86 - 0.10/0.14 = -0.40 +-0.40 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 98%. For those who are not swoq and are kwox, the probability of kwoz is 32%. For those who are swoq and are not kwox, the probability of kwoz is 82%. For those who are swoq and are kwox, the probability of kwoz is 91%. The overall probability of swoq is 51%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.91 +P(V1=1) = 0.51 +0.49 * (0.32 - 0.98) + 0.51 * (0.91 - 0.82) = -0.28 +-0.28 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 98%. For those who are not swoq and are kwox, the probability of kwoz is 32%. For those who are swoq and are not kwox, the probability of kwoz is 82%. For those who are swoq and are kwox, the probability of kwoz is 91%. The overall probability of swoq is 51%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.98 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.91 +P(V1=1) = 0.51 +0.49 * (0.32 - 0.98) + 0.51 * (0.91 - 0.82) = -0.15 +-0.15 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 44%. For those who are not kwox, the probability of kwoz is 92%. For those who are kwox, the probability of kwoz is 72%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.72 +0.44*0.72 - 0.56*0.92 = 0.78 +0.78 > 0",confounding,nonsense1,1,marginal,P(Y) +26675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 44%. For those who are not kwox, the probability of kwoz is 92%. For those who are kwox, the probability of kwoz is 72%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.72 +0.44*0.72 - 0.56*0.92 = 0.78 +0.78 > 0",confounding,nonsense1,1,marginal,P(Y) +26677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 44%. The probability of not kwox and kwoz is 52%. The probability of kwox and kwoz is 31%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.31 +0.31/0.44 - 0.52/0.56 = -0.20 +-0.20 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 43%. For those who are swoq and are not kwox, the probability of kwoz is 82%. For those who are swoq and are kwox, the probability of kwoz is 91%. The overall probability of swoq is 39%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.91 +P(V1=1) = 0.39 +0.61 * (0.43 - 0.77) + 0.39 * (0.91 - 0.82) = -0.17 +-0.17 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 43%. For those who are swoq and are not kwox, the probability of kwoz is 82%. For those who are swoq and are kwox, the probability of kwoz is 91%. The overall probability of swoq is 39%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.91 +P(V1=1) = 0.39 +0.61 * (0.43 - 0.77) + 0.39 * (0.91 - 0.82) = -0.17 +-0.17 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 43%. For those who are swoq and are not kwox, the probability of kwoz is 82%. For those who are swoq and are kwox, the probability of kwoz is 91%. The overall probability of swoq is 39%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.91 +P(V1=1) = 0.39 +0.61 * (0.43 - 0.77) + 0.39 * (0.91 - 0.82) = -0.21 +-0.21 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 85%. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 57%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.57 +0.85*0.57 - 0.15*0.82 = 0.64 +0.64 > 0",confounding,nonsense1,1,marginal,P(Y) +26685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 85%. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 57%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.57 +0.85*0.57 - 0.15*0.82 = 0.64 +0.64 > 0",confounding,nonsense1,1,marginal,P(Y) +26686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 85%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 49%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.49 +0.49/0.85 - 0.12/0.15 = -0.24 +-0.24 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 85%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 49%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.49 +0.49/0.85 - 0.12/0.15 = -0.24 +-0.24 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 90%. For those who are not swoq and are kwox, the probability of kwoz is 80%. For those who are swoq and are not kwox, the probability of kwoz is 46%. For those who are swoq and are kwox, the probability of kwoz is 77%. The overall probability of swoq is 98%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.46 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.98 +0.02 * (0.80 - 0.90) + 0.98 * (0.77 - 0.46) = 0.30 +0.30 > 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 90%. For those who are not swoq and are kwox, the probability of kwoz is 80%. For those who are swoq and are not kwox, the probability of kwoz is 46%. For those who are swoq and are kwox, the probability of kwoz is 77%. The overall probability of swoq is 98%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.46 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.98 +0.02 * (0.80 - 0.90) + 0.98 * (0.77 - 0.46) = 0.30 +0.30 > 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 90%. For those who are not swoq and are kwox, the probability of kwoz is 80%. For those who are swoq and are not kwox, the probability of kwoz is 46%. For those who are swoq and are kwox, the probability of kwoz is 77%. The overall probability of swoq is 98%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.46 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.98 +0.02 * (0.80 - 0.90) + 0.98 * (0.77 - 0.46) = 0.29 +0.29 > 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 65%. The probability of not kwox and kwoz is 16%. The probability of kwox and kwoz is 50%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.50 +0.50/0.65 - 0.16/0.35 = 0.30 +0.30 > 0",confounding,nonsense1,1,correlation,P(Y | X) +26698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 83%. For those who are not swoq and are kwox, the probability of kwoz is 90%. For those who are swoq and are not kwox, the probability of kwoz is 51%. For those who are swoq and are kwox, the probability of kwoz is 90%. The overall probability of swoq is 63%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.83 +P(Y=1 | V1=0, X=1) = 0.90 +P(Y=1 | V1=1, X=0) = 0.51 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.63 +0.37 * (0.90 - 0.83) + 0.63 * (0.90 - 0.51) = 0.28 +0.28 > 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 83%. For those who are not swoq and are kwox, the probability of kwoz is 90%. For those who are swoq and are not kwox, the probability of kwoz is 51%. For those who are swoq and are kwox, the probability of kwoz is 90%. The overall probability of swoq is 63%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.83 +P(Y=1 | V1=0, X=1) = 0.90 +P(Y=1 | V1=1, X=0) = 0.51 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.63 +0.37 * (0.90 - 0.83) + 0.63 * (0.90 - 0.51) = 0.25 +0.25 > 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 59%. For those who are kwox, the probability of kwoz is 90%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.90 +0.54*0.90 - 0.46*0.59 = 0.77 +0.77 > 0",confounding,nonsense1,1,marginal,P(Y) +26706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 54%. The probability of not kwox and kwoz is 27%. The probability of kwox and kwoz is 48%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.48 +0.48/0.54 - 0.27/0.46 = 0.31 +0.31 > 0",confounding,nonsense1,1,correlation,P(Y | X) +26709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 27%. For those who are not swoq and are kwox, the probability of kwoz is 32%. For those who are swoq and are not kwox, the probability of kwoz is 72%. For those who are swoq and are kwox, the probability of kwoz is 41%. The overall probability of swoq is 73%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.72 +P(Y=1 | V1=1, X=1) = 0.41 +P(V1=1) = 0.73 +0.27 * (0.32 - 0.27) + 0.73 * (0.41 - 0.72) = -0.21 +-0.21 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 27%. For those who are not swoq and are kwox, the probability of kwoz is 32%. For those who are swoq and are not kwox, the probability of kwoz is 72%. For those who are swoq and are kwox, the probability of kwoz is 41%. The overall probability of swoq is 73%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.72 +P(Y=1 | V1=1, X=1) = 0.41 +P(V1=1) = 0.73 +0.27 * (0.32 - 0.27) + 0.73 * (0.41 - 0.72) = -0.26 +-0.26 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 80%. For those who are not kwox, the probability of kwoz is 38%. For those who are kwox, the probability of kwoz is 39%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.39 +0.80*0.39 - 0.20*0.38 = 0.43 +0.43 > 0",confounding,nonsense1,1,marginal,P(Y) +26717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 80%. The probability of not kwox and kwoz is 8%. The probability of kwox and kwoz is 31%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.31 +0.31/0.80 - 0.08/0.20 = 0.01 +0.01 > 0",confounding,nonsense1,1,correlation,P(Y | X) +26718,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 44%. For those who are not swoq and are kwox, the probability of kwoz is 12%. For those who are swoq and are not kwox, the probability of kwoz is 9%. For those who are swoq and are kwox, the probability of kwoz is 92%. The overall probability of swoq is 18%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.12 +P(Y=1 | V1=1, X=0) = 0.09 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.18 +0.82 * (0.12 - 0.44) + 0.18 * (0.92 - 0.09) = -0.11 +-0.11 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 44%. For those who are not swoq and are kwox, the probability of kwoz is 12%. For those who are swoq and are not kwox, the probability of kwoz is 9%. For those who are swoq and are kwox, the probability of kwoz is 92%. The overall probability of swoq is 18%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.12 +P(Y=1 | V1=1, X=0) = 0.09 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.18 +0.82 * (0.12 - 0.44) + 0.18 * (0.92 - 0.09) = -0.11 +-0.11 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 44%. For those who are not swoq and are kwox, the probability of kwoz is 12%. For those who are swoq and are not kwox, the probability of kwoz is 9%. For those who are swoq and are kwox, the probability of kwoz is 92%. The overall probability of swoq is 18%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.12 +P(Y=1 | V1=1, X=0) = 0.09 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.18 +0.82 * (0.12 - 0.44) + 0.18 * (0.92 - 0.09) = -0.18 +-0.18 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 38%. For those who are not kwox, the probability of kwoz is 36%. For those who are kwox, the probability of kwoz is 21%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.21 +0.38*0.21 - 0.62*0.36 = 0.33 +0.33 > 0",confounding,nonsense1,1,marginal,P(Y) +26726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 38%. The probability of not kwox and kwoz is 23%. The probability of kwox and kwoz is 8%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.08 +0.08/0.38 - 0.23/0.62 = -0.15 +-0.15 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 65%. For those who are swoq and are not kwox, the probability of kwoz is 33%. For those who are swoq and are kwox, the probability of kwoz is 8%. The overall probability of swoq is 41%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.08 +P(V1=1) = 0.41 +0.59 * (0.65 - 0.77) + 0.41 * (0.08 - 0.33) = -0.18 +-0.18 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 65%. For those who are swoq and are not kwox, the probability of kwoz is 33%. For those who are swoq and are kwox, the probability of kwoz is 8%. The overall probability of swoq is 41%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.08 +P(V1=1) = 0.41 +0.59 * (0.65 - 0.77) + 0.41 * (0.08 - 0.33) = -0.18 +-0.18 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 56%. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 39%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.39 +0.56*0.39 - 0.44*0.62 = 0.49 +0.49 > 0",confounding,nonsense1,1,marginal,P(Y) +26735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 56%. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 39%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.39 +0.56*0.39 - 0.44*0.62 = 0.49 +0.49 > 0",confounding,nonsense1,1,marginal,P(Y) +26737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 56%. The probability of not kwox and kwoz is 27%. The probability of kwox and kwoz is 22%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.22 +0.22/0.56 - 0.27/0.44 = -0.23 +-0.23 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 66%. For those who are not swoq and are kwox, the probability of kwoz is 7%. For those who are swoq and are not kwox, the probability of kwoz is 20%. For those who are swoq and are kwox, the probability of kwoz is 68%. The overall probability of swoq is 44%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.07 +P(Y=1 | V1=1, X=0) = 0.20 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.44 +0.56 * (0.07 - 0.66) + 0.44 * (0.68 - 0.20) = -0.11 +-0.11 < 0",confounding,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 66%. For those who are not swoq and are kwox, the probability of kwoz is 7%. For those who are swoq and are not kwox, the probability of kwoz is 20%. For those who are swoq and are kwox, the probability of kwoz is 68%. The overall probability of swoq is 44%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.07 +P(Y=1 | V1=1, X=0) = 0.20 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.44 +0.56 * (0.07 - 0.66) + 0.44 * (0.68 - 0.20) = -0.13 +-0.13 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 70%. For those who are not kwox, the probability of kwoz is 43%. For those who are kwox, the probability of kwoz is 33%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.33 +0.70*0.33 - 0.30*0.43 = 0.38 +0.38 > 0",confounding,nonsense1,1,marginal,P(Y) +26746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 70%. The probability of not kwox and kwoz is 13%. The probability of kwox and kwoz is 23%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.23 +0.23/0.70 - 0.13/0.30 = -0.10 +-0.10 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 70%. The probability of not kwox and kwoz is 13%. The probability of kwox and kwoz is 23%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.23 +0.23/0.70 - 0.13/0.30 = -0.10 +-0.10 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 71%. For those who are not swoq and are kwox, the probability of kwoz is 62%. For those who are swoq and are not kwox, the probability of kwoz is 84%. For those who are swoq and are kwox, the probability of kwoz is 36%. The overall probability of swoq is 46%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.71 +P(Y=1 | V1=0, X=1) = 0.62 +P(Y=1 | V1=1, X=0) = 0.84 +P(Y=1 | V1=1, X=1) = 0.36 +P(V1=1) = 0.46 +0.54 * (0.62 - 0.71) + 0.46 * (0.36 - 0.84) = -0.22 +-0.22 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 71%. For those who are not swoq and are kwox, the probability of kwoz is 62%. For those who are swoq and are not kwox, the probability of kwoz is 84%. For those who are swoq and are kwox, the probability of kwoz is 36%. The overall probability of swoq is 46%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.71 +P(Y=1 | V1=0, X=1) = 0.62 +P(Y=1 | V1=1, X=0) = 0.84 +P(Y=1 | V1=1, X=1) = 0.36 +P(V1=1) = 0.46 +0.54 * (0.62 - 0.71) + 0.46 * (0.36 - 0.84) = -0.22 +-0.22 < 0",confounding,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 40%. For those who are not kwox, the probability of kwoz is 78%. For those who are kwox, the probability of kwoz is 54%.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.54 +0.40*0.54 - 0.60*0.78 = 0.66 +0.66 > 0",confounding,nonsense1,1,marginal,P(Y) +26756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. The overall probability of kwox is 40%. The probability of not kwox and kwoz is 47%. The probability of kwox and kwoz is 22%.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.22 +0.22/0.40 - 0.47/0.60 = -0.25 +-0.25 < 0",confounding,nonsense1,1,correlation,P(Y | X) +26758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 30%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.30 +0.30 - 0.23 = 0.06 +0.06 > 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 30%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.30 +0.30 - 0.23 = 0.06 +0.06 > 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 24%. For those who are not kwox and are swoq, the probability of kwoz is 15%. For those who are kwox and are not swoq, the probability of kwoz is 8%. For those who are kwox and are swoq, the probability of kwoz is 51%. For those who are not kwox, the probability of swoq is 12%. For those who are kwox, the probability of swoq is 50%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.24 +P(Y=1 | X=0, V2=1) = 0.15 +P(Y=1 | X=1, V2=0) = 0.08 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.50 +0.50 * (0.15 - 0.24)+ 0.12 * (0.51 - 0.08)= -0.03 +-0.03 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 62%. The probability of not kwox and kwoz is 9%. The probability of kwox and kwoz is 18%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.18 +0.18/0.62 - 0.09/0.38 = 0.06 +0.06 > 0",mediation,nonsense1,1,correlation,P(Y | X) +26772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 60%. For those who are kwox, the probability of kwoz is 21%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.21 - 0.60 = -0.39 +-0.39 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 60%. For those who are kwox, the probability of kwoz is 21%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.21 - 0.60 = -0.39 +-0.39 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 60%. For those who are kwox, the probability of kwoz is 21%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.21 - 0.60 = -0.39 +-0.39 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 59%. For those who are not kwox and are swoq, the probability of kwoz is 66%. For those who are kwox and are not swoq, the probability of kwoz is 23%. For those who are kwox and are swoq, the probability of kwoz is 20%. For those who are not kwox, the probability of swoq is 10%. For those who are kwox, the probability of swoq is 80%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.66 +P(Y=1 | X=1, V2=0) = 0.23 +P(Y=1 | X=1, V2=1) = 0.20 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.80 +0.80 * (0.66 - 0.59)+ 0.10 * (0.20 - 0.23)= 0.05 +0.05 > 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 59%. For those who are not kwox and are swoq, the probability of kwoz is 66%. For those who are kwox and are not swoq, the probability of kwoz is 23%. For those who are kwox and are swoq, the probability of kwoz is 20%. For those who are not kwox, the probability of swoq is 10%. For those who are kwox, the probability of swoq is 80%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.66 +P(Y=1 | X=1, V2=0) = 0.23 +P(Y=1 | X=1, V2=1) = 0.20 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.80 +0.10 * (0.20 - 0.23) + 0.80 * (0.66 - 0.59) = -0.37 +-0.37 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 44%. For those who are not kwox, the probability of kwoz is 60%. For those who are kwox, the probability of kwoz is 21%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.44*0.21 - 0.56*0.60 = 0.44 +0.44 > 0",mediation,nonsense1,1,marginal,P(Y) +26785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 44%. The probability of not kwox and kwoz is 33%. The probability of kwox and kwoz is 9%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.09 +0.09/0.44 - 0.33/0.56 = -0.39 +-0.39 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 65%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.65 +0.65 - 0.65 = -0.01 +-0.01 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 65%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.65 +0.65 - 0.65 = -0.01 +-0.01 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 65%. For those who are kwox, the probability of kwoz is 65%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.65 +0.65 - 0.65 = -0.01 +-0.01 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 4%. For those who are not kwox and are swoq, the probability of kwoz is 69%. For those who are kwox and are not swoq, the probability of kwoz is 66%. For those who are kwox and are swoq, the probability of kwoz is 64%. For those who are not kwox, the probability of swoq is 94%. For those who are kwox, the probability of swoq is 59%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.04 +P(Y=1 | X=0, V2=1) = 0.69 +P(Y=1 | X=1, V2=0) = 0.66 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.94 +P(V2=1 | X=1) = 0.59 +0.59 * (0.69 - 0.04)+ 0.94 * (0.64 - 0.66)= -0.23 +-0.23 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 4%. For those who are not kwox and are swoq, the probability of kwoz is 69%. For those who are kwox and are not swoq, the probability of kwoz is 66%. For those who are kwox and are swoq, the probability of kwoz is 64%. For those who are not kwox, the probability of swoq is 94%. For those who are kwox, the probability of swoq is 59%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.04 +P(Y=1 | X=0, V2=1) = 0.69 +P(Y=1 | X=1, V2=0) = 0.66 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.94 +P(V2=1 | X=1) = 0.59 +0.59 * (0.69 - 0.04)+ 0.94 * (0.64 - 0.66)= -0.23 +-0.23 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 67%. For those who are not kwox, the probability of kwoz is 65%. For those who are kwox, the probability of kwoz is 65%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.65 +0.67*0.65 - 0.33*0.65 = 0.60 +0.60 > 0",mediation,nonsense1,1,marginal,P(Y) +26799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 67%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 43%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.43 +0.43/0.67 - 0.22/0.33 = -0.01 +-0.01 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 80%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.80 +0.80 - 0.82 = -0.02 +-0.02 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 80%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.80 +0.80 - 0.82 = -0.02 +-0.02 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 80%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.80 +0.80 - 0.82 = -0.02 +-0.02 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 67%. For those who are not kwox and are swoq, the probability of kwoz is 87%. For those who are kwox and are not swoq, the probability of kwoz is 86%. For those who are kwox and are swoq, the probability of kwoz is 72%. For those who are not kwox, the probability of swoq is 74%. For those who are kwox, the probability of swoq is 44%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.67 +P(Y=1 | X=0, V2=1) = 0.87 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.72 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.44 +0.44 * (0.87 - 0.67)+ 0.74 * (0.72 - 0.86)= -0.06 +-0.06 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 67%. For those who are not kwox and are swoq, the probability of kwoz is 87%. For those who are kwox and are not swoq, the probability of kwoz is 86%. For those who are kwox and are swoq, the probability of kwoz is 72%. For those who are not kwox, the probability of swoq is 74%. For those who are kwox, the probability of swoq is 44%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.67 +P(Y=1 | X=0, V2=1) = 0.87 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.72 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.44 +0.74 * (0.72 - 0.86) + 0.44 * (0.87 - 0.67) = -0.06 +-0.06 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 62%. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 80%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.80 +0.62*0.80 - 0.38*0.82 = 0.78 +0.78 > 0",mediation,nonsense1,1,marginal,P(Y) +26811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 62%. For those who are not kwox, the probability of kwoz is 82%. For those who are kwox, the probability of kwoz is 80%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.80 +0.62*0.80 - 0.38*0.82 = 0.78 +0.78 > 0",mediation,nonsense1,1,marginal,P(Y) +26812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 62%. The probability of not kwox and kwoz is 32%. The probability of kwox and kwoz is 49%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.49 +0.49/0.62 - 0.32/0.38 = -0.02 +-0.02 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 62%. The probability of not kwox and kwoz is 32%. The probability of kwox and kwoz is 49%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.49 +0.49/0.62 - 0.32/0.38 = -0.02 +-0.02 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26816,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 85%. For those who are kwox, the probability of kwoz is 59%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.59 +0.59 - 0.85 = -0.26 +-0.26 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 85%. For those who are kwox, the probability of kwoz is 59%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.59 +0.59 - 0.85 = -0.26 +-0.26 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 48%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 44%. For those who are kwox and are swoq, the probability of kwoz is 64%. For those who are not kwox, the probability of swoq is 77%. For those who are kwox, the probability of swoq is 78%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.48 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.44 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.78 +0.78 * (0.96 - 0.48)+ 0.77 * (0.64 - 0.44)= 0.01 +0.01 > 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 48%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 44%. For those who are kwox and are swoq, the probability of kwoz is 64%. For those who are not kwox, the probability of swoq is 77%. For those who are kwox, the probability of swoq is 78%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.48 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.44 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.77 +P(V2=1 | X=1) = 0.78 +0.77 * (0.64 - 0.44) + 0.78 * (0.96 - 0.48) = -0.26 +-0.26 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 17%. For those who are not kwox, the probability of kwoz is 85%. For those who are kwox, the probability of kwoz is 59%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.59 +0.17*0.59 - 0.83*0.85 = 0.81 +0.81 > 0",mediation,nonsense1,1,marginal,P(Y) +26825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 17%. For those who are not kwox, the probability of kwoz is 85%. For those who are kwox, the probability of kwoz is 59%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.59 +0.17*0.59 - 0.83*0.85 = 0.81 +0.81 > 0",mediation,nonsense1,1,marginal,P(Y) +26826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 17%. The probability of not kwox and kwoz is 71%. The probability of kwox and kwoz is 10%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.10 +0.10/0.17 - 0.71/0.83 = -0.26 +-0.26 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 17%. The probability of not kwox and kwoz is 71%. The probability of kwox and kwoz is 10%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.10 +0.10/0.17 - 0.71/0.83 = -0.26 +-0.26 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26830,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 48%. For those who are kwox, the probability of kwoz is 36%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.36 +0.36 - 0.48 = -0.12 +-0.12 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 48%. For those who are kwox, the probability of kwoz is 36%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.36 +0.36 - 0.48 = -0.12 +-0.12 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 60%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 52%. For those who are not kwox, the probability of swoq is 28%. For those who are kwox, the probability of swoq is 61%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.60 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.10 +P(Y=1 | X=1, V2=1) = 0.52 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.61 +0.61 * (0.17 - 0.60)+ 0.28 * (0.52 - 0.10)= -0.14 +-0.14 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 60%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 52%. For those who are not kwox, the probability of swoq is 28%. For those who are kwox, the probability of swoq is 61%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.60 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.10 +P(Y=1 | X=1, V2=1) = 0.52 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.61 +0.61 * (0.17 - 0.60)+ 0.28 * (0.52 - 0.10)= -0.14 +-0.14 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 60%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 52%. For those who are not kwox, the probability of swoq is 28%. For those who are kwox, the probability of swoq is 61%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.60 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.10 +P(Y=1 | X=1, V2=1) = 0.52 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.61 +0.28 * (0.52 - 0.10) + 0.61 * (0.17 - 0.60) = -0.26 +-0.26 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 60%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 52%. For those who are not kwox, the probability of swoq is 28%. For those who are kwox, the probability of swoq is 61%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.60 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.10 +P(Y=1 | X=1, V2=1) = 0.52 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.61 +0.28 * (0.52 - 0.10) + 0.61 * (0.17 - 0.60) = -0.26 +-0.26 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 68%. For those who are not kwox, the probability of kwoz is 48%. For those who are kwox, the probability of kwoz is 36%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.36 +0.68*0.36 - 0.32*0.48 = 0.34 +0.34 > 0",mediation,nonsense1,1,marginal,P(Y) +26839,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 68%. For those who are not kwox, the probability of kwoz is 48%. For those who are kwox, the probability of kwoz is 36%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.36 +0.68*0.36 - 0.32*0.48 = 0.34 +0.34 > 0",mediation,nonsense1,1,marginal,P(Y) +26840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 68%. The probability of not kwox and kwoz is 15%. The probability of kwox and kwoz is 24%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.24 +0.24/0.68 - 0.15/0.32 = -0.12 +-0.12 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 26%. For those who are kwox, the probability of kwoz is 18%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.18 +0.18 - 0.26 = -0.07 +-0.07 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26846,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 26%. For those who are kwox, the probability of kwoz is 18%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.18 +0.18 - 0.26 = -0.07 +-0.07 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 19%. For those who are not kwox and are swoq, the probability of kwoz is 88%. For those who are kwox and are not swoq, the probability of kwoz is 47%. For those who are kwox and are swoq, the probability of kwoz is 5%. For those who are not kwox, the probability of swoq is 10%. For those who are kwox, the probability of swoq is 69%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.19 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.47 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.69 +0.69 * (0.88 - 0.19)+ 0.10 * (0.05 - 0.47)= 0.41 +0.41 > 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26850,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 19%. For those who are not kwox and are swoq, the probability of kwoz is 88%. For those who are kwox and are not swoq, the probability of kwoz is 47%. For those who are kwox and are swoq, the probability of kwoz is 5%. For those who are not kwox, the probability of swoq is 10%. For those who are kwox, the probability of swoq is 69%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.19 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.47 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.69 +0.10 * (0.05 - 0.47) + 0.69 * (0.88 - 0.19) = 0.17 +0.17 > 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 19%. For those who are not kwox and are swoq, the probability of kwoz is 88%. For those who are kwox and are not swoq, the probability of kwoz is 47%. For those who are kwox and are swoq, the probability of kwoz is 5%. For those who are not kwox, the probability of swoq is 10%. For those who are kwox, the probability of swoq is 69%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.19 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.47 +P(Y=1 | X=1, V2=1) = 0.05 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.69 +0.10 * (0.05 - 0.47) + 0.69 * (0.88 - 0.19) = 0.17 +0.17 > 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. For those who are not kwox, the probability of kwoz is 26%. For those who are kwox, the probability of kwoz is 18%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.18 +0.31*0.18 - 0.69*0.26 = 0.37 +0.37 > 0",mediation,nonsense1,1,marginal,P(Y) +26854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 18%. The probability of kwox and kwoz is 6%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.06 +0.06/0.31 - 0.18/0.69 = -0.07 +-0.07 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 18%. The probability of kwox and kwoz is 6%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.06 +0.06/0.31 - 0.18/0.69 = -0.07 +-0.07 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26858,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 57%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.57 +0.57 - 0.35 = 0.22 +0.22 > 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 57%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.57 +0.57 - 0.35 = 0.22 +0.22 > 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 57%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.57 +0.57 - 0.35 = 0.22 +0.22 > 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 39%. For those who are not kwox and are swoq, the probability of kwoz is 12%. For those who are kwox and are not swoq, the probability of kwoz is 49%. For those who are kwox and are swoq, the probability of kwoz is 71%. For those who are not kwox, the probability of swoq is 12%. For those who are kwox, the probability of swoq is 38%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.39 +P(Y=1 | X=0, V2=1) = 0.12 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.71 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.38 +0.38 * (0.12 - 0.39)+ 0.12 * (0.71 - 0.49)= -0.07 +-0.07 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 39%. For those who are not kwox and are swoq, the probability of kwoz is 12%. For those who are kwox and are not swoq, the probability of kwoz is 49%. For those who are kwox and are swoq, the probability of kwoz is 71%. For those who are not kwox, the probability of swoq is 12%. For those who are kwox, the probability of swoq is 38%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.39 +P(Y=1 | X=0, V2=1) = 0.12 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.71 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.38 +0.12 * (0.71 - 0.49) + 0.38 * (0.12 - 0.39) = 0.16 +0.16 > 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 39%. For those who are not kwox and are swoq, the probability of kwoz is 12%. For those who are kwox and are not swoq, the probability of kwoz is 49%. For those who are kwox and are swoq, the probability of kwoz is 71%. For those who are not kwox, the probability of swoq is 12%. For those who are kwox, the probability of swoq is 38%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.39 +P(Y=1 | X=0, V2=1) = 0.12 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.71 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.38 +0.12 * (0.71 - 0.49) + 0.38 * (0.12 - 0.39) = 0.16 +0.16 > 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 72%. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 57%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.57 +0.72*0.57 - 0.28*0.35 = 0.48 +0.48 > 0",mediation,nonsense1,1,marginal,P(Y) +26869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 72%. The probability of not kwox and kwoz is 10%. The probability of kwox and kwoz is 41%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.41 +0.41/0.72 - 0.10/0.28 = 0.22 +0.22 > 0",mediation,nonsense1,1,correlation,P(Y | X) +26871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 94%. For those who are not kwox and are swoq, the probability of kwoz is 55%. For those who are kwox and are not swoq, the probability of kwoz is 36%. For those who are kwox and are swoq, the probability of kwoz is 98%. For those who are not kwox, the probability of swoq is 56%. For those who are kwox, the probability of swoq is 97%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.94 +P(Y=1 | X=0, V2=1) = 0.55 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.98 +P(V2=1 | X=0) = 0.56 +P(V2=1 | X=1) = 0.97 +0.97 * (0.55 - 0.94)+ 0.56 * (0.98 - 0.36)= -0.16 +-0.16 < 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 94%. For those who are not kwox and are swoq, the probability of kwoz is 55%. For those who are kwox and are not swoq, the probability of kwoz is 36%. For those who are kwox and are swoq, the probability of kwoz is 98%. For those who are not kwox, the probability of swoq is 56%. For those who are kwox, the probability of swoq is 97%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.94 +P(Y=1 | X=0, V2=1) = 0.55 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.98 +P(V2=1 | X=0) = 0.56 +P(V2=1 | X=1) = 0.97 +0.56 * (0.98 - 0.36) + 0.97 * (0.55 - 0.94) = -0.02 +-0.02 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 94%. For those who are not kwox and are swoq, the probability of kwoz is 55%. For those who are kwox and are not swoq, the probability of kwoz is 36%. For those who are kwox and are swoq, the probability of kwoz is 98%. For those who are not kwox, the probability of swoq is 56%. For those who are kwox, the probability of swoq is 97%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.94 +P(Y=1 | X=0, V2=1) = 0.55 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.98 +P(V2=1 | X=0) = 0.56 +P(V2=1 | X=1) = 0.97 +0.56 * (0.98 - 0.36) + 0.97 * (0.55 - 0.94) = -0.02 +-0.02 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 55%. For those who are not kwox, the probability of kwoz is 72%. For those who are kwox, the probability of kwoz is 96%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.96 +0.55*0.96 - 0.45*0.72 = 0.75 +0.75 > 0",mediation,nonsense1,1,marginal,P(Y) +26884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 23%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.23 - 0.33 = -0.11 +-0.11 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 23%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.23 - 0.33 = -0.11 +-0.11 < 0",mediation,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 23%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.23 - 0.33 = -0.11 +-0.11 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 23%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.23 - 0.33 = -0.11 +-0.11 < 0",mediation,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 35%. For those who are not kwox and are swoq, the probability of kwoz is 27%. For those who are kwox and are not swoq, the probability of kwoz is 18%. For those who are kwox and are swoq, the probability of kwoz is 41%. For those who are not kwox, the probability of swoq is 21%. For those who are kwox, the probability of swoq is 21%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.27 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.41 +P(V2=1 | X=0) = 0.21 +P(V2=1 | X=1) = 0.21 +0.21 * (0.27 - 0.35)+ 0.21 * (0.41 - 0.18)= 0.00 +0.00 = 0",mediation,nonsense1,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +26892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. For those who are not kwox and are not swoq, the probability of kwoz is 35%. For those who are not kwox and are swoq, the probability of kwoz is 27%. For those who are kwox and are not swoq, the probability of kwoz is 18%. For those who are kwox and are swoq, the probability of kwoz is 41%. For those who are not kwox, the probability of swoq is 21%. For those who are kwox, the probability of swoq is 21%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.35 +P(Y=1 | X=0, V2=1) = 0.27 +P(Y=1 | X=1, V2=0) = 0.18 +P(Y=1 | X=1, V2=1) = 0.41 +P(V2=1 | X=0) = 0.21 +P(V2=1 | X=1) = 0.21 +0.21 * (0.41 - 0.18) + 0.21 * (0.27 - 0.35) = -0.10 +-0.10 < 0",mediation,nonsense1,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +26895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 32%. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 23%.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.32*0.23 - 0.68*0.33 = 0.30 +0.30 > 0",mediation,nonsense1,1,marginal,P(Y) +26896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 32%. The probability of not kwox and kwoz is 23%. The probability of kwox and kwoz is 7%.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.07 +0.07/0.32 - 0.23/0.68 = -0.11 +-0.11 < 0",mediation,nonsense1,1,correlation,P(Y | X) +26898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 45%. For those who are kwox, the probability of swoq is 5%. For those who are not kwox and are not swoq, the probability of kwoz is 21%. For those who are not kwox and are swoq, the probability of kwoz is 48%. For those who are kwox and are not swoq, the probability of kwoz is 21%. For those who are kwox and are swoq, the probability of kwoz is 49%. The overall probability of kwox is 52%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.49 +P(X=1) = 0.52 +(0.05 - 0.45)* (0.49 * 0.52) + (0.95 - 0.55) * (0.48 * 0.48) = -0.11 +-0.11 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 21%. For those who are not kwox and are swoq, the probability of kwoz is 48%. For those who are kwox and are not swoq, the probability of kwoz is 21%. For those who are kwox and are swoq, the probability of kwoz is 49%. For those who are not kwox, the probability of swoq is 45%. For those who are kwox, the probability of swoq is 5%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.05 +0.49 * (0.05 - 0.45) + 0.48 * (0.95 - 0.55) = -0.11 +-0.11 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 21%. For those who are not kwox and are swoq, the probability of kwoz is 48%. For those who are kwox and are not swoq, the probability of kwoz is 21%. For those who are kwox and are swoq, the probability of kwoz is 49%. For those who are not kwox, the probability of swoq is 45%. For those who are kwox, the probability of swoq is 5%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.05 +0.49 * (0.05 - 0.45) + 0.48 * (0.95 - 0.55) = -0.11 +-0.11 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 45%. For those who are kwox, the probability of swoq is 5%. For those who are not kwox and are not swoq, the probability of kwoz is 21%. For those who are not kwox and are swoq, the probability of kwoz is 48%. For those who are kwox and are not swoq, the probability of kwoz is 21%. For those who are kwox and are swoq, the probability of kwoz is 49%. The overall probability of kwox is 52%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.49 +P(X=1) = 0.52 +0.05 - 0.45 * (0.49 * 0.52 + 0.48 * 0.48)= -0.11 +-0.11 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 45%. For those who are kwox, the probability of swoq is 5%. For those who are not kwox and are not swoq, the probability of kwoz is 21%. For those who are not kwox and are swoq, the probability of kwoz is 48%. For those who are kwox and are not swoq, the probability of kwoz is 21%. For those who are kwox and are swoq, the probability of kwoz is 49%. The overall probability of kwox is 52%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.49 +P(X=1) = 0.52 +0.05 - 0.45 * (0.49 * 0.52 + 0.48 * 0.48)= -0.11 +-0.11 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 52%. The probability of not kwox and kwoz is 16%. The probability of kwox and kwoz is 12%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.12 +0.12/0.52 - 0.16/0.48 = -0.11 +-0.11 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 52%. The probability of not kwox and kwoz is 16%. The probability of kwox and kwoz is 12%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.12 +0.12/0.52 - 0.16/0.48 = -0.11 +-0.11 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 8%. For those who are kwox, the probability of swoq is 65%. For those who are not kwox and are not swoq, the probability of kwoz is 86%. For those who are not kwox and are swoq, the probability of kwoz is 60%. For those who are kwox and are not swoq, the probability of kwoz is 85%. For those who are kwox and are swoq, the probability of kwoz is 62%. The overall probability of kwox is 86%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.86 +(0.65 - 0.08)* (0.62 * 0.86) + (0.35 - 0.92) * (0.60 * 0.14) = -0.13 +-0.13 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 8%. For those who are kwox, the probability of swoq is 65%. For those who are not kwox and are not swoq, the probability of kwoz is 86%. For those who are not kwox and are swoq, the probability of kwoz is 60%. For those who are kwox and are not swoq, the probability of kwoz is 85%. For those who are kwox and are swoq, the probability of kwoz is 62%. The overall probability of kwox is 86%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.86 +(0.65 - 0.08)* (0.62 * 0.86) + (0.35 - 0.92) * (0.60 * 0.14) = -0.13 +-0.13 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 86%. For those who are not kwox and are swoq, the probability of kwoz is 60%. For those who are kwox and are not swoq, the probability of kwoz is 85%. For those who are kwox and are swoq, the probability of kwoz is 62%. For those who are not kwox, the probability of swoq is 8%. For those who are kwox, the probability of swoq is 65%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.65 +0.62 * (0.65 - 0.08) + 0.60 * (0.35 - 0.92) = -0.13 +-0.13 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 8%. For those who are kwox, the probability of swoq is 65%. For those who are not kwox and are not swoq, the probability of kwoz is 86%. For those who are not kwox and are swoq, the probability of kwoz is 60%. For those who are kwox and are not swoq, the probability of kwoz is 85%. For those who are kwox and are swoq, the probability of kwoz is 62%. The overall probability of kwox is 86%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.86 +0.65 - 0.08 * (0.62 * 0.86 + 0.60 * 0.14)= -0.13 +-0.13 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 8%. For those who are kwox, the probability of swoq is 65%. For those who are not kwox and are not swoq, the probability of kwoz is 86%. For those who are not kwox and are swoq, the probability of kwoz is 60%. For those who are kwox and are not swoq, the probability of kwoz is 85%. For those who are kwox and are swoq, the probability of kwoz is 62%. The overall probability of kwox is 86%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.86 +0.65 - 0.08 * (0.62 * 0.86 + 0.60 * 0.14)= -0.13 +-0.13 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 86%. For those who are not kwox, the probability of kwoz is 84%. For those who are kwox, the probability of kwoz is 70%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.70 +0.86*0.70 - 0.14*0.84 = 0.72 +0.72 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 86%. For those who are not kwox, the probability of kwoz is 84%. For those who are kwox, the probability of kwoz is 70%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.70 +0.86*0.70 - 0.14*0.84 = 0.72 +0.72 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 86%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 60%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.60 +0.60/0.86 - 0.12/0.14 = -0.14 +-0.14 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26923,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 27%. For those who are not kwox and are not swoq, the probability of kwoz is 47%. For those who are not kwox and are swoq, the probability of kwoz is 45%. For those who are kwox and are not swoq, the probability of kwoz is 52%. For those who are kwox and are swoq, the probability of kwoz is 59%. The overall probability of kwox is 40%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.27 +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.59 +P(X=1) = 0.40 +(0.27 - 0.06)* (0.59 * 0.40) + (0.73 - 0.94) * (0.45 * 0.60) = 0.00 +0.00 = 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 27%. For those who are not kwox and are not swoq, the probability of kwoz is 47%. For those who are not kwox and are swoq, the probability of kwoz is 45%. For those who are kwox and are not swoq, the probability of kwoz is 52%. For those who are kwox and are swoq, the probability of kwoz is 59%. The overall probability of kwox is 40%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.27 +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.59 +P(X=1) = 0.40 +(0.27 - 0.06)* (0.59 * 0.40) + (0.73 - 0.94) * (0.45 * 0.60) = 0.00 +0.00 = 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 27%. For those who are not kwox and are not swoq, the probability of kwoz is 47%. For those who are not kwox and are swoq, the probability of kwoz is 45%. For those who are kwox and are not swoq, the probability of kwoz is 52%. For those who are kwox and are swoq, the probability of kwoz is 59%. The overall probability of kwox is 40%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.27 +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.59 +P(X=1) = 0.40 +0.27 - 0.06 * (0.59 * 0.40 + 0.45 * 0.60)= 0.00 +0.00 = 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 27%. For those who are not kwox and are not swoq, the probability of kwoz is 47%. For those who are not kwox and are swoq, the probability of kwoz is 45%. For those who are kwox and are not swoq, the probability of kwoz is 52%. For those who are kwox and are swoq, the probability of kwoz is 59%. The overall probability of kwox is 40%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.27 +P(Y=1 | X=0, V3=0) = 0.47 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.59 +P(X=1) = 0.40 +0.27 - 0.06 * (0.59 * 0.40 + 0.45 * 0.60)= 0.00 +0.00 = 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 40%. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 54%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.54 +0.40*0.54 - 0.60*0.47 = 0.49 +0.49 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 40%. The probability of not kwox and kwoz is 28%. The probability of kwox and kwoz is 22%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.22 +0.22/0.40 - 0.28/0.60 = 0.07 +0.07 > 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 18%. For those who are kwox, the probability of swoq is 5%. For those who are not kwox and are not swoq, the probability of kwoz is 36%. For those who are not kwox and are swoq, the probability of kwoz is 69%. For those who are kwox and are not swoq, the probability of kwoz is 31%. For those who are kwox and are swoq, the probability of kwoz is 69%. The overall probability of kwox is 71%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.18 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.69 +P(X=1) = 0.71 +(0.05 - 0.18)* (0.69 * 0.71) + (0.95 - 0.82) * (0.69 * 0.29) = -0.05 +-0.05 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 18%. For those who are kwox, the probability of swoq is 5%. For those who are not kwox and are not swoq, the probability of kwoz is 36%. For those who are not kwox and are swoq, the probability of kwoz is 69%. For those who are kwox and are not swoq, the probability of kwoz is 31%. For those who are kwox and are swoq, the probability of kwoz is 69%. The overall probability of kwox is 71%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.18 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.69 +P(X=1) = 0.71 +(0.05 - 0.18)* (0.69 * 0.71) + (0.95 - 0.82) * (0.69 * 0.29) = -0.05 +-0.05 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 36%. For those who are not kwox and are swoq, the probability of kwoz is 69%. For those who are kwox and are not swoq, the probability of kwoz is 31%. For those who are kwox and are swoq, the probability of kwoz is 69%. For those who are not kwox, the probability of swoq is 18%. For those who are kwox, the probability of swoq is 5%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0) = 0.18 +P(V3=1 | X=1) = 0.05 +0.69 * (0.05 - 0.18) + 0.69 * (0.95 - 0.82) = -0.05 +-0.05 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 71%. For those who are not kwox, the probability of kwoz is 42%. For those who are kwox, the probability of kwoz is 33%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.33 +0.71*0.33 - 0.29*0.42 = 0.36 +0.36 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 71%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 24%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.24 +0.24/0.71 - 0.12/0.29 = -0.09 +-0.09 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 71%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 24%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.24 +0.24/0.71 - 0.12/0.29 = -0.09 +-0.09 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 77%. For those who are kwox, the probability of swoq is 90%. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 59%. For those who are kwox and are not swoq, the probability of kwoz is 79%. For those who are kwox and are swoq, the probability of kwoz is 60%. The overall probability of kwox is 83%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.77 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.83 +(0.90 - 0.77)* (0.60 * 0.83) + (0.10 - 0.23) * (0.59 * 0.17) = -0.03 +-0.03 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 59%. For those who are kwox and are not swoq, the probability of kwoz is 79%. For those who are kwox and are swoq, the probability of kwoz is 60%. For those who are not kwox, the probability of swoq is 77%. For those who are kwox, the probability of swoq is 90%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0) = 0.77 +P(V3=1 | X=1) = 0.90 +0.60 * (0.90 - 0.77) + 0.59 * (0.10 - 0.23) = -0.03 +-0.03 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 59%. For those who are kwox and are not swoq, the probability of kwoz is 79%. For those who are kwox and are swoq, the probability of kwoz is 60%. For those who are not kwox, the probability of swoq is 77%. For those who are kwox, the probability of swoq is 90%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0) = 0.77 +P(V3=1 | X=1) = 0.90 +0.60 * (0.90 - 0.77) + 0.59 * (0.10 - 0.23) = -0.03 +-0.03 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 77%. For those who are kwox, the probability of swoq is 90%. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 59%. For those who are kwox and are not swoq, the probability of kwoz is 79%. For those who are kwox and are swoq, the probability of kwoz is 60%. The overall probability of kwox is 83%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.77 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.83 +0.90 - 0.77 * (0.60 * 0.83 + 0.59 * 0.17)= -0.03 +-0.03 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 83%. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.61 +0.83*0.61 - 0.17*0.64 = 0.62 +0.62 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 83%. For those who are not kwox, the probability of kwoz is 64%. For those who are kwox, the probability of kwoz is 61%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.61 +0.83*0.61 - 0.17*0.64 = 0.62 +0.62 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 83%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 51%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.51 +0.51/0.83 - 0.11/0.17 = -0.02 +-0.02 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 83%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 51%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.51 +0.51/0.83 - 0.11/0.17 = -0.02 +-0.02 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 56%. For those who are kwox, the probability of swoq is 34%. For those who are not kwox and are not swoq, the probability of kwoz is 37%. For those who are not kwox and are swoq, the probability of kwoz is 83%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 79%. The overall probability of kwox is 70%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.70 +(0.34 - 0.56)* (0.79 * 0.70) + (0.66 - 0.44) * (0.83 * 0.30) = -0.13 +-0.13 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 37%. For those who are not kwox and are swoq, the probability of kwoz is 83%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 79%. For those who are not kwox, the probability of swoq is 56%. For those who are kwox, the probability of swoq is 34%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.79 +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +0.79 * (0.34 - 0.56) + 0.83 * (0.66 - 0.44) = -0.15 +-0.15 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 56%. For those who are kwox, the probability of swoq is 34%. For those who are not kwox and are not swoq, the probability of kwoz is 37%. For those who are not kwox and are swoq, the probability of kwoz is 83%. For those who are kwox and are not swoq, the probability of kwoz is 10%. For those who are kwox and are swoq, the probability of kwoz is 79%. The overall probability of kwox is 70%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.70 +0.34 - 0.56 * (0.79 * 0.70 + 0.83 * 0.30)= -0.13 +-0.13 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 70%. For those who are not kwox, the probability of kwoz is 63%. For those who are kwox, the probability of kwoz is 34%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.34 +0.70*0.34 - 0.30*0.63 = 0.43 +0.43 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 70%. For those who are not kwox, the probability of kwoz is 63%. For those who are kwox, the probability of kwoz is 34%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.34 +0.70*0.34 - 0.30*0.63 = 0.43 +0.43 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 70%. The probability of not kwox and kwoz is 19%. The probability of kwox and kwoz is 24%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.24 +0.24/0.70 - 0.19/0.30 = -0.29 +-0.29 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 98%. For those who are kwox and are swoq, the probability of kwoz is 82%. For those who are not kwox, the probability of swoq is 80%. For those who are kwox, the probability of swoq is 68%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.80 +P(V3=1 | X=1) = 0.68 +0.82 * (0.68 - 0.80) + 0.96 * (0.32 - 0.20) = 0.02 +0.02 > 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 98%. For those who are kwox and are swoq, the probability of kwoz is 82%. For those who are not kwox, the probability of swoq is 80%. For those who are kwox, the probability of swoq is 68%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.80 +P(V3=1 | X=1) = 0.68 +0.82 * (0.68 - 0.80) + 0.96 * (0.32 - 0.20) = 0.02 +0.02 > 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 80%. For those who are kwox, the probability of swoq is 68%. For those who are not kwox and are not swoq, the probability of kwoz is 79%. For those who are not kwox and are swoq, the probability of kwoz is 96%. For those who are kwox and are not swoq, the probability of kwoz is 98%. For those who are kwox and are swoq, the probability of kwoz is 82%. The overall probability of kwox is 2%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.80 +P(V3=1 | X=1) = 0.68 +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.98 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.02 +0.68 - 0.80 * (0.82 * 0.02 + 0.96 * 0.98)= -0.02 +-0.02 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 2%. For those who are not kwox, the probability of kwoz is 92%. For those who are kwox, the probability of kwoz is 87%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.87 +0.02*0.87 - 0.98*0.92 = 0.92 +0.92 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 2%. For those who are not kwox, the probability of kwoz is 92%. For those who are kwox, the probability of kwoz is 87%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.87 +0.02*0.87 - 0.98*0.92 = 0.92 +0.92 > 0",frontdoor,nonsense1,1,marginal,P(Y) +26982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 38%. For those who are kwox, the probability of swoq is 23%. For those who are not kwox and are not swoq, the probability of kwoz is 53%. For those who are not kwox and are swoq, the probability of kwoz is 82%. For those who are kwox and are not swoq, the probability of kwoz is 51%. For those who are kwox and are swoq, the probability of kwoz is 66%. The overall probability of kwox is 21%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.38 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.66 +P(X=1) = 0.21 +(0.23 - 0.38)* (0.66 * 0.21) + (0.77 - 0.62) * (0.82 * 0.79) = -0.04 +-0.04 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 53%. For those who are not kwox and are swoq, the probability of kwoz is 82%. For those who are kwox and are not swoq, the probability of kwoz is 51%. For those who are kwox and are swoq, the probability of kwoz is 66%. For those who are not kwox, the probability of swoq is 38%. For those who are kwox, the probability of swoq is 23%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.66 +P(V3=1 | X=0) = 0.38 +P(V3=1 | X=1) = 0.23 +0.66 * (0.23 - 0.38) + 0.82 * (0.77 - 0.62) = -0.02 +-0.02 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +26989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 38%. For those who are kwox, the probability of swoq is 23%. For those who are not kwox and are not swoq, the probability of kwoz is 53%. For those who are not kwox and are swoq, the probability of kwoz is 82%. For those who are kwox and are not swoq, the probability of kwoz is 51%. For those who are kwox and are swoq, the probability of kwoz is 66%. The overall probability of kwox is 21%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.38 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.66 +P(X=1) = 0.21 +0.23 - 0.38 * (0.66 * 0.21 + 0.82 * 0.79)= -0.04 +-0.04 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +26992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 21%. The probability of not kwox and kwoz is 50%. The probability of kwox and kwoz is 12%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.12 +0.12/0.21 - 0.50/0.79 = -0.10 +-0.10 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +26995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +26996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 9%. For those who are not kwox and are not swoq, the probability of kwoz is 94%. For those who are not kwox and are swoq, the probability of kwoz is 90%. For those who are kwox and are not swoq, the probability of kwoz is 87%. For those who are kwox and are swoq, the probability of kwoz is 79%. The overall probability of kwox is 11%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.09 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.11 +(0.09 - 0.06)* (0.79 * 0.11) + (0.91 - 0.94) * (0.90 * 0.89) = -0.00 +0.00 = 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +26999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 94%. For those who are not kwox and are swoq, the probability of kwoz is 90%. For those who are kwox and are not swoq, the probability of kwoz is 87%. For those who are kwox and are swoq, the probability of kwoz is 79%. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 9%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.79 +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.09 +0.79 * (0.09 - 0.06) + 0.90 * (0.91 - 0.94) = -0.00 +0.00 = 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 6%. For those who are kwox, the probability of swoq is 9%. For those who are not kwox and are not swoq, the probability of kwoz is 94%. For those who are not kwox and are swoq, the probability of kwoz is 90%. For those who are kwox and are not swoq, the probability of kwoz is 87%. For those who are kwox and are swoq, the probability of kwoz is 79%. The overall probability of kwox is 11%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.09 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.11 +0.09 - 0.06 * (0.79 * 0.11 + 0.90 * 0.89)= -0.00 +0.00 = 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 11%. For those who are not kwox, the probability of kwoz is 93%. For those who are kwox, the probability of kwoz is 86%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.86 +0.11*0.86 - 0.89*0.93 = 0.93 +0.93 > 0",frontdoor,nonsense1,1,marginal,P(Y) +27006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 9%. For those who are kwox, the probability of swoq is 38%. For those who are not kwox and are not swoq, the probability of kwoz is 96%. For those who are not kwox and are swoq, the probability of kwoz is 10%. For those who are kwox and are not swoq, the probability of kwoz is 96%. For those who are kwox and are swoq, the probability of kwoz is 10%. The overall probability of kwox is 26%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.10 +P(X=1) = 0.26 +(0.38 - 0.09)* (0.10 * 0.26) + (0.62 - 0.91) * (0.10 * 0.74) = -0.25 +-0.25 < 0",frontdoor,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 96%. For those who are not kwox and are swoq, the probability of kwoz is 10%. For those who are kwox and are not swoq, the probability of kwoz is 96%. For those who are kwox and are swoq, the probability of kwoz is 10%. For those who are not kwox, the probability of swoq is 9%. For those who are kwox, the probability of swoq is 38%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.38 +0.10 * (0.38 - 0.09) + 0.10 * (0.62 - 0.91) = -0.25 +-0.25 < 0",frontdoor,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of swoq is 9%. For those who are kwox, the probability of swoq is 38%. For those who are not kwox and are not swoq, the probability of kwoz is 96%. For those who are not kwox and are swoq, the probability of kwoz is 10%. For those who are kwox and are not swoq, the probability of kwoz is 96%. For those who are kwox and are swoq, the probability of kwoz is 10%. The overall probability of kwox is 26%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.10 +P(X=1) = 0.26 +0.38 - 0.09 * (0.10 * 0.26 + 0.10 * 0.74)= -0.25 +-0.25 < 0",frontdoor,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 26%. For those who are not kwox, the probability of kwoz is 88%. For those who are kwox, the probability of kwoz is 63%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.26 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.63 +0.26*0.63 - 0.74*0.88 = 0.82 +0.82 > 0",frontdoor,nonsense1,1,marginal,P(Y) +27016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 26%. The probability of not kwox and kwoz is 66%. The probability of kwox and kwoz is 16%.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.26 +P(Y=1, X=0=1) = 0.66 +P(Y=1, X=1=1) = 0.16 +0.16/0.26 - 0.66/0.74 = -0.25 +-0.25 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +27017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 26%. The probability of not kwox and kwoz is 66%. The probability of kwox and kwoz is 16%.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.26 +P(Y=1, X=0=1) = 0.66 +P(Y=1, X=1=1) = 0.16 +0.16/0.26 - 0.66/0.74 = -0.25 +-0.25 < 0",frontdoor,nonsense1,1,correlation,P(Y | X) +27018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 19%. For those who are swoq, the probability of kwoz is 19%. For those who are not swoq, the probability of kwox is 70%. For those who are swoq, the probability of kwox is 21%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.19 +P(Y=1 | V2=1) = 0.19 +P(X=1 | V2=0) = 0.70 +P(X=1 | V2=1) = 0.21 +(0.19 - 0.19) / (0.21 - 0.70) = -0.00 +0.00 = 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 45%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 8%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.08 +0.08/0.45 - 0.11/0.55 = -0.02 +-0.02 < 0",IV,nonsense1,1,correlation,P(Y | X) +27025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 45%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 8%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.08 +0.08/0.45 - 0.11/0.55 = -0.02 +-0.02 < 0",IV,nonsense1,1,correlation,P(Y | X) +27026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 19%. For those who are swoq, the probability of kwoz is 23%. For those who are not swoq, the probability of kwox is 14%. For those who are swoq, the probability of kwox is 56%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.19 +P(Y=1 | V2=1) = 0.23 +P(X=1 | V2=0) = 0.14 +P(X=1 | V2=1) = 0.56 +(0.23 - 0.19) / (0.56 - 0.14) = 0.09 +0.09 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 27%. For those who are not kwox, the probability of kwoz is 17%. For those who are kwox, the probability of kwoz is 21%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.21 +0.27*0.21 - 0.73*0.17 = 0.20 +0.20 > 0",IV,nonsense1,1,marginal,P(Y) +27031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 27%. For those who are not kwox, the probability of kwoz is 17%. For those who are kwox, the probability of kwoz is 21%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.21 +0.27*0.21 - 0.73*0.17 = 0.20 +0.20 > 0",IV,nonsense1,1,marginal,P(Y) +27032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 27%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 6%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.06 +0.06/0.27 - 0.12/0.73 = 0.03 +0.03 > 0",IV,nonsense1,1,correlation,P(Y | X) +27033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 27%. The probability of not kwox and kwoz is 12%. The probability of kwox and kwoz is 6%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.06 +0.06/0.27 - 0.12/0.73 = 0.03 +0.03 > 0",IV,nonsense1,1,correlation,P(Y | X) +27034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 46%. For those who are swoq, the probability of kwoz is 49%. For those who are not swoq, the probability of kwox is 35%. For those who are swoq, the probability of kwox is 72%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.46 +P(Y=1 | V2=1) = 0.49 +P(X=1 | V2=0) = 0.35 +P(X=1 | V2=1) = 0.72 +(0.49 - 0.46) / (0.72 - 0.35) = 0.07 +0.07 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 48%. For those who are kwox, the probability of kwoz is 46%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.46 +0.54*0.46 - 0.46*0.48 = 0.47 +0.47 > 0",IV,nonsense1,1,marginal,P(Y) +27040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 54%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 25%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.25 +0.25/0.54 - 0.22/0.46 = -0.02 +-0.02 < 0",IV,nonsense1,1,correlation,P(Y | X) +27041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 54%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 25%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.25 +0.25/0.54 - 0.22/0.46 = -0.02 +-0.02 < 0",IV,nonsense1,1,correlation,P(Y | X) +27044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 42%. For those who are swoq, the probability of kwoz is 42%. For those who are not swoq, the probability of kwox is 46%. For those who are swoq, the probability of kwox is 46%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.42 +P(Y=1 | V2=1) = 0.42 +P(X=1 | V2=0) = 0.46 +P(X=1 | V2=1) = 0.46 +(0.42 - 0.42) / (0.46 - 0.46) = -0.23 +-0.23 < 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 46%. For those who are not kwox, the probability of kwoz is 60%. For those who are kwox, the probability of kwoz is 36%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.36 +0.46*0.36 - 0.54*0.60 = 0.42 +0.42 > 0",IV,nonsense1,1,marginal,P(Y) +27048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 46%. The probability of not kwox and kwoz is 32%. The probability of kwox and kwoz is 16%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.16 +0.16/0.46 - 0.32/0.54 = -0.24 +-0.24 < 0",IV,nonsense1,1,correlation,P(Y | X) +27049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 46%. The probability of not kwox and kwoz is 32%. The probability of kwox and kwoz is 16%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.16 +0.16/0.46 - 0.32/0.54 = -0.24 +-0.24 < 0",IV,nonsense1,1,correlation,P(Y | X) +27053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 50%. For those who are swoq, the probability of kwoz is 35%. For those who are not swoq, the probability of kwox is 6%. For those who are swoq, the probability of kwox is 61%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.35 +P(X=1 | V2=0) = 0.06 +P(X=1 | V2=1) = 0.61 +(0.35 - 0.50) / (0.61 - 0.06) = -0.27 +-0.27 < 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 56%. For those who are not kwox, the probability of kwoz is 52%. For those who are kwox, the probability of kwoz is 25%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.25 +0.56*0.25 - 0.44*0.52 = 0.37 +0.37 > 0",IV,nonsense1,1,marginal,P(Y) +27057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 56%. The probability of not kwox and kwoz is 23%. The probability of kwox and kwoz is 14%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.14 +0.14/0.56 - 0.23/0.44 = -0.27 +-0.27 < 0",IV,nonsense1,1,correlation,P(Y | X) +27058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 50%. For those who are swoq, the probability of kwoz is 39%. For those who are not swoq, the probability of kwox is 64%. For those who are swoq, the probability of kwox is 35%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.64 +P(X=1 | V2=1) = 0.35 +(0.39 - 0.50) / (0.35 - 0.64) = 0.39 +0.39 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 50%. For those who are swoq, the probability of kwoz is 39%. For those who are not swoq, the probability of kwox is 64%. For those who are swoq, the probability of kwox is 35%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.64 +P(X=1 | V2=1) = 0.35 +(0.39 - 0.50) / (0.35 - 0.64) = 0.39 +0.39 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 44%. For those who are not kwox, the probability of kwoz is 30%. For those who are kwox, the probability of kwoz is 77%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.77 +0.44*0.77 - 0.56*0.30 = 0.42 +0.42 > 0",IV,nonsense1,1,marginal,P(Y) +27065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 44%. The probability of not kwox and kwoz is 17%. The probability of kwox and kwoz is 34%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.34 +0.34/0.44 - 0.17/0.56 = 0.47 +0.47 > 0",IV,nonsense1,1,correlation,P(Y | X) +27066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 37%. For those who are swoq, the probability of kwoz is 35%. For those who are not swoq, the probability of kwox is 71%. For those who are swoq, the probability of kwox is 57%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.37 +P(Y=1 | V2=1) = 0.35 +P(X=1 | V2=0) = 0.71 +P(X=1 | V2=1) = 0.57 +(0.35 - 0.37) / (0.57 - 0.71) = 0.13 +0.13 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 37%. For those who are swoq, the probability of kwoz is 35%. For those who are not swoq, the probability of kwox is 71%. For those who are swoq, the probability of kwox is 57%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.37 +P(Y=1 | V2=1) = 0.35 +P(X=1 | V2=0) = 0.71 +P(X=1 | V2=1) = 0.57 +(0.35 - 0.37) / (0.57 - 0.71) = 0.13 +0.13 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 62%. For those who are not kwox, the probability of kwoz is 19%. For those who are kwox, the probability of kwoz is 40%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.40 +0.62*0.40 - 0.38*0.19 = 0.35 +0.35 > 0",IV,nonsense1,1,marginal,P(Y) +27074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 30%. For those who are swoq, the probability of kwoz is 27%. For those who are not swoq, the probability of kwox is 52%. For those who are swoq, the probability of kwox is 30%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.30 +P(Y=1 | V2=1) = 0.27 +P(X=1 | V2=0) = 0.52 +P(X=1 | V2=1) = 0.30 +(0.27 - 0.30) / (0.30 - 0.52) = 0.12 +0.12 > 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 52%. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 37%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.37 +0.52*0.37 - 0.48*0.23 = 0.30 +0.30 > 0",IV,nonsense1,1,marginal,P(Y) +27080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 52%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 19%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.19 +0.19/0.52 - 0.11/0.48 = 0.14 +0.14 > 0",IV,nonsense1,1,correlation,P(Y | X) +27082,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27083,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 70%. For those who are swoq, the probability of kwoz is 76%. For those who are not swoq, the probability of kwox is 23%. For those who are swoq, the probability of kwox is 15%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.70 +P(Y=1 | V2=1) = 0.76 +P(X=1 | V2=0) = 0.23 +P(X=1 | V2=1) = 0.15 +(0.76 - 0.70) / (0.15 - 0.23) = -0.82 +-0.82 < 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. For those who are not swoq, the probability of kwoz is 70%. For those who are swoq, the probability of kwoz is 76%. For those who are not swoq, the probability of kwox is 23%. For those who are swoq, the probability of kwox is 15%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.70 +P(Y=1 | V2=1) = 0.76 +P(X=1 | V2=0) = 0.23 +P(X=1 | V2=1) = 0.15 +(0.76 - 0.70) / (0.15 - 0.23) = -0.82 +-0.82 < 0",IV,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 21%. For those who are not kwox, the probability of kwoz is 91%. For those who are kwox, the probability of kwoz is 22%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.22 +0.21*0.22 - 0.79*0.91 = 0.71 +0.71 > 0",IV,nonsense1,1,marginal,P(Y) +27087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 21%. For those who are not kwox, the probability of kwoz is 91%. For those who are kwox, the probability of kwoz is 22%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.22 +0.21*0.22 - 0.79*0.91 = 0.71 +0.71 > 0",IV,nonsense1,1,marginal,P(Y) +27091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 31%. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 75%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.75 +0.31*0.75 - 0.69*0.32 = 0.47 +0.47 > 0",IV,nonsense1,1,marginal,P(Y) +27095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 31%. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 75%.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.75 +0.31*0.75 - 0.69*0.32 = 0.47 +0.47 > 0",IV,nonsense1,1,marginal,P(Y) +27097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 23%.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.23 +0.23/0.31 - 0.22/0.69 = 0.44 +0.44 > 0",IV,nonsense1,1,correlation,P(Y | X) +27099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 61%. For those who are kwox, the probability of kwoz is 15%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.15 +0.15 - 0.61 = -0.46 +-0.46 < 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 61%. For those who are kwox, the probability of kwoz is 15%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.15 +0.15 - 0.61 = -0.46 +-0.46 < 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 71%. For those who are not kwox and are swoq, the probability of kwoz is 57%. For those who are kwox and are not swoq, the probability of kwoz is 7%. For those who are kwox and are swoq, the probability of kwoz is 23%. For those who are not kwox and are not muvy, the probability of swoq is 5%. For those who are not kwox and are muvy, the probability of swoq is 50%. For those who are kwox and are not muvy, the probability of swoq is 47%. For those who are kwox and are muvy, the probability of swoq is 59%. The overall probability of muvy is 69%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.07 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.05 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.47 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.69 +0.69 * 0.57 * (0.59 - 0.47)+ 0.31 * 0.57 * (0.50 - 0.05)= -0.06 +-0.06 < 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 71%. For those who are not kwox and are swoq, the probability of kwoz is 57%. For those who are kwox and are not swoq, the probability of kwoz is 7%. For those who are kwox and are swoq, the probability of kwoz is 23%. For those who are not kwox and are not muvy, the probability of swoq is 5%. For those who are not kwox and are muvy, the probability of swoq is 50%. For those who are kwox and are not muvy, the probability of swoq is 47%. For those who are kwox and are muvy, the probability of swoq is 59%. The overall probability of muvy is 69%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.07 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.05 +P(V3=1 | X=0, V2=1) = 0.50 +P(V3=1 | X=1, V2=0) = 0.47 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.69 +0.69 * 0.57 * (0.59 - 0.47)+ 0.31 * 0.57 * (0.50 - 0.05)= -0.06 +-0.06 < 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 58%. For those who are not kwox, the probability of kwoz is 61%. For those who are kwox, the probability of kwoz is 15%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.15 +0.58*0.15 - 0.42*0.61 = 0.32 +0.32 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 58%. For those who are not kwox, the probability of kwoz is 61%. For those who are kwox, the probability of kwoz is 15%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.15 +0.58*0.15 - 0.42*0.61 = 0.32 +0.32 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 58%. The probability of not kwox and kwoz is 28%. The probability of kwox and kwoz is 9%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.09 +0.09/0.58 - 0.28/0.42 = -0.50 +-0.50 < 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 58%. The probability of not kwox and kwoz is 28%. The probability of kwox and kwoz is 9%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.09 +0.09/0.58 - 0.28/0.42 = -0.50 +-0.50 < 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 45%. For those who are kwox, the probability of kwoz is 45%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 45%. For those who are kwox, the probability of kwoz is 45%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 45%. For those who are kwox, the probability of kwoz is 45%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 39%. For those who are not kwox and are swoq, the probability of kwoz is 43%. For those who are kwox and are not swoq, the probability of kwoz is 55%. For those who are kwox and are swoq, the probability of kwoz is 45%. For those who are not kwox and are not muvy, the probability of swoq is 85%. For those who are not kwox and are muvy, the probability of swoq is 41%. For those who are kwox and are not muvy, the probability of swoq is 95%. For those who are kwox and are muvy, the probability of swoq is 88%. The overall probability of muvy is 35%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.45 +P(V3=1 | X=0, V2=0) = 0.85 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.95 +P(V3=1 | X=1, V2=1) = 0.88 +P(V2=1) = 0.35 +0.35 * 0.43 * (0.88 - 0.95)+ 0.65 * 0.43 * (0.41 - 0.85)= 0.01 +0.01 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 39%. For those who are not kwox and are swoq, the probability of kwoz is 43%. For those who are kwox and are not swoq, the probability of kwoz is 55%. For those who are kwox and are swoq, the probability of kwoz is 45%. For those who are not kwox and are not muvy, the probability of swoq is 85%. For those who are not kwox and are muvy, the probability of swoq is 41%. For those who are kwox and are not muvy, the probability of swoq is 95%. For those who are kwox and are muvy, the probability of swoq is 88%. The overall probability of muvy is 35%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.45 +P(V3=1 | X=0, V2=0) = 0.85 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.95 +P(V3=1 | X=1, V2=1) = 0.88 +P(V2=1) = 0.35 +0.35 * 0.43 * (0.88 - 0.95)+ 0.65 * 0.43 * (0.41 - 0.85)= 0.01 +0.01 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 33%. For those who are not kwox, the probability of kwoz is 45%. For those who are kwox, the probability of kwoz is 45%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.33*0.45 - 0.67*0.45 = 0.45 +0.45 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 33%. For those who are not kwox, the probability of kwoz is 45%. For those who are kwox, the probability of kwoz is 45%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.33*0.45 - 0.67*0.45 = 0.45 +0.45 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 33%. The probability of not kwox and kwoz is 28%. The probability of kwox and kwoz is 15%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.15 +0.15/0.33 - 0.28/0.67 = 0.04 +0.04 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 67%. For those who are kwox, the probability of kwoz is 29%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.29 +0.29 - 0.67 = -0.37 +-0.37 < 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 67%. For those who are kwox, the probability of kwoz is 29%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.29 +0.29 - 0.67 = -0.37 +-0.37 < 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 45%. For those who are not kwox and are swoq, the probability of kwoz is 68%. For those who are kwox and are not swoq, the probability of kwoz is 19%. For those who are kwox and are swoq, the probability of kwoz is 52%. For those who are not kwox and are not muvy, the probability of swoq is 88%. For those who are not kwox and are muvy, the probability of swoq is 30%. For those who are kwox and are not muvy, the probability of swoq is 1%. For those who are kwox and are muvy, the probability of swoq is 87%. The overall probability of muvy is 10%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.88 +P(V3=1 | X=0, V2=1) = 0.30 +P(V3=1 | X=1, V2=0) = 0.01 +P(V3=1 | X=1, V2=1) = 0.87 +P(V2=1) = 0.10 +0.10 * (0.52 - 0.19) * 0.30 + 0.90 * (0.68 - 0.45) * 0.01 = -0.02 +-0.02 < 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 45%. For those who are not kwox and are swoq, the probability of kwoz is 68%. For those who are kwox and are not swoq, the probability of kwoz is 19%. For those who are kwox and are swoq, the probability of kwoz is 52%. For those who are not kwox and are not muvy, the probability of swoq is 88%. For those who are not kwox and are muvy, the probability of swoq is 30%. For those who are kwox and are not muvy, the probability of swoq is 1%. For those who are kwox and are muvy, the probability of swoq is 87%. The overall probability of muvy is 10%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.88 +P(V3=1 | X=0, V2=1) = 0.30 +P(V3=1 | X=1, V2=0) = 0.01 +P(V3=1 | X=1, V2=1) = 0.87 +P(V2=1) = 0.10 +0.10 * (0.52 - 0.19) * 0.30 + 0.90 * (0.68 - 0.45) * 0.01 = -0.02 +-0.02 < 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 19%. The probability of not kwox and kwoz is 52%. The probability of kwox and kwoz is 4%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.04 +0.04/0.19 - 0.52/0.81 = -0.41 +-0.41 < 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 92%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.92 +0.92 - 0.53 = 0.38 +0.38 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 72%. For those who are not kwox and are swoq, the probability of kwoz is 22%. For those who are kwox and are not swoq, the probability of kwoz is 95%. For those who are kwox and are swoq, the probability of kwoz is 19%. For those who are not kwox and are not muvy, the probability of swoq is 68%. For those who are not kwox and are muvy, the probability of swoq is 36%. For those who are kwox and are not muvy, the probability of swoq is 5%. For those who are kwox and are muvy, the probability of swoq is 5%. The overall probability of muvy is 94%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.68 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.05 +P(V3=1 | X=1, V2=1) = 0.05 +P(V2=1) = 0.94 +0.94 * 0.22 * (0.05 - 0.05)+ 0.06 * 0.22 * (0.36 - 0.68)= 0.16 +0.16 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 72%. For those who are not kwox and are swoq, the probability of kwoz is 22%. For those who are kwox and are not swoq, the probability of kwoz is 95%. For those who are kwox and are swoq, the probability of kwoz is 19%. For those who are not kwox and are not muvy, the probability of swoq is 68%. For those who are not kwox and are muvy, the probability of swoq is 36%. For those who are kwox and are not muvy, the probability of swoq is 5%. For those who are kwox and are muvy, the probability of swoq is 5%. The overall probability of muvy is 94%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.68 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.05 +P(V3=1 | X=1, V2=1) = 0.05 +P(V2=1) = 0.94 +0.94 * 0.22 * (0.05 - 0.05)+ 0.06 * 0.22 * (0.36 - 0.68)= 0.16 +0.16 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 72%. For those who are not kwox and are swoq, the probability of kwoz is 22%. For those who are kwox and are not swoq, the probability of kwoz is 95%. For those who are kwox and are swoq, the probability of kwoz is 19%. For those who are not kwox and are not muvy, the probability of swoq is 68%. For those who are not kwox and are muvy, the probability of swoq is 36%. For those who are kwox and are not muvy, the probability of swoq is 5%. For those who are kwox and are muvy, the probability of swoq is 5%. The overall probability of muvy is 94%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.95 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.68 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.05 +P(V3=1 | X=1, V2=1) = 0.05 +P(V2=1) = 0.94 +0.94 * (0.19 - 0.95) * 0.36 + 0.06 * (0.22 - 0.72) * 0.05 = 0.13 +0.13 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 71%. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 92%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.92 +0.71*0.92 - 0.29*0.53 = 0.79 +0.79 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 84%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.84 +0.84 - 0.32 = 0.52 +0.52 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 84%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.84 +0.84 - 0.32 = 0.52 +0.52 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 84%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.84 +0.84 - 0.32 = 0.52 +0.52 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 12%. For those who are not kwox and are swoq, the probability of kwoz is 80%. For those who are kwox and are not swoq, the probability of kwoz is 88%. For those who are kwox and are swoq, the probability of kwoz is 77%. For those who are not kwox and are not muvy, the probability of swoq is 27%. For those who are not kwox and are muvy, the probability of swoq is 47%. For those who are kwox and are not muvy, the probability of swoq is 42%. For those who are kwox and are muvy, the probability of swoq is 28%. The overall probability of muvy is 6%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.80 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.27 +P(V3=1 | X=0, V2=1) = 0.47 +P(V3=1 | X=1, V2=0) = 0.42 +P(V3=1 | X=1, V2=1) = 0.28 +P(V2=1) = 0.06 +0.06 * (0.77 - 0.88) * 0.47 + 0.94 * (0.80 - 0.12) * 0.42 = 0.53 +0.53 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 84%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.84 +0.54*0.84 - 0.46*0.32 = 0.63 +0.63 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 32%. For those who are kwox, the probability of kwoz is 84%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.84 +0.54*0.84 - 0.46*0.32 = 0.63 +0.63 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 54%. The probability of not kwox and kwoz is 14%. The probability of kwox and kwoz is 45%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.45 +0.45/0.54 - 0.14/0.46 = 0.52 +0.52 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 75%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.75 +0.75 - 0.23 = 0.52 +0.52 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 75%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.75 +0.75 - 0.23 = 0.52 +0.52 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 75%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.75 +0.75 - 0.23 = 0.52 +0.52 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 58%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 63%. For those who are kwox and are swoq, the probability of kwoz is 74%. For those who are not kwox and are not muvy, the probability of swoq is 55%. For those who are not kwox and are muvy, the probability of swoq is 93%. For those who are kwox and are not muvy, the probability of swoq is 99%. For those who are kwox and are muvy, the probability of swoq is 27%. The overall probability of muvy is 67%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.55 +P(V3=1 | X=0, V2=1) = 0.93 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.67 +0.67 * 0.17 * (0.27 - 0.99)+ 0.33 * 0.17 * (0.93 - 0.55)= 0.11 +0.11 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 58%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 63%. For those who are kwox and are swoq, the probability of kwoz is 74%. For those who are not kwox and are not muvy, the probability of swoq is 55%. For those who are not kwox and are muvy, the probability of swoq is 93%. For those who are kwox and are not muvy, the probability of swoq is 99%. For those who are kwox and are muvy, the probability of swoq is 27%. The overall probability of muvy is 67%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.55 +P(V3=1 | X=0, V2=1) = 0.93 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.67 +0.67 * 0.17 * (0.27 - 0.99)+ 0.33 * 0.17 * (0.93 - 0.55)= 0.11 +0.11 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 58%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 63%. For those who are kwox and are swoq, the probability of kwoz is 74%. For those who are not kwox and are not muvy, the probability of swoq is 55%. For those who are not kwox and are muvy, the probability of swoq is 93%. For those who are kwox and are not muvy, the probability of swoq is 99%. For those who are kwox and are muvy, the probability of swoq is 27%. The overall probability of muvy is 67%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.55 +P(V3=1 | X=0, V2=1) = 0.93 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.67 +0.67 * (0.74 - 0.63) * 0.93 + 0.33 * (0.17 - 0.58) * 0.99 = 0.57 +0.57 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 58%. For those who are not kwox and are swoq, the probability of kwoz is 17%. For those who are kwox and are not swoq, the probability of kwoz is 63%. For those who are kwox and are swoq, the probability of kwoz is 74%. For those who are not kwox and are not muvy, the probability of swoq is 55%. For those who are not kwox and are muvy, the probability of swoq is 93%. For those who are kwox and are not muvy, the probability of swoq is 99%. For those who are kwox and are muvy, the probability of swoq is 27%. The overall probability of muvy is 67%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.55 +P(V3=1 | X=0, V2=1) = 0.93 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.27 +P(V2=1) = 0.67 +0.67 * (0.74 - 0.63) * 0.93 + 0.33 * (0.17 - 0.58) * 0.99 = 0.57 +0.57 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 12%. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 75%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.75 +0.12*0.75 - 0.88*0.23 = 0.31 +0.31 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 12%. For those who are not kwox, the probability of kwoz is 23%. For those who are kwox, the probability of kwoz is 75%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.75 +0.12*0.75 - 0.88*0.23 = 0.31 +0.31 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 12%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 8%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.08 +0.08/0.12 - 0.22/0.88 = 0.44 +0.44 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 12%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 8%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.08 +0.08/0.12 - 0.22/0.88 = 0.44 +0.44 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 57%. For those who are kwox, the probability of kwoz is 64%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.64 +0.64 - 0.57 = 0.07 +0.07 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 57%. For those who are kwox, the probability of kwoz is 64%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.64 +0.64 - 0.57 = 0.07 +0.07 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 57%. For those who are kwox, the probability of kwoz is 64%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.64 +0.64 - 0.57 = 0.07 +0.07 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 19%. For those who are not kwox and are swoq, the probability of kwoz is 65%. For those who are kwox and are not swoq, the probability of kwoz is 78%. For those who are kwox and are swoq, the probability of kwoz is 67%. For those who are not kwox and are not muvy, the probability of swoq is 90%. For those who are not kwox and are muvy, the probability of swoq is 73%. For those who are kwox and are not muvy, the probability of swoq is 74%. For those who are kwox and are muvy, the probability of swoq is 2%. The overall probability of muvy is 70%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.67 +P(V3=1 | X=0, V2=0) = 0.90 +P(V3=1 | X=0, V2=1) = 0.73 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.70 +0.70 * 0.65 * (0.02 - 0.74)+ 0.30 * 0.65 * (0.73 - 0.90)= -0.16 +-0.16 < 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 22%. For those who are not kwox, the probability of kwoz is 57%. For those who are kwox, the probability of kwoz is 64%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.64 +0.22*0.64 - 0.78*0.57 = 0.54 +0.54 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 22%. The probability of not kwox and kwoz is 43%. The probability of kwox and kwoz is 17%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.17 +0.17/0.22 - 0.43/0.78 = 0.21 +0.21 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 28%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.28 +0.28 - 0.15 = 0.14 +0.14 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 28%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.28 +0.28 - 0.15 = 0.14 +0.14 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 16%. For those who are not kwox and are swoq, the probability of kwoz is 13%. For those who are kwox and are not swoq, the probability of kwoz is 35%. For those who are kwox and are swoq, the probability of kwoz is 26%. For those who are not kwox and are not muvy, the probability of swoq is 43%. For those who are not kwox and are muvy, the probability of swoq is 31%. For those who are kwox and are not muvy, the probability of swoq is 78%. For those who are kwox and are muvy, the probability of swoq is 60%. The overall probability of muvy is 78%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.16 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.26 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.78 +P(V3=1 | X=1, V2=1) = 0.60 +P(V2=1) = 0.78 +0.78 * (0.26 - 0.35) * 0.31 + 0.22 * (0.13 - 0.16) * 0.78 = 0.16 +0.16 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 16%. For those who are not kwox and are swoq, the probability of kwoz is 13%. For those who are kwox and are not swoq, the probability of kwoz is 35%. For those who are kwox and are swoq, the probability of kwoz is 26%. For those who are not kwox and are not muvy, the probability of swoq is 43%. For those who are not kwox and are muvy, the probability of swoq is 31%. For those who are kwox and are not muvy, the probability of swoq is 78%. For those who are kwox and are muvy, the probability of swoq is 60%. The overall probability of muvy is 78%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.16 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.26 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.78 +P(V3=1 | X=1, V2=1) = 0.60 +P(V2=1) = 0.78 +0.78 * (0.26 - 0.35) * 0.31 + 0.22 * (0.13 - 0.16) * 0.78 = 0.16 +0.16 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 2%. For those who are not kwox, the probability of kwoz is 15%. For those who are kwox, the probability of kwoz is 28%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.28 +0.02*0.28 - 0.98*0.15 = 0.15 +0.15 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 2%. The probability of not kwox and kwoz is 15%. The probability of kwox and kwoz is 0%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.00 +0.00/0.02 - 0.15/0.98 = 0.14 +0.14 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 2%. The probability of not kwox and kwoz is 15%. The probability of kwox and kwoz is 0%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.00 +0.00/0.02 - 0.15/0.98 = 0.14 +0.14 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 25%. For those who are kwox, the probability of kwoz is 72%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.72 +0.72 - 0.25 = 0.48 +0.48 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27214,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 25%. For those who are kwox, the probability of kwoz is 72%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.72 +0.72 - 0.25 = 0.48 +0.48 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 37%. For those who are not kwox and are swoq, the probability of kwoz is 20%. For those who are kwox and are not swoq, the probability of kwoz is 41%. For those who are kwox and are swoq, the probability of kwoz is 82%. For those who are not kwox and are not muvy, the probability of swoq is 35%. For those who are not kwox and are muvy, the probability of swoq is 97%. For those who are kwox and are not muvy, the probability of swoq is 72%. For those who are kwox and are muvy, the probability of swoq is 83%. The overall probability of muvy is 53%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0, V2=0) = 0.35 +P(V3=1 | X=0, V2=1) = 0.97 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.83 +P(V2=1) = 0.53 +0.53 * 0.20 * (0.83 - 0.72)+ 0.47 * 0.20 * (0.97 - 0.35)= 0.01 +0.01 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 37%. For those who are not kwox and are swoq, the probability of kwoz is 20%. For those who are kwox and are not swoq, the probability of kwoz is 41%. For those who are kwox and are swoq, the probability of kwoz is 82%. For those who are not kwox and are not muvy, the probability of swoq is 35%. For those who are not kwox and are muvy, the probability of swoq is 97%. For those who are kwox and are not muvy, the probability of swoq is 72%. For those who are kwox and are muvy, the probability of swoq is 83%. The overall probability of muvy is 53%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0, V2=0) = 0.35 +P(V3=1 | X=0, V2=1) = 0.97 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.83 +P(V2=1) = 0.53 +0.53 * (0.82 - 0.41) * 0.97 + 0.47 * (0.20 - 0.37) * 0.72 = 0.44 +0.44 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 37%. For those who are not kwox and are swoq, the probability of kwoz is 20%. For those who are kwox and are not swoq, the probability of kwoz is 41%. For those who are kwox and are swoq, the probability of kwoz is 82%. For those who are not kwox and are not muvy, the probability of swoq is 35%. For those who are not kwox and are muvy, the probability of swoq is 97%. For those who are kwox and are not muvy, the probability of swoq is 72%. For those who are kwox and are muvy, the probability of swoq is 83%. The overall probability of muvy is 53%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0, V2=0) = 0.35 +P(V3=1 | X=0, V2=1) = 0.97 +P(V3=1 | X=1, V2=0) = 0.72 +P(V3=1 | X=1, V2=1) = 0.83 +P(V2=1) = 0.53 +0.53 * (0.82 - 0.41) * 0.97 + 0.47 * (0.20 - 0.37) * 0.72 = 0.44 +0.44 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 24%. The probability of not kwox and kwoz is 19%. The probability of kwox and kwoz is 17%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.17 +0.17/0.24 - 0.19/0.76 = 0.48 +0.48 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 9%. For those who are kwox, the probability of kwoz is 62%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.62 +0.62 - 0.09 = 0.53 +0.53 > 0",arrowhead,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 9%. For those who are kwox, the probability of kwoz is 62%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.62 +0.62 - 0.09 = 0.53 +0.53 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox, the probability of kwoz is 9%. For those who are kwox, the probability of kwoz is 62%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.62 +0.62 - 0.09 = 0.53 +0.53 > 0",arrowhead,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 5%. For those who are not kwox and are swoq, the probability of kwoz is 33%. For those who are kwox and are not swoq, the probability of kwoz is 22%. For those who are kwox and are swoq, the probability of kwoz is 73%. For those who are not kwox and are not muvy, the probability of swoq is 28%. For those who are not kwox and are muvy, the probability of swoq is 15%. For those who are kwox and are not muvy, the probability of swoq is 71%. For those who are kwox and are muvy, the probability of swoq is 84%. The overall probability of muvy is 75%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.05 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.15 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.84 +P(V2=1) = 0.75 +0.75 * 0.33 * (0.84 - 0.71)+ 0.25 * 0.33 * (0.15 - 0.28)= 0.12 +0.12 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 5%. For those who are not kwox and are swoq, the probability of kwoz is 33%. For those who are kwox and are not swoq, the probability of kwoz is 22%. For those who are kwox and are swoq, the probability of kwoz is 73%. For those who are not kwox and are not muvy, the probability of swoq is 28%. For those who are not kwox and are muvy, the probability of swoq is 15%. For those who are kwox and are not muvy, the probability of swoq is 71%. For those who are kwox and are muvy, the probability of swoq is 84%. The overall probability of muvy is 75%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.05 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.15 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.84 +P(V2=1) = 0.75 +0.75 * 0.33 * (0.84 - 0.71)+ 0.25 * 0.33 * (0.15 - 0.28)= 0.12 +0.12 > 0",arrowhead,nonsense1,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +27232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 5%. For those who are not kwox and are swoq, the probability of kwoz is 33%. For those who are kwox and are not swoq, the probability of kwoz is 22%. For those who are kwox and are swoq, the probability of kwoz is 73%. For those who are not kwox and are not muvy, the probability of swoq is 28%. For those who are not kwox and are muvy, the probability of swoq is 15%. For those who are kwox and are not muvy, the probability of swoq is 71%. For those who are kwox and are muvy, the probability of swoq is 84%. The overall probability of muvy is 75%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.05 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.15 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.84 +P(V2=1) = 0.75 +0.75 * (0.73 - 0.22) * 0.15 + 0.25 * (0.33 - 0.05) * 0.71 = 0.24 +0.24 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. For those who are not kwox and are not swoq, the probability of kwoz is 5%. For those who are not kwox and are swoq, the probability of kwoz is 33%. For those who are kwox and are not swoq, the probability of kwoz is 22%. For those who are kwox and are swoq, the probability of kwoz is 73%. For those who are not kwox and are not muvy, the probability of swoq is 28%. For those who are not kwox and are muvy, the probability of swoq is 15%. For those who are kwox and are not muvy, the probability of swoq is 71%. For those who are kwox and are muvy, the probability of swoq is 84%. The overall probability of muvy is 75%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.05 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.15 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.84 +P(V2=1) = 0.75 +0.75 * (0.73 - 0.22) * 0.15 + 0.25 * (0.33 - 0.05) * 0.71 = 0.24 +0.24 > 0",arrowhead,nonsense1,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +27234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 53%. For those who are not kwox, the probability of kwoz is 9%. For those who are kwox, the probability of kwoz is 62%.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.62 +0.53*0.62 - 0.47*0.09 = 0.33 +0.33 > 0",arrowhead,nonsense1,1,marginal,P(Y) +27236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. The overall probability of kwox is 53%. The probability of not kwox and kwoz is 5%. The probability of kwox and kwoz is 33%.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.33 +0.33/0.53 - 0.05/0.47 = 0.53 +0.53 > 0",arrowhead,nonsense1,1,correlation,P(Y | X) +27242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 61%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 9%. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.09*0.61 - 0.91*0.46 = 0.45 +0.45 > 0",diamond,nonsense1,1,marginal,P(Y) +27248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 9%. The probability of not kwox and kwoz is 41%. The probability of kwox and kwoz is 6%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.06 +0.06/0.09 - 0.41/0.91 = 0.15 +0.15 > 0",diamond,nonsense1,1,correlation,P(Y | X) +27250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 55%. For those who are kwox, the probability of kwoz is 52%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.52 +0.52 - 0.55 = -0.03 +-0.03 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 55%. For those who are kwox, the probability of kwoz is 52%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.52 +0.52 - 0.55 = -0.03 +-0.03 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 55%. For those who are kwox, the probability of kwoz is 52%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.52 +0.52 - 0.55 = -0.03 +-0.03 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 55%. For those who are kwox, the probability of kwoz is 52%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.52 +0.52 - 0.55 = -0.03 +-0.03 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 93%. For those who are not kwox, the probability of kwoz is 55%. For those who are kwox, the probability of kwoz is 52%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.52 +0.93*0.52 - 0.07*0.55 = 0.52 +0.52 > 0",diamond,nonsense1,1,marginal,P(Y) +27259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 93%. For those who are not kwox, the probability of kwoz is 55%. For those who are kwox, the probability of kwoz is 52%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.52 +0.93*0.52 - 0.07*0.55 = 0.52 +0.52 > 0",diamond,nonsense1,1,marginal,P(Y) +27263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 51%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.51 +0.51 - 0.62 = -0.11 +-0.11 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 51%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.51 +0.51 - 0.62 = -0.11 +-0.11 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 51%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.51 +0.51 - 0.62 = -0.11 +-0.11 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27271,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 83%. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 51%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.51 +0.83*0.51 - 0.17*0.62 = 0.54 +0.54 > 0",diamond,nonsense1,1,marginal,P(Y) +27272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 83%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 42%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.42 +0.42/0.83 - 0.11/0.17 = -0.11 +-0.11 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 83%. The probability of not kwox and kwoz is 11%. The probability of kwox and kwoz is 42%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.42 +0.42/0.83 - 0.11/0.17 = -0.11 +-0.11 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27274,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 39%. For those who are kwox, the probability of kwoz is 83%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.83 +0.83 - 0.39 = 0.44 +0.44 > 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 39%. For those who are kwox, the probability of kwoz is 83%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.83 +0.83 - 0.39 = 0.44 +0.44 > 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 39%. For those who are kwox, the probability of kwoz is 83%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.83 +0.83 - 0.39 = 0.44 +0.44 > 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 39%. For those who are kwox, the probability of kwoz is 83%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.83 +0.83 - 0.39 = 0.44 +0.44 > 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 39%. For those who are kwox, the probability of kwoz is 83%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.83 +0.83 - 0.39 = 0.44 +0.44 > 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 22%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.22 +0.22 - 0.46 = -0.24 +-0.24 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 22%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.22 +0.22 - 0.46 = -0.24 +-0.24 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 22%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.22 +0.22 - 0.46 = -0.24 +-0.24 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 31%. For those who are not kwox, the probability of kwoz is 46%. For those who are kwox, the probability of kwoz is 22%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.22 +0.31*0.22 - 0.69*0.46 = 0.40 +0.40 > 0",diamond,nonsense1,1,marginal,P(Y) +27296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 31%. The probability of kwox and kwoz is 7%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.07 +0.07/0.31 - 0.31/0.69 = -0.24 +-0.24 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 31%. The probability of kwox and kwoz is 7%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.07 +0.07/0.31 - 0.31/0.69 = -0.24 +-0.24 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 27%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.27 +0.27 - 0.47 = -0.20 +-0.20 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.27 +0.27 - 0.47 = -0.20 +-0.20 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 27%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.27 +0.27 - 0.47 = -0.20 +-0.20 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.27 +0.27 - 0.47 = -0.20 +-0.20 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 21%. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 27%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.27 +0.21*0.27 - 0.79*0.47 = 0.44 +0.44 > 0",diamond,nonsense1,1,marginal,P(Y) +27308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 21%. The probability of not kwox and kwoz is 37%. The probability of kwox and kwoz is 6%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.06 +0.06/0.21 - 0.37/0.79 = -0.20 +-0.20 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 34%. For those who are kwox, the probability of kwoz is 40%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.40 +0.40 - 0.34 = 0.06 +0.06 > 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 34%. For those who are kwox, the probability of kwoz is 40%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.40 +0.40 - 0.34 = 0.06 +0.06 > 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 4%. For those who are not kwox, the probability of kwoz is 34%. For those who are kwox, the probability of kwoz is 40%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.40 +0.04*0.40 - 0.96*0.34 = 0.35 +0.35 > 0",diamond,nonsense1,1,marginal,P(Y) +27320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 4%. The probability of not kwox and kwoz is 33%. The probability of kwox and kwoz is 2%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.02 +0.02/0.04 - 0.33/0.96 = 0.06 +0.06 > 0",diamond,nonsense1,1,correlation,P(Y | X) +27321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 4%. The probability of not kwox and kwoz is 33%. The probability of kwox and kwoz is 2%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.02 +0.02/0.04 - 0.33/0.96 = 0.06 +0.06 > 0",diamond,nonsense1,1,correlation,P(Y | X) +27323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 61%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.61 +0.61 - 0.79 = -0.18 +-0.18 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.61 +0.61 - 0.79 = -0.18 +-0.18 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 61%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.61 +0.61 - 0.79 = -0.18 +-0.18 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.61 +0.61 - 0.79 = -0.18 +-0.18 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 20%. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.61 +0.20*0.61 - 0.80*0.79 = 0.76 +0.76 > 0",diamond,nonsense1,1,marginal,P(Y) +27332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 20%. The probability of not kwox and kwoz is 63%. The probability of kwox and kwoz is 12%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.12 +0.12/0.20 - 0.63/0.80 = -0.18 +-0.18 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 20%. The probability of not kwox and kwoz is 63%. The probability of kwox and kwoz is 12%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.12 +0.12/0.20 - 0.63/0.80 = -0.18 +-0.18 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.13 +0.13 > 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.13 +0.13 > 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.13 +0.13 > 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.13 +0.13 > 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.13 +0.13 > 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 70%. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.70*0.45 - 0.30*0.33 = 0.42 +0.42 > 0",diamond,nonsense1,1,marginal,P(Y) +27343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 70%. For those who are not kwox, the probability of kwoz is 33%. For those who are kwox, the probability of kwoz is 45%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.70*0.45 - 0.30*0.33 = 0.42 +0.42 > 0",diamond,nonsense1,1,marginal,P(Y) +27346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 53%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.53 +0.53 - 0.54 = -0.01 +-0.01 < 0",diamond,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27350,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 53%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.53 +0.53 - 0.54 = -0.01 +-0.01 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 53%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.53 +0.53 - 0.54 = -0.01 +-0.01 < 0",diamond,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 53%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.53 +0.53 - 0.54 = -0.01 +-0.01 < 0",diamond,nonsense1,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +27354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 30%. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 53%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.53 +0.30*0.53 - 0.70*0.54 = 0.54 +0.54 > 0",diamond,nonsense1,1,marginal,P(Y) +27355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 30%. For those who are not kwox, the probability of kwoz is 54%. For those who are kwox, the probability of kwoz is 53%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.53 +0.30*0.53 - 0.70*0.54 = 0.54 +0.54 > 0",diamond,nonsense1,1,marginal,P(Y) +27356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 30%. The probability of not kwox and kwoz is 38%. The probability of kwox and kwoz is 16%.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.16 +0.16/0.30 - 0.38/0.70 = -0.01 +-0.01 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 30%. The probability of not kwox and kwoz is 38%. The probability of kwox and kwoz is 16%.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.16 +0.16/0.30 - 0.38/0.70 = -0.01 +-0.01 < 0",diamond,nonsense1,1,correlation,P(Y | X) +27358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 56%. For those who are not swoq and are kwox, the probability of kwoz is 48%. For those who are swoq and are not kwox, the probability of kwoz is 45%. For those who are swoq and are kwox, the probability of kwoz is 63%. The overall probability of swoq is 49%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.56 +P(Y=1 | V1=0, X=1) = 0.48 +P(Y=1 | V1=1, X=0) = 0.45 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.49 +0.51 * (0.48 - 0.56) 0.49 * (0.63 - 0.45) = 0.04 +0.04 > 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 71%. For those who are not kwox and are muvy, the probability of kwoz is 30%. For those who are kwox and are not muvy, the probability of kwoz is 28%. For those who are kwox and are muvy, the probability of kwoz is 83%. For those who are not kwox, the probability of muvy is 43%. For those who are kwox, the probability of muvy is 60%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.60 +0.60 * (0.83 - 0.28) + 0.43 * (0.30 - 0.71) = 0.15 +0.15 > 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 38%. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 61%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.61 +0.38*0.61 - 0.62*0.53 = 0.52 +0.52 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 38%. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 61%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.61 +0.38*0.61 - 0.62*0.53 = 0.52 +0.52 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 38%. The probability of not kwox and kwoz is 33%. The probability of kwox and kwoz is 23%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.23 +0.23/0.38 - 0.33/0.62 = 0.08 +0.08 > 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 38%. The probability of not kwox and kwoz is 33%. The probability of kwox and kwoz is 23%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.23 +0.23/0.38 - 0.33/0.62 = 0.08 +0.08 > 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 55%. For those who are not swoq and are kwox, the probability of kwoz is 49%. For those who are swoq and are not kwox, the probability of kwoz is 25%. For those who are swoq and are kwox, the probability of kwoz is 95%. The overall probability of swoq is 55%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.55 +P(Y=1 | V1=0, X=1) = 0.49 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.95 +P(V1=1) = 0.55 +0.45 * (0.49 - 0.55) 0.55 * (0.95 - 0.25) = 0.36 +0.36 > 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 59%. For those who are not kwox and are muvy, the probability of kwoz is 22%. For those who are kwox and are not muvy, the probability of kwoz is 43%. For those who are kwox and are muvy, the probability of kwoz is 99%. For those who are not kwox, the probability of muvy is 32%. For those who are kwox, the probability of muvy is 74%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.99 +P(V3=1 | X=0) = 0.32 +P(V3=1 | X=1) = 0.74 +0.74 * (0.99 - 0.43) + 0.32 * (0.22 - 0.59) = 0.54 +0.54 > 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 54%. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 85%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.85 +0.54*0.85 - 0.46*0.47 = 0.58 +0.58 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 54%. The probability of not kwox and kwoz is 22%. The probability of kwox and kwoz is 46%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.46 +0.46/0.54 - 0.22/0.46 = 0.38 +0.38 > 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 8%. For those who are not swoq and are kwox, the probability of kwoz is 76%. For those who are swoq and are not kwox, the probability of kwoz is 6%. For those who are swoq and are kwox, the probability of kwoz is 81%. The overall probability of swoq is 96%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.08 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.06 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.96 +0.04 * (0.76 - 0.08) 0.96 * (0.81 - 0.06) = 0.74 +0.74 > 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 60%. For those who are not kwox, the probability of kwoz is 6%. For those who are kwox, the probability of kwoz is 81%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.81 +0.60*0.81 - 0.40*0.06 = 0.51 +0.51 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 60%. The probability of not kwox and kwoz is 3%. The probability of kwox and kwoz is 49%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.49 +0.49/0.60 - 0.03/0.40 = 0.74 +0.74 > 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 60%. The probability of not kwox and kwoz is 3%. The probability of kwox and kwoz is 49%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.49 +0.49/0.60 - 0.03/0.40 = 0.74 +0.74 > 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 57%. For those who are not swoq and are kwox, the probability of kwoz is 18%. For those who are swoq and are not kwox, the probability of kwoz is 57%. For those who are swoq and are kwox, the probability of kwoz is 17%. The overall probability of swoq is 10%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.57 +P(Y=1 | V1=0, X=1) = 0.18 +P(Y=1 | V1=1, X=0) = 0.57 +P(Y=1 | V1=1, X=1) = 0.17 +P(V1=1) = 0.10 +0.90 * (0.18 - 0.57) 0.10 * (0.17 - 0.57) = -0.40 +-0.40 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 87%. For those who are not kwox and are muvy, the probability of kwoz is 42%. For those who are kwox and are not muvy, the probability of kwoz is 42%. For those who are kwox and are muvy, the probability of kwoz is 5%. For those who are not kwox, the probability of muvy is 66%. For those who are kwox, the probability of muvy is 66%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.66 +0.66 * (0.05 - 0.42) + 0.66 * (0.42 - 0.87) = -0.40 +-0.40 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 87%. For those who are not kwox and are muvy, the probability of kwoz is 42%. For those who are kwox and are not muvy, the probability of kwoz is 42%. For those who are kwox and are muvy, the probability of kwoz is 5%. For those who are not kwox, the probability of muvy is 66%. For those who are kwox, the probability of muvy is 66%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.66 +0.66 * (0.05 - 0.42) + 0.66 * (0.42 - 0.87) = -0.40 +-0.40 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 71%. For those who are swoq and are not kwox, the probability of kwoz is 75%. For those who are swoq and are kwox, the probability of kwoz is 71%. The overall probability of swoq is 0%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.75 +P(Y=1 | V1=1, X=1) = 0.71 +P(V1=1) = 0.00 +1.00 * (0.71 - 0.77) 0.00 * (0.71 - 0.75) = -0.06 +-0.06 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 77%. For those who are not swoq and are kwox, the probability of kwoz is 71%. For those who are swoq and are not kwox, the probability of kwoz is 75%. For those who are swoq and are kwox, the probability of kwoz is 71%. The overall probability of swoq is 0%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.77 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.75 +P(Y=1 | V1=1, X=1) = 0.71 +P(V1=1) = 0.00 +1.00 * (0.71 - 0.77) 0.00 * (0.71 - 0.75) = -0.06 +-0.06 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 82%. For those who are not kwox, the probability of kwoz is 77%. For those who are kwox, the probability of kwoz is 71%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.71 +0.82*0.71 - 0.18*0.77 = 0.73 +0.73 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 82%. For those who are not kwox, the probability of kwoz is 77%. For those who are kwox, the probability of kwoz is 71%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.71 +0.82*0.71 - 0.18*0.77 = 0.73 +0.73 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 82%. The probability of not kwox and kwoz is 14%. The probability of kwox and kwoz is 59%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.59 +0.59/0.82 - 0.14/0.18 = -0.06 +-0.06 < 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 82%. The probability of not kwox and kwoz is 14%. The probability of kwox and kwoz is 59%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.59 +0.59/0.82 - 0.14/0.18 = -0.06 +-0.06 < 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 43%. For those who are not kwox and are muvy, the probability of kwoz is 70%. For those who are kwox and are not muvy, the probability of kwoz is 14%. For those who are kwox and are muvy, the probability of kwoz is 43%. For those who are not kwox, the probability of muvy is 5%. For those who are kwox, the probability of muvy is 11%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.43 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.14 +P(Y=1 | X=1, V3=1) = 0.43 +P(V3=1 | X=0) = 0.05 +P(V3=1 | X=1) = 0.11 +0.11 * (0.43 - 0.14) + 0.05 * (0.70 - 0.43) = -0.29 +-0.29 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 52%. For those who are not kwox, the probability of kwoz is 45%. For those who are kwox, the probability of kwoz is 18%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.18 +0.52*0.18 - 0.48*0.45 = 0.30 +0.30 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 52%. The probability of not kwox and kwoz is 21%. The probability of kwox and kwoz is 9%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.09 +0.09/0.52 - 0.21/0.48 = -0.27 +-0.27 < 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 81%. For those who are not swoq and are kwox, the probability of kwoz is 43%. For those who are swoq and are not kwox, the probability of kwoz is 72%. For those who are swoq and are kwox, the probability of kwoz is 53%. The overall probability of swoq is 8%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.72 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.08 +0.92 * (0.43 - 0.81) 0.08 * (0.53 - 0.72) = -0.36 +-0.36 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 61%. For those who are not kwox and are muvy, the probability of kwoz is 99%. For those who are kwox and are not muvy, the probability of kwoz is 66%. For those who are kwox and are muvy, the probability of kwoz is 24%. For those who are not kwox, the probability of muvy is 54%. For those who are kwox, the probability of muvy is 51%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.61 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.51 +0.51 * (0.24 - 0.66) + 0.54 * (0.99 - 0.61) = -0.36 +-0.36 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 61%. For those who are not kwox and are muvy, the probability of kwoz is 99%. For those who are kwox and are not muvy, the probability of kwoz is 66%. For those who are kwox and are muvy, the probability of kwoz is 24%. For those who are not kwox, the probability of muvy is 54%. For those who are kwox, the probability of muvy is 51%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.61 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.51 +0.51 * (0.24 - 0.66) + 0.54 * (0.99 - 0.61) = -0.36 +-0.36 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 65%. For those who are not kwox, the probability of kwoz is 81%. For those who are kwox, the probability of kwoz is 44%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.44 +0.65*0.44 - 0.35*0.81 = 0.57 +0.57 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 65%. The probability of not kwox and kwoz is 29%. The probability of kwox and kwoz is 29%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.29 +0.29/0.65 - 0.29/0.35 = -0.37 +-0.37 < 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 65%. The probability of not kwox and kwoz is 29%. The probability of kwox and kwoz is 29%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.29 +0.29/0.65 - 0.29/0.35 = -0.37 +-0.37 < 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 65%. For those who are not swoq and are kwox, the probability of kwoz is 90%. For those who are swoq and are not kwox, the probability of kwoz is 90%. For those who are swoq and are kwox, the probability of kwoz is 24%. The overall probability of swoq is 74%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.90 +P(Y=1 | V1=1, X=0) = 0.90 +P(Y=1 | V1=1, X=1) = 0.24 +P(V1=1) = 0.74 +0.26 * (0.90 - 0.65) 0.74 * (0.24 - 0.90) = -0.42 +-0.42 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 65%. For those who are not swoq and are kwox, the probability of kwoz is 90%. For those who are swoq and are not kwox, the probability of kwoz is 90%. For those who are swoq and are kwox, the probability of kwoz is 24%. The overall probability of swoq is 74%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.90 +P(Y=1 | V1=1, X=0) = 0.90 +P(Y=1 | V1=1, X=1) = 0.24 +P(V1=1) = 0.74 +0.26 * (0.90 - 0.65) 0.74 * (0.24 - 0.90) = -0.42 +-0.42 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 93%. For those who are not kwox and are muvy, the probability of kwoz is 62%. For those who are kwox and are not muvy, the probability of kwoz is 17%. For those who are kwox and are muvy, the probability of kwoz is 97%. For those who are not kwox, the probability of muvy is 57%. For those who are kwox, the probability of muvy is 22%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.97 +P(V3=1 | X=0) = 0.57 +P(V3=1 | X=1) = 0.22 +0.22 * (0.97 - 0.17) + 0.57 * (0.62 - 0.93) = -0.52 +-0.52 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 93%. For those who are not kwox and are muvy, the probability of kwoz is 62%. For those who are kwox and are not muvy, the probability of kwoz is 17%. For those who are kwox and are muvy, the probability of kwoz is 97%. For those who are not kwox, the probability of muvy is 57%. For those who are kwox, the probability of muvy is 22%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.97 +P(V3=1 | X=0) = 0.57 +P(V3=1 | X=1) = 0.22 +0.22 * (0.97 - 0.17) + 0.57 * (0.62 - 0.93) = -0.52 +-0.52 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 77%. For those who are not kwox, the probability of kwoz is 75%. For those who are kwox, the probability of kwoz is 34%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.34 +0.77*0.34 - 0.23*0.75 = 0.51 +0.51 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 77%. For those who are not kwox, the probability of kwoz is 75%. For those who are kwox, the probability of kwoz is 34%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.34 +0.77*0.34 - 0.23*0.75 = 0.51 +0.51 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 77%. The probability of not kwox and kwoz is 18%. The probability of kwox and kwoz is 26%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.26 +0.26/0.77 - 0.18/0.23 = -0.41 +-0.41 < 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to muvy. Method 2: We look directly at how kwox correlates with kwoz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 47%. For those who are not swoq and are kwox, the probability of kwoz is 17%. For those who are swoq and are not kwox, the probability of kwoz is 22%. For those who are swoq and are kwox, the probability of kwoz is 52%. The overall probability of swoq is 39%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.47 +P(Y=1 | V1=0, X=1) = 0.17 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.39 +0.61 * (0.17 - 0.47) 0.39 * (0.52 - 0.22) = -0.06 +-0.06 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 47%. For those who are not swoq and are kwox, the probability of kwoz is 17%. For those who are swoq and are not kwox, the probability of kwoz is 22%. For those who are swoq and are kwox, the probability of kwoz is 52%. The overall probability of swoq is 39%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.47 +P(Y=1 | V1=0, X=1) = 0.17 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.39 +0.61 * (0.17 - 0.47) 0.39 * (0.52 - 0.22) = -0.06 +-0.06 < 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27442,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 48%. For those who are not kwox and are muvy, the probability of kwoz is 15%. For those who are kwox and are not muvy, the probability of kwoz is 16%. For those who are kwox and are muvy, the probability of kwoz is 62%. For those who are not kwox, the probability of muvy is 40%. For those who are kwox, the probability of muvy is 17%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.40 +P(V3=1 | X=1) = 0.17 +0.17 * (0.62 - 0.16) + 0.40 * (0.15 - 0.48) = -0.19 +-0.19 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 48%. For those who are not kwox and are muvy, the probability of kwoz is 15%. For those who are kwox and are not muvy, the probability of kwoz is 16%. For those who are kwox and are muvy, the probability of kwoz is 62%. For those who are not kwox, the probability of muvy is 40%. For those who are kwox, the probability of muvy is 17%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.40 +P(V3=1 | X=1) = 0.17 +0.17 * (0.62 - 0.16) + 0.40 * (0.15 - 0.48) = -0.19 +-0.19 < 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 32%. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 24%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.24 +0.32*0.24 - 0.68*0.35 = 0.35 +0.35 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not swoq and are not kwox, the probability of kwoz is 49%. For those who are not swoq and are kwox, the probability of kwoz is 72%. For those who are swoq and are not kwox, the probability of kwoz is 49%. For those who are swoq and are kwox, the probability of kwoz is 73%. The overall probability of swoq is 76%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.49 +P(Y=1 | V1=0, X=1) = 0.72 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.73 +P(V1=1) = 0.76 +0.24 * (0.72 - 0.49) 0.76 * (0.73 - 0.49) = 0.24 +0.24 > 0",diamondcut,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. For those who are not kwox and are not muvy, the probability of kwoz is 61%. For those who are not kwox and are muvy, the probability of kwoz is 25%. For those who are kwox and are not muvy, the probability of kwoz is 100%. For those who are kwox and are muvy, the probability of kwoz is 15%. For those who are not kwox, the probability of muvy is 32%. For those who are kwox, the probability of muvy is 32%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.61 +P(Y=1 | X=0, V3=1) = 0.25 +P(Y=1 | X=1, V3=0) = 1.00 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0) = 0.32 +P(V3=1 | X=1) = 0.32 +0.32 * (0.15 - 1.00) + 0.32 * (0.25 - 0.61) = 0.23 +0.23 > 0",diamondcut,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 48%. For those who are not kwox, the probability of kwoz is 49%. For those who are kwox, the probability of kwoz is 72%.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.72 +0.48*0.72 - 0.52*0.49 = 0.61 +0.61 > 0",diamondcut,nonsense1,1,marginal,P(Y) +27457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. The overall probability of kwox is 48%. The probability of not kwox and kwoz is 25%. The probability of kwox and kwoz is 35%.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.35 +0.35/0.48 - 0.25/0.52 = 0.23 +0.23 > 0",diamondcut,nonsense1,1,correlation,P(Y | X) +27458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to muvy.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 87%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.87 +0.87 - 0.62 = 0.26 +0.26 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 87%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.87 +0.87 - 0.62 = 0.26 +0.26 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 83%. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 87%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.87 +0.83*0.87 - 0.17*0.62 = 0.83 +0.83 > 0",fork,nonsense1,1,marginal,P(Y) +27465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 83%. For those who are not kwox, the probability of kwoz is 62%. For those who are kwox, the probability of kwoz is 87%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.87 +0.83*0.87 - 0.17*0.62 = 0.83 +0.83 > 0",fork,nonsense1,1,marginal,P(Y) +27468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27471,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 60%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.60 +0.60 - 0.04 = 0.56 +0.56 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 60%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.60 +0.60 - 0.04 = 0.56 +0.56 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 60%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.60 +0.60 - 0.04 = 0.56 +0.56 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 14%. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 60%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.60 +0.14*0.60 - 0.86*0.04 = 0.12 +0.12 > 0",fork,nonsense1,1,marginal,P(Y) +27475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 14%. For those who are not kwox, the probability of kwoz is 4%. For those who are kwox, the probability of kwoz is 60%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.60 +0.14*0.60 - 0.86*0.04 = 0.12 +0.12 > 0",fork,nonsense1,1,marginal,P(Y) +27477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 14%. The probability of not kwox and kwoz is 3%. The probability of kwox and kwoz is 8%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.08 +0.08/0.14 - 0.03/0.86 = 0.56 +0.56 > 0",fork,nonsense1,1,correlation,P(Y | X) +27478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 27%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.65 +0.65 - 0.27 = 0.38 +0.38 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27482,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 27%. For those who are kwox, the probability of kwoz is 65%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.65 +0.65 - 0.27 = 0.38 +0.38 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 86%. For those who are not kwox, the probability of kwoz is 27%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.65 +0.86*0.65 - 0.14*0.27 = 0.60 +0.60 > 0",fork,nonsense1,1,marginal,P(Y) +27485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 86%. For those who are not kwox, the probability of kwoz is 27%. For those who are kwox, the probability of kwoz is 65%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.65 +0.86*0.65 - 0.14*0.27 = 0.60 +0.60 > 0",fork,nonsense1,1,marginal,P(Y) +27486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 86%. The probability of not kwox and kwoz is 4%. The probability of kwox and kwoz is 56%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.56 +0.56/0.86 - 0.04/0.14 = 0.38 +0.38 > 0",fork,nonsense1,1,correlation,P(Y | X) +27487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 86%. The probability of not kwox and kwoz is 4%. The probability of kwox and kwoz is 56%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.56 +0.56/0.86 - 0.04/0.14 = 0.38 +0.38 > 0",fork,nonsense1,1,correlation,P(Y | X) +27490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 94%. For those who are kwox, the probability of kwoz is 33%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.33 +0.33 - 0.94 = -0.61 +-0.61 < 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 94%. For those who are kwox, the probability of kwoz is 33%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.33 +0.33 - 0.94 = -0.61 +-0.61 < 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 80%. For those who are not kwox, the probability of kwoz is 94%. For those who are kwox, the probability of kwoz is 33%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.33 +0.80*0.33 - 0.20*0.94 = 0.45 +0.45 > 0",fork,nonsense1,1,marginal,P(Y) +27496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 80%. The probability of not kwox and kwoz is 19%. The probability of kwox and kwoz is 26%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.26 +0.26/0.80 - 0.19/0.20 = -0.61 +-0.61 < 0",fork,nonsense1,1,correlation,P(Y | X) +27497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 80%. The probability of not kwox and kwoz is 19%. The probability of kwox and kwoz is 26%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.26 +0.26/0.80 - 0.19/0.20 = -0.61 +-0.61 < 0",fork,nonsense1,1,correlation,P(Y | X) +27501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 65%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.65 +0.65 - 0.35 = 0.31 +0.31 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 65%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.65 +0.65 - 0.35 = 0.31 +0.31 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 85%. For those who are not kwox, the probability of kwoz is 35%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.65 +0.85*0.65 - 0.15*0.35 = 0.61 +0.61 > 0",fork,nonsense1,1,marginal,P(Y) +27506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 85%. The probability of not kwox and kwoz is 5%. The probability of kwox and kwoz is 56%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.56 +0.56/0.85 - 0.05/0.15 = 0.31 +0.31 > 0",fork,nonsense1,1,correlation,P(Y | X) +27507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 85%. The probability of not kwox and kwoz is 5%. The probability of kwox and kwoz is 56%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.56 +0.56/0.85 - 0.05/0.15 = 0.31 +0.31 > 0",fork,nonsense1,1,correlation,P(Y | X) +27508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 17%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.17 +0.17 - 0.79 = -0.62 +-0.62 < 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 17%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.17 +0.17 - 0.79 = -0.62 +-0.62 < 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 17%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.17 +0.17 - 0.79 = -0.62 +-0.62 < 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 79%. For those who are kwox, the probability of kwoz is 17%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.17 +0.17 - 0.79 = -0.62 +-0.62 < 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 64%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.64 +0.64 - 0.53 = 0.11 +0.11 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 64%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.64 +0.64 - 0.53 = 0.11 +0.11 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 58%. For those who are not kwox, the probability of kwoz is 53%. For those who are kwox, the probability of kwoz is 64%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.64 +0.58*0.64 - 0.42*0.53 = 0.60 +0.60 > 0",fork,nonsense1,1,marginal,P(Y) +27526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 58%. The probability of not kwox and kwoz is 23%. The probability of kwox and kwoz is 37%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.37 +0.37/0.58 - 0.23/0.42 = 0.11 +0.11 > 0",fork,nonsense1,1,correlation,P(Y | X) +27527,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 58%. The probability of not kwox and kwoz is 23%. The probability of kwox and kwoz is 37%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.37 +0.37/0.58 - 0.23/0.42 = 0.11 +0.11 > 0",fork,nonsense1,1,correlation,P(Y | X) +27528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 92%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.92 +0.92 - 0.47 = 0.45 +0.45 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 92%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.92 +0.92 - 0.47 = 0.45 +0.45 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 92%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.92 +0.92 - 0.47 = 0.45 +0.45 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 1%. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 92%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.92 +0.01*0.92 - 0.99*0.47 = 0.47 +0.47 > 0",fork,nonsense1,1,marginal,P(Y) +27535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 1%. For those who are not kwox, the probability of kwoz is 47%. For those who are kwox, the probability of kwoz is 92%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.92 +0.01*0.92 - 0.99*0.47 = 0.47 +0.47 > 0",fork,nonsense1,1,marginal,P(Y) +27537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 1%. The probability of not kwox and kwoz is 46%. The probability of kwox and kwoz is 1%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.01 +0.01/0.01 - 0.46/0.99 = 0.45 +0.45 > 0",fork,nonsense1,1,correlation,P(Y | X) +27539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 59%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.65 +0.65 - 0.59 = 0.06 +0.06 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 59%. For those who are kwox, the probability of kwoz is 65%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.65 +0.65 - 0.59 = 0.06 +0.06 > 0",fork,nonsense1,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 31%. The probability of not kwox and kwoz is 41%. The probability of kwox and kwoz is 20%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.20 +0.20/0.31 - 0.41/0.69 = 0.06 +0.06 > 0",fork,nonsense1,1,correlation,P(Y | X) +27548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look directly at how kwox correlates with kwoz in general. Method 2: We look at this correlation case by case according to swoq.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 77%. For those who are kwox, the probability of kwoz is 91%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.91 +0.91 - 0.77 = 0.14 +0.14 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. For those who are not kwox, the probability of kwoz is 77%. For those who are kwox, the probability of kwoz is 91%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.91 +0.91 - 0.77 = 0.14 +0.14 > 0",fork,nonsense1,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 43%. For those who are not kwox, the probability of kwoz is 77%. For those who are kwox, the probability of kwoz is 91%.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.91 +0.43*0.91 - 0.57*0.77 = 0.83 +0.83 > 0",fork,nonsense1,1,marginal,P(Y) +27556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. The overall probability of kwox is 43%. The probability of not kwox and kwoz is 44%. The probability of kwox and kwoz is 39%.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.39 +0.39/0.43 - 0.44/0.57 = 0.14 +0.14 > 0",fork,nonsense1,1,correlation,P(Y | X) +27558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. Method 1: We look at how kwox correlates with kwoz case by case according to swoq. Method 2: We look directly at how kwox correlates with kwoz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense1,2,backadj,[backdoor adjustment set for Y given X] +27560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 74%. For those who are xevo, the probability of gyzp is 71%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.71 +0.71 - 0.74 = -0.03 +-0.03 < 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 74%. For those who are xevo, the probability of gyzp is 71%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.71 +0.71 - 0.74 = -0.03 +-0.03 < 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 74%. For those who are xevo, the probability of gyzp is 71%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.71 +0.71 - 0.74 = -0.03 +-0.03 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 43%. For those who are not xevo, the probability of gyzp is 74%. For those who are xevo, the probability of gyzp is 71%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.71 +0.43*0.71 - 0.57*0.74 = 0.73 +0.73 > 0",chain,nonsense2,1,marginal,P(Y) +27567,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 43%. For those who are not xevo, the probability of gyzp is 74%. For those who are xevo, the probability of gyzp is 71%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.71 +0.43*0.71 - 0.57*0.74 = 0.73 +0.73 > 0",chain,nonsense2,1,marginal,P(Y) +27568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 43%. The probability of not xevo and gyzp is 42%. The probability of xevo and gyzp is 31%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.31 +0.31/0.43 - 0.42/0.57 = -0.03 +-0.03 < 0",chain,nonsense2,1,correlation,P(Y | X) +27569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 43%. The probability of not xevo and gyzp is 42%. The probability of xevo and gyzp is 31%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.31 +0.31/0.43 - 0.42/0.57 = -0.03 +-0.03 < 0",chain,nonsense2,1,correlation,P(Y | X) +27571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27573,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 43%. For those who are xevo, the probability of gyzp is 49%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.49 +0.49 - 0.43 = 0.06 +0.06 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 43%. For those who are xevo, the probability of gyzp is 49%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.49 +0.49 - 0.43 = 0.06 +0.06 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 43%. For those who are xevo, the probability of gyzp is 49%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.49 +0.49 - 0.43 = 0.06 +0.06 > 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 43%. For those who are xevo, the probability of gyzp is 49%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.49 +0.49 - 0.43 = 0.06 +0.06 > 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 42%. The probability of not xevo and gyzp is 25%. The probability of xevo and gyzp is 21%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.21 +0.21/0.42 - 0.25/0.58 = 0.06 +0.06 > 0",chain,nonsense2,1,correlation,P(Y | X) +27581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 42%. The probability of not xevo and gyzp is 25%. The probability of xevo and gyzp is 21%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.21 +0.21/0.42 - 0.25/0.58 = 0.06 +0.06 > 0",chain,nonsense2,1,correlation,P(Y | X) +27582,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 59%. For those who are xevo, the probability of gyzp is 60%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.60 +0.60 - 0.59 = 0.01 +0.01 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 59%. For those who are xevo, the probability of gyzp is 60%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.60 +0.60 - 0.59 = 0.01 +0.01 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 59%. For those who are xevo, the probability of gyzp is 60%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.60 +0.60 - 0.59 = 0.01 +0.01 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 59%. For those who are xevo, the probability of gyzp is 60%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.60 +0.60 - 0.59 = 0.01 +0.01 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 44%. For those who are not xevo, the probability of gyzp is 59%. For those who are xevo, the probability of gyzp is 60%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.60 +0.44*0.60 - 0.56*0.59 = 0.60 +0.60 > 0",chain,nonsense2,1,marginal,P(Y) +27593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 44%. The probability of not xevo and gyzp is 33%. The probability of xevo and gyzp is 27%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.27 +0.27/0.44 - 0.33/0.56 = 0.01 +0.01 > 0",chain,nonsense2,1,correlation,P(Y | X) +27597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 24%. For those who are xevo, the probability of gyzp is 18%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.18 +0.18 - 0.24 = -0.06 +-0.06 < 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 24%. For those who are xevo, the probability of gyzp is 18%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.18 +0.18 - 0.24 = -0.06 +-0.06 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 61%. For those who are not xevo, the probability of gyzp is 24%. For those who are xevo, the probability of gyzp is 18%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.18 +0.61*0.18 - 0.39*0.24 = 0.20 +0.20 > 0",chain,nonsense2,1,marginal,P(Y) +27604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 61%. The probability of not xevo and gyzp is 9%. The probability of xevo and gyzp is 11%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.11 +0.11/0.61 - 0.09/0.39 = -0.06 +-0.06 < 0",chain,nonsense2,1,correlation,P(Y | X) +27607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 64%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.64 +0.64 - 0.61 = 0.02 +0.02 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 64%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.64 +0.64 - 0.61 = 0.02 +0.02 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 29%. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 64%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.64 +0.29*0.64 - 0.71*0.61 = 0.62 +0.62 > 0",chain,nonsense2,1,marginal,P(Y) +27615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 29%. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 64%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.64 +0.29*0.64 - 0.71*0.61 = 0.62 +0.62 > 0",chain,nonsense2,1,marginal,P(Y) +27616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 29%. The probability of not xevo and gyzp is 44%. The probability of xevo and gyzp is 18%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.29 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.18 +0.18/0.29 - 0.44/0.71 = 0.02 +0.02 > 0",chain,nonsense2,1,correlation,P(Y | X) +27618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 84%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.84 - 0.85 = -0.02 +-0.02 < 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 84%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.84 - 0.85 = -0.02 +-0.02 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 84%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.84 - 0.85 = -0.02 +-0.02 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 88%. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 84%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.88*0.84 - 0.12*0.85 = 0.84 +0.84 > 0",chain,nonsense2,1,marginal,P(Y) +27627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 88%. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 84%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.88*0.84 - 0.12*0.85 = 0.84 +0.84 > 0",chain,nonsense2,1,marginal,P(Y) +27629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 88%. The probability of not xevo and gyzp is 11%. The probability of xevo and gyzp is 73%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.73 +0.73/0.88 - 0.11/0.12 = -0.02 +-0.02 < 0",chain,nonsense2,1,correlation,P(Y | X) +27630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.92 - 0.80 = 0.12 +0.12 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27633,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.92 - 0.80 = 0.12 +0.12 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.92 - 0.80 = 0.12 +0.12 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.92 - 0.80 = 0.12 +0.12 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.92 - 0.80 = 0.12 +0.12 > 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 50%. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.50*0.92 - 0.50*0.80 = 0.86 +0.86 > 0",chain,nonsense2,1,marginal,P(Y) +27639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 50%. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 92%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.92 +0.50*0.92 - 0.50*0.80 = 0.86 +0.86 > 0",chain,nonsense2,1,marginal,P(Y) +27640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 50%. The probability of not xevo and gyzp is 40%. The probability of xevo and gyzp is 46%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.46 +0.46/0.50 - 0.40/0.50 = 0.12 +0.12 > 0",chain,nonsense2,1,correlation,P(Y | X) +27641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 50%. The probability of not xevo and gyzp is 40%. The probability of xevo and gyzp is 46%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.46 +0.46/0.50 - 0.40/0.50 = 0.12 +0.12 > 0",chain,nonsense2,1,correlation,P(Y | X) +27642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 70%. For those who are xevo, the probability of gyzp is 55%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.55 +0.55 - 0.70 = -0.15 +-0.15 < 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 70%. For those who are xevo, the probability of gyzp is 55%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.55 +0.55 - 0.70 = -0.15 +-0.15 < 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 70%. For those who are xevo, the probability of gyzp is 55%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.55 +0.55 - 0.70 = -0.15 +-0.15 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 70%. For those who are xevo, the probability of gyzp is 55%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.55 +0.55 - 0.70 = -0.15 +-0.15 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 22%. For those who are xevo, the probability of gyzp is 11%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.11 +0.11 - 0.22 = -0.11 +-0.11 < 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 22%. For those who are xevo, the probability of gyzp is 11%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.11 +0.11 - 0.22 = -0.11 +-0.11 < 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 22%. For those who are xevo, the probability of gyzp is 11%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.11 +0.11 - 0.22 = -0.11 +-0.11 < 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 64%. For those who are not xevo, the probability of gyzp is 22%. For those who are xevo, the probability of gyzp is 11%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.11 +0.64*0.11 - 0.36*0.22 = 0.15 +0.15 > 0",chain,nonsense2,1,marginal,P(Y) +27667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.34 - 0.20 = 0.15 +0.15 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.34 - 0.20 = 0.15 +0.15 > 0",chain,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.34 - 0.20 = 0.15 +0.15 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.34 - 0.20 = 0.15 +0.15 > 0",chain,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.34 - 0.20 = 0.15 +0.15 > 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.34 - 0.20 = 0.15 +0.15 > 0",chain,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 72%. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 34%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.34 +0.72*0.34 - 0.28*0.20 = 0.30 +0.30 > 0",chain,nonsense2,1,marginal,P(Y) +27676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 72%. The probability of not xevo and gyzp is 6%. The probability of xevo and gyzp is 25%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.25 +0.25/0.72 - 0.06/0.28 = 0.15 +0.15 > 0",chain,nonsense2,1,correlation,P(Y | X) +27677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. The overall probability of xevo is 72%. The probability of not xevo and gyzp is 6%. The probability of xevo and gyzp is 25%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.25 +0.25/0.72 - 0.06/0.28 = 0.15 +0.15 > 0",chain,nonsense2,1,correlation,P(Y | X) +27678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 91%. For those who are not xevo, the probability of gyzp is 99%. For those who are xevo, the probability of gyzp is 99%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.99 +P(Y=1 | X=1) = 0.99 +0.91*0.99 - 0.09*0.99 = 0.99 +0.99 > 0",collision,nonsense2,1,marginal,P(Y) +27684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is -0.01.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 91%. For those who are not xevo and are not tijv, the probability of gyzp is 99%. For those who are not xevo and are tijv, the probability of gyzp is 99%. For those who are xevo and are not tijv, the probability of gyzp is 100%. For those who are xevo and are tijv, the probability of gyzp is 98%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.91 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 1.00 +P(Y=1 | X=1, V3=1) = 0.98 +0.98 - (0.91*0.98 + 0.09*0.99) = -0.00 +0.00 = 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 86%. For those who are not xevo, the probability of gyzp is 20%. For those who are xevo, the probability of gyzp is 20%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.20 +0.86*0.20 - 0.14*0.20 = 0.20 +0.20 > 0",collision,nonsense2,1,marginal,P(Y) +27695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 86%. For those who are not xevo and are not tijv, the probability of gyzp is 30%. For those who are not xevo and are tijv, the probability of gyzp is 2%. For those who are xevo and are not tijv, the probability of gyzp is 23%. For those who are xevo and are tijv, the probability of gyzp is 18%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.86 +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.18 +0.18 - (0.86*0.18 + 0.14*0.02) = 0.01 +0.01 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 86%. For those who are not xevo and are not tijv, the probability of gyzp is 30%. For those who are not xevo and are tijv, the probability of gyzp is 2%. For those who are xevo and are not tijv, the probability of gyzp is 23%. For those who are xevo and are tijv, the probability of gyzp is 18%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.86 +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.18 +0.18 - (0.86*0.18 + 0.14*0.02) = 0.01 +0.01 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 3%. For those who are not xevo, the probability of gyzp is 96%. For those who are xevo, the probability of gyzp is 96%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.96 +0.03*0.96 - 0.97*0.96 = 0.96 +0.96 > 0",collision,nonsense2,1,marginal,P(Y) +27701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 3%. For those who are not xevo, the probability of gyzp is 96%. For those who are xevo, the probability of gyzp is 96%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.96 +0.03*0.96 - 0.97*0.96 = 0.96 +0.96 > 0",collision,nonsense2,1,marginal,P(Y) +27704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.29.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 62%. For those who are not xevo, the probability of gyzp is 65%. For those who are xevo, the probability of gyzp is 65%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.65 +0.62*0.65 - 0.38*0.65 = 0.65 +0.65 > 0",collision,nonsense2,1,marginal,P(Y) +27714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.43.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27718,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 62%. For those who are not xevo and are not tijv, the probability of gyzp is 84%. For those who are not xevo and are tijv, the probability of gyzp is 22%. For those who are xevo and are not tijv, the probability of gyzp is 66%. For those who are xevo and are tijv, the probability of gyzp is 64%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.62 +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.64 +0.64 - (0.62*0.64 + 0.38*0.22) = 0.22 +0.22 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 62%. For those who are not xevo and are not tijv, the probability of gyzp is 84%. For those who are not xevo and are tijv, the probability of gyzp is 22%. For those who are xevo and are not tijv, the probability of gyzp is 66%. For those who are xevo and are tijv, the probability of gyzp is 64%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.62 +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.64 +0.64 - (0.62*0.64 + 0.38*0.22) = 0.22 +0.22 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 55%. For those who are not xevo, the probability of gyzp is 41%. For those who are xevo, the probability of gyzp is 41%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.41 +0.55*0.41 - 0.45*0.41 = 0.41 +0.41 > 0",collision,nonsense2,1,marginal,P(Y) +27724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.14.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 55%. For those who are not xevo and are not tijv, the probability of gyzp is 57%. For those who are not xevo and are tijv, the probability of gyzp is 13%. For those who are xevo and are not tijv, the probability of gyzp is 82%. For those who are xevo and are tijv, the probability of gyzp is 26%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.26 +0.26 - (0.55*0.26 + 0.45*0.13) = 0.04 +0.04 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 56%. For those who are not xevo, the probability of gyzp is 51%. For those who are xevo, the probability of gyzp is 51%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.51 +0.56*0.51 - 0.44*0.51 = 0.51 +0.51 > 0",collision,nonsense2,1,marginal,P(Y) +27731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 56%. For those who are not xevo, the probability of gyzp is 51%. For those who are xevo, the probability of gyzp is 51%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.51 +0.56*0.51 - 0.44*0.51 = 0.51 +0.51 > 0",collision,nonsense2,1,marginal,P(Y) +27734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is -0.35.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is -0.35.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 56%. For those who are not xevo and are not tijv, the probability of gyzp is 42%. For those who are not xevo and are tijv, the probability of gyzp is 74%. For those who are xevo and are not tijv, the probability of gyzp is 70%. For those who are xevo and are tijv, the probability of gyzp is 36%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.56 +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.36 +0.36 - (0.56*0.36 + 0.44*0.74) = -0.11 +-0.11 < 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 56%. For those who are not xevo and are not tijv, the probability of gyzp is 42%. For those who are not xevo and are tijv, the probability of gyzp is 74%. For those who are xevo and are not tijv, the probability of gyzp is 70%. For those who are xevo and are tijv, the probability of gyzp is 36%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.56 +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.36 +0.36 - (0.56*0.36 + 0.44*0.74) = -0.11 +-0.11 < 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 31%. For those who are not xevo, the probability of gyzp is 37%. For those who are xevo, the probability of gyzp is 37%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.37 +0.31*0.37 - 0.69*0.37 = 0.37 +0.37 > 0",collision,nonsense2,1,marginal,P(Y) +27747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is -0.48.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.02.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 11%. For those who are not xevo and are not tijv, the probability of gyzp is 91%. For those who are not xevo and are tijv, the probability of gyzp is 53%. For those who are xevo and are not tijv, the probability of gyzp is 94%. For those who are xevo and are tijv, the probability of gyzp is 56%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.11 +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.56 +0.56 - (0.11*0.56 + 0.89*0.53) = 0.03 +0.03 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 43%. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 85%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.85 +0.43*0.85 - 0.57*0.85 = 0.85 +0.85 > 0",collision,nonsense2,1,marginal,P(Y) +27765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.26.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.26.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 43%. For those who are not xevo and are not tijv, the probability of gyzp is 94%. For those who are not xevo and are tijv, the probability of gyzp is 83%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 99%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.43 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.99 +0.99 - (0.43*0.99 + 0.57*0.83) = 0.10 +0.10 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 43%. For those who are not xevo and are not tijv, the probability of gyzp is 94%. For those who are not xevo and are tijv, the probability of gyzp is 83%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 99%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.43 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.99 +0.99 - (0.43*0.99 + 0.57*0.83) = 0.10 +0.10 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 3%. For those who are not xevo, the probability of gyzp is 36%. For those who are xevo, the probability of gyzp is 36%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.36 +0.03*0.36 - 0.97*0.36 = 0.36 +0.36 > 0",collision,nonsense2,1,marginal,P(Y) +27771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 3%. For those who are not xevo, the probability of gyzp is 36%. For those who are xevo, the probability of gyzp is 36%.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.36 +0.03*0.36 - 0.97*0.36 = 0.36 +0.36 > 0",collision,nonsense2,1,marginal,P(Y) +27775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.04.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. For those who are tijv, the correlation between xevo and gyzp is 0.04.",yes,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense2,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +27779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Gyzp has a direct effect on tijv. The overall probability of xevo is 3%. For those who are not xevo and are not tijv, the probability of gyzp is 45%. For those who are not xevo and are tijv, the probability of gyzp is 33%. For those who are xevo and are not tijv, the probability of gyzp is 29%. For those who are xevo and are tijv, the probability of gyzp is 47%.",no,"Let Y = gyzp; X = xevo; V3 = tijv. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.47 +0.47 - (0.03*0.47 + 0.97*0.33) = 0.14 +0.14 > 0",collision,nonsense2,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +27780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 90%. For those who are not tijv and are xevo, the probability of gyzp is 42%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 82%. The overall probability of tijv is 68%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.82 +P(V1=1) = 0.68 +0.32 * (0.42 - 0.90) + 0.68 * (0.82 - 0.17) = 0.29 +0.29 > 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 90%. For those who are not tijv and are xevo, the probability of gyzp is 42%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 82%. The overall probability of tijv is 68%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.82 +P(V1=1) = 0.68 +0.32 * (0.42 - 0.90) + 0.68 * (0.82 - 0.17) = 0.29 +0.29 > 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 90%. For those who are not tijv and are xevo, the probability of gyzp is 42%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 82%. The overall probability of tijv is 68%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.82 +P(V1=1) = 0.68 +0.32 * (0.42 - 0.90) + 0.68 * (0.82 - 0.17) = 0.22 +0.22 > 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 90%. For those who are not tijv and are xevo, the probability of gyzp is 42%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 82%. The overall probability of tijv is 68%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.82 +P(V1=1) = 0.68 +0.32 * (0.42 - 0.90) + 0.68 * (0.82 - 0.17) = 0.22 +0.22 > 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 48%. For those who are not xevo, the probability of gyzp is 36%. For those who are xevo, the probability of gyzp is 67%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.67 +0.48*0.67 - 0.52*0.36 = 0.54 +0.54 > 0",confounding,nonsense2,1,marginal,P(Y) +27786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 48%. The probability of not xevo and gyzp is 19%. The probability of xevo and gyzp is 32%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.32 +0.32/0.48 - 0.19/0.52 = 0.31 +0.31 > 0",confounding,nonsense2,1,correlation,P(Y | X) +27787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 48%. The probability of not xevo and gyzp is 19%. The probability of xevo and gyzp is 32%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.32 +0.32/0.48 - 0.19/0.52 = 0.31 +0.31 > 0",confounding,nonsense2,1,correlation,P(Y | X) +27788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 74%. For those who are not tijv and are xevo, the probability of gyzp is 23%. For those who are tijv and are not xevo, the probability of gyzp is 90%. For those who are tijv and are xevo, the probability of gyzp is 77%. The overall probability of tijv is 25%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.74 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.90 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.25 +0.75 * (0.23 - 0.74) + 0.25 * (0.77 - 0.90) = -0.42 +-0.42 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 74%. For those who are not tijv and are xevo, the probability of gyzp is 23%. For those who are tijv and are not xevo, the probability of gyzp is 90%. For those who are tijv and are xevo, the probability of gyzp is 77%. The overall probability of tijv is 25%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.74 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.90 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.25 +0.75 * (0.23 - 0.74) + 0.25 * (0.77 - 0.90) = -0.42 +-0.42 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 45%. For those who are not xevo, the probability of gyzp is 82%. For those who are xevo, the probability of gyzp is 24%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.24 +0.45*0.24 - 0.55*0.82 = 0.60 +0.60 > 0",confounding,nonsense2,1,marginal,P(Y) +27799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 32%. For those who are not tijv and are xevo, the probability of gyzp is 19%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 17%. The overall probability of tijv is 8%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.32 +P(Y=1 | V1=0, X=1) = 0.19 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.17 +P(V1=1) = 0.08 +0.92 * (0.19 - 0.32) + 0.08 * (0.17 - 0.17) = -0.12 +-0.12 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 32%. For those who are not tijv and are xevo, the probability of gyzp is 19%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 17%. The overall probability of tijv is 8%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.32 +P(Y=1 | V1=0, X=1) = 0.19 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.17 +P(V1=1) = 0.08 +0.92 * (0.19 - 0.32) + 0.08 * (0.17 - 0.17) = -0.12 +-0.12 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 32%. For those who are not tijv and are xevo, the probability of gyzp is 19%. For those who are tijv and are not xevo, the probability of gyzp is 17%. For those who are tijv and are xevo, the probability of gyzp is 17%. The overall probability of tijv is 8%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.32 +P(Y=1 | V1=0, X=1) = 0.19 +P(Y=1 | V1=1, X=0) = 0.17 +P(Y=1 | V1=1, X=1) = 0.17 +P(V1=1) = 0.08 +0.92 * (0.19 - 0.32) + 0.08 * (0.17 - 0.17) = -0.07 +-0.07 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 11%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 18%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.18 +0.11*0.18 - 0.89*0.32 = 0.30 +0.30 > 0",confounding,nonsense2,1,marginal,P(Y) +27808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 55%. For those who are not xevo, the probability of gyzp is 13%. For those who are xevo, the probability of gyzp is 54%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.54 +0.55*0.54 - 0.45*0.13 = 0.40 +0.40 > 0",confounding,nonsense2,1,marginal,P(Y) +27815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 55%. For those who are not xevo, the probability of gyzp is 13%. For those who are xevo, the probability of gyzp is 54%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.54 +0.55*0.54 - 0.45*0.13 = 0.40 +0.40 > 0",confounding,nonsense2,1,marginal,P(Y) +27817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 55%. The probability of not xevo and gyzp is 6%. The probability of xevo and gyzp is 30%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.30 +0.30/0.55 - 0.06/0.45 = 0.41 +0.41 > 0",confounding,nonsense2,1,correlation,P(Y | X) +27818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27819,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 6%. For those who are not tijv and are xevo, the probability of gyzp is 51%. For those who are tijv and are not xevo, the probability of gyzp is 11%. For those who are tijv and are xevo, the probability of gyzp is 81%. The overall probability of tijv is 65%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.06 +P(Y=1 | V1=0, X=1) = 0.51 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.65 +0.35 * (0.51 - 0.06) + 0.65 * (0.81 - 0.11) = 0.61 +0.61 > 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 6%. For those who are not tijv and are xevo, the probability of gyzp is 51%. For those who are tijv and are not xevo, the probability of gyzp is 11%. For those who are tijv and are xevo, the probability of gyzp is 81%. The overall probability of tijv is 65%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.06 +P(Y=1 | V1=0, X=1) = 0.51 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.65 +0.35 * (0.51 - 0.06) + 0.65 * (0.81 - 0.11) = 0.66 +0.66 > 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 6%. For those who are not tijv and are xevo, the probability of gyzp is 51%. For those who are tijv and are not xevo, the probability of gyzp is 11%. For those who are tijv and are xevo, the probability of gyzp is 81%. The overall probability of tijv is 65%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.06 +P(Y=1 | V1=0, X=1) = 0.51 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.65 +0.35 * (0.51 - 0.06) + 0.65 * (0.81 - 0.11) = 0.66 +0.66 > 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 64%. For those who are not xevo, the probability of gyzp is 7%. For those who are xevo, the probability of gyzp is 77%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.77 +0.64*0.77 - 0.36*0.07 = 0.49 +0.49 > 0",confounding,nonsense2,1,marginal,P(Y) +27826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 64%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 49%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.49 +0.49/0.64 - 0.03/0.36 = 0.69 +0.69 > 0",confounding,nonsense2,1,correlation,P(Y | X) +27827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 64%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 49%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.49 +0.49/0.64 - 0.03/0.36 = 0.69 +0.69 > 0",confounding,nonsense2,1,correlation,P(Y | X) +27829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 68%. For those who are not tijv and are xevo, the probability of gyzp is 63%. For those who are tijv and are not xevo, the probability of gyzp is 88%. For those who are tijv and are xevo, the probability of gyzp is 44%. The overall probability of tijv is 82%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.63 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.44 +P(V1=1) = 0.82 +0.18 * (0.63 - 0.68) + 0.82 * (0.44 - 0.88) = -0.12 +-0.12 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 68%. For those who are not tijv and are xevo, the probability of gyzp is 63%. For those who are tijv and are not xevo, the probability of gyzp is 88%. For those who are tijv and are xevo, the probability of gyzp is 44%. The overall probability of tijv is 82%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.63 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.44 +P(V1=1) = 0.82 +0.18 * (0.63 - 0.68) + 0.82 * (0.44 - 0.88) = -0.12 +-0.12 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 10%. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 59%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.59 +0.10*0.59 - 0.90*0.85 = 0.81 +0.81 > 0",confounding,nonsense2,1,marginal,P(Y) +27836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 10%. The probability of not xevo and gyzp is 77%. The probability of xevo and gyzp is 6%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.77 +P(Y=1, X=1=1) = 0.06 +0.06/0.10 - 0.77/0.90 = -0.26 +-0.26 < 0",confounding,nonsense2,1,correlation,P(Y | X) +27837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 10%. The probability of not xevo and gyzp is 77%. The probability of xevo and gyzp is 6%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.77 +P(Y=1, X=1=1) = 0.06 +0.06/0.10 - 0.77/0.90 = -0.26 +-0.26 < 0",confounding,nonsense2,1,correlation,P(Y | X) +27838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27839,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 81%. For those who are not tijv and are xevo, the probability of gyzp is 53%. For those who are tijv and are not xevo, the probability of gyzp is 77%. For those who are tijv and are xevo, the probability of gyzp is 79%. The overall probability of tijv is 68%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.53 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.68 +0.32 * (0.53 - 0.81) + 0.68 * (0.79 - 0.77) = -0.08 +-0.08 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 81%. For those who are not tijv and are xevo, the probability of gyzp is 53%. For those who are tijv and are not xevo, the probability of gyzp is 77%. For those who are tijv and are xevo, the probability of gyzp is 79%. The overall probability of tijv is 68%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.53 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.68 +0.32 * (0.53 - 0.81) + 0.68 * (0.79 - 0.77) = -0.08 +-0.08 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 81%. For those who are not tijv and are xevo, the probability of gyzp is 53%. For those who are tijv and are not xevo, the probability of gyzp is 77%. For those who are tijv and are xevo, the probability of gyzp is 79%. The overall probability of tijv is 68%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.53 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.68 +0.32 * (0.53 - 0.81) + 0.68 * (0.79 - 0.77) = -0.20 +-0.20 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 81%. For those who are not tijv and are xevo, the probability of gyzp is 53%. For those who are tijv and are not xevo, the probability of gyzp is 77%. For those who are tijv and are xevo, the probability of gyzp is 79%. The overall probability of tijv is 68%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.81 +P(Y=1 | V1=0, X=1) = 0.53 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.79 +P(V1=1) = 0.68 +0.32 * (0.53 - 0.81) + 0.68 * (0.79 - 0.77) = -0.20 +-0.20 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 38%. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 60%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.60 +0.38*0.60 - 0.62*0.78 = 0.75 +0.75 > 0",confounding,nonsense2,1,marginal,P(Y) +27847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 38%. The probability of not xevo and gyzp is 48%. The probability of xevo and gyzp is 23%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.23 +0.23/0.38 - 0.48/0.62 = -0.18 +-0.18 < 0",confounding,nonsense2,1,correlation,P(Y | X) +27849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 46%. For those who are not tijv and are xevo, the probability of gyzp is 20%. For those who are tijv and are not xevo, the probability of gyzp is 41%. For those who are tijv and are xevo, the probability of gyzp is 93%. The overall probability of tijv is 44%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.46 +P(Y=1 | V1=0, X=1) = 0.20 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.93 +P(V1=1) = 0.44 +0.56 * (0.20 - 0.46) + 0.44 * (0.93 - 0.41) = 0.08 +0.08 > 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 46%. For those who are not tijv and are xevo, the probability of gyzp is 20%. For those who are tijv and are not xevo, the probability of gyzp is 41%. For those who are tijv and are xevo, the probability of gyzp is 93%. The overall probability of tijv is 44%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.46 +P(Y=1 | V1=0, X=1) = 0.20 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.93 +P(V1=1) = 0.44 +0.56 * (0.20 - 0.46) + 0.44 * (0.93 - 0.41) = -0.24 +-0.24 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 46%. For those who are not tijv and are xevo, the probability of gyzp is 20%. For those who are tijv and are not xevo, the probability of gyzp is 41%. For those who are tijv and are xevo, the probability of gyzp is 93%. The overall probability of tijv is 44%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.46 +P(Y=1 | V1=0, X=1) = 0.20 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.93 +P(V1=1) = 0.44 +0.56 * (0.20 - 0.46) + 0.44 * (0.93 - 0.41) = -0.24 +-0.24 < 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 42%. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 22%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.22 +0.42*0.22 - 0.58*0.42 = 0.47 +0.47 > 0",confounding,nonsense2,1,marginal,P(Y) +27855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 42%. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 22%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.22 +0.42*0.22 - 0.58*0.42 = 0.47 +0.47 > 0",confounding,nonsense2,1,marginal,P(Y) +27857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 42%. The probability of not xevo and gyzp is 24%. The probability of xevo and gyzp is 9%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.09 +0.09/0.42 - 0.24/0.58 = -0.20 +-0.20 < 0",confounding,nonsense2,1,correlation,P(Y | X) +27858,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 63%. For those who are not tijv and are xevo, the probability of gyzp is 95%. For those who are tijv and are not xevo, the probability of gyzp is 96%. For those who are tijv and are xevo, the probability of gyzp is 34%. The overall probability of tijv is 86%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.96 +P(Y=1 | V1=1, X=1) = 0.34 +P(V1=1) = 0.86 +0.14 * (0.95 - 0.63) + 0.86 * (0.34 - 0.96) = -0.49 +-0.49 < 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 56%. For those who are not xevo, the probability of gyzp is 91%. For those who are xevo, the probability of gyzp is 42%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.42 +0.56*0.42 - 0.44*0.91 = 0.64 +0.64 > 0",confounding,nonsense2,1,marginal,P(Y) +27865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 56%. For those who are not xevo, the probability of gyzp is 91%. For those who are xevo, the probability of gyzp is 42%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.42 +0.56*0.42 - 0.44*0.91 = 0.64 +0.64 > 0",confounding,nonsense2,1,marginal,P(Y) +27866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 56%. The probability of not xevo and gyzp is 40%. The probability of xevo and gyzp is 23%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.23 +0.23/0.56 - 0.40/0.44 = -0.49 +-0.49 < 0",confounding,nonsense2,1,correlation,P(Y | X) +27867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 56%. The probability of not xevo and gyzp is 40%. The probability of xevo and gyzp is 23%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.23 +0.23/0.56 - 0.40/0.44 = -0.49 +-0.49 < 0",confounding,nonsense2,1,correlation,P(Y | X) +27868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 15%. For those who are not tijv and are xevo, the probability of gyzp is 30%. For those who are tijv and are not xevo, the probability of gyzp is 15%. For those who are tijv and are xevo, the probability of gyzp is 66%. The overall probability of tijv is 79%.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.15 +P(Y=1 | V1=0, X=1) = 0.30 +P(Y=1 | V1=1, X=0) = 0.15 +P(Y=1 | V1=1, X=1) = 0.66 +P(V1=1) = 0.79 +0.21 * (0.30 - 0.15) + 0.79 * (0.66 - 0.15) = 0.44 +0.44 > 0",confounding,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 15%. For those who are not tijv and are xevo, the probability of gyzp is 30%. For those who are tijv and are not xevo, the probability of gyzp is 15%. For those who are tijv and are xevo, the probability of gyzp is 66%. The overall probability of tijv is 79%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.15 +P(Y=1 | V1=0, X=1) = 0.30 +P(Y=1 | V1=1, X=0) = 0.15 +P(Y=1 | V1=1, X=1) = 0.66 +P(V1=1) = 0.79 +0.21 * (0.30 - 0.15) + 0.79 * (0.66 - 0.15) = 0.45 +0.45 > 0",confounding,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. The overall probability of xevo is 42%. The probability of not xevo and gyzp is 9%. The probability of xevo and gyzp is 25%.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.25 +0.25/0.42 - 0.09/0.58 = 0.45 +0.45 > 0",confounding,nonsense2,1,correlation,P(Y | X) +27880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 80%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.80 +0.80 - 0.17 = 0.63 +0.63 > 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 80%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.80 +0.80 - 0.17 = 0.63 +0.63 > 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 80%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.80 +0.80 - 0.17 = 0.63 +0.63 > 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 80%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.80 +0.80 - 0.17 = 0.63 +0.63 > 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 51%. For those who are xevo and are not tijv, the probability of gyzp is 80%. For those who are xevo and are tijv, the probability of gyzp is 80%. For those who are not xevo, the probability of tijv is 33%. For those who are xevo, the probability of tijv is 40%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.80 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.40 +0.40 * (0.51 - 0.00)+ 0.33 * (0.80 - 0.80)= 0.04 +0.04 > 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 51%. For those who are xevo and are not tijv, the probability of gyzp is 80%. For those who are xevo and are tijv, the probability of gyzp is 80%. For those who are not xevo, the probability of tijv is 33%. For those who are xevo, the probability of tijv is 40%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.80 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.40 +0.40 * (0.51 - 0.00)+ 0.33 * (0.80 - 0.80)= 0.04 +0.04 > 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 51%. For those who are xevo and are not tijv, the probability of gyzp is 80%. For those who are xevo and are tijv, the probability of gyzp is 80%. For those who are not xevo, the probability of tijv is 33%. For those who are xevo, the probability of tijv is 40%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.80 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.40 +0.33 * (0.80 - 0.80) + 0.40 * (0.51 - 0.00) = 0.63 +0.63 > 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 51%. For those who are xevo and are not tijv, the probability of gyzp is 80%. For those who are xevo and are tijv, the probability of gyzp is 80%. For those who are not xevo, the probability of tijv is 33%. For those who are xevo, the probability of tijv is 40%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.80 +P(Y=1 | X=1, V2=1) = 0.80 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.40 +0.33 * (0.80 - 0.80) + 0.40 * (0.51 - 0.00) = 0.63 +0.63 > 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 56%. The probability of not xevo and gyzp is 7%. The probability of xevo and gyzp is 45%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.45 +0.45/0.56 - 0.07/0.44 = 0.63 +0.63 > 0",mediation,nonsense2,1,correlation,P(Y | X) +27892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 16%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.16 +0.16 - 0.57 = -0.41 +-0.41 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 16%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.16 +0.16 - 0.57 = -0.41 +-0.41 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 16%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.16 +0.16 - 0.57 = -0.41 +-0.41 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 66%. For those who are xevo and are not tijv, the probability of gyzp is 86%. For those who are xevo and are tijv, the probability of gyzp is 2%. For those who are not xevo, the probability of tijv is 87%. For those who are xevo, the probability of tijv is 83%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.66 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.02 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.83 +0.83 * (0.66 - 0.00)+ 0.87 * (0.02 - 0.86)= -0.02 +-0.02 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 66%. For those who are xevo and are not tijv, the probability of gyzp is 86%. For those who are xevo and are tijv, the probability of gyzp is 2%. For those who are not xevo, the probability of tijv is 87%. For those who are xevo, the probability of tijv is 83%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.66 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.02 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.83 +0.87 * (0.02 - 0.86) + 0.83 * (0.66 - 0.00) = -0.44 +-0.44 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 0%. For those who are not xevo and are tijv, the probability of gyzp is 66%. For those who are xevo and are not tijv, the probability of gyzp is 86%. For those who are xevo and are tijv, the probability of gyzp is 2%. For those who are not xevo, the probability of tijv is 87%. For those who are xevo, the probability of tijv is 83%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.66 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.02 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.83 +0.87 * (0.02 - 0.86) + 0.83 * (0.66 - 0.00) = -0.44 +-0.44 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 88%. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 16%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.16 +0.88*0.16 - 0.12*0.57 = 0.20 +0.20 > 0",mediation,nonsense2,1,marginal,P(Y) +27904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 88%. The probability of not xevo and gyzp is 7%. The probability of xevo and gyzp is 14%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.14 +0.14/0.88 - 0.07/0.12 = -0.41 +-0.41 < 0",mediation,nonsense2,1,correlation,P(Y | X) +27905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 88%. The probability of not xevo and gyzp is 7%. The probability of xevo and gyzp is 14%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.14 +0.14/0.88 - 0.07/0.12 = -0.41 +-0.41 < 0",mediation,nonsense2,1,correlation,P(Y | X) +27906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 39%. For those who are xevo, the probability of gyzp is 43%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.43 +0.43 - 0.39 = 0.04 +0.04 > 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 39%. For those who are xevo, the probability of gyzp is 43%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.43 +0.43 - 0.39 = 0.04 +0.04 > 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 39%. For those who are xevo, the probability of gyzp is 43%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.43 +0.43 - 0.39 = 0.04 +0.04 > 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 11%. For those who are not xevo and are tijv, the probability of gyzp is 45%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 84%. For those who are not xevo, the probability of tijv is 82%. For those who are xevo, the probability of tijv is 3%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.11 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.42 +P(Y=1 | X=1, V2=1) = 0.84 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.03 +0.03 * (0.45 - 0.11)+ 0.82 * (0.84 - 0.42)= -0.27 +-0.27 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 11%. For those who are not xevo and are tijv, the probability of gyzp is 45%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 84%. For those who are not xevo, the probability of tijv is 82%. For those who are xevo, the probability of tijv is 3%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.11 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.42 +P(Y=1 | X=1, V2=1) = 0.84 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.03 +0.03 * (0.45 - 0.11)+ 0.82 * (0.84 - 0.42)= -0.27 +-0.27 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 11%. For those who are not xevo and are tijv, the probability of gyzp is 45%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 84%. For those who are not xevo, the probability of tijv is 82%. For those who are xevo, the probability of tijv is 3%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.11 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.42 +P(Y=1 | X=1, V2=1) = 0.84 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.03 +0.82 * (0.84 - 0.42) + 0.03 * (0.45 - 0.11) = 0.37 +0.37 > 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 11%. For those who are not xevo and are tijv, the probability of gyzp is 45%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 84%. For those who are not xevo, the probability of tijv is 82%. For those who are xevo, the probability of tijv is 3%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.11 +P(Y=1 | X=0, V2=1) = 0.45 +P(Y=1 | X=1, V2=0) = 0.42 +P(Y=1 | X=1, V2=1) = 0.84 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.03 +0.82 * (0.84 - 0.42) + 0.03 * (0.45 - 0.11) = 0.37 +0.37 > 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 2%. For those who are not xevo, the probability of gyzp is 39%. For those who are xevo, the probability of gyzp is 43%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.43 +0.02*0.43 - 0.98*0.39 = 0.40 +0.40 > 0",mediation,nonsense2,1,marginal,P(Y) +27917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 2%. For those who are not xevo, the probability of gyzp is 39%. For those who are xevo, the probability of gyzp is 43%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.43 +0.02*0.43 - 0.98*0.39 = 0.40 +0.40 > 0",mediation,nonsense2,1,marginal,P(Y) +27918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 2%. The probability of not xevo and gyzp is 38%. The probability of xevo and gyzp is 1%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.38/0.98 = 0.04 +0.04 > 0",mediation,nonsense2,1,correlation,P(Y | X) +27919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 2%. The probability of not xevo and gyzp is 38%. The probability of xevo and gyzp is 1%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.38/0.98 = 0.04 +0.04 > 0",mediation,nonsense2,1,correlation,P(Y | X) +27926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 100%. For those who are not xevo and are tijv, the probability of gyzp is 85%. For those who are xevo and are not tijv, the probability of gyzp is 78%. For those who are xevo and are tijv, the probability of gyzp is 36%. For those who are not xevo, the probability of tijv is 54%. For those who are xevo, the probability of tijv is 58%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 1.00 +P(Y=1 | X=0, V2=1) = 0.85 +P(Y=1 | X=1, V2=0) = 0.78 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.58 +0.58 * (0.85 - 1.00)+ 0.54 * (0.36 - 0.78)= -0.01 +-0.01 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 100%. For those who are not xevo and are tijv, the probability of gyzp is 85%. For those who are xevo and are not tijv, the probability of gyzp is 78%. For those who are xevo and are tijv, the probability of gyzp is 36%. For those who are not xevo, the probability of tijv is 54%. For those who are xevo, the probability of tijv is 58%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 1.00 +P(Y=1 | X=0, V2=1) = 0.85 +P(Y=1 | X=1, V2=0) = 0.78 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.58 +0.58 * (0.85 - 1.00)+ 0.54 * (0.36 - 0.78)= -0.01 +-0.01 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 100%. For those who are not xevo and are tijv, the probability of gyzp is 85%. For those who are xevo and are not tijv, the probability of gyzp is 78%. For those who are xevo and are tijv, the probability of gyzp is 36%. For those who are not xevo, the probability of tijv is 54%. For those who are xevo, the probability of tijv is 58%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 1.00 +P(Y=1 | X=0, V2=1) = 0.85 +P(Y=1 | X=1, V2=0) = 0.78 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.58 +0.54 * (0.36 - 0.78) + 0.58 * (0.85 - 1.00) = -0.37 +-0.37 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 100%. For those who are not xevo and are tijv, the probability of gyzp is 85%. For those who are xevo and are not tijv, the probability of gyzp is 78%. For those who are xevo and are tijv, the probability of gyzp is 36%. For those who are not xevo, the probability of tijv is 54%. For those who are xevo, the probability of tijv is 58%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 1.00 +P(Y=1 | X=0, V2=1) = 0.85 +P(Y=1 | X=1, V2=0) = 0.78 +P(Y=1 | X=1, V2=1) = 0.36 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.58 +0.54 * (0.36 - 0.78) + 0.58 * (0.85 - 1.00) = -0.37 +-0.37 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 77%. For those who are not xevo, the probability of gyzp is 92%. For those who are xevo, the probability of gyzp is 54%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.54 +0.77*0.54 - 0.23*0.92 = 0.62 +0.62 > 0",mediation,nonsense2,1,marginal,P(Y) +27935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 21%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.21 - 0.60 = -0.39 +-0.39 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 21%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.21 - 0.60 = -0.39 +-0.39 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 21%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.21 - 0.60 = -0.39 +-0.39 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 75%. For those who are not xevo and are tijv, the probability of gyzp is 51%. For those who are xevo and are not tijv, the probability of gyzp is 56%. For those who are xevo and are tijv, the probability of gyzp is 21%. For those who are not xevo, the probability of tijv is 61%. For those who are xevo, the probability of tijv is 99%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.21 +P(V2=1 | X=0) = 0.61 +P(V2=1 | X=1) = 0.99 +0.99 * (0.51 - 0.75)+ 0.61 * (0.21 - 0.56)= -0.09 +-0.09 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 75%. For those who are not xevo and are tijv, the probability of gyzp is 51%. For those who are xevo and are not tijv, the probability of gyzp is 56%. For those who are xevo and are tijv, the probability of gyzp is 21%. For those who are not xevo, the probability of tijv is 61%. For those who are xevo, the probability of tijv is 99%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.21 +P(V2=1 | X=0) = 0.61 +P(V2=1 | X=1) = 0.99 +0.61 * (0.21 - 0.56) + 0.99 * (0.51 - 0.75) = -0.25 +-0.25 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 91%. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 21%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.21 +0.91*0.21 - 0.09*0.60 = 0.25 +0.25 > 0",mediation,nonsense2,1,marginal,P(Y) +27950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 31%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.31 +0.31 - 0.32 = -0.01 +-0.01 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 31%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.31 +0.31 - 0.32 = -0.01 +-0.01 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 31%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.31 +0.31 - 0.32 = -0.01 +-0.01 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 31%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.31 +0.31 - 0.32 = -0.01 +-0.01 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 32%. For those who are not xevo and are tijv, the probability of gyzp is 28%. For those who are xevo and are not tijv, the probability of gyzp is 6%. For those who are xevo and are tijv, the probability of gyzp is 56%. For those who are not xevo, the probability of tijv is 8%. For those who are xevo, the probability of tijv is 49%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.28 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.08 +P(V2=1 | X=1) = 0.49 +0.49 * (0.28 - 0.32)+ 0.08 * (0.56 - 0.06)= -0.02 +-0.02 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 32%. For those who are not xevo and are tijv, the probability of gyzp is 28%. For those who are xevo and are not tijv, the probability of gyzp is 6%. For those who are xevo and are tijv, the probability of gyzp is 56%. For those who are not xevo, the probability of tijv is 8%. For those who are xevo, the probability of tijv is 49%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.28 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.08 +P(V2=1 | X=1) = 0.49 +0.08 * (0.56 - 0.06) + 0.49 * (0.28 - 0.32) = -0.21 +-0.21 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 8%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 31%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.31 +0.08*0.31 - 0.92*0.32 = 0.30 +0.30 > 0",mediation,nonsense2,1,marginal,P(Y) +27959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 8%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 31%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.31 +0.08*0.31 - 0.92*0.32 = 0.30 +0.30 > 0",mediation,nonsense2,1,marginal,P(Y) +27960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 8%. The probability of not xevo and gyzp is 29%. The probability of xevo and gyzp is 3%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.03 +0.03/0.08 - 0.29/0.92 = -0.01 +-0.01 < 0",mediation,nonsense2,1,correlation,P(Y | X) +27961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 8%. The probability of not xevo and gyzp is 29%. The probability of xevo and gyzp is 3%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.03 +0.03/0.08 - 0.29/0.92 = -0.01 +-0.01 < 0",mediation,nonsense2,1,correlation,P(Y | X) +27962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 34%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.34 +0.34 - 0.85 = -0.51 +-0.51 < 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 34%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.34 +0.34 - 0.85 = -0.51 +-0.51 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 34%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.34 +0.34 - 0.85 = -0.51 +-0.51 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 3%. For those who are not xevo, the probability of gyzp is 85%. For those who are xevo, the probability of gyzp is 34%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.34 +0.03*0.34 - 0.97*0.85 = 0.83 +0.83 > 0",mediation,nonsense2,1,marginal,P(Y) +27974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 3%. The probability of not xevo and gyzp is 82%. The probability of xevo and gyzp is 1%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.82 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.82/0.97 = -0.51 +-0.51 < 0",mediation,nonsense2,1,correlation,P(Y | X) +27975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 3%. The probability of not xevo and gyzp is 82%. The probability of xevo and gyzp is 1%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.82 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.82/0.97 = -0.51 +-0.51 < 0",mediation,nonsense2,1,correlation,P(Y | X) +27976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +27979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 72%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.72 +0.72 - 0.17 = 0.55 +0.55 > 0",mediation,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +27980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 72%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.72 +0.72 - 0.17 = 0.55 +0.55 > 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +27982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 56%. For those who are not xevo and are tijv, the probability of gyzp is 16%. For those who are xevo and are not tijv, the probability of gyzp is 77%. For those who are xevo and are tijv, the probability of gyzp is 60%. For those who are not xevo, the probability of tijv is 97%. For those who are xevo, the probability of tijv is 28%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.16 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.60 +P(V2=1 | X=0) = 0.97 +P(V2=1 | X=1) = 0.28 +0.28 * (0.16 - 0.56)+ 0.97 * (0.60 - 0.77)= 0.28 +0.28 > 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +27985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 56%. For those who are not xevo and are tijv, the probability of gyzp is 16%. For those who are xevo and are not tijv, the probability of gyzp is 77%. For those who are xevo and are tijv, the probability of gyzp is 60%. For those who are not xevo, the probability of tijv is 97%. For those who are xevo, the probability of tijv is 28%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.16 +P(Y=1 | X=1, V2=0) = 0.77 +P(Y=1 | X=1, V2=1) = 0.60 +P(V2=1 | X=0) = 0.97 +P(V2=1 | X=1) = 0.28 +0.97 * (0.60 - 0.77) + 0.28 * (0.16 - 0.56) = 0.43 +0.43 > 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +27986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 8%. For those who are not xevo, the probability of gyzp is 17%. For those who are xevo, the probability of gyzp is 72%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.72 +0.08*0.72 - 0.92*0.17 = 0.23 +0.23 > 0",mediation,nonsense2,1,marginal,P(Y) +27997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 27%. For those who are not xevo and are tijv, the probability of gyzp is 27%. For those who are xevo and are not tijv, the probability of gyzp is 27%. For those who are xevo and are tijv, the probability of gyzp is 43%. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 55%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.27 +P(Y=1 | X=0, V2=1) = 0.27 +P(Y=1 | X=1, V2=0) = 0.27 +P(Y=1 | X=1, V2=1) = 0.43 +P(V2=1 | X=0) = 0.14 +P(V2=1 | X=1) = 0.55 +0.55 * (0.27 - 0.27)+ 0.14 * (0.43 - 0.27)= 0.00 +0.00 = 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 33%. For those who are not xevo, the probability of gyzp is 27%. For those who are xevo, the probability of gyzp is 36%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.36 +0.33*0.36 - 0.67*0.27 = 0.28 +0.28 > 0",mediation,nonsense2,1,marginal,P(Y) +28003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 33%. The probability of not xevo and gyzp is 18%. The probability of xevo and gyzp is 12%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.12 +0.12/0.33 - 0.18/0.67 = 0.09 +0.09 > 0",mediation,nonsense2,1,correlation,P(Y | X) +28004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 93%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.19 +0.19 - 0.93 = -0.74 +-0.74 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 93%. For those who are xevo, the probability of gyzp is 19%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.19 +0.19 - 0.93 = -0.74 +-0.74 < 0",mediation,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 71%. For those who are not xevo and are tijv, the probability of gyzp is 94%. For those who are xevo and are not tijv, the probability of gyzp is 24%. For those who are xevo and are tijv, the probability of gyzp is 19%. For those who are not xevo, the probability of tijv is 97%. For those who are xevo, the probability of tijv is 93%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.94 +P(Y=1 | X=1, V2=0) = 0.24 +P(Y=1 | X=1, V2=1) = 0.19 +P(V2=1 | X=0) = 0.97 +P(V2=1 | X=1) = 0.93 +0.93 * (0.94 - 0.71)+ 0.97 * (0.19 - 0.24)= -0.01 +-0.01 < 0",mediation,nonsense2,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28012,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. For those who are not xevo and are not tijv, the probability of gyzp is 71%. For those who are not xevo and are tijv, the probability of gyzp is 94%. For those who are xevo and are not tijv, the probability of gyzp is 24%. For those who are xevo and are tijv, the probability of gyzp is 19%. For those who are not xevo, the probability of tijv is 97%. For those who are xevo, the probability of tijv is 93%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.94 +P(Y=1 | X=1, V2=0) = 0.24 +P(Y=1 | X=1, V2=1) = 0.19 +P(V2=1 | X=0) = 0.97 +P(V2=1 | X=1) = 0.93 +0.97 * (0.19 - 0.24) + 0.93 * (0.94 - 0.71) = -0.74 +-0.74 < 0",mediation,nonsense2,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +28014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 34%. For those who are not xevo, the probability of gyzp is 93%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.19 +0.34*0.19 - 0.66*0.93 = 0.68 +0.68 > 0",mediation,nonsense2,1,marginal,P(Y) +28015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 34%. For those who are not xevo, the probability of gyzp is 93%. For those who are xevo, the probability of gyzp is 19%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.19 +0.34*0.19 - 0.66*0.93 = 0.68 +0.68 > 0",mediation,nonsense2,1,marginal,P(Y) +28016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 34%. The probability of not xevo and gyzp is 61%. The probability of xevo and gyzp is 6%.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.61 +P(Y=1, X=1=1) = 0.06 +0.06/0.34 - 0.61/0.66 = -0.74 +-0.74 < 0",mediation,nonsense2,1,correlation,P(Y | X) +28017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 34%. The probability of not xevo and gyzp is 61%. The probability of xevo and gyzp is 6%.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.61 +P(Y=1, X=1=1) = 0.06 +0.06/0.34 - 0.61/0.66 = -0.74 +-0.74 < 0",mediation,nonsense2,1,correlation,P(Y | X) +28018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 100%. For those who are xevo, the probability of tijv is 7%. For those who are not xevo and are not tijv, the probability of gyzp is 44%. For those who are not xevo and are tijv, the probability of gyzp is 73%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 69%. The overall probability of xevo is 69%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 1.00 +P(V3=1 | X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.69 +P(X=1) = 0.69 +(0.07 - 1.00)* (0.69 * 0.69) + (0.93 - 0.00) * (0.73 * 0.31) = -0.20 +-0.20 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 44%. For those who are not xevo and are tijv, the probability of gyzp is 73%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 69%. For those who are not xevo, the probability of tijv is 100%. For those who are xevo, the probability of tijv is 7%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0) = 1.00 +P(V3=1 | X=1) = 0.07 +0.69 * (0.07 - 1.00) + 0.73 * (0.93 - 0.00) = -0.17 +-0.17 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 44%. For those who are not xevo and are tijv, the probability of gyzp is 73%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 69%. For those who are not xevo, the probability of tijv is 100%. For those who are xevo, the probability of tijv is 7%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0) = 1.00 +P(V3=1 | X=1) = 0.07 +0.69 * (0.07 - 1.00) + 0.73 * (0.93 - 0.00) = -0.17 +-0.17 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 100%. For those who are xevo, the probability of tijv is 7%. For those who are not xevo and are not tijv, the probability of gyzp is 44%. For those who are not xevo and are tijv, the probability of gyzp is 73%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 69%. The overall probability of xevo is 69%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 1.00 +P(V3=1 | X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.69 +P(X=1) = 0.69 +0.07 - 1.00 * (0.69 * 0.69 + 0.73 * 0.31)= -0.20 +-0.20 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 69%. For those who are not xevo, the probability of gyzp is 73%. For those who are xevo, the probability of gyzp is 52%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.52 +0.69*0.52 - 0.31*0.73 = 0.57 +0.57 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 69%. For those who are not xevo, the probability of gyzp is 73%. For those who are xevo, the probability of gyzp is 52%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.52 +0.69*0.52 - 0.31*0.73 = 0.57 +0.57 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 69%. The probability of not xevo and gyzp is 23%. The probability of xevo and gyzp is 36%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.36 +0.36/0.69 - 0.23/0.31 = -0.21 +-0.21 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 47%. For those who are xevo, the probability of tijv is 22%. For those who are not xevo and are not tijv, the probability of gyzp is 67%. For those who are not xevo and are tijv, the probability of gyzp is 18%. For those who are xevo and are not tijv, the probability of gyzp is 50%. For those who are xevo and are tijv, the probability of gyzp is 14%. The overall probability of xevo is 80%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.14 +P(X=1) = 0.80 +(0.22 - 0.47)* (0.14 * 0.80) + (0.78 - 0.53) * (0.18 * 0.20) = 0.10 +0.10 > 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 47%. For those who are xevo, the probability of tijv is 22%. For those who are not xevo and are not tijv, the probability of gyzp is 67%. For those who are not xevo and are tijv, the probability of gyzp is 18%. For those who are xevo and are not tijv, the probability of gyzp is 50%. For those who are xevo and are tijv, the probability of gyzp is 14%. The overall probability of xevo is 80%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.14 +P(X=1) = 0.80 +(0.22 - 0.47)* (0.14 * 0.80) + (0.78 - 0.53) * (0.18 * 0.20) = 0.10 +0.10 > 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 67%. For those who are not xevo and are tijv, the probability of gyzp is 18%. For those who are xevo and are not tijv, the probability of gyzp is 50%. For those who are xevo and are tijv, the probability of gyzp is 14%. For those who are not xevo, the probability of tijv is 47%. For those who are xevo, the probability of tijv is 22%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.22 +0.14 * (0.22 - 0.47) + 0.18 * (0.78 - 0.53) = 0.09 +0.09 > 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 47%. For those who are xevo, the probability of tijv is 22%. For those who are not xevo and are not tijv, the probability of gyzp is 67%. For those who are not xevo and are tijv, the probability of gyzp is 18%. For those who are xevo and are not tijv, the probability of gyzp is 50%. For those who are xevo and are tijv, the probability of gyzp is 14%. The overall probability of xevo is 80%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.14 +P(X=1) = 0.80 +0.22 - 0.47 * (0.14 * 0.80 + 0.18 * 0.20)= 0.10 +0.10 > 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 47%. For those who are xevo, the probability of tijv is 22%. For those who are not xevo and are not tijv, the probability of gyzp is 67%. For those who are not xevo and are tijv, the probability of gyzp is 18%. For those who are xevo and are not tijv, the probability of gyzp is 50%. For those who are xevo and are tijv, the probability of gyzp is 14%. The overall probability of xevo is 80%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.14 +P(X=1) = 0.80 +0.22 - 0.47 * (0.14 * 0.80 + 0.18 * 0.20)= 0.10 +0.10 > 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 80%. The probability of not xevo and gyzp is 9%. The probability of xevo and gyzp is 34%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.34 +0.34/0.80 - 0.09/0.20 = -0.02 +-0.02 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 80%. The probability of not xevo and gyzp is 9%. The probability of xevo and gyzp is 34%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.34 +0.34/0.80 - 0.09/0.20 = -0.02 +-0.02 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 83%. For those who are xevo, the probability of tijv is 19%. For those who are not xevo and are not tijv, the probability of gyzp is 53%. For those who are not xevo and are tijv, the probability of gyzp is 86%. For those who are xevo and are not tijv, the probability of gyzp is 58%. For those who are xevo and are tijv, the probability of gyzp is 80%. The overall probability of xevo is 77%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.83 +P(V3=1 | X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.80 +P(X=1) = 0.77 +(0.19 - 0.83)* (0.80 * 0.77) + (0.81 - 0.17) * (0.86 * 0.23) = -0.16 +-0.16 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 53%. For those who are not xevo and are tijv, the probability of gyzp is 86%. For those who are xevo and are not tijv, the probability of gyzp is 58%. For those who are xevo and are tijv, the probability of gyzp is 80%. For those who are not xevo, the probability of tijv is 83%. For those who are xevo, the probability of tijv is 19%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.80 +P(V3=1 | X=0) = 0.83 +P(V3=1 | X=1) = 0.19 +0.80 * (0.19 - 0.83) + 0.86 * (0.81 - 0.17) = -0.14 +-0.14 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 53%. For those who are not xevo and are tijv, the probability of gyzp is 86%. For those who are xevo and are not tijv, the probability of gyzp is 58%. For those who are xevo and are tijv, the probability of gyzp is 80%. For those who are not xevo, the probability of tijv is 83%. For those who are xevo, the probability of tijv is 19%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.80 +P(V3=1 | X=0) = 0.83 +P(V3=1 | X=1) = 0.19 +0.80 * (0.19 - 0.83) + 0.86 * (0.81 - 0.17) = -0.14 +-0.14 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 83%. For those who are xevo, the probability of tijv is 19%. For those who are not xevo and are not tijv, the probability of gyzp is 53%. For those who are not xevo and are tijv, the probability of gyzp is 86%. For those who are xevo and are not tijv, the probability of gyzp is 58%. For those who are xevo and are tijv, the probability of gyzp is 80%. The overall probability of xevo is 77%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.83 +P(V3=1 | X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.80 +P(X=1) = 0.77 +0.19 - 0.83 * (0.80 * 0.77 + 0.86 * 0.23)= -0.16 +-0.16 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 83%. For those who are xevo, the probability of tijv is 19%. For those who are not xevo and are not tijv, the probability of gyzp is 53%. For those who are not xevo and are tijv, the probability of gyzp is 86%. For those who are xevo and are not tijv, the probability of gyzp is 58%. For those who are xevo and are tijv, the probability of gyzp is 80%. The overall probability of xevo is 77%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.83 +P(V3=1 | X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.80 +P(X=1) = 0.77 +0.19 - 0.83 * (0.80 * 0.77 + 0.86 * 0.23)= -0.16 +-0.16 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 77%. For those who are not xevo, the probability of gyzp is 80%. For those who are xevo, the probability of gyzp is 62%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.77*0.62 - 0.23*0.80 = 0.65 +0.65 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 55%. For those who are xevo, the probability of tijv is 42%. For those who are not xevo and are not tijv, the probability of gyzp is 26%. For those who are not xevo and are tijv, the probability of gyzp is 67%. For those who are xevo and are not tijv, the probability of gyzp is 27%. For those who are xevo and are tijv, the probability of gyzp is 74%. The overall probability of xevo is 59%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.55 +P(V3=1 | X=1) = 0.42 +P(Y=1 | X=0, V3=0) = 0.26 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.74 +P(X=1) = 0.59 +0.42 - 0.55 * (0.74 * 0.59 + 0.67 * 0.41)= -0.06 +-0.06 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 55%. For those who are xevo, the probability of tijv is 42%. For those who are not xevo and are not tijv, the probability of gyzp is 26%. For those who are not xevo and are tijv, the probability of gyzp is 67%. For those who are xevo and are not tijv, the probability of gyzp is 27%. For those who are xevo and are tijv, the probability of gyzp is 74%. The overall probability of xevo is 59%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.55 +P(V3=1 | X=1) = 0.42 +P(Y=1 | X=0, V3=0) = 0.26 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.74 +P(X=1) = 0.59 +0.42 - 0.55 * (0.74 * 0.59 + 0.67 * 0.41)= -0.06 +-0.06 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 59%. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 47%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.47 +0.59*0.47 - 0.41*0.49 = 0.48 +0.48 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 59%. The probability of not xevo and gyzp is 20%. The probability of xevo and gyzp is 28%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.28 +0.28/0.59 - 0.20/0.41 = -0.02 +-0.02 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 59%. The probability of not xevo and gyzp is 20%. The probability of xevo and gyzp is 28%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.28 +0.28/0.59 - 0.20/0.41 = -0.02 +-0.02 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 36%. For those who are not xevo and are not tijv, the probability of gyzp is 57%. For those who are not xevo and are tijv, the probability of gyzp is 52%. For those who are xevo and are not tijv, the probability of gyzp is 61%. For those who are xevo and are tijv, the probability of gyzp is 52%. The overall probability of xevo is 63%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.36 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.52 +P(X=1) = 0.63 +(0.36 - 0.14)* (0.52 * 0.63) + (0.64 - 0.86) * (0.52 * 0.37) = -0.02 +-0.02 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 36%. For those who are not xevo and are not tijv, the probability of gyzp is 57%. For those who are not xevo and are tijv, the probability of gyzp is 52%. For those who are xevo and are not tijv, the probability of gyzp is 61%. For those who are xevo and are tijv, the probability of gyzp is 52%. The overall probability of xevo is 63%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.36 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.52 +P(X=1) = 0.63 +(0.36 - 0.14)* (0.52 * 0.63) + (0.64 - 0.86) * (0.52 * 0.37) = -0.02 +-0.02 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28070,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 57%. For those who are not xevo and are tijv, the probability of gyzp is 52%. For those who are xevo and are not tijv, the probability of gyzp is 61%. For those who are xevo and are tijv, the probability of gyzp is 52%. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 36%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.36 +0.52 * (0.36 - 0.14) + 0.52 * (0.64 - 0.86) = -0.02 +-0.02 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 57%. For those who are not xevo and are tijv, the probability of gyzp is 52%. For those who are xevo and are not tijv, the probability of gyzp is 61%. For those who are xevo and are tijv, the probability of gyzp is 52%. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 36%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.36 +0.52 * (0.36 - 0.14) + 0.52 * (0.64 - 0.86) = -0.02 +-0.02 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 36%. For those who are not xevo and are not tijv, the probability of gyzp is 57%. For those who are not xevo and are tijv, the probability of gyzp is 52%. For those who are xevo and are not tijv, the probability of gyzp is 61%. For those who are xevo and are tijv, the probability of gyzp is 52%. The overall probability of xevo is 63%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.36 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.52 +P(X=1) = 0.63 +0.36 - 0.14 * (0.52 * 0.63 + 0.52 * 0.37)= -0.02 +-0.02 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 63%. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 57%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.57 +0.63*0.57 - 0.37*0.57 = 0.57 +0.57 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 63%. The probability of not xevo and gyzp is 21%. The probability of xevo and gyzp is 36%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.36 +0.36/0.63 - 0.21/0.37 = 0.01 +0.01 > 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 20%. For those who are xevo, the probability of tijv is 44%. For those who are not xevo and are not tijv, the probability of gyzp is 36%. For those who are not xevo and are tijv, the probability of gyzp is 10%. For those who are xevo and are not tijv, the probability of gyzp is 35%. For those who are xevo and are tijv, the probability of gyzp is 10%. The overall probability of xevo is 56%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.44 +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.10 +P(X=1) = 0.56 +(0.44 - 0.20)* (0.10 * 0.56) + (0.56 - 0.80) * (0.10 * 0.44) = -0.06 +-0.06 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28082,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 36%. For those who are not xevo and are tijv, the probability of gyzp is 10%. For those who are xevo and are not tijv, the probability of gyzp is 35%. For those who are xevo and are tijv, the probability of gyzp is 10%. For those who are not xevo, the probability of tijv is 20%. For those who are xevo, the probability of tijv is 44%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.44 +0.10 * (0.44 - 0.20) + 0.10 * (0.56 - 0.80) = -0.06 +-0.06 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28083,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 36%. For those who are not xevo and are tijv, the probability of gyzp is 10%. For those who are xevo and are not tijv, the probability of gyzp is 35%. For those who are xevo and are tijv, the probability of gyzp is 10%. For those who are not xevo, the probability of tijv is 20%. For those who are xevo, the probability of tijv is 44%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.44 +0.10 * (0.44 - 0.20) + 0.10 * (0.56 - 0.80) = -0.06 +-0.06 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 56%. For those who are not xevo, the probability of gyzp is 31%. For those who are xevo, the probability of gyzp is 24%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.24 +0.56*0.24 - 0.44*0.31 = 0.27 +0.27 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 56%. For those who are not xevo, the probability of gyzp is 31%. For those who are xevo, the probability of gyzp is 24%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.24 +0.56*0.24 - 0.44*0.31 = 0.27 +0.27 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 35%. For those who are not xevo and are tijv, the probability of gyzp is 78%. For those who are xevo and are not tijv, the probability of gyzp is 40%. For those who are xevo and are tijv, the probability of gyzp is 79%. For those who are not xevo, the probability of tijv is 75%. For those who are xevo, the probability of tijv is 42%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.79 +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.42 +0.79 * (0.42 - 0.75) + 0.78 * (0.58 - 0.25) = -0.13 +-0.13 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 35%. For those who are not xevo and are tijv, the probability of gyzp is 78%. For those who are xevo and are not tijv, the probability of gyzp is 40%. For those who are xevo and are tijv, the probability of gyzp is 79%. For those who are not xevo, the probability of tijv is 75%. For those who are xevo, the probability of tijv is 42%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.79 +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.42 +0.79 * (0.42 - 0.75) + 0.78 * (0.58 - 0.25) = -0.13 +-0.13 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 75%. For those who are xevo, the probability of tijv is 42%. For those who are not xevo and are not tijv, the probability of gyzp is 35%. For those who are not xevo and are tijv, the probability of gyzp is 78%. For those who are xevo and are not tijv, the probability of gyzp is 40%. For those who are xevo and are tijv, the probability of gyzp is 79%. The overall probability of xevo is 36%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.42 +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.36 +0.42 - 0.75 * (0.79 * 0.36 + 0.78 * 0.64)= -0.14 +-0.14 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 36%. For those who are not xevo, the probability of gyzp is 67%. For those who are xevo, the probability of gyzp is 56%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.56 +0.36*0.56 - 0.64*0.67 = 0.63 +0.63 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 36%. For those who are not xevo, the probability of gyzp is 67%. For those who are xevo, the probability of gyzp is 56%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.56 +0.36*0.56 - 0.64*0.67 = 0.63 +0.63 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 36%. The probability of not xevo and gyzp is 43%. The probability of xevo and gyzp is 20%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.20 +0.20/0.36 - 0.43/0.64 = -0.11 +-0.11 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 36%. The probability of not xevo and gyzp is 43%. The probability of xevo and gyzp is 20%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.20 +0.20/0.36 - 0.43/0.64 = -0.11 +-0.11 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 72%. For those who are not xevo and are not tijv, the probability of gyzp is 28%. For those who are not xevo and are tijv, the probability of gyzp is 15%. For those who are xevo and are not tijv, the probability of gyzp is 28%. For those who are xevo and are tijv, the probability of gyzp is 15%. The overall probability of xevo is 9%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.15 +P(X=1) = 0.09 +(0.72 - 0.14)* (0.15 * 0.09) + (0.28 - 0.86) * (0.15 * 0.91) = -0.08 +-0.08 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 28%. For those who are not xevo and are tijv, the probability of gyzp is 15%. For those who are xevo and are not tijv, the probability of gyzp is 28%. For those who are xevo and are tijv, the probability of gyzp is 15%. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 72%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.72 +0.15 * (0.72 - 0.14) + 0.15 * (0.28 - 0.86) = -0.08 +-0.08 < 0",frontdoor,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 14%. For those who are xevo, the probability of tijv is 72%. For those who are not xevo and are not tijv, the probability of gyzp is 28%. For those who are not xevo and are tijv, the probability of gyzp is 15%. For those who are xevo and are not tijv, the probability of gyzp is 28%. For those who are xevo and are tijv, the probability of gyzp is 15%. The overall probability of xevo is 9%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.15 +P(X=1) = 0.09 +0.72 - 0.14 * (0.15 * 0.09 + 0.15 * 0.91)= -0.08 +-0.08 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 9%. For those who are not xevo, the probability of gyzp is 26%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.19 +0.09*0.19 - 0.91*0.26 = 0.26 +0.26 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 9%. The probability of not xevo and gyzp is 24%. The probability of xevo and gyzp is 2%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.02 +0.02/0.09 - 0.24/0.91 = -0.08 +-0.08 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 9%. The probability of not xevo and gyzp is 24%. The probability of xevo and gyzp is 2%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.02 +0.02/0.09 - 0.24/0.91 = -0.08 +-0.08 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 0%. For those who are xevo, the probability of tijv is 31%. For those who are not xevo and are not tijv, the probability of gyzp is 54%. For those who are not xevo and are tijv, the probability of gyzp is 40%. For those who are xevo and are not tijv, the probability of gyzp is 56%. For those who are xevo and are tijv, the probability of gyzp is 40%. The overall probability of xevo is 30%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.31 +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.40 +P(X=1) = 0.30 +(0.31 - 0.00)* (0.40 * 0.30) + (0.69 - 1.00) * (0.40 * 0.70) = -0.05 +-0.05 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 0%. For those who are xevo, the probability of tijv is 31%. For those who are not xevo and are not tijv, the probability of gyzp is 54%. For those who are not xevo and are tijv, the probability of gyzp is 40%. For those who are xevo and are not tijv, the probability of gyzp is 56%. For those who are xevo and are tijv, the probability of gyzp is 40%. The overall probability of xevo is 30%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.31 +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.40 +P(X=1) = 0.30 +(0.31 - 0.00)* (0.40 * 0.30) + (0.69 - 1.00) * (0.40 * 0.70) = -0.05 +-0.05 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 30%. For those who are not xevo, the probability of gyzp is 54%. For those who are xevo, the probability of gyzp is 51%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.51 +0.30*0.51 - 0.70*0.54 = 0.54 +0.54 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 30%. For those who are not xevo, the probability of gyzp is 54%. For those who are xevo, the probability of gyzp is 51%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.51 +0.30*0.51 - 0.70*0.54 = 0.54 +0.54 > 0",frontdoor,nonsense2,1,marginal,P(Y) +28126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 31%. For those who are xevo, the probability of tijv is 83%. For those who are not xevo and are not tijv, the probability of gyzp is 70%. For those who are not xevo and are tijv, the probability of gyzp is 28%. For those who are xevo and are not tijv, the probability of gyzp is 70%. For those who are xevo and are tijv, the probability of gyzp is 29%. The overall probability of xevo is 22%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.31 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.29 +P(X=1) = 0.22 +(0.83 - 0.31)* (0.29 * 0.22) + (0.17 - 0.69) * (0.28 * 0.78) = -0.22 +-0.22 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 31%. For those who are xevo, the probability of tijv is 83%. For those who are not xevo and are not tijv, the probability of gyzp is 70%. For those who are not xevo and are tijv, the probability of gyzp is 28%. For those who are xevo and are not tijv, the probability of gyzp is 70%. For those who are xevo and are tijv, the probability of gyzp is 29%. The overall probability of xevo is 22%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.31 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.29 +P(X=1) = 0.22 +(0.83 - 0.31)* (0.29 * 0.22) + (0.17 - 0.69) * (0.28 * 0.78) = -0.22 +-0.22 < 0",frontdoor,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 31%. For those who are xevo, the probability of tijv is 83%. For those who are not xevo and are not tijv, the probability of gyzp is 70%. For those who are not xevo and are tijv, the probability of gyzp is 28%. For those who are xevo and are not tijv, the probability of gyzp is 70%. For those who are xevo and are tijv, the probability of gyzp is 29%. The overall probability of xevo is 22%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.31 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.29 +P(X=1) = 0.22 +0.83 - 0.31 * (0.29 * 0.22 + 0.28 * 0.78)= -0.22 +-0.22 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of tijv is 31%. For those who are xevo, the probability of tijv is 83%. For those who are not xevo and are not tijv, the probability of gyzp is 70%. For those who are not xevo and are tijv, the probability of gyzp is 28%. For those who are xevo and are not tijv, the probability of gyzp is 70%. For those who are xevo and are tijv, the probability of gyzp is 29%. The overall probability of xevo is 22%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.31 +P(V3=1 | X=1) = 0.83 +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.29 +P(X=1) = 0.22 +0.83 - 0.31 * (0.29 * 0.22 + 0.28 * 0.78)= -0.22 +-0.22 < 0",frontdoor,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 22%. The probability of not xevo and gyzp is 44%. The probability of xevo and gyzp is 8%.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.08 +0.08/0.22 - 0.44/0.78 = -0.21 +-0.21 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 22%. The probability of not xevo and gyzp is 44%. The probability of xevo and gyzp is 8%.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.08 +0.08/0.22 - 0.44/0.78 = -0.21 +-0.21 < 0",frontdoor,nonsense2,1,correlation,P(Y | X) +28140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 25%. For those who are tijv, the probability of gyzp is 24%. For those who are not tijv, the probability of xevo is 33%. For those who are tijv, the probability of xevo is 55%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.25 +P(Y=1 | V2=1) = 0.24 +P(X=1 | V2=0) = 0.33 +P(X=1 | V2=1) = 0.55 +(0.24 - 0.25) / (0.55 - 0.33) = -0.02 +-0.02 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 51%. For those who are not xevo, the probability of gyzp is 29%. For those who are xevo, the probability of gyzp is 21%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.21 +0.51*0.21 - 0.49*0.29 = 0.25 +0.25 > 0",IV,nonsense2,1,marginal,P(Y) +28145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 51%. The probability of not xevo and gyzp is 14%. The probability of xevo and gyzp is 11%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.11 +0.11/0.51 - 0.14/0.49 = -0.08 +-0.08 < 0",IV,nonsense2,1,correlation,P(Y | X) +28147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 60%. For those who are tijv, the probability of gyzp is 51%. For those who are not tijv, the probability of xevo is 43%. For those who are tijv, the probability of xevo is 26%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.60 +P(Y=1 | V2=1) = 0.51 +P(X=1 | V2=0) = 0.43 +P(X=1 | V2=1) = 0.26 +(0.51 - 0.60) / (0.26 - 0.43) = 0.55 +0.55 > 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 29%. For those who are not xevo, the probability of gyzp is 37%. For those who are xevo, the probability of gyzp is 90%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.90 +0.29*0.90 - 0.71*0.37 = 0.53 +0.53 > 0",IV,nonsense2,1,marginal,P(Y) +28152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 29%. The probability of not xevo and gyzp is 26%. The probability of xevo and gyzp is 26%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.29 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.26 +0.26/0.29 - 0.26/0.71 = 0.53 +0.53 > 0",IV,nonsense2,1,correlation,P(Y | X) +28154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 43%. For those who are tijv, the probability of gyzp is 37%. For those who are not tijv, the probability of xevo is 54%. For those who are tijv, the probability of xevo is 35%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.43 +P(Y=1 | V2=1) = 0.37 +P(X=1 | V2=0) = 0.54 +P(X=1 | V2=1) = 0.35 +(0.37 - 0.43) / (0.35 - 0.54) = 0.27 +0.27 > 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 48%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 59%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.59 +0.48*0.59 - 0.52*0.32 = 0.41 +0.41 > 0",IV,nonsense2,1,marginal,P(Y) +28163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 86%. For those who are tijv, the probability of gyzp is 90%. For those who are not tijv, the probability of xevo is 88%. For those who are tijv, the probability of xevo is 3%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.86 +P(Y=1 | V2=1) = 0.90 +P(X=1 | V2=0) = 0.88 +P(X=1 | V2=1) = 0.03 +(0.90 - 0.86) / (0.03 - 0.88) = -0.04 +-0.04 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. For those who are not xevo, the probability of gyzp is 90%. For those who are xevo, the probability of gyzp is 85%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.85 +0.24*0.85 - 0.76*0.90 = 0.89 +0.89 > 0",IV,nonsense2,1,marginal,P(Y) +28167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. For those who are not xevo, the probability of gyzp is 90%. For those who are xevo, the probability of gyzp is 85%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.85 +0.24*0.85 - 0.76*0.90 = 0.89 +0.89 > 0",IV,nonsense2,1,marginal,P(Y) +28168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. The probability of not xevo and gyzp is 69%. The probability of xevo and gyzp is 20%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.69 +P(Y=1, X=1=1) = 0.20 +0.20/0.24 - 0.69/0.76 = -0.04 +-0.04 < 0",IV,nonsense2,1,correlation,P(Y | X) +28169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. The probability of not xevo and gyzp is 69%. The probability of xevo and gyzp is 20%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.69 +P(Y=1, X=1=1) = 0.20 +0.20/0.24 - 0.69/0.76 = -0.04 +-0.04 < 0",IV,nonsense2,1,correlation,P(Y | X) +28170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 80%. For those who are not xevo, the probability of gyzp is 36%. For those who are xevo, the probability of gyzp is 94%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.94 +0.80*0.94 - 0.20*0.36 = 0.81 +0.81 > 0",IV,nonsense2,1,marginal,P(Y) +28176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 80%. The probability of not xevo and gyzp is 7%. The probability of xevo and gyzp is 75%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.75 +0.75/0.80 - 0.07/0.20 = 0.58 +0.58 > 0",IV,nonsense2,1,correlation,P(Y | X) +28177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 80%. The probability of not xevo and gyzp is 7%. The probability of xevo and gyzp is 75%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.75 +0.75/0.80 - 0.07/0.20 = 0.58 +0.58 > 0",IV,nonsense2,1,correlation,P(Y | X) +28178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 30%. For those who are tijv, the probability of gyzp is 47%. For those who are not tijv, the probability of xevo is 86%. For those who are tijv, the probability of xevo is 54%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.30 +P(Y=1 | V2=1) = 0.47 +P(X=1 | V2=0) = 0.86 +P(X=1 | V2=1) = 0.54 +(0.47 - 0.30) / (0.54 - 0.86) = -0.54 +-0.54 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 30%. For those who are tijv, the probability of gyzp is 47%. For those who are not tijv, the probability of xevo is 86%. For those who are tijv, the probability of xevo is 54%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.30 +P(Y=1 | V2=1) = 0.47 +P(X=1 | V2=0) = 0.86 +P(X=1 | V2=1) = 0.54 +(0.47 - 0.30) / (0.54 - 0.86) = -0.54 +-0.54 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 65%. For those who are not xevo, the probability of gyzp is 76%. For those who are xevo, the probability of gyzp is 23%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.23 +0.65*0.23 - 0.35*0.76 = 0.41 +0.41 > 0",IV,nonsense2,1,marginal,P(Y) +28184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 65%. The probability of not xevo and gyzp is 26%. The probability of xevo and gyzp is 15%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.15 +0.15/0.65 - 0.26/0.35 = -0.54 +-0.54 < 0",IV,nonsense2,1,correlation,P(Y | X) +28189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 41%. For those who are tijv, the probability of gyzp is 41%. For those who are not tijv, the probability of xevo is 63%. For those who are tijv, the probability of xevo is 85%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.41 +P(Y=1 | V2=1) = 0.41 +P(X=1 | V2=0) = 0.63 +P(X=1 | V2=1) = 0.85 +(0.41 - 0.41) / (0.85 - 0.63) = -0.01 +-0.01 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 76%. For those who are not xevo, the probability of gyzp is 40%. For those who are xevo, the probability of gyzp is 41%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.41 +0.76*0.41 - 0.24*0.40 = 0.41 +0.41 > 0",IV,nonsense2,1,marginal,P(Y) +28191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 76%. For those who are not xevo, the probability of gyzp is 40%. For those who are xevo, the probability of gyzp is 41%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.41 +0.76*0.41 - 0.24*0.40 = 0.41 +0.41 > 0",IV,nonsense2,1,marginal,P(Y) +28192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 76%. The probability of not xevo and gyzp is 10%. The probability of xevo and gyzp is 31%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.31 +0.31/0.76 - 0.10/0.24 = 0.01 +0.01 > 0",IV,nonsense2,1,correlation,P(Y | X) +28194,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 32%. For those who are tijv, the probability of gyzp is 32%. For those who are not tijv, the probability of xevo is 52%. For those who are tijv, the probability of xevo is 44%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.32 +P(Y=1 | V2=1) = 0.32 +P(X=1 | V2=0) = 0.52 +P(X=1 | V2=1) = 0.44 +(0.32 - 0.32) / (0.44 - 0.52) = -0.00 +0.00 = 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 44%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 32%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.44*0.32 - 0.56*0.32 = 0.32 +0.32 > 0",IV,nonsense2,1,marginal,P(Y) +28200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 44%. The probability of not xevo and gyzp is 18%. The probability of xevo and gyzp is 14%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.14 +0.14/0.44 - 0.18/0.56 = -0.00 +0.00 = 0",IV,nonsense2,1,correlation,P(Y | X) +28201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 44%. The probability of not xevo and gyzp is 18%. The probability of xevo and gyzp is 14%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.14 +0.14/0.44 - 0.18/0.56 = -0.00 +0.00 = 0",IV,nonsense2,1,correlation,P(Y | X) +28202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 49%. For those who are tijv, the probability of gyzp is 69%. For those who are not tijv, the probability of xevo is 56%. For those who are tijv, the probability of xevo is 16%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.49 +P(Y=1 | V2=1) = 0.69 +P(X=1 | V2=0) = 0.56 +P(X=1 | V2=1) = 0.16 +(0.69 - 0.49) / (0.16 - 0.56) = -0.48 +-0.48 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 49%. For those who are tijv, the probability of gyzp is 69%. For those who are not tijv, the probability of xevo is 56%. For those who are tijv, the probability of xevo is 16%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.49 +P(Y=1 | V2=1) = 0.69 +P(X=1 | V2=0) = 0.56 +P(X=1 | V2=1) = 0.16 +(0.69 - 0.49) / (0.16 - 0.56) = -0.48 +-0.48 < 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 24%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.24 +0.24*0.24 - 0.76*0.78 = 0.64 +0.64 > 0",IV,nonsense2,1,marginal,P(Y) +28207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 24%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.24 +0.24*0.24 - 0.76*0.78 = 0.64 +0.64 > 0",IV,nonsense2,1,marginal,P(Y) +28209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 24%. The probability of not xevo and gyzp is 59%. The probability of xevo and gyzp is 6%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.59 +P(Y=1, X=1=1) = 0.06 +0.06/0.24 - 0.59/0.76 = -0.54 +-0.54 < 0",IV,nonsense2,1,correlation,P(Y | X) +28210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 24%. For those who are tijv, the probability of gyzp is 30%. For those who are not tijv, the probability of xevo is 26%. For those who are tijv, the probability of xevo is 87%.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.24 +P(Y=1 | V2=1) = 0.30 +P(X=1 | V2=0) = 0.26 +P(X=1 | V2=1) = 0.87 +(0.30 - 0.24) / (0.87 - 0.26) = 0.10 +0.10 > 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. For those who are not tijv, the probability of gyzp is 24%. For those who are tijv, the probability of gyzp is 30%. For those who are not tijv, the probability of xevo is 26%. For those who are tijv, the probability of xevo is 87%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.24 +P(Y=1 | V2=1) = 0.30 +P(X=1 | V2=0) = 0.26 +P(X=1 | V2=1) = 0.87 +(0.30 - 0.24) / (0.87 - 0.26) = 0.10 +0.10 > 0",IV,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 33%. The probability of not xevo and gyzp is 14%. The probability of xevo and gyzp is 10%.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.10 +0.10/0.33 - 0.14/0.67 = 0.08 +0.08 > 0",IV,nonsense2,1,correlation,P(Y | X) +28219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 29%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.29 +0.29 - 0.42 = -0.13 +-0.13 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 15%. For those who are not xevo and are tijv, the probability of gyzp is 38%. For those who are xevo and are not tijv, the probability of gyzp is 27%. For those who are xevo and are tijv, the probability of gyzp is 42%. For those who are not xevo and are not tijw, the probability of tijv is 76%. For those who are not xevo and are tijw, the probability of tijv is 99%. For those who are xevo and are not tijw, the probability of tijv is 29%. For those who are xevo and are tijw, the probability of tijv is 54%. The overall probability of tijw is 49%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.76 +P(V3=1 | X=0, V2=1) = 0.99 +P(V3=1 | X=1, V2=0) = 0.29 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.49 +0.49 * 0.38 * (0.54 - 0.29)+ 0.51 * 0.38 * (0.99 - 0.76)= -0.02 +-0.02 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 15%. For those who are not xevo and are tijv, the probability of gyzp is 38%. For those who are xevo and are not tijv, the probability of gyzp is 27%. For those who are xevo and are tijv, the probability of gyzp is 42%. For those who are not xevo and are not tijw, the probability of tijv is 76%. For those who are not xevo and are tijw, the probability of tijv is 99%. For those who are xevo and are not tijw, the probability of tijv is 29%. For those who are xevo and are tijw, the probability of tijv is 54%. The overall probability of tijw is 49%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.76 +P(V3=1 | X=0, V2=1) = 0.99 +P(V3=1 | X=1, V2=0) = 0.29 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.49 +0.49 * (0.42 - 0.27) * 0.99 + 0.51 * (0.38 - 0.15) * 0.29 = -0.09 +-0.09 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 82%. For those who are xevo, the probability of gyzp is 30%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.30 +0.30 - 0.82 = -0.52 +-0.52 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 82%. For those who are xevo, the probability of gyzp is 30%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.30 +0.30 - 0.82 = -0.52 +-0.52 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 88%. For those who are not xevo and are tijv, the probability of gyzp is 92%. For those who are xevo and are not tijv, the probability of gyzp is 23%. For those who are xevo and are tijv, the probability of gyzp is 47%. For those who are not xevo and are not tijw, the probability of tijv is 92%. For those who are not xevo and are tijw, the probability of tijv is 14%. For those who are xevo and are not tijw, the probability of tijv is 28%. For those who are xevo and are tijw, the probability of tijv is 45%. The overall probability of tijw is 36%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.28 +P(V3=1 | X=1, V2=1) = 0.45 +P(V2=1) = 0.36 +0.36 * 0.92 * (0.45 - 0.28)+ 0.64 * 0.92 * (0.14 - 0.92)= -0.09 +-0.09 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 88%. For those who are not xevo and are tijv, the probability of gyzp is 92%. For those who are xevo and are not tijv, the probability of gyzp is 23%. For those who are xevo and are tijv, the probability of gyzp is 47%. For those who are not xevo and are not tijw, the probability of tijv is 92%. For those who are not xevo and are tijw, the probability of tijv is 14%. For those who are xevo and are not tijw, the probability of tijv is 28%. For those who are xevo and are tijw, the probability of tijv is 45%. The overall probability of tijw is 36%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.28 +P(V3=1 | X=1, V2=1) = 0.45 +P(V2=1) = 0.36 +0.36 * 0.92 * (0.45 - 0.28)+ 0.64 * 0.92 * (0.14 - 0.92)= -0.09 +-0.09 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 88%. For those who are not xevo and are tijv, the probability of gyzp is 92%. For those who are xevo and are not tijv, the probability of gyzp is 23%. For those who are xevo and are tijv, the probability of gyzp is 47%. For those who are not xevo and are not tijw, the probability of tijv is 92%. For those who are not xevo and are tijw, the probability of tijv is 14%. For those who are xevo and are not tijw, the probability of tijv is 28%. For those who are xevo and are tijw, the probability of tijv is 45%. The overall probability of tijw is 36%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.28 +P(V3=1 | X=1, V2=1) = 0.45 +P(V2=1) = 0.36 +0.36 * (0.47 - 0.23) * 0.14 + 0.64 * (0.92 - 0.88) * 0.28 = -0.49 +-0.49 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 22%. For those who are not xevo, the probability of gyzp is 82%. For those who are xevo, the probability of gyzp is 30%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.30 +0.22*0.30 - 0.78*0.82 = 0.70 +0.70 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 22%. The probability of not xevo and gyzp is 71%. The probability of xevo and gyzp is 7%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.07 +0.07/0.22 - 0.71/0.78 = -0.59 +-0.59 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 22%. The probability of not xevo and gyzp is 71%. The probability of xevo and gyzp is 7%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.07 +0.07/0.22 - 0.71/0.78 = -0.59 +-0.59 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 41%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.41 +0.41 - 0.49 = -0.08 +-0.08 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 41%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.41 +0.41 - 0.49 = -0.08 +-0.08 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 60%. The probability of not xevo and gyzp is 19%. The probability of xevo and gyzp is 24%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.24 +0.24/0.60 - 0.19/0.40 = -0.08 +-0.08 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 60%. The probability of not xevo and gyzp is 19%. The probability of xevo and gyzp is 24%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.24 +0.24/0.60 - 0.19/0.40 = -0.08 +-0.08 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 39%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.39 +0.39 - 0.25 = 0.14 +0.14 > 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 39%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.39 +0.39 - 0.25 = 0.14 +0.14 > 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 39%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.39 +0.39 - 0.25 = 0.14 +0.14 > 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 34%. For those who are not xevo and are tijv, the probability of gyzp is 15%. For those who are xevo and are not tijv, the probability of gyzp is 57%. For those who are xevo and are tijv, the probability of gyzp is 24%. For those who are not xevo and are not tijw, the probability of tijv is 31%. For those who are not xevo and are tijw, the probability of tijv is 71%. For those who are xevo and are not tijw, the probability of tijv is 65%. For those who are xevo and are tijw, the probability of tijv is 41%. The overall probability of tijw is 28%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.65 +P(V3=1 | X=1, V2=1) = 0.41 +P(V2=1) = 0.28 +0.28 * 0.15 * (0.41 - 0.65)+ 0.72 * 0.15 * (0.71 - 0.31)= -0.02 +-0.02 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 34%. For those who are not xevo and are tijv, the probability of gyzp is 15%. For those who are xevo and are not tijv, the probability of gyzp is 57%. For those who are xevo and are tijv, the probability of gyzp is 24%. For those who are not xevo and are not tijw, the probability of tijv is 31%. For those who are not xevo and are tijw, the probability of tijv is 71%. For those who are xevo and are not tijw, the probability of tijv is 65%. For those who are xevo and are tijw, the probability of tijv is 41%. The overall probability of tijw is 28%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.65 +P(V3=1 | X=1, V2=1) = 0.41 +P(V2=1) = 0.28 +0.28 * (0.24 - 0.57) * 0.71 + 0.72 * (0.15 - 0.34) * 0.65 = 0.20 +0.20 > 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 34%. For those who are not xevo and are tijv, the probability of gyzp is 15%. For those who are xevo and are not tijv, the probability of gyzp is 57%. For those who are xevo and are tijv, the probability of gyzp is 24%. For those who are not xevo and are not tijw, the probability of tijv is 31%. For those who are not xevo and are tijw, the probability of tijv is 71%. For those who are xevo and are not tijw, the probability of tijv is 65%. For those who are xevo and are tijw, the probability of tijv is 41%. The overall probability of tijw is 28%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.65 +P(V3=1 | X=1, V2=1) = 0.41 +P(V2=1) = 0.28 +0.28 * (0.24 - 0.57) * 0.71 + 0.72 * (0.15 - 0.34) * 0.65 = 0.20 +0.20 > 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 37%. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 39%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.39 +0.37*0.39 - 0.63*0.25 = 0.31 +0.31 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28271,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 37%. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 39%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.39 +0.37*0.39 - 0.63*0.25 = 0.31 +0.31 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 37%. The probability of not xevo and gyzp is 17%. The probability of xevo and gyzp is 14%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.14 +0.14/0.37 - 0.17/0.63 = 0.12 +0.12 > 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 37%. The probability of not xevo and gyzp is 17%. The probability of xevo and gyzp is 14%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.14 +0.14/0.37 - 0.17/0.63 = 0.12 +0.12 > 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 40%. For those who are xevo, the probability of gyzp is 30%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.30 +0.30 - 0.40 = -0.09 +-0.09 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 40%. For those who are xevo, the probability of gyzp is 30%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.30 +0.30 - 0.40 = -0.09 +-0.09 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 40%. For those who are xevo, the probability of gyzp is 30%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.30 +0.30 - 0.40 = -0.09 +-0.09 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 22%. For those who are not xevo and are tijv, the probability of gyzp is 42%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 33%. For those who are not xevo and are not tijw, the probability of tijv is 65%. For those who are not xevo and are tijw, the probability of tijv is 89%. For those who are xevo and are not tijw, the probability of tijv is 18%. For those who are xevo and are tijw, the probability of tijv is 91%. The overall probability of tijw is 60%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.89 +P(V3=1 | X=1, V2=0) = 0.18 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.60 +0.60 * 0.42 * (0.91 - 0.18)+ 0.40 * 0.42 * (0.89 - 0.65)= -0.02 +-0.02 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 22%. For those who are not xevo and are tijv, the probability of gyzp is 42%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 33%. For those who are not xevo and are not tijw, the probability of tijv is 65%. For those who are not xevo and are tijw, the probability of tijv is 89%. For those who are xevo and are not tijw, the probability of tijv is 18%. For those who are xevo and are tijw, the probability of tijv is 91%. The overall probability of tijw is 60%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.89 +P(V3=1 | X=1, V2=0) = 0.18 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.60 +0.60 * 0.42 * (0.91 - 0.18)+ 0.40 * 0.42 * (0.89 - 0.65)= -0.02 +-0.02 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 22%. For those who are not xevo and are tijv, the probability of gyzp is 42%. For those who are xevo and are not tijv, the probability of gyzp is 42%. For those who are xevo and are tijv, the probability of gyzp is 33%. For those who are not xevo and are not tijw, the probability of tijv is 65%. For those who are not xevo and are tijw, the probability of tijv is 89%. For those who are xevo and are not tijw, the probability of tijv is 18%. For those who are xevo and are tijw, the probability of tijv is 91%. The overall probability of tijw is 60%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.89 +P(V3=1 | X=1, V2=0) = 0.18 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.60 +0.60 * (0.33 - 0.42) * 0.89 + 0.40 * (0.42 - 0.22) * 0.18 = -0.10 +-0.10 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 91%. For those who are not xevo, the probability of gyzp is 40%. For those who are xevo, the probability of gyzp is 30%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.30 +0.91*0.30 - 0.09*0.40 = 0.31 +0.31 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 91%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 33%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.33 +0.33/0.91 - 0.03/0.09 = -0.01 +-0.01 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 91%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 33%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.33 +0.33/0.91 - 0.03/0.09 = -0.01 +-0.01 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 57%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.57 +0.57 - 0.60 = -0.03 +-0.03 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 57%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.57 +0.57 - 0.60 = -0.03 +-0.03 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 57%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.57 +0.57 - 0.60 = -0.03 +-0.03 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 88%. For those who are not xevo and are tijv, the probability of gyzp is 24%. For those who are xevo and are not tijv, the probability of gyzp is 60%. For those who are xevo and are tijv, the probability of gyzp is 62%. For those who are not xevo and are not tijw, the probability of tijv is 41%. For those who are not xevo and are tijw, the probability of tijv is 51%. For those who are xevo and are not tijw, the probability of tijv is 52%. For those who are xevo and are tijw, the probability of tijv is 17%. The overall probability of tijw is 18%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.24 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.18 +0.18 * 0.24 * (0.17 - 0.52)+ 0.82 * 0.24 * (0.51 - 0.41)= -0.02 +-0.02 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 88%. For those who are not xevo and are tijv, the probability of gyzp is 24%. For those who are xevo and are not tijv, the probability of gyzp is 60%. For those who are xevo and are tijv, the probability of gyzp is 62%. For those who are not xevo and are not tijw, the probability of tijv is 41%. For those who are not xevo and are tijw, the probability of tijv is 51%. For those who are xevo and are not tijw, the probability of tijv is 52%. For those who are xevo and are tijw, the probability of tijv is 17%. The overall probability of tijw is 18%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.24 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.18 +0.18 * 0.24 * (0.17 - 0.52)+ 0.82 * 0.24 * (0.51 - 0.41)= -0.02 +-0.02 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 88%. For those who are not xevo and are tijv, the probability of gyzp is 24%. For those who are xevo and are not tijv, the probability of gyzp is 60%. For those who are xevo and are tijv, the probability of gyzp is 62%. For those who are not xevo and are not tijw, the probability of tijv is 41%. For those who are not xevo and are tijw, the probability of tijv is 51%. For those who are xevo and are not tijw, the probability of tijv is 52%. For those who are xevo and are tijw, the probability of tijv is 17%. The overall probability of tijw is 18%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.24 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0, V2=0) = 0.41 +P(V3=1 | X=0, V2=1) = 0.51 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.17 +P(V2=1) = 0.18 +0.18 * (0.62 - 0.60) * 0.51 + 0.82 * (0.24 - 0.88) * 0.52 = -0.04 +-0.04 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 81%. For those who are not xevo, the probability of gyzp is 60%. For those who are xevo, the probability of gyzp is 57%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.57 +0.81*0.57 - 0.19*0.60 = 0.57 +0.57 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 59%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.59 +0.59 - 0.38 = 0.21 +0.21 > 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 59%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.59 +0.59 - 0.38 = 0.21 +0.21 > 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 59%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.59 +0.59 - 0.38 = 0.21 +0.21 > 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 25%. For those who are not xevo and are tijv, the probability of gyzp is 71%. For those who are xevo and are not tijv, the probability of gyzp is 67%. For those who are xevo and are tijv, the probability of gyzp is 14%. For those who are not xevo and are not tijw, the probability of tijv is 19%. For those who are not xevo and are tijw, the probability of tijv is 37%. For those who are xevo and are not tijw, the probability of tijv is 84%. For those who are xevo and are tijw, the probability of tijv is 2%. The overall probability of tijw is 80%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.25 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0, V2=0) = 0.19 +P(V3=1 | X=0, V2=1) = 0.37 +P(V3=1 | X=1, V2=0) = 0.84 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.80 +0.80 * 0.71 * (0.02 - 0.84)+ 0.20 * 0.71 * (0.37 - 0.19)= -0.07 +-0.07 < 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 25%. For those who are not xevo and are tijv, the probability of gyzp is 71%. For those who are xevo and are not tijv, the probability of gyzp is 67%. For those who are xevo and are tijv, the probability of gyzp is 14%. For those who are not xevo and are not tijw, the probability of tijv is 19%. For those who are not xevo and are tijw, the probability of tijv is 37%. For those who are xevo and are not tijw, the probability of tijv is 84%. For those who are xevo and are tijw, the probability of tijv is 2%. The overall probability of tijw is 80%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.25 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0, V2=0) = 0.19 +P(V3=1 | X=0, V2=1) = 0.37 +P(V3=1 | X=1, V2=0) = 0.84 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.80 +0.80 * (0.14 - 0.67) * 0.37 + 0.20 * (0.71 - 0.25) * 0.84 = 0.11 +0.11 > 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 46%. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 59%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.59 +0.46*0.59 - 0.54*0.38 = 0.44 +0.44 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28313,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 46%. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 59%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.59 +0.46*0.59 - 0.54*0.38 = 0.44 +0.44 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28314,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 46%. The probability of not xevo and gyzp is 22%. The probability of xevo and gyzp is 27%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.27 +0.27/0.46 - 0.22/0.54 = 0.17 +0.17 > 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 69%. For those who are xevo, the probability of gyzp is 74%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.74 +0.74 - 0.69 = 0.05 +0.05 > 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 69%. For those who are xevo, the probability of gyzp is 74%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.74 +0.74 - 0.69 = 0.05 +0.05 > 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 69%. For those who are xevo, the probability of gyzp is 74%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.74 +0.74 - 0.69 = 0.05 +0.05 > 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 69%. For those who are xevo, the probability of gyzp is 74%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.74 +0.74 - 0.69 = 0.05 +0.05 > 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 72%. For those who are not xevo and are tijv, the probability of gyzp is 69%. For those who are xevo and are not tijv, the probability of gyzp is 41%. For those who are xevo and are tijv, the probability of gyzp is 81%. For those who are not xevo and are not tijw, the probability of tijv is 79%. For those who are not xevo and are tijw, the probability of tijv is 75%. For those who are xevo and are not tijw, the probability of tijv is 74%. For those who are xevo and are tijw, the probability of tijv is 82%. The overall probability of tijw is 45%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.75 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.45 +0.45 * 0.69 * (0.82 - 0.74)+ 0.55 * 0.69 * (0.75 - 0.79)= 0.00 +0.00 = 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 72%. For those who are not xevo and are tijv, the probability of gyzp is 69%. For those who are xevo and are not tijv, the probability of gyzp is 41%. For those who are xevo and are tijv, the probability of gyzp is 81%. For those who are not xevo and are not tijw, the probability of tijv is 79%. For those who are not xevo and are tijw, the probability of tijv is 75%. For those who are xevo and are not tijw, the probability of tijv is 74%. For those who are xevo and are tijw, the probability of tijv is 82%. The overall probability of tijw is 45%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.75 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.45 +0.45 * 0.69 * (0.82 - 0.74)+ 0.55 * 0.69 * (0.75 - 0.79)= 0.00 +0.00 = 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 72%. For those who are not xevo and are tijv, the probability of gyzp is 69%. For those who are xevo and are not tijv, the probability of gyzp is 41%. For those who are xevo and are tijv, the probability of gyzp is 81%. For those who are not xevo and are not tijw, the probability of tijv is 79%. For those who are not xevo and are tijw, the probability of tijv is 75%. For those who are xevo and are not tijw, the probability of tijv is 74%. For those who are xevo and are tijw, the probability of tijv is 82%. The overall probability of tijw is 45%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.75 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.45 +0.45 * (0.81 - 0.41) * 0.75 + 0.55 * (0.69 - 0.72) * 0.74 = 0.05 +0.05 > 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 73%. For those who are not xevo, the probability of gyzp is 69%. For those who are xevo, the probability of gyzp is 74%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.74 +0.73*0.74 - 0.27*0.69 = 0.73 +0.73 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 73%. For those who are not xevo, the probability of gyzp is 69%. For those who are xevo, the probability of gyzp is 74%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.74 +0.73*0.74 - 0.27*0.69 = 0.73 +0.73 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 75%. For those who are xevo, the probability of gyzp is 33%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.33 +0.33 - 0.75 = -0.42 +-0.42 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 75%. For those who are xevo, the probability of gyzp is 33%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.33 +0.33 - 0.75 = -0.42 +-0.42 < 0",arrowhead,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 49%. For those who are not xevo and are tijv, the probability of gyzp is 97%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 21%. For those who are not xevo and are not tijw, the probability of tijv is 23%. For those who are not xevo and are tijw, the probability of tijv is 56%. For those who are xevo and are not tijw, the probability of tijv is 64%. For those who are xevo and are tijw, the probability of tijv is 54%. The overall probability of tijw is 82%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0, V2=0) = 0.23 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.82 +0.82 * 0.97 * (0.54 - 0.64)+ 0.18 * 0.97 * (0.56 - 0.23)= 0.02 +0.02 > 0",arrowhead,nonsense2,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +28338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 49%. For those who are not xevo and are tijv, the probability of gyzp is 97%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 21%. For those who are not xevo and are not tijw, the probability of tijv is 23%. For those who are not xevo and are tijw, the probability of tijv is 56%. For those who are xevo and are not tijw, the probability of tijv is 64%. For those who are xevo and are tijw, the probability of tijv is 54%. The overall probability of tijw is 82%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0, V2=0) = 0.23 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.82 +0.82 * (0.21 - 0.51) * 0.56 + 0.18 * (0.97 - 0.49) * 0.64 = -0.40 +-0.40 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 49%. For those who are not xevo and are tijv, the probability of gyzp is 97%. For those who are xevo and are not tijv, the probability of gyzp is 51%. For those who are xevo and are tijv, the probability of gyzp is 21%. For those who are not xevo and are not tijw, the probability of tijv is 23%. For those who are not xevo and are tijw, the probability of tijv is 56%. For those who are xevo and are not tijw, the probability of tijv is 64%. For those who are xevo and are tijw, the probability of tijv is 54%. The overall probability of tijw is 82%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0, V2=0) = 0.23 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.82 +0.82 * (0.21 - 0.51) * 0.56 + 0.18 * (0.97 - 0.49) * 0.64 = -0.40 +-0.40 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 88%. For those who are not xevo, the probability of gyzp is 75%. For those who are xevo, the probability of gyzp is 33%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.33 +0.88*0.33 - 0.12*0.75 = 0.39 +0.39 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 88%. For those who are not xevo, the probability of gyzp is 75%. For those who are xevo, the probability of gyzp is 33%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.33 +0.88*0.33 - 0.12*0.75 = 0.39 +0.39 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 88%. The probability of not xevo and gyzp is 9%. The probability of xevo and gyzp is 30%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.30 +0.30/0.88 - 0.09/0.12 = -0.39 +-0.39 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo, the probability of gyzp is 87%. For those who are xevo, the probability of gyzp is 47%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.47 +0.47 - 0.87 = -0.40 +-0.40 < 0",arrowhead,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 85%. For those who are not xevo and are tijv, the probability of gyzp is 95%. For those who are xevo and are not tijv, the probability of gyzp is 92%. For those who are xevo and are tijv, the probability of gyzp is 17%. For those who are not xevo and are not tijw, the probability of tijv is 16%. For those who are not xevo and are tijw, the probability of tijv is 23%. For those who are xevo and are not tijw, the probability of tijv is 97%. For those who are xevo and are tijw, the probability of tijv is 42%. The overall probability of tijw is 82%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.95 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.16 +P(V3=1 | X=0, V2=1) = 0.23 +P(V3=1 | X=1, V2=0) = 0.97 +P(V3=1 | X=1, V2=1) = 0.42 +P(V2=1) = 0.82 +0.82 * (0.17 - 0.92) * 0.23 + 0.18 * (0.95 - 0.85) * 0.97 = -0.21 +-0.21 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. For those who are not xevo and are not tijv, the probability of gyzp is 85%. For those who are not xevo and are tijv, the probability of gyzp is 95%. For those who are xevo and are not tijv, the probability of gyzp is 92%. For those who are xevo and are tijv, the probability of gyzp is 17%. For those who are not xevo and are not tijw, the probability of tijv is 16%. For those who are not xevo and are tijw, the probability of tijv is 23%. For those who are xevo and are not tijw, the probability of tijv is 97%. For those who are xevo and are tijw, the probability of tijv is 42%. The overall probability of tijw is 82%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.95 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.16 +P(V3=1 | X=0, V2=1) = 0.23 +P(V3=1 | X=1, V2=0) = 0.97 +P(V3=1 | X=1, V2=1) = 0.42 +P(V2=1) = 0.82 +0.82 * (0.17 - 0.92) * 0.23 + 0.18 * (0.95 - 0.85) * 0.97 = -0.21 +-0.21 < 0",arrowhead,nonsense2,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +28355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 46%. For those who are not xevo, the probability of gyzp is 87%. For those who are xevo, the probability of gyzp is 47%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.47 +0.46*0.47 - 0.54*0.87 = 0.74 +0.74 > 0",arrowhead,nonsense2,1,marginal,P(Y) +28356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 46%. The probability of not xevo and gyzp is 47%. The probability of xevo and gyzp is 25%.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.25 +0.25/0.46 - 0.47/0.54 = -0.33 +-0.33 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. The overall probability of xevo is 46%. The probability of not xevo and gyzp is 47%. The probability of xevo and gyzp is 25%.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.25 +0.25/0.46 - 0.47/0.54 = -0.33 +-0.33 < 0",arrowhead,nonsense2,1,correlation,P(Y | X) +28358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 39%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 39%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 39%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 39%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 57%. For those who are xevo, the probability of gyzp is 39%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.39 +0.39 - 0.57 = -0.18 +-0.18 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 98%. The probability of not xevo and gyzp is 1%. The probability of xevo and gyzp is 39%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.39 +0.39/0.98 - 0.01/0.02 = -0.18 +-0.18 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 47%. For those who are xevo, the probability of gyzp is 49%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.49 +0.49 - 0.47 = 0.03 +0.03 > 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 47%. For those who are xevo, the probability of gyzp is 49%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.49 +0.49 - 0.47 = 0.03 +0.03 > 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 47%. For those who are xevo, the probability of gyzp is 49%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.49 +0.49 - 0.47 = 0.03 +0.03 > 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 97%. For those who are not xevo, the probability of gyzp is 47%. For those who are xevo, the probability of gyzp is 49%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.49 +0.97*0.49 - 0.03*0.47 = 0.49 +0.49 > 0",diamond,nonsense2,1,marginal,P(Y) +28379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 97%. For those who are not xevo, the probability of gyzp is 47%. For those who are xevo, the probability of gyzp is 49%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.49 +0.97*0.49 - 0.03*0.47 = 0.49 +0.49 > 0",diamond,nonsense2,1,marginal,P(Y) +28380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 97%. The probability of not xevo and gyzp is 1%. The probability of xevo and gyzp is 48%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.48 +0.48/0.97 - 0.01/0.03 = 0.03 +0.03 > 0",diamond,nonsense2,1,correlation,P(Y | X) +28382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 58%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.58 +0.58 - 0.61 = -0.03 +-0.03 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 58%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.58 +0.58 - 0.61 = -0.03 +-0.03 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 58%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.58 +0.58 - 0.61 = -0.03 +-0.03 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 31%. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 58%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.58 +0.31*0.58 - 0.69*0.61 = 0.61 +0.61 > 0",diamond,nonsense2,1,marginal,P(Y) +28392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 31%. The probability of not xevo and gyzp is 42%. The probability of xevo and gyzp is 18%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.18 +0.18/0.31 - 0.42/0.69 = -0.03 +-0.03 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 31%. The probability of not xevo and gyzp is 42%. The probability of xevo and gyzp is 18%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.18 +0.18/0.31 - 0.42/0.69 = -0.03 +-0.03 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 81%. For those who are xevo, the probability of gyzp is 26%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.26 +0.26 - 0.81 = -0.56 +-0.56 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 81%. For those who are xevo, the probability of gyzp is 26%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.26 +0.26 - 0.81 = -0.56 +-0.56 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 81%. For those who are xevo, the probability of gyzp is 26%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.26 +0.26 - 0.81 = -0.56 +-0.56 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 81%. For those who are xevo, the probability of gyzp is 26%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.26 +0.26 - 0.81 = -0.56 +-0.56 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 65%. For those who are not xevo, the probability of gyzp is 81%. For those who are xevo, the probability of gyzp is 26%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.26 +0.65*0.26 - 0.35*0.81 = 0.45 +0.45 > 0",diamond,nonsense2,1,marginal,P(Y) +28404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 65%. The probability of not xevo and gyzp is 29%. The probability of xevo and gyzp is 17%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.17 +0.17/0.65 - 0.29/0.35 = -0.56 +-0.56 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 19%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 19%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 19%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 87%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.87*0.19 - 0.13*0.32 = 0.24 +0.24 > 0",diamond,nonsense2,1,marginal,P(Y) +28418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 56%. For those who are xevo, the probability of gyzp is 44%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.44 +0.44 - 0.56 = -0.12 +-0.12 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 56%. For those who are xevo, the probability of gyzp is 44%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.44 +0.44 - 0.56 = -0.12 +-0.12 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 56%. For those who are xevo, the probability of gyzp is 44%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.44 +0.44 - 0.56 = -0.12 +-0.12 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 28%. For those who are not xevo, the probability of gyzp is 56%. For those who are xevo, the probability of gyzp is 44%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.44 +0.28*0.44 - 0.72*0.56 = 0.53 +0.53 > 0",diamond,nonsense2,1,marginal,P(Y) +28427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 28%. For those who are not xevo, the probability of gyzp is 56%. For those who are xevo, the probability of gyzp is 44%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.44 +0.28*0.44 - 0.72*0.56 = 0.53 +0.53 > 0",diamond,nonsense2,1,marginal,P(Y) +28428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 28%. The probability of not xevo and gyzp is 41%. The probability of xevo and gyzp is 12%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.12 +0.12/0.28 - 0.41/0.72 = -0.12 +-0.12 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 28%. The probability of not xevo and gyzp is 41%. The probability of xevo and gyzp is 12%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.12 +0.12/0.28 - 0.41/0.72 = -0.12 +-0.12 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28436,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 51%. For those who are xevo, the probability of gyzp is 35%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.35 +0.35 - 0.51 = -0.15 +-0.15 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 35%. For those who are not xevo, the probability of gyzp is 51%. For those who are xevo, the probability of gyzp is 35%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.35 +0.35*0.35 - 0.65*0.51 = 0.45 +0.45 > 0",diamond,nonsense2,1,marginal,P(Y) +28439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 35%. For those who are not xevo, the probability of gyzp is 51%. For those who are xevo, the probability of gyzp is 35%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.35 +0.35*0.35 - 0.65*0.51 = 0.45 +0.45 > 0",diamond,nonsense2,1,marginal,P(Y) +28440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 35%. The probability of not xevo and gyzp is 33%. The probability of xevo and gyzp is 12%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.12 +0.12/0.35 - 0.33/0.65 = -0.15 +-0.15 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.32 - 0.38 = -0.06 +-0.06 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.32 - 0.38 = -0.06 +-0.06 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.32 - 0.38 = -0.06 +-0.06 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.32 - 0.38 = -0.06 +-0.06 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.32 - 0.38 = -0.06 +-0.06 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 18%. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.18*0.32 - 0.82*0.38 = 0.38 +0.38 > 0",diamond,nonsense2,1,marginal,P(Y) +28451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 18%. For those who are not xevo, the probability of gyzp is 38%. For those who are xevo, the probability of gyzp is 32%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.32 +0.18*0.32 - 0.82*0.38 = 0.38 +0.38 > 0",diamond,nonsense2,1,marginal,P(Y) +28452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 18%. The probability of not xevo and gyzp is 31%. The probability of xevo and gyzp is 6%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.06 +0.06/0.18 - 0.31/0.82 = -0.06 +-0.06 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 18%. The probability of not xevo and gyzp is 31%. The probability of xevo and gyzp is 6%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.06 +0.06/0.18 - 0.31/0.82 = -0.06 +-0.06 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 53%. For those who are xevo, the probability of gyzp is 28%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.28 +0.28 - 0.53 = -0.25 +-0.25 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 53%. For those who are xevo, the probability of gyzp is 28%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.28 +0.28 - 0.53 = -0.25 +-0.25 < 0",diamond,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 53%. For those who are xevo, the probability of gyzp is 28%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.28 +0.28 - 0.53 = -0.25 +-0.25 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 53%. For those who are xevo, the probability of gyzp is 28%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.28 +0.28 - 0.53 = -0.25 +-0.25 < 0",diamond,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 53%. For those who are xevo, the probability of gyzp is 28%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.28 +0.28 - 0.53 = -0.25 +-0.25 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 53%. For those who are xevo, the probability of gyzp is 28%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.28 +0.28 - 0.53 = -0.25 +-0.25 < 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 66%. The probability of not xevo and gyzp is 18%. The probability of xevo and gyzp is 18%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.18 +0.18/0.66 - 0.18/0.34 = -0.25 +-0.25 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 66%. The probability of not xevo and gyzp is 18%. The probability of xevo and gyzp is 18%.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.18 +0.18/0.66 - 0.18/0.34 = -0.25 +-0.25 < 0",diamond,nonsense2,1,correlation,P(Y | X) +28466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 58%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.58 +0.58 - 0.32 = 0.26 +0.26 > 0",diamond,nonsense2,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +28474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 38%. For those who are not xevo, the probability of gyzp is 32%. For those who are xevo, the probability of gyzp is 58%.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.58 +0.38*0.58 - 0.62*0.32 = 0.42 +0.42 > 0",diamond,nonsense2,1,marginal,P(Y) +28482,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 76%. For those who are not xevo and are tijw, the probability of gyzp is 76%. For those who are xevo and are not tijw, the probability of gyzp is 12%. For those who are xevo and are tijw, the probability of gyzp is 14%. For those who are not xevo, the probability of tijw is 28%. For those who are xevo, the probability of tijw is 14%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0) = 0.28 +P(V3=1 | X=1) = 0.14 +0.14 * (0.14 - 0.12) + 0.28 * (0.76 - 0.76) = -0.64 +-0.64 < 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 16%. For those who are not xevo, the probability of gyzp is 76%. For those who are xevo, the probability of gyzp is 13%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.13 +0.16*0.13 - 0.84*0.76 = 0.66 +0.66 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 16%. For those who are not xevo, the probability of gyzp is 76%. For those who are xevo, the probability of gyzp is 13%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.13 +0.16*0.13 - 0.84*0.76 = 0.66 +0.66 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 50%. For those who are not tijv and are xevo, the probability of gyzp is 67%. For those who are tijv and are not xevo, the probability of gyzp is 52%. For those who are tijv and are xevo, the probability of gyzp is 64%. The overall probability of tijv is 32%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.50 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.64 +P(V1=1) = 0.32 +0.68 * (0.67 - 0.50) 0.32 * (0.64 - 0.52) = 0.15 +0.15 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 63%. For those who are not xevo and are tijw, the probability of gyzp is 43%. For those who are xevo and are not tijw, the probability of gyzp is 53%. For those who are xevo and are tijw, the probability of gyzp is 75%. For those who are not xevo, the probability of tijw is 61%. For those who are xevo, the probability of tijw is 59%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.59 +0.59 * (0.75 - 0.53) + 0.61 * (0.43 - 0.63) = 0.14 +0.14 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 63%. For those who are not xevo and are tijw, the probability of gyzp is 43%. For those who are xevo and are not tijw, the probability of gyzp is 53%. For those who are xevo and are tijw, the probability of gyzp is 75%. For those who are not xevo, the probability of tijw is 61%. For those who are xevo, the probability of tijw is 59%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.53 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.59 +0.59 * (0.75 - 0.53) + 0.61 * (0.43 - 0.63) = 0.14 +0.14 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 16%. For those who are not xevo, the probability of gyzp is 51%. For those who are xevo, the probability of gyzp is 66%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.66 +0.16*0.66 - 0.84*0.51 = 0.53 +0.53 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 16%. The probability of not xevo and gyzp is 43%. The probability of xevo and gyzp is 10%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.10 +0.10/0.16 - 0.43/0.84 = 0.15 +0.15 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 29%. For those who are not tijv and are xevo, the probability of gyzp is 14%. For those who are tijv and are not xevo, the probability of gyzp is 11%. For those who are tijv and are xevo, the probability of gyzp is 16%. The overall probability of tijv is 88%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.14 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.88 +0.12 * (0.14 - 0.29) 0.88 * (0.16 - 0.11) = 0.02 +0.02 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 11%. For those who are not xevo and are tijw, the probability of gyzp is 52%. For those who are xevo and are not tijw, the probability of gyzp is 16%. For those who are xevo and are tijw, the probability of gyzp is 12%. For those who are not xevo, the probability of tijw is 42%. For those who are xevo, the probability of tijw is 3%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.11 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.12 +P(V3=1 | X=0) = 0.42 +P(V3=1 | X=1) = 0.03 +0.03 * (0.12 - 0.16) + 0.42 * (0.52 - 0.11) = 0.04 +0.04 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 89%. For those who are not xevo, the probability of gyzp is 28%. For those who are xevo, the probability of gyzp is 16%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.16 +0.89*0.16 - 0.11*0.28 = 0.15 +0.15 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 89%. For those who are not xevo, the probability of gyzp is 28%. For those who are xevo, the probability of gyzp is 16%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.16 +0.89*0.16 - 0.11*0.28 = 0.15 +0.15 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 89%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 14%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.14 +0.14/0.89 - 0.03/0.11 = -0.13 +-0.13 < 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 89%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 14%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.14 +0.14/0.89 - 0.03/0.11 = -0.13 +-0.13 < 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 93%. For those who are not xevo and are tijw, the probability of gyzp is 58%. For those who are xevo and are not tijw, the probability of gyzp is 89%. For those who are xevo and are tijw, the probability of gyzp is 96%. For those who are not xevo, the probability of tijw is 39%. For those who are xevo, the probability of tijw is 29%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.89 +P(Y=1 | X=1, V3=1) = 0.96 +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.29 +0.29 * (0.96 - 0.89) + 0.39 * (0.58 - 0.93) = 0.08 +0.08 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 71%. For those who are not xevo, the probability of gyzp is 79%. For those who are xevo, the probability of gyzp is 91%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.91 +0.71*0.91 - 0.29*0.79 = 0.89 +0.89 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 71%. The probability of not xevo and gyzp is 23%. The probability of xevo and gyzp is 64%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.64 +0.64/0.71 - 0.23/0.29 = 0.12 +0.12 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 71%. The probability of not xevo and gyzp is 23%. The probability of xevo and gyzp is 64%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.64 +0.64/0.71 - 0.23/0.29 = 0.12 +0.12 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 30%. For those who are not tijv and are xevo, the probability of gyzp is 40%. For those who are tijv and are not xevo, the probability of gyzp is 26%. For those who are tijv and are xevo, the probability of gyzp is 54%. The overall probability of tijv is 10%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.30 +P(Y=1 | V1=0, X=1) = 0.40 +P(Y=1 | V1=1, X=0) = 0.26 +P(Y=1 | V1=1, X=1) = 0.54 +P(V1=1) = 0.10 +0.90 * (0.40 - 0.30) 0.10 * (0.54 - 0.26) = 0.12 +0.12 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 31%. For those who are not xevo and are tijw, the probability of gyzp is 23%. For those who are xevo and are not tijw, the probability of gyzp is 35%. For those who are xevo and are tijw, the probability of gyzp is 72%. For those who are not xevo, the probability of tijw is 18%. For those who are xevo, the probability of tijw is 17%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.31 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.72 +P(V3=1 | X=0) = 0.18 +P(V3=1 | X=1) = 0.17 +0.17 * (0.72 - 0.35) + 0.18 * (0.23 - 0.31) = 0.12 +0.12 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 31%. For those who are not xevo and are tijw, the probability of gyzp is 23%. For those who are xevo and are not tijw, the probability of gyzp is 35%. For those who are xevo and are tijw, the probability of gyzp is 72%. For those who are not xevo, the probability of tijw is 18%. For those who are xevo, the probability of tijw is 17%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.31 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.72 +P(V3=1 | X=0) = 0.18 +P(V3=1 | X=1) = 0.17 +0.17 * (0.72 - 0.35) + 0.18 * (0.23 - 0.31) = 0.12 +0.12 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 61%. For those who are not xevo, the probability of gyzp is 29%. For those who are xevo, the probability of gyzp is 41%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.41 +0.61*0.41 - 0.39*0.29 = 0.36 +0.36 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 86%. For those who are not tijv and are xevo, the probability of gyzp is 77%. For those who are tijv and are not xevo, the probability of gyzp is 54%. For those who are tijv and are xevo, the probability of gyzp is 50%. The overall probability of tijv is 98%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.86 +P(Y=1 | V1=0, X=1) = 0.77 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.98 +0.02 * (0.77 - 0.86) 0.98 * (0.50 - 0.54) = -0.04 +-0.04 < 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 86%. For those who are not tijv and are xevo, the probability of gyzp is 77%. For those who are tijv and are not xevo, the probability of gyzp is 54%. For those who are tijv and are xevo, the probability of gyzp is 50%. The overall probability of tijv is 98%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.86 +P(Y=1 | V1=0, X=1) = 0.77 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.98 +0.02 * (0.77 - 0.86) 0.98 * (0.50 - 0.54) = -0.04 +-0.04 < 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 90%. For those who are not xevo and are tijw, the probability of gyzp is 34%. For those who are xevo and are not tijw, the probability of gyzp is 80%. For those who are xevo and are tijw, the probability of gyzp is 34%. For those who are not xevo, the probability of tijw is 64%. For those who are xevo, the probability of tijw is 63%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0) = 0.64 +P(V3=1 | X=1) = 0.63 +0.63 * (0.34 - 0.80) + 0.64 * (0.34 - 0.90) = -0.04 +-0.04 < 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 42%. For those who are not xevo, the probability of gyzp is 54%. For those who are xevo, the probability of gyzp is 51%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.51 +0.42*0.51 - 0.58*0.54 = 0.53 +0.53 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 42%. For those who are not tijv and are xevo, the probability of gyzp is 29%. For those who are tijv and are not xevo, the probability of gyzp is 42%. For those who are tijv and are xevo, the probability of gyzp is 23%. The overall probability of tijv is 97%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.42 +P(Y=1 | V1=0, X=1) = 0.29 +P(Y=1 | V1=1, X=0) = 0.42 +P(Y=1 | V1=1, X=1) = 0.23 +P(V1=1) = 0.97 +0.03 * (0.29 - 0.42) 0.97 * (0.23 - 0.42) = -0.19 +-0.19 < 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 42%. For those who are not tijv and are xevo, the probability of gyzp is 29%. For those who are tijv and are not xevo, the probability of gyzp is 42%. For those who are tijv and are xevo, the probability of gyzp is 23%. The overall probability of tijv is 97%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.42 +P(Y=1 | V1=0, X=1) = 0.29 +P(Y=1 | V1=1, X=0) = 0.42 +P(Y=1 | V1=1, X=1) = 0.23 +P(V1=1) = 0.97 +0.03 * (0.29 - 0.42) 0.97 * (0.23 - 0.42) = -0.19 +-0.19 < 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 42%. For those who are not xevo and are tijw, the probability of gyzp is 44%. For those who are xevo and are not tijw, the probability of gyzp is 30%. For those who are xevo and are tijw, the probability of gyzp is 6%. For those who are not xevo, the probability of tijw is 27%. For those who are xevo, the probability of tijw is 28%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.06 +P(V3=1 | X=0) = 0.27 +P(V3=1 | X=1) = 0.28 +0.28 * (0.06 - 0.30) + 0.27 * (0.44 - 0.42) = -0.19 +-0.19 < 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 42%. For those who are not xevo and are tijw, the probability of gyzp is 44%. For those who are xevo and are not tijw, the probability of gyzp is 30%. For those who are xevo and are tijw, the probability of gyzp is 6%. For those who are not xevo, the probability of tijw is 27%. For those who are xevo, the probability of tijw is 28%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.06 +P(V3=1 | X=0) = 0.27 +P(V3=1 | X=1) = 0.28 +0.28 * (0.06 - 0.30) + 0.27 * (0.44 - 0.42) = -0.19 +-0.19 < 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 64%. The probability of not xevo and gyzp is 15%. The probability of xevo and gyzp is 15%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.15 +0.15/0.64 - 0.15/0.36 = -0.19 +-0.19 < 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 64%. The probability of not xevo and gyzp is 15%. The probability of xevo and gyzp is 15%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.15 +0.15/0.64 - 0.15/0.36 = -0.19 +-0.19 < 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 49%. For those who are not tijv and are xevo, the probability of gyzp is 68%. For those who are tijv and are not xevo, the probability of gyzp is 50%. For those who are tijv and are xevo, the probability of gyzp is 68%. The overall probability of tijv is 22%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.49 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.22 +0.78 * (0.68 - 0.49) 0.22 * (0.68 - 0.50) = 0.19 +0.19 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 49%. For those who are not tijv and are xevo, the probability of gyzp is 68%. For those who are tijv and are not xevo, the probability of gyzp is 50%. For those who are tijv and are xevo, the probability of gyzp is 68%. The overall probability of tijv is 22%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.49 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.22 +0.78 * (0.68 - 0.49) 0.22 * (0.68 - 0.50) = 0.19 +0.19 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 27%. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 68%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.68 +0.27*0.68 - 0.73*0.49 = 0.54 +0.54 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 27%. The probability of not xevo and gyzp is 36%. The probability of xevo and gyzp is 18%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.18 +0.18/0.27 - 0.36/0.73 = 0.20 +0.20 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 27%. The probability of not xevo and gyzp is 36%. The probability of xevo and gyzp is 18%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.18 +0.18/0.27 - 0.36/0.73 = 0.20 +0.20 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 84%. For those who are not tijv and are xevo, the probability of gyzp is 67%. For those who are tijv and are not xevo, the probability of gyzp is 53%. For those who are tijv and are xevo, the probability of gyzp is 38%. The overall probability of tijv is 55%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.84 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.38 +P(V1=1) = 0.55 +0.45 * (0.67 - 0.84) 0.55 * (0.38 - 0.53) = -0.16 +-0.16 < 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 52%. For those who are not xevo and are tijw, the probability of gyzp is 99%. For those who are xevo and are not tijw, the probability of gyzp is 37%. For those who are xevo and are tijw, the probability of gyzp is 82%. For those who are not xevo, the probability of tijw is 19%. For those who are xevo, the probability of tijw is 44%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.52 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.19 +P(V3=1 | X=1) = 0.44 +0.44 * (0.82 - 0.37) + 0.19 * (0.99 - 0.52) = -0.16 +-0.16 < 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 51%. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 57%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.57 +0.51*0.57 - 0.49*0.61 = 0.59 +0.59 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 51%. For those who are not xevo, the probability of gyzp is 61%. For those who are xevo, the probability of gyzp is 57%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.57 +0.51*0.57 - 0.49*0.61 = 0.59 +0.59 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 51%. The probability of not xevo and gyzp is 30%. The probability of xevo and gyzp is 29%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.29 +0.29/0.51 - 0.30/0.49 = -0.04 +-0.04 < 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 66%. For those who are not tijv and are xevo, the probability of gyzp is 91%. For those who are tijv and are not xevo, the probability of gyzp is 79%. For those who are tijv and are xevo, the probability of gyzp is 90%. The overall probability of tijv is 18%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.91 +P(Y=1 | V1=1, X=0) = 0.79 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.18 +0.82 * (0.91 - 0.66) 0.18 * (0.90 - 0.79) = 0.22 +0.22 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not tijv and are not xevo, the probability of gyzp is 66%. For those who are not tijv and are xevo, the probability of gyzp is 91%. For those who are tijv and are not xevo, the probability of gyzp is 79%. For those who are tijv and are xevo, the probability of gyzp is 90%. The overall probability of tijv is 18%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.91 +P(Y=1 | V1=1, X=0) = 0.79 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.18 +0.82 * (0.91 - 0.66) 0.18 * (0.90 - 0.79) = 0.22 +0.22 > 0",diamondcut,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. For those who are not xevo and are not tijw, the probability of gyzp is 66%. For those who are not xevo and are tijw, the probability of gyzp is 79%. For those who are xevo and are not tijw, the probability of gyzp is 91%. For those who are xevo and are tijw, the probability of gyzp is 90%. For those who are not xevo, the probability of tijw is 50%. For those who are xevo, the probability of tijw is 10%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.79 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 0.90 +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.10 +0.10 * (0.90 - 0.91) + 0.50 * (0.79 - 0.66) = 0.24 +0.24 > 0",diamondcut,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 79%. For those who are not xevo, the probability of gyzp is 73%. For those who are xevo, the probability of gyzp is 91%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.91 +0.79*0.91 - 0.21*0.73 = 0.86 +0.86 > 0",diamondcut,nonsense2,1,marginal,P(Y) +28576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 79%. The probability of not xevo and gyzp is 15%. The probability of xevo and gyzp is 72%.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.79 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.72 +0.72/0.79 - 0.15/0.21 = 0.18 +0.18 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. The overall probability of xevo is 79%. The probability of not xevo and gyzp is 15%. The probability of xevo and gyzp is 72%.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.79 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.72 +0.72/0.79 - 0.15/0.21 = 0.18 +0.18 > 0",diamondcut,nonsense2,1,correlation,P(Y | X) +28578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijw.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijw. Method 2: We look directly at how xevo correlates with gyzp in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 43%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.43 +0.43 - 0.42 = 0.01 +0.01 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 43%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.43 +0.43 - 0.42 = 0.01 +0.01 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28583,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 43%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.43 +0.43 - 0.42 = 0.01 +0.01 > 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 93%. For those who are not xevo, the probability of gyzp is 42%. For those who are xevo, the probability of gyzp is 43%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.43 +0.93*0.43 - 0.07*0.42 = 0.43 +0.43 > 0",fork,nonsense2,1,marginal,P(Y) +28587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 93%. The probability of not xevo and gyzp is 3%. The probability of xevo and gyzp is 40%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.40 +0.40/0.93 - 0.03/0.07 = 0.01 +0.01 > 0",fork,nonsense2,1,correlation,P(Y | X) +28588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 58%. For those who are xevo, the probability of gyzp is 52%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.52 +0.52 - 0.58 = -0.06 +-0.06 < 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 58%. For those who are xevo, the probability of gyzp is 52%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.52 +0.52 - 0.58 = -0.06 +-0.06 < 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 58%. For those who are xevo, the probability of gyzp is 52%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.52 +0.52 - 0.58 = -0.06 +-0.06 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 58%. For those who are xevo, the probability of gyzp is 52%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.52 +0.52 - 0.58 = -0.06 +-0.06 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 50%. For those who are not xevo, the probability of gyzp is 58%. For those who are xevo, the probability of gyzp is 52%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.52 +0.50*0.52 - 0.50*0.58 = 0.55 +0.55 > 0",fork,nonsense2,1,marginal,P(Y) +28600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 48%. For those who are xevo, the probability of gyzp is 54%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.54 +0.54 - 0.48 = 0.06 +0.06 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 48%. For those who are xevo, the probability of gyzp is 54%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.54 +0.54 - 0.48 = 0.06 +0.06 > 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 48%. For those who are xevo, the probability of gyzp is 54%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.54 +0.54 - 0.48 = 0.06 +0.06 > 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 66%. For those who are not xevo, the probability of gyzp is 48%. For those who are xevo, the probability of gyzp is 54%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.54 +0.66*0.54 - 0.34*0.48 = 0.52 +0.52 > 0",fork,nonsense2,1,marginal,P(Y) +28606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 66%. The probability of not xevo and gyzp is 17%. The probability of xevo and gyzp is 35%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.35 +0.35/0.66 - 0.17/0.34 = 0.06 +0.06 > 0",fork,nonsense2,1,correlation,P(Y | X) +28607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 66%. The probability of not xevo and gyzp is 17%. The probability of xevo and gyzp is 35%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.35 +0.35/0.66 - 0.17/0.34 = 0.06 +0.06 > 0",fork,nonsense2,1,correlation,P(Y | X) +28610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 44%. For those who are xevo, the probability of gyzp is 54%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.54 +0.54 - 0.44 = 0.09 +0.09 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 44%. For those who are xevo, the probability of gyzp is 54%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.54 +0.54 - 0.44 = 0.09 +0.09 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 44%. For those who are xevo, the probability of gyzp is 54%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.54 +0.54 - 0.44 = 0.09 +0.09 > 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 12%. For those who are not xevo, the probability of gyzp is 44%. For those who are xevo, the probability of gyzp is 54%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.54 +0.12*0.54 - 0.88*0.44 = 0.46 +0.46 > 0",fork,nonsense2,1,marginal,P(Y) +28616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 12%. The probability of not xevo and gyzp is 39%. The probability of xevo and gyzp is 7%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.07 +0.07/0.12 - 0.39/0.88 = 0.09 +0.09 > 0",fork,nonsense2,1,correlation,P(Y | X) +28618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 33%. For those who are xevo, the probability of gyzp is 91%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.91 +0.91 - 0.33 = 0.59 +0.59 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 33%. For those who are xevo, the probability of gyzp is 91%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.91 +0.91 - 0.33 = 0.59 +0.59 > 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 33%. For those who are xevo, the probability of gyzp is 91%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.91 +0.91 - 0.33 = 0.59 +0.59 > 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 81%. For those who are not xevo, the probability of gyzp is 33%. For those who are xevo, the probability of gyzp is 91%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.91 +0.81*0.91 - 0.19*0.33 = 0.80 +0.80 > 0",fork,nonsense2,1,marginal,P(Y) +28625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 81%. For those who are not xevo, the probability of gyzp is 33%. For those who are xevo, the probability of gyzp is 91%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.91 +0.81*0.91 - 0.19*0.33 = 0.80 +0.80 > 0",fork,nonsense2,1,marginal,P(Y) +28626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 81%. The probability of not xevo and gyzp is 6%. The probability of xevo and gyzp is 74%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.74 +0.74/0.81 - 0.06/0.19 = 0.59 +0.59 > 0",fork,nonsense2,1,correlation,P(Y | X) +28627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 81%. The probability of not xevo and gyzp is 6%. The probability of xevo and gyzp is 74%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.74 +0.74/0.81 - 0.06/0.19 = 0.59 +0.59 > 0",fork,nonsense2,1,correlation,P(Y | X) +28628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 8%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.08 +0.08 - 0.78 = -0.70 +-0.70 < 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 8%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.08 +0.08 - 0.78 = -0.70 +-0.70 < 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 52%. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 8%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.08 +0.52*0.08 - 0.48*0.78 = 0.42 +0.42 > 0",fork,nonsense2,1,marginal,P(Y) +28635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 52%. For those who are not xevo, the probability of gyzp is 78%. For those who are xevo, the probability of gyzp is 8%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.08 +0.52*0.08 - 0.48*0.78 = 0.42 +0.42 > 0",fork,nonsense2,1,marginal,P(Y) +28638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 23%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.23 +0.23 - 0.25 = -0.02 +-0.02 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28643,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 25%. For those who are xevo, the probability of gyzp is 23%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.23 +0.23 - 0.25 = -0.02 +-0.02 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 95%. The probability of not xevo and gyzp is 1%. The probability of xevo and gyzp is 22%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.22 +0.22/0.95 - 0.01/0.05 = -0.02 +-0.02 < 0",fork,nonsense2,1,correlation,P(Y | X) +28647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 95%. The probability of not xevo and gyzp is 1%. The probability of xevo and gyzp is 22%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.22 +0.22/0.95 - 0.01/0.05 = -0.02 +-0.02 < 0",fork,nonsense2,1,correlation,P(Y | X) +28648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 62%. For those who are not xevo, the probability of gyzp is 83%. For those who are xevo, the probability of gyzp is 29%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.29 +0.62*0.29 - 0.38*0.83 = 0.49 +0.49 > 0",fork,nonsense2,1,marginal,P(Y) +28656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 62%. The probability of not xevo and gyzp is 31%. The probability of xevo and gyzp is 18%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.18 +0.18/0.62 - 0.31/0.38 = -0.55 +-0.55 < 0",fork,nonsense2,1,correlation,P(Y | X) +28657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 62%. The probability of not xevo and gyzp is 31%. The probability of xevo and gyzp is 18%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.18 +0.18/0.62 - 0.31/0.38 = -0.55 +-0.55 < 0",fork,nonsense2,1,correlation,P(Y | X) +28660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 36%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.36 - 0.49 = -0.14 +-0.14 < 0",fork,nonsense2,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 36%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.36 - 0.49 = -0.14 +-0.14 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 36%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.36 - 0.49 = -0.14 +-0.14 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 9%. For those who are not xevo, the probability of gyzp is 49%. For those who are xevo, the probability of gyzp is 36%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.36 +0.09*0.36 - 0.91*0.49 = 0.48 +0.48 > 0",fork,nonsense2,1,marginal,P(Y) +28666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 9%. The probability of not xevo and gyzp is 45%. The probability of xevo and gyzp is 3%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.03 +0.03/0.09 - 0.45/0.91 = -0.14 +-0.14 < 0",fork,nonsense2,1,correlation,P(Y | X) +28667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 9%. The probability of not xevo and gyzp is 45%. The probability of xevo and gyzp is 3%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.03 +0.03/0.09 - 0.45/0.91 = -0.14 +-0.14 < 0",fork,nonsense2,1,correlation,P(Y | X) +28669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look directly at how xevo correlates with gyzp in general. Method 2: We look at this correlation case by case according to tijv.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. For those who are not xevo, the probability of gyzp is 89%. For those who are xevo, the probability of gyzp is 19%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.19 +0.19 - 0.89 = -0.70 +-0.70 < 0",fork,nonsense2,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 98%. For those who are not xevo, the probability of gyzp is 89%. For those who are xevo, the probability of gyzp is 19%.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.19 +0.98*0.19 - 0.02*0.89 = 0.21 +0.21 > 0",fork,nonsense2,1,marginal,P(Y) +28675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. The overall probability of xevo is 98%. For those who are not xevo, the probability of gyzp is 89%. For those who are xevo, the probability of gyzp is 19%.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.19 +0.98*0.19 - 0.02*0.89 = 0.21 +0.21 > 0",fork,nonsense2,1,marginal,P(Y) +28678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. Method 1: We look at how xevo correlates with gyzp case by case according to tijv. Method 2: We look directly at how xevo correlates with gyzp in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense2,2,backadj,[backdoor adjustment set for Y given X] +28680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 64%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.64 +0.64 - 0.63 = 0.01 +0.01 > 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 64%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.64 +0.64 - 0.63 = 0.01 +0.01 > 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 64%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.64 +0.64 - 0.63 = 0.01 +0.01 > 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 64%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.64 +0.64 - 0.63 = 0.01 +0.01 > 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 56%. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 64%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.64 +0.56*0.64 - 0.44*0.63 = 0.64 +0.64 > 0",chain,nonsense3,1,marginal,P(Y) +28687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 56%. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 64%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.64 +0.56*0.64 - 0.44*0.63 = 0.64 +0.64 > 0",chain,nonsense3,1,marginal,P(Y) +28689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 56%. The probability of not yomx and xevu is 28%. The probability of yomx and xevu is 36%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.36 +0.36/0.56 - 0.28/0.44 = 0.01 +0.01 > 0",chain,nonsense3,1,correlation,P(Y | X) +28690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.40 - 0.68 = -0.29 +-0.29 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.40 - 0.68 = -0.29 +-0.29 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.40 - 0.68 = -0.29 +-0.29 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.40 - 0.68 = -0.29 +-0.29 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.40 - 0.68 = -0.29 +-0.29 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.40 - 0.68 = -0.29 +-0.29 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 19%. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 40%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.40 +0.19*0.40 - 0.81*0.68 = 0.63 +0.63 > 0",chain,nonsense3,1,marginal,P(Y) +28701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 19%. The probability of not yomx and xevu is 55%. The probability of yomx and xevu is 8%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.08 +0.08/0.19 - 0.55/0.81 = -0.29 +-0.29 < 0",chain,nonsense3,1,correlation,P(Y | X) +28702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 61%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.61 +0.61 - 0.60 = 0.01 +0.01 > 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 61%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.61 +0.61 - 0.60 = 0.01 +0.01 > 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 61%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.61 +0.61 - 0.60 = 0.01 +0.01 > 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 61%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.61 +0.61 - 0.60 = 0.01 +0.01 > 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 61%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.61 +0.63*0.61 - 0.37*0.60 = 0.60 +0.60 > 0",chain,nonsense3,1,marginal,P(Y) +28711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 61%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.61 +0.63*0.61 - 0.37*0.60 = 0.60 +0.60 > 0",chain,nonsense3,1,marginal,P(Y) +28712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 63%. The probability of not yomx and xevu is 22%. The probability of yomx and xevu is 38%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.38 +0.38/0.63 - 0.22/0.37 = 0.01 +0.01 > 0",chain,nonsense3,1,correlation,P(Y | X) +28713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 63%. The probability of not yomx and xevu is 22%. The probability of yomx and xevu is 38%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.38 +0.38/0.63 - 0.22/0.37 = 0.01 +0.01 > 0",chain,nonsense3,1,correlation,P(Y | X) +28714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 66%. For those who are yomx, the probability of xevu is 85%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.85 +0.85 - 0.66 = 0.20 +0.20 > 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 66%. For those who are yomx, the probability of xevu is 85%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.85 +0.85 - 0.66 = 0.20 +0.20 > 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 66%. For those who are yomx, the probability of xevu is 85%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.85 +0.85 - 0.66 = 0.20 +0.20 > 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 89%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 76%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.76 +0.76/0.89 - 0.07/0.11 = 0.20 +0.20 > 0",chain,nonsense3,1,correlation,P(Y | X) +28727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 57%. For those who are yomx, the probability of xevu is 52%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.52 +0.52 - 0.57 = -0.05 +-0.05 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 57%. For those who are yomx, the probability of xevu is 52%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.52 +0.52 - 0.57 = -0.05 +-0.05 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 92%. The probability of not yomx and xevu is 5%. The probability of yomx and xevu is 47%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.47 +0.47/0.92 - 0.05/0.08 = -0.05 +-0.05 < 0",chain,nonsense3,1,correlation,P(Y | X) +28739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 70%. For those who are yomx, the probability of xevu is 68%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.68 +0.68 - 0.70 = -0.01 +-0.01 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 70%. For those who are yomx, the probability of xevu is 68%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.68 +0.68 - 0.70 = -0.01 +-0.01 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 70%. For those who are yomx, the probability of xevu is 68%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.68 +0.68 - 0.70 = -0.01 +-0.01 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 72%. For those who are not yomx, the probability of xevu is 70%. For those who are yomx, the probability of xevu is 68%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.68 +0.72*0.68 - 0.28*0.70 = 0.69 +0.69 > 0",chain,nonsense3,1,marginal,P(Y) +28747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 72%. For those who are not yomx, the probability of xevu is 70%. For those who are yomx, the probability of xevu is 68%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.68 +0.72*0.68 - 0.28*0.70 = 0.69 +0.69 > 0",chain,nonsense3,1,marginal,P(Y) +28750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 27%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.27 +0.27 - 0.30 = -0.03 +-0.03 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.27 +0.27 - 0.30 = -0.03 +-0.03 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 27%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.27 +0.27 - 0.30 = -0.03 +-0.03 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.27 +0.27 - 0.30 = -0.03 +-0.03 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 82%. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 27%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.27 +0.82*0.27 - 0.18*0.30 = 0.27 +0.27 > 0",chain,nonsense3,1,marginal,P(Y) +28759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 82%. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.27 +0.82*0.27 - 0.18*0.30 = 0.27 +0.27 > 0",chain,nonsense3,1,marginal,P(Y) +28760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 82%. The probability of not yomx and xevu is 5%. The probability of yomx and xevu is 22%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.22 +0.22/0.82 - 0.05/0.18 = -0.03 +-0.03 < 0",chain,nonsense3,1,correlation,P(Y | X) +28761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 82%. The probability of not yomx and xevu is 5%. The probability of yomx and xevu is 22%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.22 +0.22/0.82 - 0.05/0.18 = -0.03 +-0.03 < 0",chain,nonsense3,1,correlation,P(Y | X) +28762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 62%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.62 +0.62 - 0.78 = -0.17 +-0.17 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 62%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.62 +0.62 - 0.78 = -0.17 +-0.17 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 62%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.62 +0.62 - 0.78 = -0.17 +-0.17 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 83%. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 62%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.62 +0.83*0.62 - 0.17*0.78 = 0.64 +0.64 > 0",chain,nonsense3,1,marginal,P(Y) +28771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 83%. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 62%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.62 +0.83*0.62 - 0.17*0.78 = 0.64 +0.64 > 0",chain,nonsense3,1,marginal,P(Y) +28772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 83%. The probability of not yomx and xevu is 14%. The probability of yomx and xevu is 51%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.51 +0.51/0.83 - 0.14/0.17 = -0.17 +-0.17 < 0",chain,nonsense3,1,correlation,P(Y | X) +28773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 83%. The probability of not yomx and xevu is 14%. The probability of yomx and xevu is 51%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.51 +0.51/0.83 - 0.14/0.17 = -0.17 +-0.17 < 0",chain,nonsense3,1,correlation,P(Y | X) +28777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 74%. For those who are yomx, the probability of xevu is 36%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.36 +0.36 - 0.74 = -0.38 +-0.38 < 0",chain,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 74%. For those who are yomx, the probability of xevu is 36%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.36 +0.36 - 0.74 = -0.38 +-0.38 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 74%. For those who are yomx, the probability of xevu is 36%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.36 +0.36 - 0.74 = -0.38 +-0.38 < 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 74%. For those who are yomx, the probability of xevu is 36%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.36 +0.36 - 0.74 = -0.38 +-0.38 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 74%. For those who are yomx, the probability of xevu is 36%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.36 +0.36 - 0.74 = -0.38 +-0.38 < 0",chain,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +28784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 34%. The probability of not yomx and xevu is 48%. The probability of yomx and xevu is 13%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.13 +0.13/0.34 - 0.48/0.66 = -0.38 +-0.38 < 0",chain,nonsense3,1,correlation,P(Y | X) +28785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 34%. The probability of not yomx and xevu is 48%. The probability of yomx and xevu is 13%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.13 +0.13/0.34 - 0.48/0.66 = -0.38 +-0.38 < 0",chain,nonsense3,1,correlation,P(Y | X) +28787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 44%. For those who are yomx, the probability of xevu is 76%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.76 +0.76 - 0.44 = 0.32 +0.32 > 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 44%. For those who are yomx, the probability of xevu is 76%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.76 +0.76 - 0.44 = 0.32 +0.32 > 0",chain,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. The overall probability of yomx is 1%. For those who are not yomx, the probability of xevu is 44%. For those who are yomx, the probability of xevu is 76%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.76 +0.01*0.76 - 0.99*0.44 = 0.44 +0.44 > 0",chain,nonsense3,1,marginal,P(Y) +28798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 23%. For those who are yomx, the probability of xevu is 23%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.23 +0.63*0.23 - 0.37*0.23 = 0.23 +0.23 > 0",collision,nonsense3,1,marginal,P(Y) +28801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 23%. For those who are yomx, the probability of xevu is 23%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.23 +0.63*0.23 - 0.37*0.23 = 0.23 +0.23 > 0",collision,nonsense3,1,marginal,P(Y) +28805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.20.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.20.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 63%. For those who are not yomx and are not gwet, the probability of xevu is 57%. For those who are not yomx and are gwet, the probability of xevu is 11%. For those who are yomx and are not gwet, the probability of xevu is 12%. For those who are yomx and are gwet, the probability of xevu is 28%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.11 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.28 +0.28 - (0.63*0.28 + 0.37*0.11) = 0.07 +0.07 > 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 53%. For those who are not yomx, the probability of xevu is 87%. For those who are yomx, the probability of xevu is 87%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.87 +0.53*0.87 - 0.47*0.87 = 0.87 +0.87 > 0",collision,nonsense3,1,marginal,P(Y) +28814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28816,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.21.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.21.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 53%. For those who are not yomx and are not gwet, the probability of xevu is 99%. For those who are not yomx and are gwet, the probability of xevu is 66%. For those who are yomx and are not gwet, the probability of xevu is 91%. For those who are yomx and are gwet, the probability of xevu is 85%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.53 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 0.85 +0.85 - (0.53*0.85 + 0.47*0.66) = 0.06 +0.06 > 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 27%. For those who are not yomx, the probability of xevu is 16%. For those who are yomx, the probability of xevu is 16%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.16 +0.27*0.16 - 0.73*0.16 = 0.16 +0.16 > 0",collision,nonsense3,1,marginal,P(Y) +28824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is -0.15.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 46%. For those who are not yomx, the probability of xevu is 92%. For those who are yomx, the probability of xevu is 92%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.46*0.92 - 0.54*0.92 = 0.92 +0.92 > 0",collision,nonsense3,1,marginal,P(Y) +28835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is -0.44.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 46%. For those who are not yomx and are not gwet, the probability of xevu is 95%. For those who are not yomx and are gwet, the probability of xevu is 89%. For those who are yomx and are not gwet, the probability of xevu is 99%. For those who are yomx and are gwet, the probability of xevu is 45%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.46 +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.45 +0.45 - (0.46*0.45 + 0.54*0.89) = -0.35 +-0.35 < 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28839,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 46%. For those who are not yomx and are not gwet, the probability of xevu is 95%. For those who are not yomx and are gwet, the probability of xevu is 89%. For those who are yomx and are not gwet, the probability of xevu is 99%. For those who are yomx and are gwet, the probability of xevu is 45%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.46 +P(Y=1 | X=0, V3=0) = 0.95 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.45 +0.45 - (0.46*0.45 + 0.54*0.89) = -0.35 +-0.35 < 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 0%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 39%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.00 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.39 +0.00*0.39 - 1.00*0.39 = 0.39 +0.39 > 0",collision,nonsense3,1,marginal,P(Y) +28841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 0%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 39%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.00 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.39 +0.00*0.39 - 1.00*0.39 = 0.39 +0.39 > 0",collision,nonsense3,1,marginal,P(Y) +28844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28846,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.00.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 0%. For those who are not yomx and are not gwet, the probability of xevu is 31%. For those who are not yomx and are gwet, the probability of xevu is 44%. For those who are yomx and are not gwet, the probability of xevu is 16%. For those who are yomx and are gwet, the probability of xevu is 51%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.00 +P(Y=1 | X=0, V3=0) = 0.31 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.51 +0.51 - (0.00*0.51 + 1.00*0.44) = 0.07 +0.07 > 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 52%. For those who are not yomx, the probability of xevu is 69%. For those who are yomx, the probability of xevu is 69%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.69 +0.52*0.69 - 0.48*0.69 = 0.69 +0.69 > 0",collision,nonsense3,1,marginal,P(Y) +28855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 52%. For those who are not yomx and are not gwet, the probability of xevu is 63%. For those who are not yomx and are gwet, the probability of xevu is 75%. For those who are yomx and are not gwet, the probability of xevu is 73%. For those who are yomx and are gwet, the probability of xevu is 38%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.52 +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.38 +0.38 - (0.52*0.38 + 0.48*0.75) = -0.31 +-0.31 < 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 36%. For those who are not yomx, the probability of xevu is 1%. For those who are yomx, the probability of xevu is 1%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.01 +P(Y=1 | X=1) = 0.01 +0.36*0.01 - 0.64*0.01 = 0.01 +0.01 > 0",collision,nonsense3,1,marginal,P(Y) +28864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.14.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.14.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 36%. For those who are not yomx and are not gwet, the probability of xevu is 1%. For those who are not yomx and are gwet, the probability of xevu is 1%. For those who are yomx and are not gwet, the probability of xevu is 0%. For those who are yomx and are gwet, the probability of xevu is 7%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.36 +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.01 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.07 +0.07 - (0.36*0.07 + 0.64*0.01) = 0.05 +0.05 > 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 36%. For those who are not yomx and are not gwet, the probability of xevu is 1%. For those who are not yomx and are gwet, the probability of xevu is 1%. For those who are yomx and are not gwet, the probability of xevu is 0%. For those who are yomx and are gwet, the probability of xevu is 7%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.36 +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.01 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.07 +0.07 - (0.36*0.07 + 0.64*0.01) = 0.05 +0.05 > 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 34%. For those who are yomx, the probability of xevu is 34%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.34 +0.63*0.34 - 0.37*0.34 = 0.34 +0.34 > 0",collision,nonsense3,1,marginal,P(Y) +28875,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is -0.06.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 63%. For those who are not yomx and are not gwet, the probability of xevu is 16%. For those who are not yomx and are gwet, the probability of xevu is 46%. For those who are yomx and are not gwet, the probability of xevu is 12%. For those who are yomx and are gwet, the probability of xevu is 40%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.16 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.40 +0.40 - (0.63*0.40 + 0.37*0.46) = -0.02 +-0.02 < 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 5%. For those who are not yomx, the probability of xevu is 97%. For those who are yomx, the probability of xevu is 97%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.97 +0.05*0.97 - 0.95*0.97 = 0.97 +0.97 > 0",collision,nonsense3,1,marginal,P(Y) +28884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is 0.03.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 5%. For those who are not yomx and are not gwet, the probability of xevu is 94%. For those who are not yomx and are gwet, the probability of xevu is 97%. For those who are yomx and are not gwet, the probability of xevu is 91%. For those who are yomx and are gwet, the probability of xevu is 100%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 1.00 +1.00 - (0.05*1.00 + 0.95*0.97) = 0.02 +0.02 > 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 11%. For those who are not yomx, the probability of xevu is 84%. For those who are yomx, the probability of xevu is 84%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.84 +0.11*0.84 - 0.89*0.84 = 0.84 +0.84 > 0",collision,nonsense3,1,marginal,P(Y) +28894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. For those who are gwet, the correlation between yomx and xevu is -0.04.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense3,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +28898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 11%. For those who are not yomx and are not gwet, the probability of xevu is 71%. For those who are not yomx and are gwet, the probability of xevu is 91%. For those who are yomx and are not gwet, the probability of xevu is 56%. For those who are yomx and are gwet, the probability of xevu is 87%.",no,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.11 +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.87 +0.87 - (0.11*0.87 + 0.89*0.91) = -0.03 +-0.03 < 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28899,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Xevu has a direct effect on gwet. The overall probability of yomx is 11%. For those who are not yomx and are not gwet, the probability of xevu is 71%. For those who are not yomx and are gwet, the probability of xevu is 91%. For those who are yomx and are not gwet, the probability of xevu is 56%. For those who are yomx and are gwet, the probability of xevu is 87%.",yes,"Let Y = xevu; X = yomx; V3 = gwet. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.11 +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.87 +0.87 - (0.11*0.87 + 0.89*0.91) = -0.03 +-0.03 < 0",collision,nonsense3,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +28901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 72%. For those who are not gwet and are yomx, the probability of xevu is 87%. For those who are gwet and are not yomx, the probability of xevu is 10%. For those who are gwet and are yomx, the probability of xevu is 62%. The overall probability of gwet is 9%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.72 +P(Y=1 | V1=0, X=1) = 0.87 +P(Y=1 | V1=1, X=0) = 0.10 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.09 +0.91 * (0.87 - 0.72) + 0.09 * (0.62 - 0.10) = 0.19 +0.19 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 56%. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 87%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.87 +0.56*0.87 - 0.44*0.60 = 0.76 +0.76 > 0",confounding,nonsense3,1,marginal,P(Y) +28908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 22%. For those who are not gwet and are yomx, the probability of xevu is 42%. For those who are gwet and are not yomx, the probability of xevu is 79%. For those who are gwet and are yomx, the probability of xevu is 18%. The overall probability of gwet is 59%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.22 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.79 +P(Y=1 | V1=1, X=1) = 0.18 +P(V1=1) = 0.59 +0.41 * (0.42 - 0.22) + 0.59 * (0.18 - 0.79) = -0.13 +-0.13 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 22%. For those who are not gwet and are yomx, the probability of xevu is 42%. For those who are gwet and are not yomx, the probability of xevu is 79%. For those who are gwet and are yomx, the probability of xevu is 18%. The overall probability of gwet is 59%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.22 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.79 +P(Y=1 | V1=1, X=1) = 0.18 +P(V1=1) = 0.59 +0.41 * (0.42 - 0.22) + 0.59 * (0.18 - 0.79) = -0.13 +-0.13 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 33%. For those who are not yomx, the probability of xevu is 61%. For those who are yomx, the probability of xevu is 33%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.33 +0.33*0.33 - 0.67*0.61 = 0.47 +0.47 > 0",confounding,nonsense3,1,marginal,P(Y) +28917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 33%. The probability of not yomx and xevu is 41%. The probability of yomx and xevu is 11%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.11 +0.11/0.33 - 0.41/0.67 = -0.28 +-0.28 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 30%. For those who are not gwet and are yomx, the probability of xevu is 12%. For those who are gwet and are not yomx, the probability of xevu is 10%. For those who are gwet and are yomx, the probability of xevu is 30%. The overall probability of gwet is 5%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.30 +P(Y=1 | V1=0, X=1) = 0.12 +P(Y=1 | V1=1, X=0) = 0.10 +P(Y=1 | V1=1, X=1) = 0.30 +P(V1=1) = 0.05 +0.95 * (0.12 - 0.30) + 0.05 * (0.30 - 0.10) = -0.16 +-0.16 < 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 30%. For those who are not gwet and are yomx, the probability of xevu is 12%. For those who are gwet and are not yomx, the probability of xevu is 10%. For those who are gwet and are yomx, the probability of xevu is 30%. The overall probability of gwet is 5%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.30 +P(Y=1 | V1=0, X=1) = 0.12 +P(Y=1 | V1=1, X=0) = 0.10 +P(Y=1 | V1=1, X=1) = 0.30 +P(V1=1) = 0.05 +0.95 * (0.12 - 0.30) + 0.05 * (0.30 - 0.10) = -0.10 +-0.10 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 19%. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 16%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.16 +0.19*0.16 - 0.81*0.30 = 0.26 +0.26 > 0",confounding,nonsense3,1,marginal,P(Y) +28925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 19%. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 16%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.16 +0.19*0.16 - 0.81*0.30 = 0.26 +0.26 > 0",confounding,nonsense3,1,marginal,P(Y) +28926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 19%. The probability of not yomx and xevu is 24%. The probability of yomx and xevu is 3%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.03 +0.03/0.19 - 0.24/0.81 = -0.14 +-0.14 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 19%. The probability of not yomx and xevu is 24%. The probability of yomx and xevu is 3%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.03 +0.03/0.19 - 0.24/0.81 = -0.14 +-0.14 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 78%. For those who are not gwet and are yomx, the probability of xevu is 15%. For those who are gwet and are not yomx, the probability of xevu is 36%. For those who are gwet and are yomx, the probability of xevu is 63%. The overall probability of gwet is 12%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.78 +P(Y=1 | V1=0, X=1) = 0.15 +P(Y=1 | V1=1, X=0) = 0.36 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.12 +0.88 * (0.15 - 0.78) + 0.12 * (0.63 - 0.36) = -0.52 +-0.52 < 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 78%. For those who are not gwet and are yomx, the probability of xevu is 15%. For those who are gwet and are not yomx, the probability of xevu is 36%. For those who are gwet and are yomx, the probability of xevu is 63%. The overall probability of gwet is 12%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.78 +P(Y=1 | V1=0, X=1) = 0.15 +P(Y=1 | V1=1, X=0) = 0.36 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.12 +0.88 * (0.15 - 0.78) + 0.12 * (0.63 - 0.36) = -0.61 +-0.61 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 8%. For those who are not yomx, the probability of xevu is 73%. For those who are yomx, the probability of xevu is 16%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.16 +0.08*0.16 - 0.92*0.73 = 0.69 +0.69 > 0",confounding,nonsense3,1,marginal,P(Y) +28936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 8%. The probability of not yomx and xevu is 67%. The probability of yomx and xevu is 1%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.67 +P(Y=1, X=1=1) = 0.01 +0.01/0.08 - 0.67/0.92 = -0.57 +-0.57 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 8%. The probability of not yomx and xevu is 67%. The probability of yomx and xevu is 1%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.67 +P(Y=1, X=1=1) = 0.01 +0.01/0.08 - 0.67/0.92 = -0.57 +-0.57 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 64%. For those who are not gwet and are yomx, the probability of xevu is 84%. For those who are gwet and are not yomx, the probability of xevu is 49%. For those who are gwet and are yomx, the probability of xevu is 47%. The overall probability of gwet is 74%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.64 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.47 +P(V1=1) = 0.74 +0.26 * (0.84 - 0.64) + 0.74 * (0.47 - 0.49) = 0.04 +0.04 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 64%. For those who are not gwet and are yomx, the probability of xevu is 84%. For those who are gwet and are not yomx, the probability of xevu is 49%. For those who are gwet and are yomx, the probability of xevu is 47%. The overall probability of gwet is 74%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.64 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.47 +P(V1=1) = 0.74 +0.26 * (0.84 - 0.64) + 0.74 * (0.47 - 0.49) = 0.04 +0.04 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 64%. For those who are not gwet and are yomx, the probability of xevu is 84%. For those who are gwet and are not yomx, the probability of xevu is 49%. For those who are gwet and are yomx, the probability of xevu is 47%. The overall probability of gwet is 74%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.64 +P(Y=1 | V1=0, X=1) = 0.84 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.47 +P(V1=1) = 0.74 +0.26 * (0.84 - 0.64) + 0.74 * (0.47 - 0.49) = 0.04 +0.04 > 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 59%. For those who are not yomx, the probability of xevu is 53%. For those who are yomx, the probability of xevu is 57%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.57 +0.59*0.57 - 0.41*0.53 = 0.55 +0.55 > 0",confounding,nonsense3,1,marginal,P(Y) +28946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 59%. The probability of not yomx and xevu is 22%. The probability of yomx and xevu is 33%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.33 +0.33/0.59 - 0.22/0.41 = 0.04 +0.04 > 0",confounding,nonsense3,1,correlation,P(Y | X) +28947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 59%. The probability of not yomx and xevu is 22%. The probability of yomx and xevu is 33%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.33 +0.33/0.59 - 0.22/0.41 = 0.04 +0.04 > 0",confounding,nonsense3,1,correlation,P(Y | X) +28949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 97%. For those who are not gwet and are yomx, the probability of xevu is 48%. For those who are gwet and are not yomx, the probability of xevu is 15%. For those who are gwet and are yomx, the probability of xevu is 84%. The overall probability of gwet is 59%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.48 +P(Y=1 | V1=1, X=0) = 0.15 +P(Y=1 | V1=1, X=1) = 0.84 +P(V1=1) = 0.59 +0.41 * (0.48 - 0.97) + 0.59 * (0.84 - 0.15) = 0.21 +0.21 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 97%. For those who are not gwet and are yomx, the probability of xevu is 48%. For those who are gwet and are not yomx, the probability of xevu is 15%. For those who are gwet and are yomx, the probability of xevu is 84%. The overall probability of gwet is 59%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.48 +P(Y=1 | V1=1, X=0) = 0.15 +P(Y=1 | V1=1, X=1) = 0.84 +P(V1=1) = 0.59 +0.41 * (0.48 - 0.97) + 0.59 * (0.84 - 0.15) = 0.21 +0.21 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 97%. For those who are not gwet and are yomx, the probability of xevu is 48%. For those who are gwet and are not yomx, the probability of xevu is 15%. For those who are gwet and are yomx, the probability of xevu is 84%. The overall probability of gwet is 59%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.97 +P(Y=1 | V1=0, X=1) = 0.48 +P(Y=1 | V1=1, X=0) = 0.15 +P(Y=1 | V1=1, X=1) = 0.84 +P(V1=1) = 0.59 +0.41 * (0.48 - 0.97) + 0.59 * (0.84 - 0.15) = -0.17 +-0.17 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 36%. For those who are not yomx, the probability of xevu is 34%. For those who are yomx, the probability of xevu is 58%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.58 +0.36*0.58 - 0.64*0.34 = 0.56 +0.56 > 0",confounding,nonsense3,1,marginal,P(Y) +28957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 36%. The probability of not yomx and xevu is 21%. The probability of yomx and xevu is 21%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.21 +0.21/0.36 - 0.21/0.64 = 0.24 +0.24 > 0",confounding,nonsense3,1,correlation,P(Y | X) +28958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 6%. For those who are not gwet and are yomx, the probability of xevu is 27%. For those who are gwet and are not yomx, the probability of xevu is 39%. For those who are gwet and are yomx, the probability of xevu is 86%. The overall probability of gwet is 47%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.06 +P(Y=1 | V1=0, X=1) = 0.27 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.86 +P(V1=1) = 0.47 +0.53 * (0.27 - 0.06) + 0.47 * (0.86 - 0.39) = 0.33 +0.33 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 6%. For those who are not gwet and are yomx, the probability of xevu is 27%. For those who are gwet and are not yomx, the probability of xevu is 39%. For those who are gwet and are yomx, the probability of xevu is 86%. The overall probability of gwet is 47%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.06 +P(Y=1 | V1=0, X=1) = 0.27 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.86 +P(V1=1) = 0.47 +0.53 * (0.27 - 0.06) + 0.47 * (0.86 - 0.39) = 0.40 +0.40 > 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 53%. For those who are not yomx, the probability of xevu is 12%. For those who are yomx, the probability of xevu is 70%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.70 +0.53*0.70 - 0.47*0.12 = 0.39 +0.39 > 0",confounding,nonsense3,1,marginal,P(Y) +28966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 53%. The probability of not yomx and xevu is 6%. The probability of yomx and xevu is 37%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.37 +0.37/0.53 - 0.06/0.47 = 0.58 +0.58 > 0",confounding,nonsense3,1,correlation,P(Y | X) +28967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 53%. The probability of not yomx and xevu is 6%. The probability of yomx and xevu is 37%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.37 +0.37/0.53 - 0.06/0.47 = 0.58 +0.58 > 0",confounding,nonsense3,1,correlation,P(Y | X) +28969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 38%. For those who are not gwet and are yomx, the probability of xevu is 54%. For those who are gwet and are not yomx, the probability of xevu is 34%. For those who are gwet and are yomx, the probability of xevu is 15%. The overall probability of gwet is 95%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.38 +P(Y=1 | V1=0, X=1) = 0.54 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.95 +0.05 * (0.54 - 0.38) + 0.95 * (0.15 - 0.34) = -0.18 +-0.18 < 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 38%. For those who are not gwet and are yomx, the probability of xevu is 54%. For those who are gwet and are not yomx, the probability of xevu is 34%. For those who are gwet and are yomx, the probability of xevu is 15%. The overall probability of gwet is 95%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.38 +P(Y=1 | V1=0, X=1) = 0.54 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.95 +0.05 * (0.54 - 0.38) + 0.95 * (0.15 - 0.34) = -0.18 +-0.18 < 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 38%. For those who are not gwet and are yomx, the probability of xevu is 54%. For those who are gwet and are not yomx, the probability of xevu is 34%. For those who are gwet and are yomx, the probability of xevu is 15%. The overall probability of gwet is 95%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.38 +P(Y=1 | V1=0, X=1) = 0.54 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.95 +0.05 * (0.54 - 0.38) + 0.95 * (0.15 - 0.34) = -0.19 +-0.19 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 38%. For those who are not gwet and are yomx, the probability of xevu is 54%. For those who are gwet and are not yomx, the probability of xevu is 34%. For those who are gwet and are yomx, the probability of xevu is 15%. The overall probability of gwet is 95%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.38 +P(Y=1 | V1=0, X=1) = 0.54 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.95 +0.05 * (0.54 - 0.38) + 0.95 * (0.15 - 0.34) = -0.19 +-0.19 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 93%. For those who are not yomx, the probability of xevu is 36%. For those who are yomx, the probability of xevu is 16%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.16 +0.93*0.16 - 0.07*0.36 = 0.18 +0.18 > 0",confounding,nonsense3,1,marginal,P(Y) +28976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 93%. The probability of not yomx and xevu is 2%. The probability of yomx and xevu is 15%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.15 +0.15/0.93 - 0.02/0.07 = -0.21 +-0.21 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 90%. For those who are not gwet and are yomx, the probability of xevu is 73%. For those who are gwet and are not yomx, the probability of xevu is 85%. For those who are gwet and are yomx, the probability of xevu is 90%. The overall probability of gwet is 15%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.15 +0.85 * (0.73 - 0.90) + 0.15 * (0.90 - 0.85) = -0.15 +-0.15 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 90%. For those who are not gwet and are yomx, the probability of xevu is 73%. For those who are gwet and are not yomx, the probability of xevu is 85%. For those who are gwet and are yomx, the probability of xevu is 90%. The overall probability of gwet is 15%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.15 +0.85 * (0.73 - 0.90) + 0.15 * (0.90 - 0.85) = -0.15 +-0.15 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 75%. For those who are not yomx, the probability of xevu is 88%. For those who are yomx, the probability of xevu is 74%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.74 +0.75*0.74 - 0.25*0.88 = 0.79 +0.79 > 0",confounding,nonsense3,1,marginal,P(Y) +28985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 75%. For those who are not yomx, the probability of xevu is 88%. For those who are yomx, the probability of xevu is 74%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.74 +0.75*0.74 - 0.25*0.88 = 0.79 +0.79 > 0",confounding,nonsense3,1,marginal,P(Y) +28987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 75%. The probability of not yomx and xevu is 22%. The probability of yomx and xevu is 56%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.56 +0.56/0.75 - 0.22/0.25 = -0.14 +-0.14 < 0",confounding,nonsense3,1,correlation,P(Y | X) +28988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 51%. For those who are not gwet and are yomx, the probability of xevu is 33%. For those who are gwet and are not yomx, the probability of xevu is 28%. For those who are gwet and are yomx, the probability of xevu is 92%. The overall probability of gwet is 27%.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.51 +P(Y=1 | V1=0, X=1) = 0.33 +P(Y=1 | V1=1, X=0) = 0.28 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.27 +0.73 * (0.33 - 0.51) + 0.27 * (0.92 - 0.28) = 0.05 +0.05 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 51%. For those who are not gwet and are yomx, the probability of xevu is 33%. For those who are gwet and are not yomx, the probability of xevu is 28%. For those who are gwet and are yomx, the probability of xevu is 92%. The overall probability of gwet is 27%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.51 +P(Y=1 | V1=0, X=1) = 0.33 +P(Y=1 | V1=1, X=0) = 0.28 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.27 +0.73 * (0.33 - 0.51) + 0.27 * (0.92 - 0.28) = 0.05 +0.05 > 0",confounding,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +28993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 51%. For those who are not gwet and are yomx, the probability of xevu is 33%. For those who are gwet and are not yomx, the probability of xevu is 28%. For those who are gwet and are yomx, the probability of xevu is 92%. The overall probability of gwet is 27%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.51 +P(Y=1 | V1=0, X=1) = 0.33 +P(Y=1 | V1=1, X=0) = 0.28 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.27 +0.73 * (0.33 - 0.51) + 0.27 * (0.92 - 0.28) = -0.05 +-0.05 < 0",confounding,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +28994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. The overall probability of yomx is 48%. For those who are not yomx, the probability of xevu is 42%. For those who are yomx, the probability of xevu is 42%.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.42 +0.48*0.42 - 0.52*0.42 = 0.47 +0.47 > 0",confounding,nonsense3,1,marginal,P(Y) +28998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +28999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 9%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.09 +0.09 - 0.41 = -0.33 +-0.33 < 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 9%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.09 +0.09 - 0.41 = -0.33 +-0.33 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 9%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.09 +0.09 - 0.41 = -0.33 +-0.33 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 69%. The probability of not yomx and xevu is 13%. The probability of yomx and xevu is 6%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.06 +0.06/0.69 - 0.13/0.31 = -0.33 +-0.33 < 0",mediation,nonsense3,1,correlation,P(Y | X) +29015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 70%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.70 +0.70 - 0.76 = -0.06 +-0.06 < 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 70%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.70 +0.70 - 0.76 = -0.06 +-0.06 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 70%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.70 +0.70 - 0.76 = -0.06 +-0.06 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 71%. For those who are not yomx and are gwet, the probability of xevu is 79%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 77%. For those who are not yomx, the probability of gwet is 64%. For those who are yomx, the probability of gwet is 31%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.79 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.77 +P(V2=1 | X=0) = 0.64 +P(V2=1 | X=1) = 0.31 +0.31 * (0.79 - 0.71)+ 0.64 * (0.77 - 0.67)= -0.03 +-0.03 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 71%. For those who are not yomx and are gwet, the probability of xevu is 79%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 77%. For those who are not yomx, the probability of gwet is 64%. For those who are yomx, the probability of gwet is 31%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.79 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.77 +P(V2=1 | X=0) = 0.64 +P(V2=1 | X=1) = 0.31 +0.31 * (0.79 - 0.71)+ 0.64 * (0.77 - 0.67)= -0.03 +-0.03 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 71%. For those who are not yomx and are gwet, the probability of xevu is 79%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 77%. For those who are not yomx, the probability of gwet is 64%. For those who are yomx, the probability of gwet is 31%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.79 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.77 +P(V2=1 | X=0) = 0.64 +P(V2=1 | X=1) = 0.31 +0.64 * (0.77 - 0.67) + 0.31 * (0.79 - 0.71) = -0.03 +-0.03 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 30%. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 70%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.70 +0.30*0.70 - 0.70*0.76 = 0.75 +0.75 > 0",mediation,nonsense3,1,marginal,P(Y) +29023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 30%. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 70%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.70 +0.30*0.70 - 0.70*0.76 = 0.75 +0.75 > 0",mediation,nonsense3,1,marginal,P(Y) +29024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 30%. The probability of not yomx and xevu is 54%. The probability of yomx and xevu is 21%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.21 +0.21/0.30 - 0.54/0.70 = -0.06 +-0.06 < 0",mediation,nonsense3,1,correlation,P(Y | X) +29025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 30%. The probability of not yomx and xevu is 54%. The probability of yomx and xevu is 21%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.21 +0.21/0.30 - 0.54/0.70 = -0.06 +-0.06 < 0",mediation,nonsense3,1,correlation,P(Y | X) +29026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 84%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.84 +0.84 - 0.76 = 0.08 +0.08 > 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 84%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.84 +0.84 - 0.76 = 0.08 +0.08 > 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 84%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.84 +0.84 - 0.76 = 0.08 +0.08 > 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 75%. For those who are not yomx and are gwet, the probability of xevu is 88%. For those who are yomx and are not gwet, the probability of xevu is 59%. For those who are yomx and are gwet, the probability of xevu is 87%. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 88%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.08 +P(V2=1 | X=1) = 0.88 +0.88 * (0.88 - 0.75)+ 0.08 * (0.87 - 0.59)= 0.11 +0.11 > 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 75%. For those who are not yomx and are gwet, the probability of xevu is 88%. For those who are yomx and are not gwet, the probability of xevu is 59%. For those who are yomx and are gwet, the probability of xevu is 87%. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 88%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.08 +P(V2=1 | X=1) = 0.88 +0.88 * (0.88 - 0.75)+ 0.08 * (0.87 - 0.59)= 0.11 +0.11 > 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 75%. For those who are not yomx and are gwet, the probability of xevu is 88%. For those who are yomx and are not gwet, the probability of xevu is 59%. For those who are yomx and are gwet, the probability of xevu is 87%. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 88%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.08 +P(V2=1 | X=1) = 0.88 +0.08 * (0.87 - 0.59) + 0.88 * (0.88 - 0.75) = -0.14 +-0.14 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 75%. For those who are not yomx and are gwet, the probability of xevu is 88%. For those who are yomx and are not gwet, the probability of xevu is 59%. For those who are yomx and are gwet, the probability of xevu is 87%. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 88%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.75 +P(Y=1 | X=0, V2=1) = 0.88 +P(Y=1 | X=1, V2=0) = 0.59 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.08 +P(V2=1 | X=1) = 0.88 +0.08 * (0.87 - 0.59) + 0.88 * (0.88 - 0.75) = -0.14 +-0.14 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 91%. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 84%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.84 +0.91*0.84 - 0.09*0.76 = 0.82 +0.82 > 0",mediation,nonsense3,1,marginal,P(Y) +29037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 91%. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 84%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.84 +0.91*0.84 - 0.09*0.76 = 0.82 +0.82 > 0",mediation,nonsense3,1,marginal,P(Y) +29039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 91%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 77%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.77 +0.77/0.91 - 0.07/0.09 = 0.08 +0.08 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 37%. For those who are yomx, the probability of xevu is 27%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.27 +0.27 - 0.37 = -0.09 +-0.09 < 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 37%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.27 +0.27 - 0.37 = -0.09 +-0.09 < 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 37%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.27 +0.27 - 0.37 = -0.09 +-0.09 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 99%. For those who are not yomx and are gwet, the probability of xevu is 8%. For those who are yomx and are not gwet, the probability of xevu is 21%. For those who are yomx and are gwet, the probability of xevu is 30%. For those who are not yomx, the probability of gwet is 68%. For those who are yomx, the probability of gwet is 73%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.99 +P(Y=1 | X=0, V2=1) = 0.08 +P(Y=1 | X=1, V2=0) = 0.21 +P(Y=1 | X=1, V2=1) = 0.30 +P(V2=1 | X=0) = 0.68 +P(V2=1 | X=1) = 0.73 +0.73 * (0.08 - 0.99)+ 0.68 * (0.30 - 0.21)= -0.04 +-0.04 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 99%. For those who are not yomx and are gwet, the probability of xevu is 8%. For those who are yomx and are not gwet, the probability of xevu is 21%. For those who are yomx and are gwet, the probability of xevu is 30%. For those who are not yomx, the probability of gwet is 68%. For those who are yomx, the probability of gwet is 73%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.99 +P(Y=1 | X=0, V2=1) = 0.08 +P(Y=1 | X=1, V2=0) = 0.21 +P(Y=1 | X=1, V2=1) = 0.30 +P(V2=1 | X=0) = 0.68 +P(V2=1 | X=1) = 0.73 +0.73 * (0.08 - 0.99)+ 0.68 * (0.30 - 0.21)= -0.04 +-0.04 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 99%. For those who are not yomx and are gwet, the probability of xevu is 8%. For those who are yomx and are not gwet, the probability of xevu is 21%. For those who are yomx and are gwet, the probability of xevu is 30%. For those who are not yomx, the probability of gwet is 68%. For those who are yomx, the probability of gwet is 73%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.99 +P(Y=1 | X=0, V2=1) = 0.08 +P(Y=1 | X=1, V2=0) = 0.21 +P(Y=1 | X=1, V2=1) = 0.30 +P(V2=1 | X=0) = 0.68 +P(V2=1 | X=1) = 0.73 +0.68 * (0.30 - 0.21) + 0.73 * (0.08 - 0.99) = -0.10 +-0.10 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 5%. For those who are not yomx, the probability of xevu is 37%. For those who are yomx, the probability of xevu is 27%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.27 +0.05*0.27 - 0.95*0.37 = 0.36 +0.36 > 0",mediation,nonsense3,1,marginal,P(Y) +29053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 5%. The probability of not yomx and xevu is 35%. The probability of yomx and xevu is 1%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.01 +0.01/0.05 - 0.35/0.95 = -0.09 +-0.09 < 0",mediation,nonsense3,1,correlation,P(Y | X) +29057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 27%. For those who are yomx, the probability of xevu is 88%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.88 +0.88 - 0.27 = 0.61 +0.61 > 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 27%. For those who are yomx, the probability of xevu is 88%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.88 +0.88 - 0.27 = 0.61 +0.61 > 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 26%. For those who are not yomx and are gwet, the probability of xevu is 29%. For those who are yomx and are not gwet, the probability of xevu is 88%. For those who are yomx and are gwet, the probability of xevu is 51%. For those who are not yomx, the probability of gwet is 33%. For those who are yomx, the probability of gwet is 0%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.26 +P(Y=1 | X=0, V2=1) = 0.29 +P(Y=1 | X=1, V2=0) = 0.88 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.00 +0.00 * (0.29 - 0.26)+ 0.33 * (0.51 - 0.88)= -0.01 +-0.01 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 26%. For those who are not yomx and are gwet, the probability of xevu is 29%. For those who are yomx and are not gwet, the probability of xevu is 88%. For those who are yomx and are gwet, the probability of xevu is 51%. For those who are not yomx, the probability of gwet is 33%. For those who are yomx, the probability of gwet is 0%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.26 +P(Y=1 | X=0, V2=1) = 0.29 +P(Y=1 | X=1, V2=0) = 0.88 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.00 +0.33 * (0.51 - 0.88) + 0.00 * (0.29 - 0.26) = 0.49 +0.49 > 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 26%. For those who are not yomx and are gwet, the probability of xevu is 29%. For those who are yomx and are not gwet, the probability of xevu is 88%. For those who are yomx and are gwet, the probability of xevu is 51%. For those who are not yomx, the probability of gwet is 33%. For those who are yomx, the probability of gwet is 0%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.26 +P(Y=1 | X=0, V2=1) = 0.29 +P(Y=1 | X=1, V2=0) = 0.88 +P(Y=1 | X=1, V2=1) = 0.51 +P(V2=1 | X=0) = 0.33 +P(V2=1 | X=1) = 0.00 +0.33 * (0.51 - 0.88) + 0.00 * (0.29 - 0.26) = 0.49 +0.49 > 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 64%. For those who are not yomx, the probability of xevu is 27%. For those who are yomx, the probability of xevu is 88%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.88 +0.64*0.88 - 0.36*0.27 = 0.63 +0.63 > 0",mediation,nonsense3,1,marginal,P(Y) +29067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 64%. The probability of not yomx and xevu is 10%. The probability of yomx and xevu is 57%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.57 +0.57/0.64 - 0.10/0.36 = 0.61 +0.61 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 75%. For those who are yomx, the probability of xevu is 82%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.82 +0.82 - 0.75 = 0.07 +0.07 > 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 80%. For those who are not yomx and are gwet, the probability of xevu is 52%. For those who are yomx and are not gwet, the probability of xevu is 85%. For those who are yomx and are gwet, the probability of xevu is 67%. For those who are not yomx, the probability of gwet is 18%. For those who are yomx, the probability of gwet is 16%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.80 +P(Y=1 | X=0, V2=1) = 0.52 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.67 +P(V2=1 | X=0) = 0.18 +P(V2=1 | X=1) = 0.16 +0.16 * (0.52 - 0.80)+ 0.18 * (0.67 - 0.85)= 0.01 +0.01 > 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 80%. For those who are not yomx and are gwet, the probability of xevu is 52%. For those who are yomx and are not gwet, the probability of xevu is 85%. For those who are yomx and are gwet, the probability of xevu is 67%. For those who are not yomx, the probability of gwet is 18%. For those who are yomx, the probability of gwet is 16%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.80 +P(Y=1 | X=0, V2=1) = 0.52 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.67 +P(V2=1 | X=0) = 0.18 +P(V2=1 | X=1) = 0.16 +0.18 * (0.67 - 0.85) + 0.16 * (0.52 - 0.80) = 0.06 +0.06 > 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 77%. For those who are not yomx, the probability of xevu is 75%. For those who are yomx, the probability of xevu is 82%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.82 +0.77*0.82 - 0.23*0.75 = 0.80 +0.80 > 0",mediation,nonsense3,1,marginal,P(Y) +29079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 77%. For those who are not yomx, the probability of xevu is 75%. For those who are yomx, the probability of xevu is 82%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.82 +0.77*0.82 - 0.23*0.75 = 0.80 +0.80 > 0",mediation,nonsense3,1,marginal,P(Y) +29080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 77%. The probability of not yomx and xevu is 17%. The probability of yomx and xevu is 63%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.63 +0.63/0.77 - 0.17/0.23 = 0.07 +0.07 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 77%. The probability of not yomx and xevu is 17%. The probability of yomx and xevu is 63%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.63 +0.63/0.77 - 0.17/0.23 = 0.07 +0.07 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29082,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29083,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 39%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.39 +0.39 - 0.52 = -0.13 +-0.13 < 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 39%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.39 +0.39 - 0.52 = -0.13 +-0.13 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 55%. For those who are not yomx and are gwet, the probability of xevu is 48%. For those who are yomx and are not gwet, the probability of xevu is 39%. For those who are yomx and are gwet, the probability of xevu is 38%. For those who are not yomx, the probability of gwet is 42%. For those who are yomx, the probability of gwet is 56%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.48 +P(Y=1 | X=1, V2=0) = 0.39 +P(Y=1 | X=1, V2=1) = 0.38 +P(V2=1 | X=0) = 0.42 +P(V2=1 | X=1) = 0.56 +0.56 * (0.48 - 0.55)+ 0.42 * (0.38 - 0.39)= -0.01 +-0.01 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 55%. For those who are not yomx and are gwet, the probability of xevu is 48%. For those who are yomx and are not gwet, the probability of xevu is 39%. For those who are yomx and are gwet, the probability of xevu is 38%. For those who are not yomx, the probability of gwet is 42%. For those who are yomx, the probability of gwet is 56%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.55 +P(Y=1 | X=0, V2=1) = 0.48 +P(Y=1 | X=1, V2=0) = 0.39 +P(Y=1 | X=1, V2=1) = 0.38 +P(V2=1 | X=0) = 0.42 +P(V2=1 | X=1) = 0.56 +0.42 * (0.38 - 0.39) + 0.56 * (0.48 - 0.55) = -0.13 +-0.13 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29093,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 38%. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 39%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.39 +0.38*0.39 - 0.62*0.52 = 0.47 +0.47 > 0",mediation,nonsense3,1,marginal,P(Y) +29096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 66%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.66 +0.66 - 0.55 = 0.11 +0.11 > 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 66%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.66 +0.66 - 0.55 = 0.11 +0.11 > 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 66%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.66 +0.66 - 0.55 = 0.11 +0.11 > 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 66%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.66 +0.66 - 0.55 = 0.11 +0.11 > 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 7%. For those who are not yomx and are gwet, the probability of xevu is 83%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 56%. For those who are not yomx, the probability of gwet is 64%. For those who are yomx, the probability of gwet is 7%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.07 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.64 +P(V2=1 | X=1) = 0.07 +0.07 * (0.83 - 0.07)+ 0.64 * (0.56 - 0.67)= -0.43 +-0.43 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 7%. For those who are not yomx and are gwet, the probability of xevu is 83%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 56%. For those who are not yomx, the probability of gwet is 64%. For those who are yomx, the probability of gwet is 7%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.07 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.64 +P(V2=1 | X=1) = 0.07 +0.64 * (0.56 - 0.67) + 0.07 * (0.83 - 0.07) = 0.04 +0.04 > 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 7%. For those who are not yomx and are gwet, the probability of xevu is 83%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 56%. For those who are not yomx, the probability of gwet is 64%. For those who are yomx, the probability of gwet is 7%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.07 +P(Y=1 | X=0, V2=1) = 0.83 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.56 +P(V2=1 | X=0) = 0.64 +P(V2=1 | X=1) = 0.07 +0.64 * (0.56 - 0.67) + 0.07 * (0.83 - 0.07) = 0.04 +0.04 > 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 48%. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 66%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.66 +0.48*0.66 - 0.52*0.55 = 0.48 +0.48 > 0",mediation,nonsense3,1,marginal,P(Y) +29107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 48%. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 66%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.66 +0.48*0.66 - 0.52*0.55 = 0.48 +0.48 > 0",mediation,nonsense3,1,marginal,P(Y) +29109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 48%. The probability of not yomx and xevu is 29%. The probability of yomx and xevu is 32%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.32 +0.32/0.48 - 0.29/0.52 = 0.11 +0.11 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 92%. For those who are yomx, the probability of xevu is 50%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.50 +0.50 - 0.92 = -0.42 +-0.42 < 0",mediation,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 92%. For those who are yomx, the probability of xevu is 50%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.50 +0.50 - 0.92 = -0.42 +-0.42 < 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 89%. For those who are not yomx and are gwet, the probability of xevu is 95%. For those who are yomx and are not gwet, the probability of xevu is 52%. For those who are yomx and are gwet, the probability of xevu is 47%. For those who are not yomx, the probability of gwet is 54%. For those who are yomx, the probability of gwet is 40%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.95 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.40 +0.40 * (0.95 - 0.89)+ 0.54 * (0.47 - 0.52)= -0.01 +-0.01 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 89%. For those who are not yomx and are gwet, the probability of xevu is 95%. For those who are yomx and are not gwet, the probability of xevu is 52%. For those who are yomx and are gwet, the probability of xevu is 47%. For those who are not yomx, the probability of gwet is 54%. For those who are yomx, the probability of gwet is 40%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.95 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.40 +0.40 * (0.95 - 0.89)+ 0.54 * (0.47 - 0.52)= -0.01 +-0.01 < 0",mediation,nonsense3,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 89%. For those who are not yomx and are gwet, the probability of xevu is 95%. For those who are yomx and are not gwet, the probability of xevu is 52%. For those who are yomx and are gwet, the probability of xevu is 47%. For those who are not yomx, the probability of gwet is 54%. For those who are yomx, the probability of gwet is 40%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.89 +P(Y=1 | X=0, V2=1) = 0.95 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.47 +P(V2=1 | X=0) = 0.54 +P(V2=1 | X=1) = 0.40 +0.54 * (0.47 - 0.52) + 0.40 * (0.95 - 0.89) = -0.43 +-0.43 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 92%. For those who are not yomx, the probability of xevu is 92%. For those who are yomx, the probability of xevu is 50%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.50 +0.92*0.50 - 0.08*0.92 = 0.53 +0.53 > 0",mediation,nonsense3,1,marginal,P(Y) +29123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 92%. The probability of not yomx and xevu is 8%. The probability of yomx and xevu is 46%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.46 +0.46/0.92 - 0.08/0.08 = -0.42 +-0.42 < 0",mediation,nonsense3,1,correlation,P(Y | X) +29125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 24%. For those who are yomx, the probability of xevu is 26%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.26 +0.26 - 0.24 = 0.03 +0.03 > 0",mediation,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. For those who are not yomx and are not gwet, the probability of xevu is 33%. For those who are not yomx and are gwet, the probability of xevu is 21%. For those who are yomx and are not gwet, the probability of xevu is 42%. For those who are yomx and are gwet, the probability of xevu is 11%. For those who are not yomx, the probability of gwet is 78%. For those who are yomx, the probability of gwet is 52%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.33 +P(Y=1 | X=0, V2=1) = 0.21 +P(Y=1 | X=1, V2=0) = 0.42 +P(Y=1 | X=1, V2=1) = 0.11 +P(V2=1 | X=0) = 0.78 +P(V2=1 | X=1) = 0.52 +0.78 * (0.11 - 0.42) + 0.52 * (0.21 - 0.33) = -0.06 +-0.06 < 0",mediation,nonsense3,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +29136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 72%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 19%.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.19 +0.19/0.72 - 0.07/0.28 = 0.03 +0.03 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 72%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 19%.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.19 +0.19/0.72 - 0.07/0.28 = 0.03 +0.03 > 0",mediation,nonsense3,1,correlation,P(Y | X) +29138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 71%. For those who are yomx, the probability of gwet is 22%. For those who are not yomx and are not gwet, the probability of xevu is 34%. For those who are not yomx and are gwet, the probability of xevu is 68%. For those who are yomx and are not gwet, the probability of xevu is 31%. For those who are yomx and are gwet, the probability of xevu is 64%. The overall probability of yomx is 11%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.64 +P(X=1) = 0.11 +(0.22 - 0.71)* (0.64 * 0.11) + (0.78 - 0.29) * (0.68 * 0.89) = -0.16 +-0.16 < 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 71%. For those who are yomx, the probability of gwet is 22%. For those who are not yomx and are not gwet, the probability of xevu is 34%. For those who are not yomx and are gwet, the probability of xevu is 68%. For those who are yomx and are not gwet, the probability of xevu is 31%. For those who are yomx and are gwet, the probability of xevu is 64%. The overall probability of yomx is 11%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.64 +P(X=1) = 0.11 +(0.22 - 0.71)* (0.64 * 0.11) + (0.78 - 0.29) * (0.68 * 0.89) = -0.16 +-0.16 < 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 71%. For those who are yomx, the probability of gwet is 22%. For those who are not yomx and are not gwet, the probability of xevu is 34%. For those who are not yomx and are gwet, the probability of xevu is 68%. For those who are yomx and are not gwet, the probability of xevu is 31%. For those who are yomx and are gwet, the probability of xevu is 64%. The overall probability of yomx is 11%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.22 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.64 +P(X=1) = 0.11 +0.22 - 0.71 * (0.64 * 0.11 + 0.68 * 0.89)= -0.16 +-0.16 < 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 11%. For those who are not yomx, the probability of xevu is 58%. For those who are yomx, the probability of xevu is 38%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.38 +0.11*0.38 - 0.89*0.58 = 0.56 +0.56 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 11%. The probability of not yomx and xevu is 52%. The probability of yomx and xevu is 4%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.04 +0.04/0.11 - 0.52/0.89 = -0.20 +-0.20 < 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 11%. The probability of not yomx and xevu is 52%. The probability of yomx and xevu is 4%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.04 +0.04/0.11 - 0.52/0.89 = -0.20 +-0.20 < 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 12%. For those who are yomx, the probability of gwet is 51%. For those who are not yomx and are not gwet, the probability of xevu is 74%. For those who are not yomx and are gwet, the probability of xevu is 12%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 2%. The overall probability of yomx is 12%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.02 +P(X=1) = 0.12 +(0.51 - 0.12)* (0.02 * 0.12) + (0.49 - 0.88) * (0.12 * 0.88) = -0.23 +-0.23 < 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 74%. For those who are not yomx and are gwet, the probability of xevu is 12%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 2%. For those who are not yomx, the probability of gwet is 12%. For those who are yomx, the probability of gwet is 51%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.02 +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.51 +0.02 * (0.51 - 0.12) + 0.12 * (0.49 - 0.88) = -0.14 +-0.14 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 74%. For those who are not yomx and are gwet, the probability of xevu is 12%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 2%. For those who are not yomx, the probability of gwet is 12%. For those who are yomx, the probability of gwet is 51%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.02 +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.51 +0.02 * (0.51 - 0.12) + 0.12 * (0.49 - 0.88) = -0.14 +-0.14 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 12%. For those who are yomx, the probability of gwet is 51%. For those who are not yomx and are not gwet, the probability of xevu is 74%. For those who are not yomx and are gwet, the probability of xevu is 12%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 2%. The overall probability of yomx is 12%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.02 +P(X=1) = 0.12 +0.51 - 0.12 * (0.02 * 0.12 + 0.12 * 0.88)= -0.23 +-0.23 < 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 12%. For those who are not yomx, the probability of xevu is 66%. For those who are yomx, the probability of xevu is 19%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.19 +0.12*0.19 - 0.88*0.66 = 0.60 +0.60 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 12%. The probability of not yomx and xevu is 58%. The probability of yomx and xevu is 2%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.02 +0.02/0.12 - 0.58/0.88 = -0.47 +-0.47 < 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 84%. For those who are yomx, the probability of gwet is 26%. For those who are not yomx and are not gwet, the probability of xevu is 67%. For those who are not yomx and are gwet, the probability of xevu is 20%. For those who are yomx and are not gwet, the probability of xevu is 49%. For those who are yomx and are gwet, the probability of xevu is 28%. The overall probability of yomx is 82%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.26 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.28 +P(X=1) = 0.82 +(0.26 - 0.84)* (0.28 * 0.82) + (0.74 - 0.16) * (0.20 * 0.18) = 0.15 +0.15 > 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 84%. For those who are yomx, the probability of gwet is 26%. For those who are not yomx and are not gwet, the probability of xevu is 67%. For those who are not yomx and are gwet, the probability of xevu is 20%. For those who are yomx and are not gwet, the probability of xevu is 49%. For those who are yomx and are gwet, the probability of xevu is 28%. The overall probability of yomx is 82%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.26 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.28 +P(X=1) = 0.82 +(0.26 - 0.84)* (0.28 * 0.82) + (0.74 - 0.16) * (0.20 * 0.18) = 0.15 +0.15 > 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 67%. For those who are not yomx and are gwet, the probability of xevu is 20%. For those who are yomx and are not gwet, the probability of xevu is 49%. For those who are yomx and are gwet, the probability of xevu is 28%. For those who are not yomx, the probability of gwet is 84%. For those who are yomx, the probability of gwet is 26%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.28 +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.26 +0.28 * (0.26 - 0.84) + 0.20 * (0.74 - 0.16) = 0.12 +0.12 > 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 84%. For those who are yomx, the probability of gwet is 26%. For those who are not yomx and are not gwet, the probability of xevu is 67%. For those who are not yomx and are gwet, the probability of xevu is 20%. For those who are yomx and are not gwet, the probability of xevu is 49%. For those who are yomx and are gwet, the probability of xevu is 28%. The overall probability of yomx is 82%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.26 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.28 +P(X=1) = 0.82 +0.26 - 0.84 * (0.28 * 0.82 + 0.20 * 0.18)= 0.15 +0.15 > 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 82%. For those who are not yomx, the probability of xevu is 28%. For those who are yomx, the probability of xevu is 43%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.43 +0.82*0.43 - 0.18*0.28 = 0.43 +0.43 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 82%. For those who are not yomx, the probability of xevu is 28%. For those who are yomx, the probability of xevu is 43%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.43 +0.82*0.43 - 0.18*0.28 = 0.43 +0.43 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 82%. The probability of not yomx and xevu is 5%. The probability of yomx and xevu is 35%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.35 +0.35/0.82 - 0.05/0.18 = 0.16 +0.16 > 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 82%. The probability of not yomx and xevu is 5%. The probability of yomx and xevu is 35%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.35 +0.35/0.82 - 0.05/0.18 = 0.16 +0.16 > 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 79%. For those who are yomx, the probability of gwet is 5%. For those who are not yomx and are not gwet, the probability of xevu is 83%. For those who are not yomx and are gwet, the probability of xevu is 28%. For those who are yomx and are not gwet, the probability of xevu is 84%. For those who are yomx and are gwet, the probability of xevu is 40%. The overall probability of yomx is 21%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.79 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.40 +P(X=1) = 0.21 +(0.05 - 0.79)* (0.40 * 0.21) + (0.95 - 0.21) * (0.28 * 0.79) = 0.39 +0.39 > 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 79%. For those who are yomx, the probability of gwet is 5%. For those who are not yomx and are not gwet, the probability of xevu is 83%. For those who are not yomx and are gwet, the probability of xevu is 28%. For those who are yomx and are not gwet, the probability of xevu is 84%. For those who are yomx and are gwet, the probability of xevu is 40%. The overall probability of yomx is 21%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.79 +P(V3=1 | X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.40 +P(X=1) = 0.21 +0.05 - 0.79 * (0.40 * 0.21 + 0.28 * 0.79)= 0.39 +0.39 > 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 21%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 81%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.81 +0.21*0.81 - 0.79*0.39 = 0.50 +0.50 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 21%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 81%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.81 +0.21*0.81 - 0.79*0.39 = 0.50 +0.50 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 21%. The probability of not yomx and xevu is 31%. The probability of yomx and xevu is 17%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.17 +0.17/0.21 - 0.31/0.79 = 0.42 +0.42 > 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 21%. The probability of not yomx and xevu is 31%. The probability of yomx and xevu is 17%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.17 +0.17/0.21 - 0.31/0.79 = 0.42 +0.42 > 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 25%. For those who are yomx, the probability of gwet is 72%. For those who are not yomx and are not gwet, the probability of xevu is 23%. For those who are not yomx and are gwet, the probability of xevu is 26%. For those who are yomx and are not gwet, the probability of xevu is 22%. For those who are yomx and are gwet, the probability of xevu is 23%. The overall probability of yomx is 29%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.25 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.23 +P(X=1) = 0.29 +(0.72 - 0.25)* (0.23 * 0.29) + (0.28 - 0.75) * (0.26 * 0.71) = 0.01 +0.01 > 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 25%. For those who are yomx, the probability of gwet is 72%. For those who are not yomx and are not gwet, the probability of xevu is 23%. For those who are not yomx and are gwet, the probability of xevu is 26%. For those who are yomx and are not gwet, the probability of xevu is 22%. For those who are yomx and are gwet, the probability of xevu is 23%. The overall probability of yomx is 29%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.25 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.23 +P(X=1) = 0.29 +(0.72 - 0.25)* (0.23 * 0.29) + (0.28 - 0.75) * (0.26 * 0.71) = 0.01 +0.01 > 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 23%. For those who are not yomx and are gwet, the probability of xevu is 26%. For those who are yomx and are not gwet, the probability of xevu is 22%. For those who are yomx and are gwet, the probability of xevu is 23%. For those who are not yomx, the probability of gwet is 25%. For those who are yomx, the probability of gwet is 72%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0) = 0.25 +P(V3=1 | X=1) = 0.72 +0.23 * (0.72 - 0.25) + 0.26 * (0.28 - 0.75) = 0.00 +0.00 = 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 25%. For those who are yomx, the probability of gwet is 72%. For those who are not yomx and are not gwet, the probability of xevu is 23%. For those who are not yomx and are gwet, the probability of xevu is 26%. For those who are yomx and are not gwet, the probability of xevu is 22%. For those who are yomx and are gwet, the probability of xevu is 23%. The overall probability of yomx is 29%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.25 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.23 +P(X=1) = 0.29 +0.72 - 0.25 * (0.23 * 0.29 + 0.26 * 0.71)= 0.01 +0.01 > 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 56%. For those who are yomx, the probability of gwet is 34%. For those who are not yomx and are not gwet, the probability of xevu is 20%. For those who are not yomx and are gwet, the probability of xevu is 58%. For those who are yomx and are not gwet, the probability of xevu is 24%. For those who are yomx and are gwet, the probability of xevu is 56%. The overall probability of yomx is 45%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +P(Y=1 | X=0, V3=0) = 0.20 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.56 +P(X=1) = 0.45 +(0.34 - 0.56)* (0.56 * 0.45) + (0.66 - 0.44) * (0.58 * 0.55) = -0.08 +-0.08 < 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 20%. For those who are not yomx and are gwet, the probability of xevu is 58%. For those who are yomx and are not gwet, the probability of xevu is 24%. For those who are yomx and are gwet, the probability of xevu is 56%. For those who are not yomx, the probability of gwet is 56%. For those who are yomx, the probability of gwet is 34%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.20 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.56 +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +0.56 * (0.34 - 0.56) + 0.58 * (0.66 - 0.44) = -0.07 +-0.07 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 20%. For those who are not yomx and are gwet, the probability of xevu is 58%. For those who are yomx and are not gwet, the probability of xevu is 24%. For those who are yomx and are gwet, the probability of xevu is 56%. For those who are not yomx, the probability of gwet is 56%. For those who are yomx, the probability of gwet is 34%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.20 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.56 +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +0.56 * (0.34 - 0.56) + 0.58 * (0.66 - 0.44) = -0.07 +-0.07 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 56%. For those who are yomx, the probability of gwet is 34%. For those who are not yomx and are not gwet, the probability of xevu is 20%. For those who are not yomx and are gwet, the probability of xevu is 58%. For those who are yomx and are not gwet, the probability of xevu is 24%. For those who are yomx and are gwet, the probability of xevu is 56%. The overall probability of yomx is 45%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.56 +P(V3=1 | X=1) = 0.34 +P(Y=1 | X=0, V3=0) = 0.20 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.56 +P(X=1) = 0.45 +0.34 - 0.56 * (0.56 * 0.45 + 0.58 * 0.55)= -0.08 +-0.08 < 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 45%. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 35%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.35 +0.45*0.35 - 0.55*0.41 = 0.38 +0.38 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 45%. The probability of not yomx and xevu is 23%. The probability of yomx and xevu is 15%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.15 +0.15/0.45 - 0.23/0.55 = -0.06 +-0.06 < 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29214,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 64%. For those who are not yomx and are gwet, the probability of xevu is 49%. For those who are yomx and are not gwet, the probability of xevu is 58%. For those who are yomx and are gwet, the probability of xevu is 89%. For those who are not yomx, the probability of gwet is 70%. For those who are yomx, the probability of gwet is 44%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.64 +P(Y=1 | X=0, V3=1) = 0.49 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.89 +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.44 +0.89 * (0.44 - 0.70) + 0.49 * (0.56 - 0.30) = -0.08 +-0.08 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 64%. For those who are not yomx and are gwet, the probability of xevu is 49%. For those who are yomx and are not gwet, the probability of xevu is 58%. For those who are yomx and are gwet, the probability of xevu is 89%. For those who are not yomx, the probability of gwet is 70%. For those who are yomx, the probability of gwet is 44%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.64 +P(Y=1 | X=0, V3=1) = 0.49 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.89 +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.44 +0.89 * (0.44 - 0.70) + 0.49 * (0.56 - 0.30) = -0.08 +-0.08 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 70%. For those who are yomx, the probability of gwet is 44%. For those who are not yomx and are not gwet, the probability of xevu is 64%. For those who are not yomx and are gwet, the probability of xevu is 49%. For those who are yomx and are not gwet, the probability of xevu is 58%. For those who are yomx and are gwet, the probability of xevu is 89%. The overall probability of yomx is 43%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.44 +P(Y=1 | X=0, V3=0) = 0.64 +P(Y=1 | X=0, V3=1) = 0.49 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.89 +P(X=1) = 0.43 +0.44 - 0.70 * (0.89 * 0.43 + 0.49 * 0.57)= -0.01 +-0.01 < 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 43%. For those who are not yomx, the probability of xevu is 53%. For those who are yomx, the probability of xevu is 72%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.72 +0.43*0.72 - 0.57*0.53 = 0.64 +0.64 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 43%. The probability of not yomx and xevu is 30%. The probability of yomx and xevu is 31%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.31 +0.31/0.43 - 0.30/0.57 = 0.18 +0.18 > 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 0%. For those who are yomx, the probability of gwet is 73%. For those who are not yomx and are not gwet, the probability of xevu is 53%. For those who are not yomx and are gwet, the probability of xevu is 33%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. The overall probability of yomx is 32%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.73 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(X=1) = 0.32 +(0.73 - 0.00)* (0.32 * 0.32) + (0.27 - 1.00) * (0.33 * 0.68) = -0.14 +-0.14 < 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 0%. For those who are yomx, the probability of gwet is 73%. For those who are not yomx and are not gwet, the probability of xevu is 53%. For those who are not yomx and are gwet, the probability of xevu is 33%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. The overall probability of yomx is 32%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.73 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(X=1) = 0.32 +(0.73 - 0.00)* (0.32 * 0.32) + (0.27 - 1.00) * (0.33 * 0.68) = -0.14 +-0.14 < 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 53%. For those who are not yomx and are gwet, the probability of xevu is 33%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. For those who are not yomx, the probability of gwet is 0%. For those who are yomx, the probability of gwet is 73%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.73 +0.32 * (0.73 - 0.00) + 0.33 * (0.27 - 1.00) = -0.12 +-0.12 < 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 0%. For those who are yomx, the probability of gwet is 73%. For those who are not yomx and are not gwet, the probability of xevu is 53%. For those who are not yomx and are gwet, the probability of xevu is 33%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. The overall probability of yomx is 32%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.73 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(X=1) = 0.32 +0.73 - 0.00 * (0.32 * 0.32 + 0.33 * 0.68)= -0.14 +-0.14 < 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 0%. For those who are yomx, the probability of gwet is 73%. For those who are not yomx and are not gwet, the probability of xevu is 53%. For those who are not yomx and are gwet, the probability of xevu is 33%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. The overall probability of yomx is 32%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.00 +P(V3=1 | X=1) = 0.73 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(X=1) = 0.32 +0.73 - 0.00 * (0.32 * 0.32 + 0.33 * 0.68)= -0.14 +-0.14 < 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 32%. The probability of not yomx and xevu is 36%. The probability of yomx and xevu is 12%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.12 +0.12/0.32 - 0.36/0.68 = -0.17 +-0.17 < 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 3%. For those who are not yomx and are not gwet, the probability of xevu is 68%. For those who are not yomx and are gwet, the probability of xevu is 57%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 62%. The overall probability of yomx is 17%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.17 +(0.03 - 0.08)* (0.62 * 0.17) + (0.97 - 0.92) * (0.57 * 0.83) = 0.01 +0.01 > 0",frontdoor,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 68%. For those who are not yomx and are gwet, the probability of xevu is 57%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 62%. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 3%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.03 +0.62 * (0.03 - 0.08) + 0.57 * (0.97 - 0.92) = 0.00 +0.00 = 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 3%. For those who are not yomx and are not gwet, the probability of xevu is 68%. For those who are not yomx and are gwet, the probability of xevu is 57%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 62%. The overall probability of yomx is 17%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.17 +0.03 - 0.08 * (0.62 * 0.17 + 0.57 * 0.83)= 0.01 +0.01 > 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 8%. For those who are yomx, the probability of gwet is 3%. For those who are not yomx and are not gwet, the probability of xevu is 68%. For those who are not yomx and are gwet, the probability of xevu is 57%. For those who are yomx and are not gwet, the probability of xevu is 67%. For those who are yomx and are gwet, the probability of xevu is 62%. The overall probability of yomx is 17%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.17 +0.03 - 0.08 * (0.62 * 0.17 + 0.57 * 0.83)= 0.01 +0.01 > 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 17%. For those who are not yomx, the probability of xevu is 67%. For those who are yomx, the probability of xevu is 67%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.67 +0.17*0.67 - 0.83*0.67 = 0.67 +0.67 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 17%. For those who are not yomx, the probability of xevu is 67%. For those who are yomx, the probability of xevu is 67%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.67 +0.17*0.67 - 0.83*0.67 = 0.67 +0.67 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 17%. The probability of not yomx and xevu is 56%. The probability of yomx and xevu is 11%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.11 +0.11/0.17 - 0.56/0.83 = -0.00 +0.00 = 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 17%. The probability of not yomx and xevu is 56%. The probability of yomx and xevu is 11%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.56 +P(Y=1, X=1=1) = 0.11 +0.11/0.17 - 0.56/0.83 = -0.00 +0.00 = 0",frontdoor,nonsense3,1,correlation,P(Y | X) +29246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 32%. For those who are not yomx and are gwet, the probability of xevu is 44%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 50%. For those who are not yomx, the probability of gwet is 54%. For those who are yomx, the probability of gwet is 69%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.50 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.69 +0.50 * (0.69 - 0.54) + 0.44 * (0.31 - 0.46) = 0.02 +0.02 > 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 32%. For those who are not yomx and are gwet, the probability of xevu is 44%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 50%. For those who are not yomx, the probability of gwet is 54%. For those who are yomx, the probability of gwet is 69%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.50 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.69 +0.50 * (0.69 - 0.54) + 0.44 * (0.31 - 0.46) = 0.02 +0.02 > 0",frontdoor,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of gwet is 54%. For those who are yomx, the probability of gwet is 69%. For those who are not yomx and are not gwet, the probability of xevu is 32%. For those who are not yomx and are gwet, the probability of xevu is 44%. For those who are yomx and are not gwet, the probability of xevu is 38%. For those who are yomx and are gwet, the probability of xevu is 50%. The overall probability of yomx is 16%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.69 +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.50 +P(X=1) = 0.16 +0.69 - 0.54 * (0.50 * 0.16 + 0.44 * 0.84)= 0.02 +0.02 > 0",frontdoor,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29254,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 16%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 46%.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.46 +0.16*0.46 - 0.84*0.39 = 0.40 +0.40 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 16%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 46%.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.46 +0.16*0.46 - 0.84*0.39 = 0.40 +0.40 > 0",frontdoor,nonsense3,1,marginal,P(Y) +29258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29260,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 45%. For those who are gwet, the probability of xevu is 43%. For those who are not gwet, the probability of yomx is 89%. For those who are gwet, the probability of yomx is 94%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.45 +P(Y=1 | V2=1) = 0.43 +P(X=1 | V2=0) = 0.89 +P(X=1 | V2=1) = 0.94 +(0.43 - 0.45) / (0.94 - 0.89) = -0.48 +-0.48 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 90%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 33%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.33 +0.33/0.90 - 0.07/0.10 = -0.38 +-0.38 < 0",IV,nonsense3,1,correlation,P(Y | X) +29266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 54%. For those who are gwet, the probability of xevu is 53%. For those who are not gwet, the probability of yomx is 25%. For those who are gwet, the probability of yomx is 28%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.53 +P(X=1 | V2=0) = 0.25 +P(X=1 | V2=1) = 0.28 +(0.53 - 0.54) / (0.28 - 0.25) = -0.39 +-0.39 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 54%. For those who are gwet, the probability of xevu is 53%. For those who are not gwet, the probability of yomx is 25%. For those who are gwet, the probability of yomx is 28%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.53 +P(X=1 | V2=0) = 0.25 +P(X=1 | V2=1) = 0.28 +(0.53 - 0.54) / (0.28 - 0.25) = -0.39 +-0.39 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 26%. For those who are not yomx, the probability of xevu is 64%. For those who are yomx, the probability of xevu is 26%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.26 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.26 +0.26*0.26 - 0.74*0.64 = 0.53 +0.53 > 0",IV,nonsense3,1,marginal,P(Y) +29272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 26%. The probability of not yomx and xevu is 47%. The probability of yomx and xevu is 7%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.26 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.07 +0.07/0.26 - 0.47/0.74 = -0.38 +-0.38 < 0",IV,nonsense3,1,correlation,P(Y | X) +29275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 67%. For those who are gwet, the probability of xevu is 52%. For those who are not gwet, the probability of yomx is 89%. For those who are gwet, the probability of yomx is 18%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.67 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.89 +P(X=1 | V2=1) = 0.18 +(0.52 - 0.67) / (0.18 - 0.89) = 0.21 +0.21 > 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 67%. For those who are gwet, the probability of xevu is 52%. For those who are not gwet, the probability of yomx is 89%. For those who are gwet, the probability of yomx is 18%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.67 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.89 +P(X=1 | V2=1) = 0.18 +(0.52 - 0.67) / (0.18 - 0.89) = 0.21 +0.21 > 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 72%. For those who are not yomx, the probability of xevu is 44%. For those who are yomx, the probability of xevu is 70%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.70 +0.72*0.70 - 0.28*0.44 = 0.63 +0.63 > 0",IV,nonsense3,1,marginal,P(Y) +29279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 72%. For those who are not yomx, the probability of xevu is 44%. For those who are yomx, the probability of xevu is 70%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.70 +0.72*0.70 - 0.28*0.44 = 0.63 +0.63 > 0",IV,nonsense3,1,marginal,P(Y) +29281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 72%. The probability of not yomx and xevu is 12%. The probability of yomx and xevu is 51%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.51 +0.51/0.72 - 0.12/0.28 = 0.26 +0.26 > 0",IV,nonsense3,1,correlation,P(Y | X) +29283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 50%. For those who are gwet, the probability of xevu is 51%. For those who are not gwet, the probability of yomx is 49%. For those who are gwet, the probability of yomx is 45%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.51 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.45 +(0.51 - 0.50) / (0.45 - 0.49) = -0.25 +-0.25 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 48%. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 36%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.36 +0.48*0.36 - 0.52*0.63 = 0.50 +0.50 > 0",IV,nonsense3,1,marginal,P(Y) +29287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 48%. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 36%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.36 +0.48*0.36 - 0.52*0.63 = 0.50 +0.50 > 0",IV,nonsense3,1,marginal,P(Y) +29288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 48%. The probability of not yomx and xevu is 33%. The probability of yomx and xevu is 17%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.17 +0.17/0.48 - 0.33/0.52 = -0.27 +-0.27 < 0",IV,nonsense3,1,correlation,P(Y | X) +29289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 48%. The probability of not yomx and xevu is 33%. The probability of yomx and xevu is 17%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.17 +0.17/0.48 - 0.33/0.52 = -0.27 +-0.27 < 0",IV,nonsense3,1,correlation,P(Y | X) +29290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 32%. For those who are gwet, the probability of xevu is 31%. For those who are not gwet, the probability of yomx is 28%. For those who are gwet, the probability of yomx is 30%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.32 +P(Y=1 | V2=1) = 0.31 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.30 +(0.31 - 0.32) / (0.30 - 0.28) = -0.41 +-0.41 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 28%. The probability of not yomx and xevu is 31%. The probability of yomx and xevu is 1%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.01 +0.01/0.28 - 0.31/0.72 = -0.41 +-0.41 < 0",IV,nonsense3,1,correlation,P(Y | X) +29300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 64%. For those who are gwet, the probability of xevu is 57%. For those who are not gwet, the probability of yomx is 43%. For those who are gwet, the probability of yomx is 56%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.64 +P(Y=1 | V2=1) = 0.57 +P(X=1 | V2=0) = 0.43 +P(X=1 | V2=1) = 0.56 +(0.57 - 0.64) / (0.56 - 0.43) = -0.55 +-0.55 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 64%. For those who are gwet, the probability of xevu is 57%. For those who are not gwet, the probability of yomx is 43%. For those who are gwet, the probability of yomx is 56%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.64 +P(Y=1 | V2=1) = 0.57 +P(X=1 | V2=0) = 0.43 +P(X=1 | V2=1) = 0.56 +(0.57 - 0.64) / (0.56 - 0.43) = -0.55 +-0.55 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 48%. For those who are not yomx, the probability of xevu is 88%. For those who are yomx, the probability of xevu is 32%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.32 +0.48*0.32 - 0.52*0.88 = 0.61 +0.61 > 0",IV,nonsense3,1,marginal,P(Y) +29305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 48%. The probability of not yomx and xevu is 45%. The probability of yomx and xevu is 16%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.16 +0.16/0.48 - 0.45/0.52 = -0.55 +-0.55 < 0",IV,nonsense3,1,correlation,P(Y | X) +29306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 53%. For those who are gwet, the probability of xevu is 52%. For those who are not gwet, the probability of yomx is 33%. For those who are gwet, the probability of yomx is 37%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.53 +P(Y=1 | V2=1) = 0.52 +P(X=1 | V2=0) = 0.33 +P(X=1 | V2=1) = 0.37 +(0.52 - 0.53) / (0.37 - 0.33) = -0.08 +-0.08 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 35%. The probability of not yomx and xevu is 34%. The probability of yomx and xevu is 17%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.17 +0.17/0.35 - 0.34/0.65 = -0.05 +-0.05 < 0",IV,nonsense3,1,correlation,P(Y | X) +29313,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 35%. The probability of not yomx and xevu is 34%. The probability of yomx and xevu is 17%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.17 +0.17/0.35 - 0.34/0.65 = -0.05 +-0.05 < 0",IV,nonsense3,1,correlation,P(Y | X) +29318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 50%. For those who are not yomx, the probability of xevu is 14%. For those who are yomx, the probability of xevu is 70%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.70 +0.50*0.70 - 0.50*0.14 = 0.50 +0.50 > 0",IV,nonsense3,1,marginal,P(Y) +29319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 50%. For those who are not yomx, the probability of xevu is 14%. For those who are yomx, the probability of xevu is 70%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.70 +0.50*0.70 - 0.50*0.14 = 0.50 +0.50 > 0",IV,nonsense3,1,marginal,P(Y) +29320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 50%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 35%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.35 +0.35/0.50 - 0.07/0.50 = 0.56 +0.56 > 0",IV,nonsense3,1,correlation,P(Y | X) +29321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 50%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 35%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.35 +0.35/0.50 - 0.07/0.50 = 0.56 +0.56 > 0",IV,nonsense3,1,correlation,P(Y | X) +29322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 39%. For those who are gwet, the probability of xevu is 47%. For those who are not gwet, the probability of yomx is 77%. For those who are gwet, the probability of yomx is 55%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.47 +P(X=1 | V2=0) = 0.77 +P(X=1 | V2=1) = 0.55 +(0.47 - 0.39) / (0.55 - 0.77) = -0.34 +-0.34 < 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 30%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.30 +0.63*0.30 - 0.37*0.76 = 0.44 +0.44 > 0",IV,nonsense3,1,marginal,P(Y) +29327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 63%. For those who are not yomx, the probability of xevu is 76%. For those who are yomx, the probability of xevu is 30%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.30 +0.63*0.30 - 0.37*0.76 = 0.44 +0.44 > 0",IV,nonsense3,1,marginal,P(Y) +29329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 63%. The probability of not yomx and xevu is 28%. The probability of yomx and xevu is 19%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.19 +0.19/0.63 - 0.28/0.37 = -0.46 +-0.46 < 0",IV,nonsense3,1,correlation,P(Y | X) +29330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. For those who are not gwet, the probability of xevu is 49%. For those who are gwet, the probability of xevu is 59%. For those who are not gwet, the probability of yomx is 50%. For those who are gwet, the probability of yomx is 68%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.49 +P(Y=1 | V2=1) = 0.59 +P(X=1 | V2=0) = 0.50 +P(X=1 | V2=1) = 0.68 +(0.59 - 0.49) / (0.68 - 0.50) = 0.58 +0.58 > 0",IV,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 53%. For those who are not yomx, the probability of xevu is 17%. For those who are yomx, the probability of xevu is 79%.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.79 +0.53*0.79 - 0.47*0.17 = 0.50 +0.50 > 0",IV,nonsense3,1,marginal,P(Y) +29335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 53%. For those who are not yomx, the probability of xevu is 17%. For those who are yomx, the probability of xevu is 79%.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.79 +0.53*0.79 - 0.47*0.17 = 0.50 +0.50 > 0",IV,nonsense3,1,marginal,P(Y) +29338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 33%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.33 +0.33 - 0.55 = -0.21 +-0.21 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 33%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.33 +0.33 - 0.55 = -0.21 +-0.21 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 33%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.33 +0.33 - 0.55 = -0.21 +-0.21 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 80%. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 33%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.33 +0.80*0.33 - 0.20*0.55 = 0.41 +0.41 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 80%. For those who are not yomx, the probability of xevu is 55%. For those who are yomx, the probability of xevu is 33%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.33 +0.80*0.33 - 0.20*0.55 = 0.41 +0.41 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 80%. The probability of not yomx and xevu is 12%. The probability of yomx and xevu is 27%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.27 +0.27/0.80 - 0.12/0.20 = -0.26 +-0.26 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 35%. For those who are yomx, the probability of xevu is 69%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.69 +0.69 - 0.35 = 0.34 +0.34 > 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 35%. For those who are yomx, the probability of xevu is 69%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.69 +0.69 - 0.35 = 0.34 +0.34 > 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 44%. For those who are not yomx and are gwet, the probability of xevu is 40%. For those who are yomx and are not gwet, the probability of xevu is 31%. For those who are yomx and are gwet, the probability of xevu is 76%. For those who are not yomx and are not cwoi, the probability of gwet is 20%. For those who are not yomx and are cwoi, the probability of gwet is 77%. For those who are yomx and are not cwoi, the probability of gwet is 91%. For those who are yomx and are cwoi, the probability of gwet is 64%. The overall probability of cwoi is 47%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.76 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.77 +P(V3=1 | X=1, V2=0) = 0.91 +P(V3=1 | X=1, V2=1) = 0.64 +P(V2=1) = 0.47 +0.47 * 0.40 * (0.64 - 0.91)+ 0.53 * 0.40 * (0.77 - 0.20)= -0.03 +-0.03 < 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 44%. For those who are not yomx and are gwet, the probability of xevu is 40%. For those who are yomx and are not gwet, the probability of xevu is 31%. For those who are yomx and are gwet, the probability of xevu is 76%. For those who are not yomx and are not cwoi, the probability of gwet is 20%. For those who are not yomx and are cwoi, the probability of gwet is 77%. For those who are yomx and are not cwoi, the probability of gwet is 91%. For those who are yomx and are cwoi, the probability of gwet is 64%. The overall probability of cwoi is 47%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.76 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.77 +P(V3=1 | X=1, V2=0) = 0.91 +P(V3=1 | X=1, V2=1) = 0.64 +P(V2=1) = 0.47 +0.47 * (0.76 - 0.31) * 0.77 + 0.53 * (0.40 - 0.44) * 0.91 = 0.24 +0.24 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 44%. For those who are not yomx and are gwet, the probability of xevu is 40%. For those who are yomx and are not gwet, the probability of xevu is 31%. For those who are yomx and are gwet, the probability of xevu is 76%. For those who are not yomx and are not cwoi, the probability of gwet is 20%. For those who are not yomx and are cwoi, the probability of gwet is 77%. For those who are yomx and are not cwoi, the probability of gwet is 91%. For those who are yomx and are cwoi, the probability of gwet is 64%. The overall probability of cwoi is 47%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.76 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.77 +P(V3=1 | X=1, V2=0) = 0.91 +P(V3=1 | X=1, V2=1) = 0.64 +P(V2=1) = 0.47 +0.47 * (0.76 - 0.31) * 0.77 + 0.53 * (0.40 - 0.44) * 0.91 = 0.24 +0.24 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 69%. For those who are not yomx, the probability of xevu is 35%. For those who are yomx, the probability of xevu is 69%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.69 +0.69*0.69 - 0.31*0.35 = 0.56 +0.56 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 69%. For those who are not yomx, the probability of xevu is 35%. For those who are yomx, the probability of xevu is 69%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.69 +0.69*0.69 - 0.31*0.35 = 0.56 +0.56 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 69%. The probability of not yomx and xevu is 13%. The probability of yomx and xevu is 46%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.46 +0.46/0.69 - 0.13/0.31 = 0.24 +0.24 > 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 49%. For those who are yomx, the probability of xevu is 43%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.43 +0.43 - 0.49 = -0.05 +-0.05 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 49%. For those who are yomx, the probability of xevu is 43%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.43 +0.43 - 0.49 = -0.05 +-0.05 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 40%. For those who are not yomx and are gwet, the probability of xevu is 48%. For those who are yomx and are not gwet, the probability of xevu is 39%. For those who are yomx and are gwet, the probability of xevu is 68%. For those who are not yomx and are not cwoi, the probability of gwet is 86%. For those who are not yomx and are cwoi, the probability of gwet is 95%. For those who are yomx and are not cwoi, the probability of gwet is 16%. For those who are yomx and are cwoi, the probability of gwet is 16%. The overall probability of cwoi is 50%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.68 +P(V3=1 | X=0, V2=0) = 0.86 +P(V3=1 | X=0, V2=1) = 0.95 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.50 +0.50 * 0.48 * (0.16 - 0.16)+ 0.50 * 0.48 * (0.95 - 0.86)= 0.02 +0.02 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 40%. For those who are not yomx and are gwet, the probability of xevu is 48%. For those who are yomx and are not gwet, the probability of xevu is 39%. For those who are yomx and are gwet, the probability of xevu is 68%. For those who are not yomx and are not cwoi, the probability of gwet is 86%. For those who are not yomx and are cwoi, the probability of gwet is 95%. For those who are yomx and are not cwoi, the probability of gwet is 16%. For those who are yomx and are cwoi, the probability of gwet is 16%. The overall probability of cwoi is 50%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.68 +P(V3=1 | X=0, V2=0) = 0.86 +P(V3=1 | X=0, V2=1) = 0.95 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.50 +0.50 * 0.48 * (0.16 - 0.16)+ 0.50 * 0.48 * (0.95 - 0.86)= 0.02 +0.02 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 40%. For those who are not yomx and are gwet, the probability of xevu is 48%. For those who are yomx and are not gwet, the probability of xevu is 39%. For those who are yomx and are gwet, the probability of xevu is 68%. For those who are not yomx and are not cwoi, the probability of gwet is 86%. For those who are not yomx and are cwoi, the probability of gwet is 95%. For those who are yomx and are not cwoi, the probability of gwet is 16%. For those who are yomx and are cwoi, the probability of gwet is 16%. The overall probability of cwoi is 50%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.68 +P(V3=1 | X=0, V2=0) = 0.86 +P(V3=1 | X=0, V2=1) = 0.95 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.50 +0.50 * (0.68 - 0.39) * 0.95 + 0.50 * (0.48 - 0.40) * 0.16 = 0.17 +0.17 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 80%. For those who are not yomx, the probability of xevu is 49%. For those who are yomx, the probability of xevu is 43%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.43 +0.80*0.43 - 0.20*0.49 = 0.48 +0.48 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 80%. The probability of not yomx and xevu is 10%. The probability of yomx and xevu is 35%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.35 +0.35/0.80 - 0.10/0.20 = -0.04 +-0.04 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 42%. For those who are yomx, the probability of xevu is 24%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.24 +0.24 - 0.42 = -0.19 +-0.19 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 62%. For those who are not yomx and are gwet, the probability of xevu is 39%. For those who are yomx and are not gwet, the probability of xevu is 3%. For those who are yomx and are gwet, the probability of xevu is 74%. For those who are not yomx and are not cwoi, the probability of gwet is 93%. For those who are not yomx and are cwoi, the probability of gwet is 82%. For those who are yomx and are not cwoi, the probability of gwet is 6%. For those who are yomx and are cwoi, the probability of gwet is 89%. The overall probability of cwoi is 15%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.03 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.93 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.06 +P(V3=1 | X=1, V2=1) = 0.89 +P(V2=1) = 0.15 +0.15 * 0.39 * (0.89 - 0.06)+ 0.85 * 0.39 * (0.82 - 0.93)= 0.22 +0.22 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 62%. For those who are not yomx and are gwet, the probability of xevu is 39%. For those who are yomx and are not gwet, the probability of xevu is 3%. For those who are yomx and are gwet, the probability of xevu is 74%. For those who are not yomx and are not cwoi, the probability of gwet is 93%. For those who are not yomx and are cwoi, the probability of gwet is 82%. For those who are yomx and are not cwoi, the probability of gwet is 6%. For those who are yomx and are cwoi, the probability of gwet is 89%. The overall probability of cwoi is 15%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.03 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0, V2=0) = 0.93 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.06 +P(V3=1 | X=1, V2=1) = 0.89 +P(V2=1) = 0.15 +0.15 * (0.74 - 0.03) * 0.82 + 0.85 * (0.39 - 0.62) * 0.06 = 0.27 +0.27 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 49%. For those who are not yomx, the probability of xevu is 42%. For those who are yomx, the probability of xevu is 24%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.24 +0.49*0.24 - 0.51*0.42 = 0.50 +0.50 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 70%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.70 +0.70 - 0.63 = 0.07 +0.07 > 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 31%. For those who are not yomx and are gwet, the probability of xevu is 93%. For those who are yomx and are not gwet, the probability of xevu is 75%. For those who are yomx and are gwet, the probability of xevu is 71%. For those who are not yomx and are not cwoi, the probability of gwet is 65%. For those who are not yomx and are cwoi, the probability of gwet is 20%. For those who are yomx and are not cwoi, the probability of gwet is 54%. For those who are yomx and are cwoi, the probability of gwet is 32%. The overall probability of cwoi is 53%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.31 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.20 +P(V3=1 | X=1, V2=0) = 0.54 +P(V3=1 | X=1, V2=1) = 0.32 +P(V2=1) = 0.53 +0.53 * 0.93 * (0.32 - 0.54)+ 0.47 * 0.93 * (0.20 - 0.65)= 0.01 +0.01 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 31%. For those who are not yomx and are gwet, the probability of xevu is 93%. For those who are yomx and are not gwet, the probability of xevu is 75%. For those who are yomx and are gwet, the probability of xevu is 71%. For those who are not yomx and are not cwoi, the probability of gwet is 65%. For those who are not yomx and are cwoi, the probability of gwet is 20%. For those who are yomx and are not cwoi, the probability of gwet is 54%. For those who are yomx and are cwoi, the probability of gwet is 32%. The overall probability of cwoi is 53%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.31 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.20 +P(V3=1 | X=1, V2=0) = 0.54 +P(V3=1 | X=1, V2=1) = 0.32 +P(V2=1) = 0.53 +0.53 * 0.93 * (0.32 - 0.54)+ 0.47 * 0.93 * (0.20 - 0.65)= 0.01 +0.01 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 31%. For those who are not yomx and are gwet, the probability of xevu is 93%. For those who are yomx and are not gwet, the probability of xevu is 75%. For those who are yomx and are gwet, the probability of xevu is 71%. For those who are not yomx and are not cwoi, the probability of gwet is 65%. For those who are not yomx and are cwoi, the probability of gwet is 20%. For those who are yomx and are not cwoi, the probability of gwet is 54%. For those who are yomx and are cwoi, the probability of gwet is 32%. The overall probability of cwoi is 53%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.31 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.20 +P(V3=1 | X=1, V2=0) = 0.54 +P(V3=1 | X=1, V2=1) = 0.32 +P(V2=1) = 0.53 +0.53 * (0.71 - 0.75) * 0.20 + 0.47 * (0.93 - 0.31) * 0.54 = 0.08 +0.08 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 2%. For those who are not yomx, the probability of xevu is 63%. For those who are yomx, the probability of xevu is 70%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.70 +0.02*0.70 - 0.98*0.63 = 0.63 +0.63 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 2%. The probability of not yomx and xevu is 55%. The probability of yomx and xevu is 1%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.55/0.98 = 0.17 +0.17 > 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 2%. The probability of not yomx and xevu is 55%. The probability of yomx and xevu is 1%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.55/0.98 = 0.17 +0.17 > 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 65%. For those who are yomx, the probability of xevu is 34%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.34 +0.34 - 0.65 = -0.31 +-0.31 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 65%. For those who are yomx, the probability of xevu is 34%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.34 +0.34 - 0.65 = -0.31 +-0.31 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 55%. For those who are not yomx and are gwet, the probability of xevu is 65%. For those who are yomx and are not gwet, the probability of xevu is 44%. For those who are yomx and are gwet, the probability of xevu is 16%. For those who are not yomx and are not cwoi, the probability of gwet is 96%. For those who are not yomx and are cwoi, the probability of gwet is 90%. For those who are yomx and are not cwoi, the probability of gwet is 43%. For those who are yomx and are cwoi, the probability of gwet is 55%. The overall probability of cwoi is 50%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.16 +P(V3=1 | X=0, V2=0) = 0.96 +P(V3=1 | X=0, V2=1) = 0.90 +P(V3=1 | X=1, V2=0) = 0.43 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.50 +0.50 * 0.65 * (0.55 - 0.43)+ 0.50 * 0.65 * (0.90 - 0.96)= -0.07 +-0.07 < 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 55%. For those who are not yomx and are gwet, the probability of xevu is 65%. For those who are yomx and are not gwet, the probability of xevu is 44%. For those who are yomx and are gwet, the probability of xevu is 16%. For those who are not yomx and are not cwoi, the probability of gwet is 96%. For those who are not yomx and are cwoi, the probability of gwet is 90%. For those who are yomx and are not cwoi, the probability of gwet is 43%. For those who are yomx and are cwoi, the probability of gwet is 55%. The overall probability of cwoi is 50%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.16 +P(V3=1 | X=0, V2=0) = 0.96 +P(V3=1 | X=0, V2=1) = 0.90 +P(V3=1 | X=1, V2=0) = 0.43 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.50 +0.50 * (0.16 - 0.44) * 0.90 + 0.50 * (0.65 - 0.55) * 0.43 = -0.45 +-0.45 < 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 55%. For those who are not yomx and are gwet, the probability of xevu is 65%. For those who are yomx and are not gwet, the probability of xevu is 44%. For those who are yomx and are gwet, the probability of xevu is 16%. For those who are not yomx and are not cwoi, the probability of gwet is 96%. For those who are not yomx and are cwoi, the probability of gwet is 90%. For those who are yomx and are not cwoi, the probability of gwet is 43%. For those who are yomx and are cwoi, the probability of gwet is 55%. The overall probability of cwoi is 50%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.16 +P(V3=1 | X=0, V2=0) = 0.96 +P(V3=1 | X=0, V2=1) = 0.90 +P(V3=1 | X=1, V2=0) = 0.43 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.50 +0.50 * (0.16 - 0.44) * 0.90 + 0.50 * (0.65 - 0.55) * 0.43 = -0.45 +-0.45 < 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 43%. For those who are not yomx, the probability of xevu is 65%. For those who are yomx, the probability of xevu is 34%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.34 +0.43*0.34 - 0.57*0.65 = 0.46 +0.46 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 43%. The probability of not yomx and xevu is 37%. The probability of yomx and xevu is 13%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.13 +0.13/0.43 - 0.37/0.57 = -0.34 +-0.34 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 43%. The probability of not yomx and xevu is 37%. The probability of yomx and xevu is 13%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.13 +0.13/0.43 - 0.37/0.57 = -0.34 +-0.34 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 64%. For those who are yomx, the probability of xevu is 59%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.59 +0.59 - 0.64 = -0.05 +-0.05 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 64%. For those who are yomx, the probability of xevu is 59%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.59 +0.59 - 0.64 = -0.05 +-0.05 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 64%. For those who are yomx, the probability of xevu is 59%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.59 +0.59 - 0.64 = -0.05 +-0.05 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 75%. For those who are not yomx and are gwet, the probability of xevu is 67%. For those who are yomx and are not gwet, the probability of xevu is 61%. For those who are yomx and are gwet, the probability of xevu is 81%. For those who are not yomx and are not cwoi, the probability of gwet is 80%. For those who are not yomx and are cwoi, the probability of gwet is 22%. For those who are yomx and are not cwoi, the probability of gwet is 96%. For those who are yomx and are cwoi, the probability of gwet is 13%. The overall probability of cwoi is 60%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.60 +0.60 * 0.67 * (0.13 - 0.96)+ 0.40 * 0.67 * (0.22 - 0.80)= -0.00 +0.00 = 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 75%. For those who are not yomx and are gwet, the probability of xevu is 67%. For those who are yomx and are not gwet, the probability of xevu is 61%. For those who are yomx and are gwet, the probability of xevu is 81%. For those who are not yomx and are not cwoi, the probability of gwet is 80%. For those who are not yomx and are cwoi, the probability of gwet is 22%. For those who are yomx and are not cwoi, the probability of gwet is 96%. For those who are yomx and are cwoi, the probability of gwet is 13%. The overall probability of cwoi is 60%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.60 +0.60 * (0.81 - 0.61) * 0.22 + 0.40 * (0.67 - 0.75) * 0.96 = -0.05 +-0.05 < 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 54%. The probability of not yomx and xevu is 33%. The probability of yomx and xevu is 38%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.38 +0.38/0.54 - 0.33/0.46 = -0.01 +-0.01 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 54%. The probability of not yomx and xevu is 33%. The probability of yomx and xevu is 38%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.38 +0.38/0.54 - 0.33/0.46 = -0.01 +-0.01 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 31%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.31 +0.31 - 0.68 = -0.37 +-0.37 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 31%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.31 +0.31 - 0.68 = -0.37 +-0.37 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 31%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.31 +0.31 - 0.68 = -0.37 +-0.37 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 31%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.31 +0.31 - 0.68 = -0.37 +-0.37 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 67%. For those who are not yomx and are gwet, the probability of xevu is 53%. For those who are yomx and are not gwet, the probability of xevu is 12%. For those who are yomx and are gwet, the probability of xevu is 64%. For those who are not yomx and are not cwoi, the probability of gwet is 6%. For those who are not yomx and are cwoi, the probability of gwet is 93%. For those who are yomx and are not cwoi, the probability of gwet is 39%. For those who are yomx and are cwoi, the probability of gwet is 13%. The overall probability of cwoi is 9%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0, V2=0) = 0.06 +P(V3=1 | X=0, V2=1) = 0.93 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.09 +0.09 * 0.53 * (0.13 - 0.39)+ 0.91 * 0.53 * (0.93 - 0.06)= 0.03 +0.03 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 67%. For those who are not yomx and are gwet, the probability of xevu is 53%. For those who are yomx and are not gwet, the probability of xevu is 12%. For those who are yomx and are gwet, the probability of xevu is 64%. For those who are not yomx and are not cwoi, the probability of gwet is 6%. For those who are not yomx and are cwoi, the probability of gwet is 93%. For those who are yomx and are not cwoi, the probability of gwet is 39%. For those who are yomx and are cwoi, the probability of gwet is 13%. The overall probability of cwoi is 9%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0, V2=0) = 0.06 +P(V3=1 | X=0, V2=1) = 0.93 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.13 +P(V2=1) = 0.09 +0.09 * (0.64 - 0.12) * 0.93 + 0.91 * (0.53 - 0.67) * 0.39 = -0.50 +-0.50 < 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 57%. For those who are not yomx, the probability of xevu is 68%. For those who are yomx, the probability of xevu is 31%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.31 +0.57*0.31 - 0.43*0.68 = 0.45 +0.45 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 14%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.14 +0.14 - 0.54 = -0.40 +-0.40 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 14%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.14 +0.14 - 0.54 = -0.40 +-0.40 < 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 14%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.14 +0.14 - 0.54 = -0.40 +-0.40 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 14%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.14 +0.14 - 0.54 = -0.40 +-0.40 < 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 69%. For those who are not yomx and are gwet, the probability of xevu is 31%. For those who are yomx and are not gwet, the probability of xevu is 9%. For those who are yomx and are gwet, the probability of xevu is 64%. For those who are not yomx and are not cwoi, the probability of gwet is 14%. For those who are not yomx and are cwoi, the probability of gwet is 82%. For those who are yomx and are not cwoi, the probability of gwet is 3%. For those who are yomx and are cwoi, the probability of gwet is 26%. The overall probability of cwoi is 14%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.31 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0, V2=0) = 0.14 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.14 +0.14 * 0.31 * (0.26 - 0.03)+ 0.86 * 0.31 * (0.82 - 0.14)= 0.07 +0.07 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 69%. For those who are not yomx and are gwet, the probability of xevu is 31%. For those who are yomx and are not gwet, the probability of xevu is 9%. For those who are yomx and are gwet, the probability of xevu is 64%. For those who are not yomx and are not cwoi, the probability of gwet is 14%. For those who are not yomx and are cwoi, the probability of gwet is 82%. For those who are yomx and are not cwoi, the probability of gwet is 3%. For those who are yomx and are cwoi, the probability of gwet is 26%. The overall probability of cwoi is 14%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.31 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0, V2=0) = 0.14 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.14 +0.14 * 0.31 * (0.26 - 0.03)+ 0.86 * 0.31 * (0.82 - 0.14)= 0.07 +0.07 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 69%. For those who are not yomx and are gwet, the probability of xevu is 31%. For those who are yomx and are not gwet, the probability of xevu is 9%. For those who are yomx and are gwet, the probability of xevu is 64%. For those who are not yomx and are not cwoi, the probability of gwet is 14%. For those who are not yomx and are cwoi, the probability of gwet is 82%. For those who are yomx and are not cwoi, the probability of gwet is 3%. For those who are yomx and are cwoi, the probability of gwet is 26%. The overall probability of cwoi is 14%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.69 +P(Y=1 | X=0, V3=1) = 0.31 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0, V2=0) = 0.14 +P(V3=1 | X=0, V2=1) = 0.82 +P(V3=1 | X=1, V2=0) = 0.03 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.14 +0.14 * (0.64 - 0.09) * 0.82 + 0.86 * (0.31 - 0.69) * 0.03 = -0.26 +-0.26 < 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 36%. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 14%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.14 +0.36*0.14 - 0.64*0.54 = 0.45 +0.45 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 36%. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 14%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.14 +0.36*0.14 - 0.64*0.54 = 0.45 +0.45 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 36%. The probability of not yomx and xevu is 38%. The probability of yomx and xevu is 5%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.05 +0.05/0.36 - 0.38/0.64 = -0.47 +-0.47 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 36%. For those who are yomx, the probability of xevu is 38%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.38 +0.38 - 0.36 = 0.02 +0.02 > 0",arrowhead,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx, the probability of xevu is 36%. For those who are yomx, the probability of xevu is 38%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.38 +0.38 - 0.36 = 0.02 +0.02 > 0",arrowhead,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29471,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 79%. For those who are not yomx and are gwet, the probability of xevu is 24%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. For those who are not yomx and are not cwoi, the probability of gwet is 77%. For those who are not yomx and are cwoi, the probability of gwet is 81%. For those who are yomx and are not cwoi, the probability of gwet is 78%. For those who are yomx and are cwoi, the probability of gwet is 39%. The overall probability of cwoi is 11%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.24 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(V3=1 | X=0, V2=0) = 0.77 +P(V3=1 | X=0, V2=1) = 0.81 +P(V3=1 | X=1, V2=0) = 0.78 +P(V3=1 | X=1, V2=1) = 0.39 +P(V2=1) = 0.11 +0.11 * 0.24 * (0.39 - 0.78)+ 0.89 * 0.24 * (0.81 - 0.77)= 0.02 +0.02 > 0",arrowhead,nonsense3,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +29472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 79%. For those who are not yomx and are gwet, the probability of xevu is 24%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. For those who are not yomx and are not cwoi, the probability of gwet is 77%. For those who are not yomx and are cwoi, the probability of gwet is 81%. For those who are yomx and are not cwoi, the probability of gwet is 78%. For those who are yomx and are cwoi, the probability of gwet is 39%. The overall probability of cwoi is 11%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.24 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(V3=1 | X=0, V2=0) = 0.77 +P(V3=1 | X=0, V2=1) = 0.81 +P(V3=1 | X=1, V2=0) = 0.78 +P(V3=1 | X=1, V2=1) = 0.39 +P(V2=1) = 0.11 +0.11 * (0.32 - 0.48) * 0.81 + 0.89 * (0.24 - 0.79) * 0.78 = 0.01 +0.01 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. For those who are not yomx and are not gwet, the probability of xevu is 79%. For those who are not yomx and are gwet, the probability of xevu is 24%. For those who are yomx and are not gwet, the probability of xevu is 48%. For those who are yomx and are gwet, the probability of xevu is 32%. For those who are not yomx and are not cwoi, the probability of gwet is 77%. For those who are not yomx and are cwoi, the probability of gwet is 81%. For those who are yomx and are not cwoi, the probability of gwet is 78%. For those who are yomx and are cwoi, the probability of gwet is 39%. The overall probability of cwoi is 11%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.24 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.32 +P(V3=1 | X=0, V2=0) = 0.77 +P(V3=1 | X=0, V2=1) = 0.81 +P(V3=1 | X=1, V2=0) = 0.78 +P(V3=1 | X=1, V2=1) = 0.39 +P(V2=1) = 0.11 +0.11 * (0.32 - 0.48) * 0.81 + 0.89 * (0.24 - 0.79) * 0.78 = 0.01 +0.01 > 0",arrowhead,nonsense3,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +29475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 59%. For those who are not yomx, the probability of xevu is 36%. For those who are yomx, the probability of xevu is 38%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.38 +0.59*0.38 - 0.41*0.36 = 0.38 +0.38 > 0",arrowhead,nonsense3,1,marginal,P(Y) +29476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 59%. The probability of not yomx and xevu is 15%. The probability of yomx and xevu is 21%.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.21 +0.21/0.59 - 0.15/0.41 = -0.01 +-0.01 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. The overall probability of yomx is 59%. The probability of not yomx and xevu is 15%. The probability of yomx and xevu is 21%.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.21 +0.21/0.59 - 0.15/0.41 = -0.01 +-0.01 < 0",arrowhead,nonsense3,1,correlation,P(Y | X) +29478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 61%. For those who are yomx, the probability of xevu is 34%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.34 +0.34 - 0.61 = -0.27 +-0.27 < 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 61%. For those who are yomx, the probability of xevu is 34%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.34 +0.34 - 0.61 = -0.27 +-0.27 < 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 22%. For those who are not yomx, the probability of xevu is 61%. For those who are yomx, the probability of xevu is 34%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.34 +0.22*0.34 - 0.78*0.61 = 0.59 +0.59 > 0",diamond,nonsense3,1,marginal,P(Y) +29487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 22%. For those who are not yomx, the probability of xevu is 61%. For those who are yomx, the probability of xevu is 34%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.34 +0.22*0.34 - 0.78*0.61 = 0.59 +0.59 > 0",diamond,nonsense3,1,marginal,P(Y) +29489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 22%. The probability of not yomx and xevu is 48%. The probability of yomx and xevu is 7%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.07 +0.07/0.22 - 0.48/0.78 = -0.27 +-0.27 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 71%. For those who are yomx, the probability of xevu is 30%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.30 +0.30 - 0.71 = -0.41 +-0.41 < 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 71%. For those who are yomx, the probability of xevu is 30%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.30 +0.30 - 0.71 = -0.41 +-0.41 < 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 71%. For those who are yomx, the probability of xevu is 30%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.30 +0.30 - 0.71 = -0.41 +-0.41 < 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 71%. For those who are yomx, the probability of xevu is 30%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.30 +0.30 - 0.71 = -0.41 +-0.41 < 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 13%. For those who are not yomx, the probability of xevu is 71%. For those who are yomx, the probability of xevu is 30%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.30 +0.13*0.30 - 0.87*0.71 = 0.62 +0.62 > 0",diamond,nonsense3,1,marginal,P(Y) +29500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 13%. The probability of not yomx and xevu is 62%. The probability of yomx and xevu is 4%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.62 +P(Y=1, X=1=1) = 0.04 +0.04/0.13 - 0.62/0.87 = -0.41 +-0.41 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 13%. The probability of not yomx and xevu is 62%. The probability of yomx and xevu is 4%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.62 +P(Y=1, X=1=1) = 0.04 +0.04/0.13 - 0.62/0.87 = -0.41 +-0.41 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 45%. For those who are yomx, the probability of xevu is 45%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 45%. For those who are yomx, the probability of xevu is 45%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 45%. For those who are yomx, the probability of xevu is 45%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 45%. For those who are yomx, the probability of xevu is 45%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 45%. For those who are yomx, the probability of xevu is 45%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.45 - 0.45 = 0.01 +0.01 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 91%. For those who are not yomx, the probability of xevu is 45%. For those who are yomx, the probability of xevu is 45%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.91*0.45 - 0.09*0.45 = 0.44 +0.44 > 0",diamond,nonsense3,1,marginal,P(Y) +29515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 51%. For those who are yomx, the probability of xevu is 57%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.57 +0.57 - 0.51 = 0.06 +0.06 > 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 51%. For those who are yomx, the probability of xevu is 57%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.57 +0.57 - 0.51 = 0.06 +0.06 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 51%. For those who are yomx, the probability of xevu is 57%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.57 +0.57 - 0.51 = 0.06 +0.06 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 100%. For those who are not yomx, the probability of xevu is 51%. For those who are yomx, the probability of xevu is 57%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 1.00 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.57 +1.00*0.57 - 0.00*0.51 = 0.57 +0.57 > 0",diamond,nonsense3,1,marginal,P(Y) +29525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 100%. The probability of not yomx and xevu is 0%. The probability of yomx and xevu is 57%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 1.00 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.57 +0.57/1.00 - 0.00/0.00 = 0.06 +0.06 > 0",diamond,nonsense3,1,correlation,P(Y | X) +29529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.27 +0.27 - 0.52 = -0.24 +-0.24 < 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.27 +0.27 - 0.52 = -0.24 +-0.24 < 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.27 +0.27 - 0.52 = -0.24 +-0.24 < 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 10%. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 27%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.27 +0.10*0.27 - 0.90*0.52 = 0.48 +0.48 > 0",diamond,nonsense3,1,marginal,P(Y) +29535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 10%. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 27%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.27 +0.10*0.27 - 0.90*0.52 = 0.48 +0.48 > 0",diamond,nonsense3,1,marginal,P(Y) +29536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 10%. The probability of not yomx and xevu is 46%. The probability of yomx and xevu is 3%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.03 +0.03/0.10 - 0.46/0.90 = -0.24 +-0.24 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 10%. The probability of not yomx and xevu is 46%. The probability of yomx and xevu is 3%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.03 +0.03/0.10 - 0.46/0.90 = -0.24 +-0.24 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.55 - 0.30 = 0.25 +0.25 > 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.55 - 0.30 = 0.25 +0.25 > 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.55 - 0.30 = 0.25 +0.25 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.55 - 0.30 = 0.25 +0.25 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.55 - 0.30 = 0.25 +0.25 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.55 - 0.30 = 0.25 +0.25 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 77%. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 55%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.55 +0.77*0.55 - 0.23*0.30 = 0.49 +0.49 > 0",diamond,nonsense3,1,marginal,P(Y) +29548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 77%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 42%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.42 +0.42/0.77 - 0.07/0.23 = 0.25 +0.25 > 0",diamond,nonsense3,1,correlation,P(Y | X) +29549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 77%. The probability of not yomx and xevu is 7%. The probability of yomx and xevu is 42%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.42 +0.42/0.77 - 0.07/0.23 = 0.25 +0.25 > 0",diamond,nonsense3,1,correlation,P(Y | X) +29551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 33%. For those who are yomx, the probability of xevu is 32%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.32 +0.32 - 0.33 = -0.01 +-0.01 < 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 33%. For those who are yomx, the probability of xevu is 32%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.32 +0.32 - 0.33 = -0.01 +-0.01 < 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 33%. For those who are yomx, the probability of xevu is 32%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.32 +0.32 - 0.33 = -0.01 +-0.01 < 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 33%. For those who are yomx, the probability of xevu is 32%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.32 +0.32 - 0.33 = -0.01 +-0.01 < 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 8%. The probability of not yomx and xevu is 30%. The probability of yomx and xevu is 2%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.02 +0.02/0.08 - 0.30/0.92 = -0.01 +-0.01 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 8%. The probability of not yomx and xevu is 30%. The probability of yomx and xevu is 2%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.02 +0.02/0.08 - 0.30/0.92 = -0.01 +-0.01 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 12%. For those who are yomx, the probability of xevu is 48%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.48 +0.48 - 0.12 = 0.36 +0.36 > 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 12%. For those who are yomx, the probability of xevu is 48%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.48 +0.48 - 0.12 = 0.36 +0.36 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 12%. For those who are yomx, the probability of xevu is 48%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.48 +0.48 - 0.12 = 0.36 +0.36 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 87%. For those who are not yomx, the probability of xevu is 12%. For those who are yomx, the probability of xevu is 48%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.48 +0.87*0.48 - 0.13*0.12 = 0.44 +0.44 > 0",diamond,nonsense3,1,marginal,P(Y) +29571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 87%. For those who are not yomx, the probability of xevu is 12%. For those who are yomx, the probability of xevu is 48%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.48 +0.87*0.48 - 0.13*0.12 = 0.44 +0.44 > 0",diamond,nonsense3,1,marginal,P(Y) +29574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 40%. For those who are yomx, the probability of xevu is 51%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.51 +0.51 - 0.40 = 0.11 +0.11 > 0",diamond,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 40%. For those who are yomx, the probability of xevu is 51%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.51 +0.51 - 0.40 = 0.11 +0.11 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 40%. For those who are yomx, the probability of xevu is 51%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.51 +0.51 - 0.40 = 0.11 +0.11 > 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 65%. The probability of not yomx and xevu is 14%. The probability of yomx and xevu is 33%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.33 +0.33/0.65 - 0.14/0.35 = 0.11 +0.11 > 0",diamond,nonsense3,1,correlation,P(Y | X) +29586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 14%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.14 +0.14 - 0.39 = -0.25 +-0.25 < 0",diamond,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 14%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.14 +0.14 - 0.39 = -0.25 +-0.25 < 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 14%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.14 +0.14 - 0.39 = -0.25 +-0.25 < 0",diamond,nonsense3,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +29594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 100%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 14%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 1.00 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.14 +1.00*0.14 - 0.00*0.39 = 0.14 +0.14 > 0",diamond,nonsense3,1,marginal,P(Y) +29595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 100%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 14%.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 1.00 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.14 +1.00*0.14 - 0.00*0.39 = 0.14 +0.14 > 0",diamond,nonsense3,1,marginal,P(Y) +29596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 100%. The probability of not yomx and xevu is 0%. The probability of yomx and xevu is 14%.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 1.00 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.14 +0.14/1.00 - 0.00/0.00 = -0.25 +-0.25 < 0",diamond,nonsense3,1,correlation,P(Y | X) +29599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 88%. For those who are not gwet and are yomx, the probability of xevu is 64%. For those who are gwet and are not yomx, the probability of xevu is 84%. For those who are gwet and are yomx, the probability of xevu is 54%. The overall probability of gwet is 0%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.64 +P(Y=1 | V1=1, X=0) = 0.84 +P(Y=1 | V1=1, X=1) = 0.54 +P(V1=1) = 0.00 +1.00 * (0.64 - 0.88) 0.00 * (0.54 - 0.84) = -0.24 +-0.24 < 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 80%. For those who are not yomx and are cwoi, the probability of xevu is 88%. For those who are yomx and are not cwoi, the probability of xevu is 46%. For those who are yomx and are cwoi, the probability of xevu is 65%. For those who are not yomx, the probability of cwoi is 98%. For those who are yomx, the probability of cwoi is 98%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.46 +P(Y=1 | X=1, V3=1) = 0.65 +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.98 +0.98 * (0.65 - 0.46) + 0.98 * (0.88 - 0.80) = -0.24 +-0.24 < 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 80%. For those who are not yomx and are cwoi, the probability of xevu is 88%. For those who are yomx and are not cwoi, the probability of xevu is 46%. For those who are yomx and are cwoi, the probability of xevu is 65%. For those who are not yomx, the probability of cwoi is 98%. For those who are yomx, the probability of cwoi is 98%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.46 +P(Y=1 | X=1, V3=1) = 0.65 +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.98 +0.98 * (0.65 - 0.46) + 0.98 * (0.88 - 0.80) = -0.24 +-0.24 < 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 24%. For those who are not yomx, the probability of xevu is 88%. For those who are yomx, the probability of xevu is 64%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.64 +0.24*0.64 - 0.76*0.88 = 0.83 +0.83 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 30%. For those who are not gwet and are yomx, the probability of xevu is 32%. For those who are gwet and are not yomx, the probability of xevu is 28%. For those who are gwet and are yomx, the probability of xevu is 52%. The overall probability of gwet is 90%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.30 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.28 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.90 +0.10 * (0.32 - 0.30) 0.90 * (0.52 - 0.28) = 0.22 +0.22 > 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 26%. For those who are not yomx and are cwoi, the probability of xevu is 33%. For those who are yomx and are not cwoi, the probability of xevu is 70%. For those who are yomx and are cwoi, the probability of xevu is 12%. For those who are not yomx, the probability of cwoi is 33%. For those who are yomx, the probability of cwoi is 36%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.26 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.12 +P(V3=1 | X=0) = 0.33 +P(V3=1 | X=1) = 0.36 +0.36 * (0.12 - 0.70) + 0.33 * (0.33 - 0.26) = 0.21 +0.21 > 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29613,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 26%. For those who are not yomx and are cwoi, the probability of xevu is 33%. For those who are yomx and are not cwoi, the probability of xevu is 70%. For those who are yomx and are cwoi, the probability of xevu is 12%. For those who are not yomx, the probability of cwoi is 33%. For those who are yomx, the probability of cwoi is 36%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.26 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.12 +P(V3=1 | X=0) = 0.33 +P(V3=1 | X=1) = 0.36 +0.36 * (0.12 - 0.70) + 0.33 * (0.33 - 0.26) = 0.21 +0.21 > 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 35%. For those who are not yomx, the probability of xevu is 28%. For those who are yomx, the probability of xevu is 49%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.49 +0.35*0.49 - 0.65*0.28 = 0.36 +0.36 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 35%. The probability of not yomx and xevu is 18%. The probability of yomx and xevu is 17%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.17 +0.17/0.35 - 0.18/0.65 = 0.21 +0.21 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 59%. For those who are not gwet and are yomx, the probability of xevu is 21%. For those who are gwet and are not yomx, the probability of xevu is 83%. For those who are gwet and are yomx, the probability of xevu is 34%. The overall probability of gwet is 88%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.21 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.34 +P(V1=1) = 0.88 +0.12 * (0.21 - 0.59) 0.88 * (0.34 - 0.83) = -0.48 +-0.48 < 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 24%. For those who are not yomx and are cwoi, the probability of xevu is 84%. For those who are yomx and are not cwoi, the probability of xevu is 2%. For those who are yomx and are cwoi, the probability of xevu is 35%. For those who are not yomx, the probability of cwoi is 97%. For those who are yomx, the probability of cwoi is 86%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.84 +P(Y=1 | X=1, V3=0) = 0.02 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.86 +0.86 * (0.35 - 0.02) + 0.97 * (0.84 - 0.24) = -0.46 +-0.46 < 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 36%. For those who are not yomx, the probability of xevu is 82%. For those who are yomx, the probability of xevu is 30%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.30 +0.36*0.30 - 0.64*0.82 = 0.62 +0.62 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 36%. For those who are not yomx, the probability of xevu is 82%. For those who are yomx, the probability of xevu is 30%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.30 +0.36*0.30 - 0.64*0.82 = 0.62 +0.62 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 18%. For those who are not gwet and are yomx, the probability of xevu is 64%. For those who are gwet and are not yomx, the probability of xevu is 34%. For those who are gwet and are yomx, the probability of xevu is 61%. The overall probability of gwet is 56%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.64 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.56 +0.44 * (0.64 - 0.18) 0.56 * (0.61 - 0.34) = 0.35 +0.35 > 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 8%. For those who are not yomx and are cwoi, the probability of xevu is 60%. For those who are yomx and are not cwoi, the probability of xevu is 66%. For those who are yomx and are cwoi, the probability of xevu is 56%. For those who are not yomx, the probability of cwoi is 41%. For those who are yomx, the probability of cwoi is 34%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.08 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.56 +P(V3=1 | X=0) = 0.41 +P(V3=1 | X=1) = 0.34 +0.34 * (0.56 - 0.66) + 0.41 * (0.60 - 0.08) = 0.37 +0.37 > 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29633,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 8%. For those who are not yomx and are cwoi, the probability of xevu is 60%. For those who are yomx and are not cwoi, the probability of xevu is 66%. For those who are yomx and are cwoi, the probability of xevu is 56%. For those who are not yomx, the probability of cwoi is 41%. For those who are yomx, the probability of cwoi is 34%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.08 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.56 +P(V3=1 | X=0) = 0.41 +P(V3=1 | X=1) = 0.34 +0.34 * (0.56 - 0.66) + 0.41 * (0.60 - 0.08) = 0.37 +0.37 > 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 66%. For those who are not yomx, the probability of xevu is 29%. For those who are yomx, the probability of xevu is 63%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.63 +0.66*0.63 - 0.34*0.29 = 0.50 +0.50 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 66%. The probability of not yomx and xevu is 10%. The probability of yomx and xevu is 42%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.42 +0.42/0.66 - 0.10/0.34 = 0.33 +0.33 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 66%. The probability of not yomx and xevu is 10%. The probability of yomx and xevu is 42%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.42 +0.42/0.66 - 0.10/0.34 = 0.33 +0.33 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 41%. For those who are not gwet and are yomx, the probability of xevu is 67%. For those who are gwet and are not yomx, the probability of xevu is 37%. For those who are gwet and are yomx, the probability of xevu is 40%. The overall probability of gwet is 68%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.41 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.37 +P(Y=1 | V1=1, X=1) = 0.40 +P(V1=1) = 0.68 +0.32 * (0.67 - 0.41) 0.68 * (0.40 - 0.37) = 0.10 +0.10 > 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 41%. For those who are not yomx, the probability of xevu is 39%. For those who are yomx, the probability of xevu is 41%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.41 +0.41*0.41 - 0.59*0.39 = 0.43 +0.43 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 41%. The probability of not yomx and xevu is 23%. The probability of yomx and xevu is 17%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.17 +0.17/0.41 - 0.23/0.59 = 0.02 +0.02 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 41%. The probability of not yomx and xevu is 23%. The probability of yomx and xevu is 17%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.17 +0.17/0.41 - 0.23/0.59 = 0.02 +0.02 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 8%. For those who are not gwet and are yomx, the probability of xevu is 35%. For those who are gwet and are not yomx, the probability of xevu is 7%. For those who are gwet and are yomx, the probability of xevu is 42%. The overall probability of gwet is 72%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.08 +P(Y=1 | V1=0, X=1) = 0.35 +P(Y=1 | V1=1, X=0) = 0.07 +P(Y=1 | V1=1, X=1) = 0.42 +P(V1=1) = 0.72 +0.28 * (0.35 - 0.08) 0.72 * (0.42 - 0.07) = 0.33 +0.33 > 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 12%. For those who are not yomx and are cwoi, the probability of xevu is 5%. For those who are yomx and are not cwoi, the probability of xevu is 10%. For those who are yomx and are cwoi, the probability of xevu is 48%. For those who are not yomx, the probability of cwoi is 70%. For those who are yomx, the probability of cwoi is 82%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.05 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0) = 0.70 +P(V3=1 | X=1) = 0.82 +0.82 * (0.48 - 0.10) + 0.70 * (0.05 - 0.12) = 0.35 +0.35 > 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 70%. For those who are not yomx, the probability of xevu is 7%. For those who are yomx, the probability of xevu is 42%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.42 +0.70*0.42 - 0.30*0.07 = 0.30 +0.30 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 70%. For those who are not yomx and are cwoi, the probability of xevu is 36%. For those who are yomx and are not cwoi, the probability of xevu is 15%. For those who are yomx and are cwoi, the probability of xevu is 87%. For those who are not yomx, the probability of cwoi is 49%. For those who are yomx, the probability of cwoi is 48%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.15 +P(Y=1 | X=1, V3=1) = 0.87 +P(V3=1 | X=0) = 0.49 +P(V3=1 | X=1) = 0.48 +0.48 * (0.87 - 0.15) + 0.49 * (0.36 - 0.70) = -0.04 +-0.04 < 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 56%. For those who are not yomx, the probability of xevu is 54%. For those who are yomx, the probability of xevu is 50%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.50 +0.56*0.50 - 0.44*0.54 = 0.52 +0.52 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 56%. The probability of not yomx and xevu is 24%. The probability of yomx and xevu is 28%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.28 +0.28/0.56 - 0.24/0.44 = -0.04 +-0.04 < 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 56%. The probability of not yomx and xevu is 24%. The probability of yomx and xevu is 28%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.28 +0.28/0.56 - 0.24/0.44 = -0.04 +-0.04 < 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 86%. For those who are not gwet and are yomx, the probability of xevu is 95%. For those who are gwet and are not yomx, the probability of xevu is 83%. For those who are gwet and are yomx, the probability of xevu is 90%. The overall probability of gwet is 50%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.86 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.50 +0.50 * (0.95 - 0.86) 0.50 * (0.90 - 0.83) = 0.08 +0.08 > 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 86%. For those who are not gwet and are yomx, the probability of xevu is 95%. For those who are gwet and are not yomx, the probability of xevu is 83%. For those who are gwet and are yomx, the probability of xevu is 90%. The overall probability of gwet is 50%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.86 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.50 +0.50 * (0.95 - 0.86) 0.50 * (0.90 - 0.83) = 0.08 +0.08 > 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 76%. For those who are not yomx and are cwoi, the probability of xevu is 86%. For those who are yomx and are not cwoi, the probability of xevu is 78%. For those who are yomx and are cwoi, the probability of xevu is 96%. For those who are not yomx, the probability of cwoi is 71%. For those who are yomx, the probability of cwoi is 84%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.86 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.96 +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.84 +0.84 * (0.96 - 0.78) + 0.71 * (0.86 - 0.76) = 0.08 +0.08 > 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 76%. For those who are not yomx, the probability of xevu is 83%. For those who are yomx, the probability of xevu is 93%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.93 +0.76*0.93 - 0.24*0.83 = 0.91 +0.91 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 76%. For those who are not yomx, the probability of xevu is 83%. For those who are yomx, the probability of xevu is 93%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.93 +0.76*0.93 - 0.24*0.83 = 0.91 +0.91 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 76%. The probability of not yomx and xevu is 20%. The probability of yomx and xevu is 71%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.71 +0.71/0.76 - 0.20/0.24 = 0.10 +0.10 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 76%. The probability of not yomx and xevu is 20%. The probability of yomx and xevu is 71%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.71 +0.71/0.76 - 0.20/0.24 = 0.10 +0.10 > 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 88%. For those who are not gwet and are yomx, the probability of xevu is 25%. For those who are gwet and are not yomx, the probability of xevu is 85%. For those who are gwet and are yomx, the probability of xevu is 30%. The overall probability of gwet is 56%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.30 +P(V1=1) = 0.56 +0.44 * (0.25 - 0.88) 0.56 * (0.30 - 0.85) = -0.59 +-0.59 < 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 88%. For those who are not gwet and are yomx, the probability of xevu is 25%. For those who are gwet and are not yomx, the probability of xevu is 85%. For those who are gwet and are yomx, the probability of xevu is 30%. The overall probability of gwet is 56%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.30 +P(V1=1) = 0.56 +0.44 * (0.25 - 0.88) 0.56 * (0.30 - 0.85) = -0.59 +-0.59 < 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 76%. For those who are not yomx and are cwoi, the probability of xevu is 91%. For those who are yomx and are not cwoi, the probability of xevu is 45%. For those who are yomx and are cwoi, the probability of xevu is 20%. For those who are not yomx, the probability of cwoi is 66%. For those who are yomx, the probability of cwoi is 78%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.78 +0.78 * (0.20 - 0.45) + 0.66 * (0.91 - 0.76) = -0.62 +-0.62 < 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not yomx and are not cwoi, the probability of xevu is 76%. For those who are not yomx and are cwoi, the probability of xevu is 91%. For those who are yomx and are not cwoi, the probability of xevu is 45%. For those who are yomx and are cwoi, the probability of xevu is 20%. For those who are not yomx, the probability of cwoi is 66%. For those who are yomx, the probability of cwoi is 78%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.20 +P(V3=1 | X=0) = 0.66 +P(V3=1 | X=1) = 0.78 +0.78 * (0.20 - 0.45) + 0.66 * (0.91 - 0.76) = -0.62 +-0.62 < 0",diamondcut,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 20%. For those who are not yomx, the probability of xevu is 86%. For those who are yomx, the probability of xevu is 25%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.25 +0.20*0.25 - 0.80*0.86 = 0.74 +0.74 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 20%. The probability of not yomx and xevu is 68%. The probability of yomx and xevu is 5%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.68 +P(Y=1, X=1=1) = 0.05 +0.05/0.20 - 0.68/0.80 = -0.61 +-0.61 < 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 20%. The probability of not yomx and xevu is 68%. The probability of yomx and xevu is 5%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.68 +P(Y=1, X=1=1) = 0.05 +0.05/0.20 - 0.68/0.80 = -0.61 +-0.61 < 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 80%. For those who are not gwet and are yomx, the probability of xevu is 34%. For those who are gwet and are not yomx, the probability of xevu is 88%. For those who are gwet and are yomx, the probability of xevu is 61%. The overall probability of gwet is 93%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.34 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.93 +0.07 * (0.34 - 0.80) 0.93 * (0.61 - 0.88) = -0.28 +-0.28 < 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. For those who are not gwet and are not yomx, the probability of xevu is 80%. For those who are not gwet and are yomx, the probability of xevu is 34%. For those who are gwet and are not yomx, the probability of xevu is 88%. For those who are gwet and are yomx, the probability of xevu is 61%. The overall probability of gwet is 93%.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.34 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.93 +0.07 * (0.34 - 0.80) 0.93 * (0.61 - 0.88) = -0.28 +-0.28 < 0",diamondcut,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 87%. For those who are not yomx, the probability of xevu is 84%. For those who are yomx, the probability of xevu is 61%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.61 +0.87*0.61 - 0.13*0.84 = 0.62 +0.62 > 0",diamondcut,nonsense3,1,marginal,P(Y) +29696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. The overall probability of yomx is 87%. The probability of not yomx and xevu is 11%. The probability of yomx and xevu is 53%.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.53 +0.53/0.87 - 0.11/0.13 = -0.23 +-0.23 < 0",diamondcut,nonsense3,1,correlation,P(Y | X) +29698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to cwoi.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to cwoi. Method 2: We look directly at how yomx correlates with xevu in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 67%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.67 +0.67 - 0.41 = 0.26 +0.26 > 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 67%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.67 +0.67 - 0.41 = 0.26 +0.26 > 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 67%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.67 +0.67 - 0.41 = 0.26 +0.26 > 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 67%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.67 +0.67 - 0.41 = 0.26 +0.26 > 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 11%. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 67%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.67 +0.11*0.67 - 0.89*0.41 = 0.44 +0.44 > 0",fork,nonsense3,1,marginal,P(Y) +29705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 11%. For those who are not yomx, the probability of xevu is 41%. For those who are yomx, the probability of xevu is 67%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.67 +0.11*0.67 - 0.89*0.41 = 0.44 +0.44 > 0",fork,nonsense3,1,marginal,P(Y) +29707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 11%. The probability of not yomx and xevu is 37%. The probability of yomx and xevu is 8%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.08 +0.08/0.11 - 0.37/0.89 = 0.26 +0.26 > 0",fork,nonsense3,1,correlation,P(Y | X) +29709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 51%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.51 +0.51 - 0.30 = 0.21 +0.21 > 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 51%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.51 +0.51 - 0.30 = 0.21 +0.21 > 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 51%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.51 +0.51 - 0.30 = 0.21 +0.21 > 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 51%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.51 +0.51 - 0.30 = 0.21 +0.21 > 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 21%. For those who are not yomx, the probability of xevu is 30%. For those who are yomx, the probability of xevu is 51%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.51 +0.21*0.51 - 0.79*0.30 = 0.34 +0.34 > 0",fork,nonsense3,1,marginal,P(Y) +29716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 21%. The probability of not yomx and xevu is 24%. The probability of yomx and xevu is 10%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.10 +0.10/0.21 - 0.24/0.79 = 0.21 +0.21 > 0",fork,nonsense3,1,correlation,P(Y | X) +29719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 18%. For those who are yomx, the probability of xevu is 42%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.42 +0.42 - 0.18 = 0.24 +0.24 > 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 71%. For those who are not yomx, the probability of xevu is 18%. For those who are yomx, the probability of xevu is 42%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.42 +0.71*0.42 - 0.29*0.18 = 0.35 +0.35 > 0",fork,nonsense3,1,marginal,P(Y) +29725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 71%. For those who are not yomx, the probability of xevu is 18%. For those who are yomx, the probability of xevu is 42%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.42 +0.71*0.42 - 0.29*0.18 = 0.35 +0.35 > 0",fork,nonsense3,1,marginal,P(Y) +29728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 88%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.88 +0.88 - 0.60 = 0.28 +0.28 > 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 27%. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 88%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.88 +0.27*0.88 - 0.73*0.60 = 0.67 +0.67 > 0",fork,nonsense3,1,marginal,P(Y) +29735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 27%. For those who are not yomx, the probability of xevu is 60%. For those who are yomx, the probability of xevu is 88%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.88 +0.27*0.88 - 0.73*0.60 = 0.67 +0.67 > 0",fork,nonsense3,1,marginal,P(Y) +29736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 27%. The probability of not yomx and xevu is 43%. The probability of yomx and xevu is 24%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.24 +0.24/0.27 - 0.43/0.73 = 0.28 +0.28 > 0",fork,nonsense3,1,correlation,P(Y | X) +29738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 33%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.33 +0.33 - 0.52 = -0.19 +-0.19 < 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 33%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.33 +0.33 - 0.52 = -0.19 +-0.19 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 33%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.33 +0.33 - 0.52 = -0.19 +-0.19 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 27%. For those who are not yomx, the probability of xevu is 52%. For those who are yomx, the probability of xevu is 33%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.33 +0.27*0.33 - 0.73*0.52 = 0.47 +0.47 > 0",fork,nonsense3,1,marginal,P(Y) +29748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29751,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 72%. For those who are yomx, the probability of xevu is 48%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.48 +0.48 - 0.72 = -0.24 +-0.24 < 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 72%. For those who are yomx, the probability of xevu is 48%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.48 +0.48 - 0.72 = -0.24 +-0.24 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 98%. For those who are not yomx, the probability of xevu is 72%. For those who are yomx, the probability of xevu is 48%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.48 +0.98*0.48 - 0.02*0.72 = 0.49 +0.49 > 0",fork,nonsense3,1,marginal,P(Y) +29755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 98%. For those who are not yomx, the probability of xevu is 72%. For those who are yomx, the probability of xevu is 48%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.48 +0.98*0.48 - 0.02*0.72 = 0.49 +0.49 > 0",fork,nonsense3,1,marginal,P(Y) +29756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 98%. The probability of not yomx and xevu is 2%. The probability of yomx and xevu is 47%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.47 +0.47/0.98 - 0.02/0.02 = -0.24 +-0.24 < 0",fork,nonsense3,1,correlation,P(Y | X) +29757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 98%. The probability of not yomx and xevu is 2%. The probability of yomx and xevu is 47%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.47 +0.47/0.98 - 0.02/0.02 = -0.24 +-0.24 < 0",fork,nonsense3,1,correlation,P(Y | X) +29758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 79%. For those who are yomx, the probability of xevu is 36%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.36 +0.36 - 0.79 = -0.43 +-0.43 < 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 79%. For those who are yomx, the probability of xevu is 36%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.36 +0.36 - 0.79 = -0.43 +-0.43 < 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 79%. For those who are yomx, the probability of xevu is 36%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.36 +0.36 - 0.79 = -0.43 +-0.43 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 79%. For those who are yomx, the probability of xevu is 36%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.36 +0.36 - 0.79 = -0.43 +-0.43 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 42%. The probability of not yomx and xevu is 46%. The probability of yomx and xevu is 15%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.15 +0.15/0.42 - 0.46/0.58 = -0.43 +-0.43 < 0",fork,nonsense3,1,correlation,P(Y | X) +29767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 42%. The probability of not yomx and xevu is 46%. The probability of yomx and xevu is 15%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.15 +0.15/0.42 - 0.46/0.58 = -0.43 +-0.43 < 0",fork,nonsense3,1,correlation,P(Y | X) +29769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look directly at how yomx correlates with xevu in general. Method 2: We look at this correlation case by case according to gwet.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 46%. For those who are yomx, the probability of xevu is 43%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.43 - 0.46 = -0.03 +-0.03 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 5%. For those who are not yomx, the probability of xevu is 46%. For those who are yomx, the probability of xevu is 43%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.05*0.43 - 0.95*0.46 = 0.46 +0.46 > 0",fork,nonsense3,1,marginal,P(Y) +29776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 5%. The probability of not yomx and xevu is 44%. The probability of yomx and xevu is 2%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.44/0.95 = -0.03 +-0.03 < 0",fork,nonsense3,1,correlation,P(Y | X) +29778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 26%. For those who are yomx, the probability of xevu is 20%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.20 +0.20 - 0.26 = -0.06 +-0.06 < 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 26%. For those who are yomx, the probability of xevu is 20%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.20 +0.20 - 0.26 = -0.06 +-0.06 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 21%. For those who are not yomx, the probability of xevu is 26%. For those who are yomx, the probability of xevu is 20%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.20 +0.21*0.20 - 0.79*0.26 = 0.24 +0.24 > 0",fork,nonsense3,1,marginal,P(Y) +29786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 21%. The probability of not yomx and xevu is 20%. The probability of yomx and xevu is 4%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.04 +0.04/0.21 - 0.20/0.79 = -0.06 +-0.06 < 0",fork,nonsense3,1,correlation,P(Y | X) +29787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 21%. The probability of not yomx and xevu is 20%. The probability of yomx and xevu is 4%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.04 +0.04/0.21 - 0.20/0.79 = -0.06 +-0.06 < 0",fork,nonsense3,1,correlation,P(Y | X) +29790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 67%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.67 +0.67 - 0.78 = -0.11 +-0.11 < 0",fork,nonsense3,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. For those who are not yomx, the probability of xevu is 78%. For those who are yomx, the probability of xevu is 67%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.67 +0.67 - 0.78 = -0.11 +-0.11 < 0",fork,nonsense3,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29796,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 54%. The probability of not yomx and xevu is 36%. The probability of yomx and xevu is 36%.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.36 +0.36/0.54 - 0.36/0.46 = -0.11 +-0.11 < 0",fork,nonsense3,1,correlation,P(Y | X) +29797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. The overall probability of yomx is 54%. The probability of not yomx and xevu is 36%. The probability of yomx and xevu is 36%.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.36 +0.36/0.54 - 0.36/0.46 = -0.11 +-0.11 < 0",fork,nonsense3,1,correlation,P(Y | X) +29798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. Method 1: We look at how yomx correlates with xevu case by case according to gwet. Method 2: We look directly at how yomx correlates with xevu in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense3,2,backadj,[backdoor adjustment set for Y given X] +29800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 45%. For those who are jyka, the probability of lirg is 41%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.41 +0.41 - 0.45 = -0.04 +-0.04 < 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 45%. For those who are jyka, the probability of lirg is 41%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.41 +0.41 - 0.45 = -0.04 +-0.04 < 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 45%. For those who are jyka, the probability of lirg is 41%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.41 +0.41 - 0.45 = -0.04 +-0.04 < 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. For those who are not jyka, the probability of lirg is 45%. For those who are jyka, the probability of lirg is 41%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.41 +0.33*0.41 - 0.67*0.45 = 0.44 +0.44 > 0",chain,nonsense4,1,marginal,P(Y) +29808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. The probability of not jyka and lirg is 30%. The probability of jyka and lirg is 14%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.14 +0.14/0.33 - 0.30/0.67 = -0.04 +-0.04 < 0",chain,nonsense4,1,correlation,P(Y | X) +29809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. The probability of not jyka and lirg is 30%. The probability of jyka and lirg is 14%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.14 +0.14/0.33 - 0.30/0.67 = -0.04 +-0.04 < 0",chain,nonsense4,1,correlation,P(Y | X) +29811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 85%. For those who are jyka, the probability of lirg is 84%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.84 - 0.85 = -0.00 +0.00 = 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29819,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 14%. For those who are not jyka, the probability of lirg is 85%. For those who are jyka, the probability of lirg is 84%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.84 +0.14*0.84 - 0.86*0.85 = 0.85 +0.85 > 0",chain,nonsense4,1,marginal,P(Y) +29822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 13%. For those who are jyka, the probability of lirg is 6%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.06 +0.06 - 0.13 = -0.07 +-0.07 < 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 13%. For those who are jyka, the probability of lirg is 6%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.06 +0.06 - 0.13 = -0.07 +-0.07 < 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 13%. For those who are jyka, the probability of lirg is 6%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.06 +0.06 - 0.13 = -0.07 +-0.07 < 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 13%. For those who are jyka, the probability of lirg is 6%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.06 +0.06 - 0.13 = -0.07 +-0.07 < 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 59%. For those who are not jyka, the probability of lirg is 13%. For those who are jyka, the probability of lirg is 6%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.06 +0.59*0.06 - 0.41*0.13 = 0.09 +0.09 > 0",chain,nonsense4,1,marginal,P(Y) +29832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 59%. The probability of not jyka and lirg is 5%. The probability of jyka and lirg is 3%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.03 +0.03/0.59 - 0.05/0.41 = -0.07 +-0.07 < 0",chain,nonsense4,1,correlation,P(Y | X) +29834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 79%. For those who are jyka, the probability of lirg is 92%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.92 +0.92 - 0.79 = 0.13 +0.13 > 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 79%. For those who are jyka, the probability of lirg is 92%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.92 +0.92 - 0.79 = 0.13 +0.13 > 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 79%. For those who are jyka, the probability of lirg is 92%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.92 +0.92 - 0.79 = 0.13 +0.13 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29839,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 79%. For those who are jyka, the probability of lirg is 92%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.92 +0.92 - 0.79 = 0.13 +0.13 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 79%. For those who are jyka, the probability of lirg is 92%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.92 +0.92 - 0.79 = 0.13 +0.13 > 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 61%. For those who are not jyka, the probability of lirg is 79%. For those who are jyka, the probability of lirg is 92%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.92 +0.61*0.92 - 0.39*0.79 = 0.87 +0.87 > 0",chain,nonsense4,1,marginal,P(Y) +29844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 61%. The probability of not jyka and lirg is 31%. The probability of jyka and lirg is 57%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.57 +0.57/0.61 - 0.31/0.39 = 0.13 +0.13 > 0",chain,nonsense4,1,correlation,P(Y | X) +29845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 61%. The probability of not jyka and lirg is 31%. The probability of jyka and lirg is 57%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.57 +0.57/0.61 - 0.31/0.39 = 0.13 +0.13 > 0",chain,nonsense4,1,correlation,P(Y | X) +29850,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 59%. For those who are jyka, the probability of lirg is 66%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.66 - 0.59 = 0.08 +0.08 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 59%. For those who are jyka, the probability of lirg is 66%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.66 - 0.59 = 0.08 +0.08 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 59%. For those who are jyka, the probability of lirg is 66%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.66 - 0.59 = 0.08 +0.08 > 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 6%. For those who are not jyka, the probability of lirg is 59%. For those who are jyka, the probability of lirg is 66%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.06*0.66 - 0.94*0.59 = 0.59 +0.59 > 0",chain,nonsense4,1,marginal,P(Y) +29855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 6%. For those who are not jyka, the probability of lirg is 59%. For those who are jyka, the probability of lirg is 66%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.66 +0.06*0.66 - 0.94*0.59 = 0.59 +0.59 > 0",chain,nonsense4,1,marginal,P(Y) +29856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 6%. The probability of not jyka and lirg is 55%. The probability of jyka and lirg is 4%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.04 +0.04/0.06 - 0.55/0.94 = 0.08 +0.08 > 0",chain,nonsense4,1,correlation,P(Y | X) +29857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 6%. The probability of not jyka and lirg is 55%. The probability of jyka and lirg is 4%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.04 +0.04/0.06 - 0.55/0.94 = 0.08 +0.08 > 0",chain,nonsense4,1,correlation,P(Y | X) +29867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 77%. For those who are not jyka, the probability of lirg is 51%. For those who are jyka, the probability of lirg is 70%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.70 +0.77*0.70 - 0.23*0.51 = 0.65 +0.65 > 0",chain,nonsense4,1,marginal,P(Y) +29868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 77%. The probability of not jyka and lirg is 12%. The probability of jyka and lirg is 53%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.53 +0.53/0.77 - 0.12/0.23 = 0.18 +0.18 > 0",chain,nonsense4,1,correlation,P(Y | X) +29872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 15%. For those who are jyka, the probability of lirg is 15%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.15 +0.15 - 0.15 = -0.00 +0.00 = 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29874,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 15%. For those who are jyka, the probability of lirg is 15%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.15 +0.15 - 0.15 = -0.00 +0.00 = 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 15%. For those who are jyka, the probability of lirg is 15%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.15 +0.15 - 0.15 = -0.00 +0.00 = 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 15%. For those who are jyka, the probability of lirg is 15%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.15 +0.15 - 0.15 = -0.00 +0.00 = 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 4%. For those who are not jyka, the probability of lirg is 15%. For those who are jyka, the probability of lirg is 15%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.15 +0.04*0.15 - 0.96*0.15 = 0.15 +0.15 > 0",chain,nonsense4,1,marginal,P(Y) +29881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 4%. The probability of not jyka and lirg is 14%. The probability of jyka and lirg is 1%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.01 +0.01/0.04 - 0.14/0.96 = -0.00 +0.00 = 0",chain,nonsense4,1,correlation,P(Y | X) +29882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 53%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.07 +0.07 > 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 53%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.07 +0.07 > 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 53%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.07 +0.07 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 53%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.07 +0.07 > 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 53%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.53 - 0.47 = 0.07 +0.07 > 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 8%. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 53%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.53 +0.08*0.53 - 0.92*0.47 = 0.47 +0.47 > 0",chain,nonsense4,1,marginal,P(Y) +29894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 3%. For those who are jyka, the probability of lirg is 4%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.04 +0.04 - 0.03 = 0.01 +0.01 > 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 3%. For those who are jyka, the probability of lirg is 4%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.04 +0.04 - 0.03 = 0.01 +0.01 > 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 3%. For those who are jyka, the probability of lirg is 4%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.04 +0.04 - 0.03 = 0.01 +0.01 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29899,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 3%. For those who are jyka, the probability of lirg is 4%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.04 +0.04 - 0.03 = 0.01 +0.01 > 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 3%. For those who are jyka, the probability of lirg is 4%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.04 +0.04 - 0.03 = 0.01 +0.01 > 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 21%. For those who are not jyka, the probability of lirg is 3%. For those who are jyka, the probability of lirg is 4%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.04 +0.21*0.04 - 0.79*0.03 = 0.03 +0.03 > 0",chain,nonsense4,1,marginal,P(Y) +29904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 21%. The probability of not jyka and lirg is 2%. The probability of jyka and lirg is 1%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.01 +0.01/0.21 - 0.02/0.79 = 0.01 +0.01 > 0",chain,nonsense4,1,correlation,P(Y | X) +29906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.21 - 0.39 = -0.18 +-0.18 < 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.21 - 0.39 = -0.18 +-0.18 < 0",chain,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +29910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.21 - 0.39 = -0.18 +-0.18 < 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.21 - 0.39 = -0.18 +-0.18 < 0",chain,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +29912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.21 - 0.39 = -0.18 +-0.18 < 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.21 - 0.39 = -0.18 +-0.18 < 0",chain,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +29914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 36%. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.36*0.21 - 0.64*0.39 = 0.32 +0.32 > 0",chain,nonsense4,1,marginal,P(Y) +29915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 36%. For those who are not jyka, the probability of lirg is 39%. For those who are jyka, the probability of lirg is 21%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.21 +0.36*0.21 - 0.64*0.39 = 0.32 +0.32 > 0",chain,nonsense4,1,marginal,P(Y) +29916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 36%. The probability of not jyka and lirg is 25%. The probability of jyka and lirg is 7%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.07 +0.07/0.36 - 0.25/0.64 = -0.18 +-0.18 < 0",chain,nonsense4,1,correlation,P(Y | X) +29917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. The overall probability of jyka is 36%. The probability of not jyka and lirg is 25%. The probability of jyka and lirg is 7%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.07 +0.07/0.36 - 0.25/0.64 = -0.18 +-0.18 < 0",chain,nonsense4,1,correlation,P(Y | X) +29918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 88%. For those who are not jyka, the probability of lirg is 92%. For those who are jyka, the probability of lirg is 92%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.88*0.92 - 0.12*0.92 = 0.92 +0.92 > 0",collision,nonsense4,1,marginal,P(Y) +29921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 88%. For those who are not jyka, the probability of lirg is 92%. For those who are jyka, the probability of lirg is 92%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.92 +0.88*0.92 - 0.12*0.92 = 0.92 +0.92 > 0",collision,nonsense4,1,marginal,P(Y) +29925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.02.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.02.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 88%. For those who are not jyka and are not hwax, the probability of lirg is 89%. For those who are not jyka and are hwax, the probability of lirg is 93%. For those who are jyka and are not hwax, the probability of lirg is 94%. For those who are jyka and are hwax, the probability of lirg is 91%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.88 +P(Y=1 | X=0, V3=0) = 0.89 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.91 +0.91 - (0.88*0.91 + 0.12*0.93) = -0.00 +0.00 = 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 88%. For those who are not jyka and are not hwax, the probability of lirg is 89%. For those who are not jyka and are hwax, the probability of lirg is 93%. For those who are jyka and are not hwax, the probability of lirg is 94%. For those who are jyka and are hwax, the probability of lirg is 91%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.88 +P(Y=1 | X=0, V3=0) = 0.89 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.91 +0.91 - (0.88*0.91 + 0.12*0.93) = -0.00 +0.00 = 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 2%. For those who are not jyka, the probability of lirg is 97%. For those who are jyka, the probability of lirg is 97%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.97 +0.02*0.97 - 0.98*0.97 = 0.97 +0.97 > 0",collision,nonsense4,1,marginal,P(Y) +29934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 2%. For those who are not jyka and are not hwax, the probability of lirg is 99%. For those who are not jyka and are hwax, the probability of lirg is 94%. For those who are jyka and are not hwax, the probability of lirg is 92%. For those who are jyka and are hwax, the probability of lirg is 100%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.02 +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.94 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 1.00 +1.00 - (0.02*1.00 + 0.98*0.94) = 0.06 +0.06 > 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is 0.62.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is 0.62.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 57%. For those who are not jyka and are not hwax, the probability of lirg is 23%. For those who are not jyka and are hwax, the probability of lirg is 26%. For those who are jyka and are not hwax, the probability of lirg is 4%. For those who are jyka and are hwax, the probability of lirg is 88%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.88 +0.88 - (0.57*0.88 + 0.43*0.26) = 0.20 +0.20 > 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 72%. For those who are not jyka, the probability of lirg is 72%. For those who are jyka, the probability of lirg is 72%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.72 +0.72*0.72 - 0.28*0.72 = 0.72 +0.72 > 0",collision,nonsense4,1,marginal,P(Y) +29954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is 0.21.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is 0.21.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 38%. For those who are not jyka, the probability of lirg is 73%. For those who are jyka, the probability of lirg is 73%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.73 +0.38*0.73 - 0.62*0.73 = 0.73 +0.73 > 0",collision,nonsense4,1,marginal,P(Y) +29964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 38%. For those who are not jyka and are not hwax, the probability of lirg is 39%. For those who are not jyka and are hwax, the probability of lirg is 89%. For those who are jyka and are not hwax, the probability of lirg is 97%. For those who are jyka and are hwax, the probability of lirg is 58%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.58 +0.58 - (0.38*0.58 + 0.62*0.89) = -0.20 +-0.20 < 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 38%. For those who are not jyka and are not hwax, the probability of lirg is 39%. For those who are not jyka and are hwax, the probability of lirg is 89%. For those who are jyka and are not hwax, the probability of lirg is 97%. For those who are jyka and are hwax, the probability of lirg is 58%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.58 +0.58 - (0.38*0.58 + 0.62*0.89) = -0.20 +-0.20 < 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 4%. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 80%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.80 +0.04*0.80 - 0.96*0.80 = 0.80 +0.80 > 0",collision,nonsense4,1,marginal,P(Y) +29971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 4%. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 80%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.80 +0.04*0.80 - 0.96*0.80 = 0.80 +0.80 > 0",collision,nonsense4,1,marginal,P(Y) +29974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is 0.06.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 20%. For those who are not jyka, the probability of lirg is 95%. For those who are jyka, the probability of lirg is 95%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.95 +0.20*0.95 - 0.80*0.95 = 0.95 +0.95 > 0",collision,nonsense4,1,marginal,P(Y) +29985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.31.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.31.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 20%. For those who are not jyka and are not hwax, the probability of lirg is 94%. For those who are not jyka and are hwax, the probability of lirg is 97%. For those who are jyka and are not hwax, the probability of lirg is 100%. For those who are jyka and are hwax, the probability of lirg is 74%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.20 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 1.00 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.20*0.74 + 0.80*0.97) = -0.19 +-0.19 < 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 59%. For those who are not jyka, the probability of lirg is 11%. For those who are jyka, the probability of lirg is 11%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.11 +0.59*0.11 - 0.41*0.11 = 0.11 +0.11 > 0",collision,nonsense4,1,marginal,P(Y) +29995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +29996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.10.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +29998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 59%. For those who are not jyka and are not hwax, the probability of lirg is 14%. For those who are not jyka and are hwax, the probability of lirg is 7%. For those who are jyka and are not hwax, the probability of lirg is 97%. For those who are jyka and are hwax, the probability of lirg is 2%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.07 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.02 +0.02 - (0.59*0.02 + 0.41*0.07) = -0.01 +-0.01 < 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +29999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 59%. For those who are not jyka and are not hwax, the probability of lirg is 14%. For those who are not jyka and are hwax, the probability of lirg is 7%. For those who are jyka and are not hwax, the probability of lirg is 97%. For those who are jyka and are hwax, the probability of lirg is 2%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.07 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.02 +0.02 - (0.59*0.02 + 0.41*0.07) = -0.01 +-0.01 < 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +30000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 97%. For those who are not jyka, the probability of lirg is 14%. For those who are jyka, the probability of lirg is 14%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.14 +0.97*0.14 - 0.03*0.14 = 0.14 +0.14 > 0",collision,nonsense4,1,marginal,P(Y) +30001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 97%. For those who are not jyka, the probability of lirg is 14%. For those who are jyka, the probability of lirg is 14%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.14 +0.97*0.14 - 0.03*0.14 = 0.14 +0.14 > 0",collision,nonsense4,1,marginal,P(Y) +30004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.06.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +30008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 97%. For those who are not jyka and are not hwax, the probability of lirg is 52%. For those who are not jyka and are hwax, the probability of lirg is 11%. For those who are jyka and are not hwax, the probability of lirg is 17%. For those who are jyka and are hwax, the probability of lirg is 6%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.97 +P(Y=1 | X=0, V3=0) = 0.52 +P(Y=1 | X=0, V3=1) = 0.11 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.06 +0.06 - (0.97*0.06 + 0.03*0.11) = -0.00 +0.00 = 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +30009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 97%. For those who are not jyka and are not hwax, the probability of lirg is 52%. For those who are not jyka and are hwax, the probability of lirg is 11%. For those who are jyka and are not hwax, the probability of lirg is 17%. For those who are jyka and are hwax, the probability of lirg is 6%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.97 +P(Y=1 | X=0, V3=0) = 0.52 +P(Y=1 | X=0, V3=1) = 0.11 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.06 +0.06 - (0.97*0.06 + 0.03*0.11) = -0.00 +0.00 = 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +30010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 79%. For those who are not jyka, the probability of lirg is 63%. For those who are jyka, the probability of lirg is 63%.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.63 +0.79*0.63 - 0.21*0.63 = 0.63 +0.63 > 0",collision,nonsense4,1,marginal,P(Y) +30014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. For those who are hwax, the correlation between jyka and lirg is -0.45.",yes,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense4,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +30018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Lirg has a direct effect on hwax. The overall probability of jyka is 79%. For those who are not jyka and are not hwax, the probability of lirg is 55%. For those who are not jyka and are hwax, the probability of lirg is 72%. For those who are jyka and are not hwax, the probability of lirg is 82%. For those who are jyka and are hwax, the probability of lirg is 24%.",no,"Let Y = lirg; X = jyka; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.79 +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.24 +0.24 - (0.79*0.24 + 0.21*0.72) = -0.14 +-0.14 < 0",collision,nonsense4,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +30020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 38%. For those who are not hwax and are jyka, the probability of lirg is 95%. For those who are hwax and are not jyka, the probability of lirg is 19%. For those who are hwax and are jyka, the probability of lirg is 63%. The overall probability of hwax is 10%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.38 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.10 +0.90 * (0.95 - 0.38) + 0.10 * (0.63 - 0.19) = 0.56 +0.56 > 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 38%. For those who are not hwax and are jyka, the probability of lirg is 95%. For those who are hwax and are not jyka, the probability of lirg is 19%. For those who are hwax and are jyka, the probability of lirg is 63%. The overall probability of hwax is 10%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.38 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.10 +0.90 * (0.95 - 0.38) + 0.10 * (0.63 - 0.19) = 0.51 +0.51 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 16%. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 81%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.81 +0.16*0.81 - 0.84*0.37 = 0.45 +0.45 > 0",confounding,nonsense4,1,marginal,P(Y) +30025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 16%. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 81%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.81 +0.16*0.81 - 0.84*0.37 = 0.45 +0.45 > 0",confounding,nonsense4,1,marginal,P(Y) +30026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 16%. The probability of not jyka and lirg is 31%. The probability of jyka and lirg is 13%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.13 +0.13/0.16 - 0.31/0.84 = 0.44 +0.44 > 0",confounding,nonsense4,1,correlation,P(Y | X) +30027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 16%. The probability of not jyka and lirg is 31%. The probability of jyka and lirg is 13%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.13 +0.13/0.16 - 0.31/0.84 = 0.44 +0.44 > 0",confounding,nonsense4,1,correlation,P(Y | X) +30028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 66%. For those who are not hwax and are jyka, the probability of lirg is 68%. For those who are hwax and are not jyka, the probability of lirg is 18%. For those who are hwax and are jyka, the probability of lirg is 73%. The overall probability of hwax is 94%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.73 +P(V1=1) = 0.94 +0.06 * (0.68 - 0.66) + 0.94 * (0.73 - 0.18) = 0.52 +0.52 > 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 66%. For those who are not hwax and are jyka, the probability of lirg is 68%. For those who are hwax and are not jyka, the probability of lirg is 18%. For those who are hwax and are jyka, the probability of lirg is 73%. The overall probability of hwax is 94%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.66 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.73 +P(V1=1) = 0.94 +0.06 * (0.68 - 0.66) + 0.94 * (0.73 - 0.18) = 0.53 +0.53 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 47%. The probability of not jyka and lirg is 12%. The probability of jyka and lirg is 34%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.34 +0.34/0.47 - 0.12/0.53 = 0.51 +0.51 > 0",confounding,nonsense4,1,correlation,P(Y | X) +30038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 76%. For those who are not hwax and are jyka, the probability of lirg is 95%. For those who are hwax and are not jyka, the probability of lirg is 63%. For those who are hwax and are jyka, the probability of lirg is 15%. The overall probability of hwax is 76%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.63 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.76 +0.24 * (0.95 - 0.76) + 0.76 * (0.15 - 0.63) = -0.32 +-0.32 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 76%. For those who are not hwax and are jyka, the probability of lirg is 95%. For those who are hwax and are not jyka, the probability of lirg is 63%. For those who are hwax and are jyka, the probability of lirg is 15%. The overall probability of hwax is 76%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.63 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.76 +0.24 * (0.95 - 0.76) + 0.76 * (0.15 - 0.63) = -0.32 +-0.32 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 76%. For those who are not hwax and are jyka, the probability of lirg is 95%. For those who are hwax and are not jyka, the probability of lirg is 63%. For those who are hwax and are jyka, the probability of lirg is 15%. The overall probability of hwax is 76%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.63 +P(Y=1 | V1=1, X=1) = 0.15 +P(V1=1) = 0.76 +0.24 * (0.95 - 0.76) + 0.76 * (0.15 - 0.63) = -0.33 +-0.33 < 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30045,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 82%. For those who are not jyka, the probability of lirg is 67%. For those who are jyka, the probability of lirg is 33%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.33 +0.82*0.33 - 0.18*0.67 = 0.40 +0.40 > 0",confounding,nonsense4,1,marginal,P(Y) +30046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 82%. The probability of not jyka and lirg is 12%. The probability of jyka and lirg is 27%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.27 +0.27/0.82 - 0.12/0.18 = -0.35 +-0.35 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 82%. The probability of not jyka and lirg is 12%. The probability of jyka and lirg is 27%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.27 +0.27/0.82 - 0.12/0.18 = -0.35 +-0.35 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 64%. For those who are not hwax and are jyka, the probability of lirg is 6%. For those who are hwax and are not jyka, the probability of lirg is 77%. For those who are hwax and are jyka, the probability of lirg is 76%. The overall probability of hwax is 97%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.64 +P(Y=1 | V1=0, X=1) = 0.06 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.97 +0.03 * (0.06 - 0.64) + 0.97 * (0.76 - 0.77) = -0.03 +-0.03 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 64%. For those who are not hwax and are jyka, the probability of lirg is 6%. For those who are hwax and are not jyka, the probability of lirg is 77%. For those who are hwax and are jyka, the probability of lirg is 76%. The overall probability of hwax is 97%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.64 +P(Y=1 | V1=0, X=1) = 0.06 +P(Y=1 | V1=1, X=0) = 0.77 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.97 +0.03 * (0.06 - 0.64) + 0.97 * (0.76 - 0.77) = -0.03 +-0.03 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 22%. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 67%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.67 +0.22*0.67 - 0.78*0.77 = 0.76 +0.76 > 0",confounding,nonsense4,1,marginal,P(Y) +30055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 22%. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 67%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.67 +0.22*0.67 - 0.78*0.77 = 0.76 +0.76 > 0",confounding,nonsense4,1,marginal,P(Y) +30056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 22%. The probability of not jyka and lirg is 60%. The probability of jyka and lirg is 14%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.60 +P(Y=1, X=1=1) = 0.14 +0.14/0.22 - 0.60/0.78 = -0.10 +-0.10 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 22%. The probability of not jyka and lirg is 60%. The probability of jyka and lirg is 14%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.60 +P(Y=1, X=1=1) = 0.14 +0.14/0.22 - 0.60/0.78 = -0.10 +-0.10 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 11%. For those who are not hwax and are jyka, the probability of lirg is 59%. For those who are hwax and are not jyka, the probability of lirg is 85%. For those who are hwax and are jyka, the probability of lirg is 16%. The overall probability of hwax is 52%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.11 +P(Y=1 | V1=0, X=1) = 0.59 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.52 +0.48 * (0.59 - 0.11) + 0.52 * (0.16 - 0.85) = -0.12 +-0.12 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 11%. For those who are not hwax and are jyka, the probability of lirg is 59%. For those who are hwax and are not jyka, the probability of lirg is 85%. For those who are hwax and are jyka, the probability of lirg is 16%. The overall probability of hwax is 52%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.11 +P(Y=1 | V1=0, X=1) = 0.59 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.52 +0.48 * (0.59 - 0.11) + 0.52 * (0.16 - 0.85) = 0.15 +0.15 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 41%. For those who are not jyka, the probability of lirg is 61%. For those who are jyka, the probability of lirg is 47%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.47 +0.41*0.47 - 0.59*0.61 = 0.44 +0.44 > 0",confounding,nonsense4,1,marginal,P(Y) +30067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 41%. The probability of not jyka and lirg is 36%. The probability of jyka and lirg is 19%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.19 +0.19/0.41 - 0.36/0.59 = -0.15 +-0.15 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 18%. For those who are not hwax and are jyka, the probability of lirg is 91%. For those who are hwax and are not jyka, the probability of lirg is 83%. For those who are hwax and are jyka, the probability of lirg is 39%. The overall probability of hwax is 84%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.91 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.39 +P(V1=1) = 0.84 +0.16 * (0.91 - 0.18) + 0.84 * (0.39 - 0.83) = -0.25 +-0.25 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 18%. For those who are not hwax and are jyka, the probability of lirg is 91%. For those who are hwax and are not jyka, the probability of lirg is 83%. For those who are hwax and are jyka, the probability of lirg is 39%. The overall probability of hwax is 84%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.91 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.39 +P(V1=1) = 0.84 +0.16 * (0.91 - 0.18) + 0.84 * (0.39 - 0.83) = -0.40 +-0.40 < 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 18%. For those who are not hwax and are jyka, the probability of lirg is 91%. For those who are hwax and are not jyka, the probability of lirg is 83%. For those who are hwax and are jyka, the probability of lirg is 39%. The overall probability of hwax is 84%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.91 +P(Y=1 | V1=1, X=0) = 0.83 +P(Y=1 | V1=1, X=1) = 0.39 +P(V1=1) = 0.84 +0.16 * (0.91 - 0.18) + 0.84 * (0.39 - 0.83) = -0.40 +-0.40 < 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 4%. For those who are not hwax and are jyka, the probability of lirg is 42%. For those who are hwax and are not jyka, the probability of lirg is 34%. For those who are hwax and are jyka, the probability of lirg is 94%. The overall probability of hwax is 97%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.94 +P(V1=1) = 0.97 +0.03 * (0.42 - 0.04) + 0.97 * (0.94 - 0.34) = 0.59 +0.59 > 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 4%. For those who are not hwax and are jyka, the probability of lirg is 42%. For those who are hwax and are not jyka, the probability of lirg is 34%. For those who are hwax and are jyka, the probability of lirg is 94%. The overall probability of hwax is 97%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.94 +P(V1=1) = 0.97 +0.03 * (0.42 - 0.04) + 0.97 * (0.94 - 0.34) = 0.59 +0.59 > 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30082,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 4%. For those who are not hwax and are jyka, the probability of lirg is 42%. For those who are hwax and are not jyka, the probability of lirg is 34%. For those who are hwax and are jyka, the probability of lirg is 94%. The overall probability of hwax is 97%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.94 +P(V1=1) = 0.97 +0.03 * (0.42 - 0.04) + 0.97 * (0.94 - 0.34) = 0.60 +0.60 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30083,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 4%. For those who are not hwax and are jyka, the probability of lirg is 42%. For those who are hwax and are not jyka, the probability of lirg is 34%. For those who are hwax and are jyka, the probability of lirg is 94%. The overall probability of hwax is 97%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.94 +P(V1=1) = 0.97 +0.03 * (0.42 - 0.04) + 0.97 * (0.94 - 0.34) = 0.60 +0.60 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 95%. For those who are not jyka, the probability of lirg is 18%. For those who are jyka, the probability of lirg is 94%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.94 +0.95*0.94 - 0.05*0.18 = 0.90 +0.90 > 0",confounding,nonsense4,1,marginal,P(Y) +30085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 95%. For those who are not jyka, the probability of lirg is 18%. For those who are jyka, the probability of lirg is 94%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.94 +0.95*0.94 - 0.05*0.18 = 0.90 +0.90 > 0",confounding,nonsense4,1,marginal,P(Y) +30090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 91%. For those who are not hwax and are jyka, the probability of lirg is 68%. For those who are hwax and are not jyka, the probability of lirg is 9%. For those who are hwax and are jyka, the probability of lirg is 61%. The overall probability of hwax is 29%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.09 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.29 +0.71 * (0.68 - 0.91) + 0.29 * (0.61 - 0.09) = -0.01 +-0.01 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30093,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 91%. For those who are not hwax and are jyka, the probability of lirg is 68%. For those who are hwax and are not jyka, the probability of lirg is 9%. For those who are hwax and are jyka, the probability of lirg is 61%. The overall probability of hwax is 29%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.68 +P(Y=1 | V1=1, X=0) = 0.09 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.29 +0.71 * (0.68 - 0.91) + 0.29 * (0.61 - 0.09) = -0.11 +-0.11 < 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 66%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 67%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.67 +0.66*0.67 - 0.34*0.46 = 0.66 +0.66 > 0",confounding,nonsense4,1,marginal,P(Y) +30095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 66%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 67%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.67 +0.66*0.67 - 0.34*0.46 = 0.66 +0.66 > 0",confounding,nonsense4,1,marginal,P(Y) +30096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 66%. The probability of not jyka and lirg is 16%. The probability of jyka and lirg is 44%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.44 +0.44/0.66 - 0.16/0.34 = 0.21 +0.21 > 0",confounding,nonsense4,1,correlation,P(Y | X) +30097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 66%. The probability of not jyka and lirg is 16%. The probability of jyka and lirg is 44%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.44 +0.44/0.66 - 0.16/0.34 = 0.21 +0.21 > 0",confounding,nonsense4,1,correlation,P(Y | X) +30102,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 20%. For those who are not hwax and are jyka, the probability of lirg is 27%. For those who are hwax and are not jyka, the probability of lirg is 95%. For those who are hwax and are jyka, the probability of lirg is 77%. The overall probability of hwax is 27%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.20 +P(Y=1 | V1=0, X=1) = 0.27 +P(Y=1 | V1=1, X=0) = 0.95 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.27 +0.73 * (0.27 - 0.20) + 0.27 * (0.77 - 0.95) = 0.07 +0.07 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 20%. For those who are not hwax and are jyka, the probability of lirg is 27%. For those who are hwax and are not jyka, the probability of lirg is 95%. For those who are hwax and are jyka, the probability of lirg is 77%. The overall probability of hwax is 27%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.20 +P(Y=1 | V1=0, X=1) = 0.27 +P(Y=1 | V1=1, X=0) = 0.95 +P(Y=1 | V1=1, X=1) = 0.77 +P(V1=1) = 0.27 +0.73 * (0.27 - 0.20) + 0.27 * (0.77 - 0.95) = 0.07 +0.07 > 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 63%. For those who are not jyka, the probability of lirg is 72%. For those who are jyka, the probability of lirg is 28%.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.28 +0.63*0.28 - 0.37*0.72 = 0.41 +0.41 > 0",confounding,nonsense4,1,marginal,P(Y) +30106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 63%. The probability of not jyka and lirg is 27%. The probability of jyka and lirg is 17%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.17 +0.17/0.63 - 0.27/0.37 = -0.44 +-0.44 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 29%. For those who are not hwax and are jyka, the probability of lirg is 22%. For those who are hwax and are not jyka, the probability of lirg is 53%. For those who are hwax and are jyka, the probability of lirg is 39%. The overall probability of hwax is 76%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.39 +P(V1=1) = 0.76 +0.24 * (0.22 - 0.29) + 0.76 * (0.39 - 0.53) = -0.12 +-0.12 < 0",confounding,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 29%. For those who are not hwax and are jyka, the probability of lirg is 22%. For those who are hwax and are not jyka, the probability of lirg is 53%. For those who are hwax and are jyka, the probability of lirg is 39%. The overall probability of hwax is 76%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.39 +P(V1=1) = 0.76 +0.24 * (0.22 - 0.29) + 0.76 * (0.39 - 0.53) = -0.12 +-0.12 < 0",confounding,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 75%. For those who are not jyka, the probability of lirg is 43%. For those who are jyka, the probability of lirg is 36%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.36 +0.75*0.36 - 0.25*0.43 = 0.38 +0.38 > 0",confounding,nonsense4,1,marginal,P(Y) +30116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. The overall probability of jyka is 75%. The probability of not jyka and lirg is 11%. The probability of jyka and lirg is 27%.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.27 +0.27/0.75 - 0.11/0.25 = -0.07 +-0.07 < 0",confounding,nonsense4,1,correlation,P(Y | X) +30118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 36%. For those who are jyka, the probability of lirg is 39%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.39 +0.39 - 0.36 = 0.03 +0.03 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 36%. For those who are jyka, the probability of lirg is 39%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.39 +0.39 - 0.36 = 0.03 +0.03 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 96%. For those who are not jyka and are hwax, the probability of lirg is 15%. For those who are jyka and are not hwax, the probability of lirg is 12%. For those who are jyka and are hwax, the probability of lirg is 64%. For those who are not jyka, the probability of hwax is 74%. For those who are jyka, the probability of hwax is 52%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.96 +P(Y=1 | X=0, V2=1) = 0.15 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.52 +0.52 * (0.15 - 0.96)+ 0.74 * (0.64 - 0.12)= 0.18 +0.18 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 92%. For those who are not jyka, the probability of lirg is 36%. For those who are jyka, the probability of lirg is 39%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.39 +0.92*0.39 - 0.08*0.36 = 0.41 +0.41 > 0",mediation,nonsense4,1,marginal,P(Y) +30129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 92%. For those who are not jyka, the probability of lirg is 36%. For those who are jyka, the probability of lirg is 39%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.39 +0.92*0.39 - 0.08*0.36 = 0.41 +0.41 > 0",mediation,nonsense4,1,marginal,P(Y) +30132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 74%. For those who are jyka, the probability of lirg is 83%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.83 +0.83 - 0.74 = 0.09 +0.09 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 74%. For those who are jyka, the probability of lirg is 83%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.83 +0.83 - 0.74 = 0.09 +0.09 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 74%. For those who are jyka, the probability of lirg is 83%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.83 +0.83 - 0.74 = 0.09 +0.09 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 91%. For those who are not jyka and are hwax, the probability of lirg is 71%. For those who are jyka and are not hwax, the probability of lirg is 62%. For those who are jyka and are hwax, the probability of lirg is 95%. For those who are not jyka, the probability of hwax is 82%. For those who are jyka, the probability of hwax is 64%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.91 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.95 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.64 +0.64 * (0.71 - 0.91)+ 0.82 * (0.95 - 0.62)= 0.04 +0.04 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 91%. For those who are not jyka and are hwax, the probability of lirg is 71%. For those who are jyka and are not hwax, the probability of lirg is 62%. For those who are jyka and are hwax, the probability of lirg is 95%. For those who are not jyka, the probability of hwax is 82%. For those who are jyka, the probability of hwax is 64%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.91 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.95 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.64 +0.64 * (0.71 - 0.91)+ 0.82 * (0.95 - 0.62)= 0.04 +0.04 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 91%. For those who are not jyka and are hwax, the probability of lirg is 71%. For those who are jyka and are not hwax, the probability of lirg is 62%. For those who are jyka and are hwax, the probability of lirg is 95%. For those who are not jyka, the probability of hwax is 82%. For those who are jyka, the probability of hwax is 64%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.91 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.95 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.64 +0.82 * (0.95 - 0.62) + 0.64 * (0.71 - 0.91) = 0.15 +0.15 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 91%. For those who are not jyka and are hwax, the probability of lirg is 71%. For those who are jyka and are not hwax, the probability of lirg is 62%. For those who are jyka and are hwax, the probability of lirg is 95%. For those who are not jyka, the probability of hwax is 82%. For those who are jyka, the probability of hwax is 64%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.91 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.95 +P(V2=1 | X=0) = 0.82 +P(V2=1 | X=1) = 0.64 +0.82 * (0.95 - 0.62) + 0.64 * (0.71 - 0.91) = 0.15 +0.15 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 82%. The probability of not jyka and lirg is 13%. The probability of jyka and lirg is 68%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.68 +0.68/0.82 - 0.13/0.18 = 0.09 +0.09 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 82%. The probability of not jyka and lirg is 13%. The probability of jyka and lirg is 68%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.68 +0.68/0.82 - 0.13/0.18 = 0.09 +0.09 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 81%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.81 +0.81 - 0.21 = 0.60 +0.60 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 81%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.81 +0.81 - 0.21 = 0.60 +0.60 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 81%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.81 +0.81 - 0.21 = 0.60 +0.60 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 36%. For those who are not jyka and are hwax, the probability of lirg is 17%. For those who are jyka and are not hwax, the probability of lirg is 49%. For those who are jyka and are hwax, the probability of lirg is 82%. For those who are not jyka, the probability of hwax is 80%. For those who are jyka, the probability of hwax is 99%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.82 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.99 +0.99 * (0.17 - 0.36)+ 0.80 * (0.82 - 0.49)= -0.04 +-0.04 < 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 36%. For those who are not jyka and are hwax, the probability of lirg is 17%. For those who are jyka and are not hwax, the probability of lirg is 49%. For those who are jyka and are hwax, the probability of lirg is 82%. For those who are not jyka, the probability of hwax is 80%. For those who are jyka, the probability of hwax is 99%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.82 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.99 +0.80 * (0.82 - 0.49) + 0.99 * (0.17 - 0.36) = 0.54 +0.54 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 36%. For those who are not jyka and are hwax, the probability of lirg is 17%. For those who are jyka and are not hwax, the probability of lirg is 49%. For those who are jyka and are hwax, the probability of lirg is 82%. For those who are not jyka, the probability of hwax is 80%. For those who are jyka, the probability of hwax is 99%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.49 +P(Y=1 | X=1, V2=1) = 0.82 +P(V2=1 | X=0) = 0.80 +P(V2=1 | X=1) = 0.99 +0.80 * (0.82 - 0.49) + 0.99 * (0.17 - 0.36) = 0.54 +0.54 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 81%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.81 +0.33*0.81 - 0.67*0.21 = 0.38 +0.38 > 0",mediation,nonsense4,1,marginal,P(Y) +30157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 81%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.81 +0.33*0.81 - 0.67*0.21 = 0.38 +0.38 > 0",mediation,nonsense4,1,marginal,P(Y) +30158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. The probability of not jyka and lirg is 14%. The probability of jyka and lirg is 27%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.27 +0.27/0.33 - 0.14/0.67 = 0.60 +0.60 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 33%. The probability of not jyka and lirg is 14%. The probability of jyka and lirg is 27%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.27 +0.27/0.33 - 0.14/0.67 = 0.60 +0.60 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 6%. For those who are not jyka and are hwax, the probability of lirg is 61%. For those who are jyka and are not hwax, the probability of lirg is 16%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka, the probability of hwax is 26%. For those who are jyka, the probability of hwax is 91%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.61 +P(Y=1 | X=1, V2=0) = 0.16 +P(Y=1 | X=1, V2=1) = 0.19 +P(V2=1 | X=0) = 0.26 +P(V2=1 | X=1) = 0.91 +0.91 * (0.61 - 0.06)+ 0.26 * (0.19 - 0.16)= 0.36 +0.36 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 6%. For those who are not jyka and are hwax, the probability of lirg is 61%. For those who are jyka and are not hwax, the probability of lirg is 16%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka, the probability of hwax is 26%. For those who are jyka, the probability of hwax is 91%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.61 +P(Y=1 | X=1, V2=0) = 0.16 +P(Y=1 | X=1, V2=1) = 0.19 +P(V2=1 | X=0) = 0.26 +P(V2=1 | X=1) = 0.91 +0.91 * (0.61 - 0.06)+ 0.26 * (0.19 - 0.16)= 0.36 +0.36 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 6%. For those who are not jyka and are hwax, the probability of lirg is 61%. For those who are jyka and are not hwax, the probability of lirg is 16%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka, the probability of hwax is 26%. For those who are jyka, the probability of hwax is 91%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.61 +P(Y=1 | X=1, V2=0) = 0.16 +P(Y=1 | X=1, V2=1) = 0.19 +P(V2=1 | X=0) = 0.26 +P(V2=1 | X=1) = 0.91 +0.26 * (0.19 - 0.16) + 0.91 * (0.61 - 0.06) = -0.03 +-0.03 < 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 14%. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 19%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.19 +0.14*0.19 - 0.86*0.20 = 0.24 +0.24 > 0",mediation,nonsense4,1,marginal,P(Y) +30171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 14%. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 19%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.19 +0.14*0.19 - 0.86*0.20 = 0.24 +0.24 > 0",mediation,nonsense4,1,marginal,P(Y) +30173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 14%. The probability of not jyka and lirg is 17%. The probability of jyka and lirg is 3%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.03 +0.03/0.14 - 0.17/0.86 = -0.01 +-0.01 < 0",mediation,nonsense4,1,correlation,P(Y | X) +30174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 38%. For those who are jyka, the probability of lirg is 51%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.51 +0.51 - 0.38 = 0.13 +0.13 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 38%. For those who are jyka, the probability of lirg is 51%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.51 +0.51 - 0.38 = 0.13 +0.13 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 38%. For those who are jyka, the probability of lirg is 51%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.51 +0.51 - 0.38 = 0.13 +0.13 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 38%. For those who are jyka, the probability of lirg is 51%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.51 +0.51 - 0.38 = 0.13 +0.13 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 32%. For those who are not jyka and are hwax, the probability of lirg is 63%. For those who are jyka and are not hwax, the probability of lirg is 63%. For those who are jyka and are hwax, the probability of lirg is 30%. For those who are not jyka, the probability of hwax is 17%. For those who are jyka, the probability of hwax is 38%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.63 +P(Y=1 | X=1, V2=0) = 0.63 +P(Y=1 | X=1, V2=1) = 0.30 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.38 +0.17 * (0.30 - 0.63) + 0.38 * (0.63 - 0.32) = 0.20 +0.20 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 28%. For those who are not jyka, the probability of lirg is 38%. For those who are jyka, the probability of lirg is 51%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.51 +0.28*0.51 - 0.72*0.38 = 0.44 +0.44 > 0",mediation,nonsense4,1,marginal,P(Y) +30187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 28%. The probability of not jyka and lirg is 27%. The probability of jyka and lirg is 14%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.14 +0.14/0.28 - 0.27/0.72 = 0.13 +0.13 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.62 +0.62 - 0.57 = 0.05 +0.05 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.62 +0.62 - 0.57 = 0.05 +0.05 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30194,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 85%. For those who are not jyka and are hwax, the probability of lirg is 52%. For those who are jyka and are not hwax, the probability of lirg is 78%. For those who are jyka and are hwax, the probability of lirg is 15%. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 26%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.85 +P(Y=1 | X=0, V2=1) = 0.52 +P(Y=1 | X=1, V2=0) = 0.78 +P(Y=1 | X=1, V2=1) = 0.15 +P(V2=1 | X=0) = 0.86 +P(V2=1 | X=1) = 0.26 +0.26 * (0.52 - 0.85)+ 0.86 * (0.15 - 0.78)= 0.20 +0.20 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 32%. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.62 +0.32*0.62 - 0.68*0.57 = 0.54 +0.54 > 0",mediation,nonsense4,1,marginal,P(Y) +30199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 32%. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 62%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.62 +0.32*0.62 - 0.68*0.57 = 0.54 +0.54 > 0",mediation,nonsense4,1,marginal,P(Y) +30202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 67%. For those who are jyka, the probability of lirg is 18%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.18 +0.18 - 0.67 = -0.49 +-0.49 < 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 90%. For those who are jyka and are not hwax, the probability of lirg is 56%. For those who are jyka and are hwax, the probability of lirg is 13%. For those who are not jyka, the probability of hwax is 61%. For those who are jyka, the probability of hwax is 89%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.90 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.13 +P(V2=1 | X=0) = 0.61 +P(V2=1 | X=1) = 0.89 +0.61 * (0.13 - 0.56) + 0.89 * (0.90 - 0.30) = -0.37 +-0.37 < 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 44%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.44 +0.44 - 0.77 = -0.33 +-0.33 < 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 44%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.44 +0.44 - 0.77 = -0.33 +-0.33 < 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 44%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.44 +0.44 - 0.77 = -0.33 +-0.33 < 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 3%. For those who are not jyka and are hwax, the probability of lirg is 84%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 43%. For those who are not jyka, the probability of hwax is 91%. For those who are jyka, the probability of hwax is 89%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.03 +P(Y=1 | X=0, V2=1) = 0.84 +P(Y=1 | X=1, V2=0) = 0.51 +P(Y=1 | X=1, V2=1) = 0.43 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.89 +0.89 * (0.84 - 0.03)+ 0.91 * (0.43 - 0.51)= -0.01 +-0.01 < 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 3%. For those who are not jyka and are hwax, the probability of lirg is 84%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 43%. For those who are not jyka, the probability of hwax is 91%. For those who are jyka, the probability of hwax is 89%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.03 +P(Y=1 | X=0, V2=1) = 0.84 +P(Y=1 | X=1, V2=0) = 0.51 +P(Y=1 | X=1, V2=1) = 0.43 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.89 +0.89 * (0.84 - 0.03)+ 0.91 * (0.43 - 0.51)= -0.01 +-0.01 < 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 3%. For those who are not jyka and are hwax, the probability of lirg is 84%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 43%. For those who are not jyka, the probability of hwax is 91%. For those who are jyka, the probability of hwax is 89%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.03 +P(Y=1 | X=0, V2=1) = 0.84 +P(Y=1 | X=1, V2=0) = 0.51 +P(Y=1 | X=1, V2=1) = 0.43 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.89 +0.91 * (0.43 - 0.51) + 0.89 * (0.84 - 0.03) = -0.33 +-0.33 < 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 55%. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 44%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.44 +0.55*0.44 - 0.45*0.77 = 0.58 +0.58 > 0",mediation,nonsense4,1,marginal,P(Y) +30228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 55%. The probability of not jyka and lirg is 34%. The probability of jyka and lirg is 24%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.24 +0.24/0.55 - 0.34/0.45 = -0.33 +-0.33 < 0",mediation,nonsense4,1,correlation,P(Y | X) +30229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 55%. The probability of not jyka and lirg is 34%. The probability of jyka and lirg is 24%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.24 +0.24/0.55 - 0.34/0.45 = -0.33 +-0.33 < 0",mediation,nonsense4,1,correlation,P(Y | X) +30231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 5%. For those who are jyka, the probability of lirg is 27%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.27 +0.27 - 0.05 = 0.22 +0.22 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 5%. For those who are jyka, the probability of lirg is 27%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.27 +0.27 - 0.05 = 0.22 +0.22 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 5%. For those who are jyka, the probability of lirg is 27%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.27 +0.27 - 0.05 = 0.22 +0.22 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 5%. For those who are jyka, the probability of lirg is 27%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.27 +0.27 - 0.05 = 0.22 +0.22 > 0",mediation,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 2%. For those who are not jyka and are hwax, the probability of lirg is 59%. For those who are jyka and are not hwax, the probability of lirg is 2%. For those who are jyka and are hwax, the probability of lirg is 93%. For those who are not jyka, the probability of hwax is 5%. For those who are jyka, the probability of hwax is 27%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.02 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.02 +P(Y=1 | X=1, V2=1) = 0.93 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.27 +0.27 * (0.59 - 0.02)+ 0.05 * (0.93 - 0.02)= 0.12 +0.12 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 2%. For those who are not jyka and are hwax, the probability of lirg is 59%. For those who are jyka and are not hwax, the probability of lirg is 2%. For those who are jyka and are hwax, the probability of lirg is 93%. For those who are not jyka, the probability of hwax is 5%. For those who are jyka, the probability of hwax is 27%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.02 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.02 +P(Y=1 | X=1, V2=1) = 0.93 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.27 +0.27 * (0.59 - 0.02)+ 0.05 * (0.93 - 0.02)= 0.12 +0.12 > 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 2%. For those who are not jyka and are hwax, the probability of lirg is 59%. For those who are jyka and are not hwax, the probability of lirg is 2%. For those who are jyka and are hwax, the probability of lirg is 93%. For those who are not jyka, the probability of hwax is 5%. For those who are jyka, the probability of hwax is 27%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.02 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.02 +P(Y=1 | X=1, V2=1) = 0.93 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.27 +0.05 * (0.93 - 0.02) + 0.27 * (0.59 - 0.02) = 0.02 +0.02 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 2%. For those who are not jyka and are hwax, the probability of lirg is 59%. For those who are jyka and are not hwax, the probability of lirg is 2%. For those who are jyka and are hwax, the probability of lirg is 93%. For those who are not jyka, the probability of hwax is 5%. For those who are jyka, the probability of hwax is 27%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.02 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.02 +P(Y=1 | X=1, V2=1) = 0.93 +P(V2=1 | X=0) = 0.05 +P(V2=1 | X=1) = 0.27 +0.05 * (0.93 - 0.02) + 0.27 * (0.59 - 0.02) = 0.02 +0.02 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 40%. For those who are not jyka, the probability of lirg is 5%. For those who are jyka, the probability of lirg is 27%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.27 +0.40*0.27 - 0.60*0.05 = 0.12 +0.12 > 0",mediation,nonsense4,1,marginal,P(Y) +30242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 40%. The probability of not jyka and lirg is 3%. The probability of jyka and lirg is 11%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.11 +0.11/0.40 - 0.03/0.60 = 0.22 +0.22 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 40%. The probability of not jyka and lirg is 3%. The probability of jyka and lirg is 11%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.11 +0.11/0.40 - 0.03/0.60 = 0.22 +0.22 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 85%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.85 +0.85 - 0.33 = 0.52 +0.52 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 85%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.85 +0.85 - 0.33 = 0.52 +0.52 > 0",mediation,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 51%. For those who are jyka and are not hwax, the probability of lirg is 85%. For those who are jyka and are hwax, the probability of lirg is 87%. For those who are not jyka, the probability of hwax is 12%. For those who are jyka, the probability of hwax is 13%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.13 +0.13 * (0.51 - 0.30)+ 0.12 * (0.87 - 0.85)= 0.00 +0.00 = 0",mediation,nonsense4,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 51%. For those who are jyka and are not hwax, the probability of lirg is 85%. For those who are jyka and are hwax, the probability of lirg is 87%. For those who are not jyka, the probability of hwax is 12%. For those who are jyka, the probability of hwax is 13%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.13 +0.12 * (0.87 - 0.85) + 0.13 * (0.51 - 0.30) = 0.52 +0.52 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 51%. For those who are jyka and are not hwax, the probability of lirg is 85%. For those who are jyka and are hwax, the probability of lirg is 87%. For those who are not jyka, the probability of hwax is 12%. For those who are jyka, the probability of hwax is 13%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.51 +P(Y=1 | X=1, V2=0) = 0.85 +P(Y=1 | X=1, V2=1) = 0.87 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.13 +0.12 * (0.87 - 0.85) + 0.13 * (0.51 - 0.30) = 0.52 +0.52 > 0",mediation,nonsense4,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +30254,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 25%. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 85%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.85 +0.25*0.85 - 0.75*0.33 = 0.46 +0.46 > 0",mediation,nonsense4,1,marginal,P(Y) +30256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 25%. The probability of not jyka and lirg is 25%. The probability of jyka and lirg is 21%.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.21 +0.21/0.25 - 0.25/0.75 = 0.52 +0.52 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 25%. The probability of not jyka and lirg is 25%. The probability of jyka and lirg is 21%.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.21 +0.21/0.25 - 0.25/0.75 = 0.52 +0.52 > 0",mediation,nonsense4,1,correlation,P(Y | X) +30258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30260,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 55%. For those who are not jyka and are not hwax, the probability of lirg is 32%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 28%. For those who are jyka and are hwax, the probability of lirg is 81%. The overall probability of jyka is 52%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.81 +P(X=1) = 0.52 +(0.55 - 0.86)* (0.81 * 0.52) + (0.45 - 0.14) * (0.82 * 0.48) = -0.16 +-0.16 < 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 32%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 28%. For those who are jyka and are hwax, the probability of lirg is 81%. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 55%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.55 +0.81 * (0.55 - 0.86) + 0.82 * (0.45 - 0.14) = -0.16 +-0.16 < 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 32%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 28%. For those who are jyka and are hwax, the probability of lirg is 81%. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 55%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.81 +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.55 +0.81 * (0.55 - 0.86) + 0.82 * (0.45 - 0.14) = -0.16 +-0.16 < 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 55%. For those who are not jyka and are not hwax, the probability of lirg is 32%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 28%. For those who are jyka and are hwax, the probability of lirg is 81%. The overall probability of jyka is 52%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.81 +P(X=1) = 0.52 +0.55 - 0.86 * (0.81 * 0.52 + 0.82 * 0.48)= -0.16 +-0.16 < 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 52%. For those who are not jyka, the probability of lirg is 75%. For those who are jyka, the probability of lirg is 57%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.57 +0.52*0.57 - 0.48*0.75 = 0.66 +0.66 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 52%. The probability of not jyka and lirg is 36%. The probability of jyka and lirg is 30%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.30 +0.30/0.52 - 0.36/0.48 = -0.18 +-0.18 < 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 52%. The probability of not jyka and lirg is 36%. The probability of jyka and lirg is 30%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.30 +0.30/0.52 - 0.36/0.48 = -0.18 +-0.18 < 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30271,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 38%. For those who are not jyka and are not hwax, the probability of lirg is 37%. For those who are not jyka and are hwax, the probability of lirg is 34%. For those who are jyka and are not hwax, the probability of lirg is 30%. For those who are jyka and are hwax, the probability of lirg is 46%. The overall probability of jyka is 54%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.54 +(0.38 - 0.99)* (0.46 * 0.54) + (0.62 - 0.01) * (0.34 * 0.46) = -0.05 +-0.05 < 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 38%. For those who are not jyka and are not hwax, the probability of lirg is 37%. For those who are not jyka and are hwax, the probability of lirg is 34%. For those who are jyka and are not hwax, the probability of lirg is 30%. For those who are jyka and are hwax, the probability of lirg is 46%. The overall probability of jyka is 54%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.54 +(0.38 - 0.99)* (0.46 * 0.54) + (0.62 - 0.01) * (0.34 * 0.46) = -0.05 +-0.05 < 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 37%. For those who are not jyka and are hwax, the probability of lirg is 34%. For those who are jyka and are not hwax, the probability of lirg is 30%. For those who are jyka and are hwax, the probability of lirg is 46%. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 38%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.38 +0.46 * (0.38 - 0.99) + 0.34 * (0.62 - 0.01) = -0.10 +-0.10 < 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 38%. For those who are not jyka and are not hwax, the probability of lirg is 37%. For those who are not jyka and are hwax, the probability of lirg is 34%. For those who are jyka and are not hwax, the probability of lirg is 30%. For those who are jyka and are hwax, the probability of lirg is 46%. The overall probability of jyka is 54%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.38 +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.54 +0.38 - 0.99 * (0.46 * 0.54 + 0.34 * 0.46)= -0.05 +-0.05 < 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. For those who are not jyka, the probability of lirg is 34%. For those who are jyka, the probability of lirg is 36%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.36 +0.54*0.36 - 0.46*0.34 = 0.38 +0.38 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. For those who are not jyka, the probability of lirg is 34%. For those who are jyka, the probability of lirg is 36%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.36 +0.54*0.36 - 0.46*0.34 = 0.38 +0.38 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. The probability of not jyka and lirg is 16%. The probability of jyka and lirg is 19%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.19 +0.19/0.54 - 0.16/0.46 = 0.02 +0.02 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. The probability of not jyka and lirg is 16%. The probability of jyka and lirg is 19%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.19 +0.19/0.54 - 0.16/0.46 = 0.02 +0.02 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 63%. For those who are not jyka and are not hwax, the probability of lirg is 83%. For those who are not jyka and are hwax, the probability of lirg is 7%. For those who are jyka and are not hwax, the probability of lirg is 67%. For those who are jyka and are hwax, the probability of lirg is 15%. The overall probability of jyka is 87%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.07 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.15 +P(X=1) = 0.87 +(0.63 - 0.99)* (0.15 * 0.87) + (0.37 - 0.01) * (0.07 * 0.13) = 0.20 +0.20 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 63%. For those who are not jyka and are not hwax, the probability of lirg is 83%. For those who are not jyka and are hwax, the probability of lirg is 7%. For those who are jyka and are not hwax, the probability of lirg is 67%. For those who are jyka and are hwax, the probability of lirg is 15%. The overall probability of jyka is 87%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.07 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.15 +P(X=1) = 0.87 +(0.63 - 0.99)* (0.15 * 0.87) + (0.37 - 0.01) * (0.07 * 0.13) = 0.20 +0.20 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 99%. For those who are jyka, the probability of hwax is 63%. For those who are not jyka and are not hwax, the probability of lirg is 83%. For those who are not jyka and are hwax, the probability of lirg is 7%. For those who are jyka and are not hwax, the probability of lirg is 67%. For those who are jyka and are hwax, the probability of lirg is 15%. The overall probability of jyka is 87%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.99 +P(V3=1 | X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.07 +P(Y=1 | X=1, V3=0) = 0.67 +P(Y=1 | X=1, V3=1) = 0.15 +P(X=1) = 0.87 +0.63 - 0.99 * (0.15 * 0.87 + 0.07 * 0.13)= 0.20 +0.20 > 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 87%. For those who are not jyka, the probability of lirg is 8%. For those who are jyka, the probability of lirg is 34%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.08 +P(Y=1 | X=1) = 0.34 +0.87*0.34 - 0.13*0.08 = 0.31 +0.31 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 87%. The probability of not jyka and lirg is 1%. The probability of jyka and lirg is 29%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.29 +0.29/0.87 - 0.01/0.13 = 0.26 +0.26 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 92%. For those who are jyka, the probability of hwax is 48%. For those who are not jyka and are not hwax, the probability of lirg is 45%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 52%. For those who are jyka and are hwax, the probability of lirg is 33%. The overall probability of jyka is 88%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.92 +P(V3=1 | X=1) = 0.48 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.33 +P(X=1) = 0.88 +(0.48 - 0.92)* (0.33 * 0.88) + (0.52 - 0.08) * (0.29 * 0.12) = 0.08 +0.08 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 45%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 52%. For those who are jyka and are hwax, the probability of lirg is 33%. For those who are not jyka, the probability of hwax is 92%. For those who are jyka, the probability of hwax is 48%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.92 +P(V3=1 | X=1) = 0.48 +0.33 * (0.48 - 0.92) + 0.29 * (0.52 - 0.08) = 0.08 +0.08 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 92%. For those who are jyka, the probability of hwax is 48%. For those who are not jyka and are not hwax, the probability of lirg is 45%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 52%. For those who are jyka and are hwax, the probability of lirg is 33%. The overall probability of jyka is 88%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.92 +P(V3=1 | X=1) = 0.48 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.33 +P(X=1) = 0.88 +0.48 - 0.92 * (0.33 * 0.88 + 0.29 * 0.12)= 0.08 +0.08 > 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 88%. For those who are not jyka, the probability of lirg is 30%. For those who are jyka, the probability of lirg is 43%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.43 +0.88*0.43 - 0.12*0.30 = 0.41 +0.41 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 88%. For those who are not jyka, the probability of lirg is 30%. For those who are jyka, the probability of lirg is 43%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.43 +0.88*0.43 - 0.12*0.30 = 0.41 +0.41 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 47%. For those who are jyka, the probability of hwax is 6%. For those who are not jyka and are not hwax, the probability of lirg is 57%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 63%. For those who are jyka and are hwax, the probability of lirg is 30%. The overall probability of jyka is 21%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.06 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.21 +(0.06 - 0.47)* (0.30 * 0.21) + (0.94 - 0.53) * (0.29 * 0.79) = 0.12 +0.12 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 57%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 63%. For those who are jyka and are hwax, the probability of lirg is 30%. For those who are not jyka, the probability of hwax is 47%. For those who are jyka, the probability of hwax is 6%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.06 +0.30 * (0.06 - 0.47) + 0.29 * (0.94 - 0.53) = 0.14 +0.14 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 57%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 63%. For those who are jyka and are hwax, the probability of lirg is 30%. For those who are not jyka, the probability of hwax is 47%. For those who are jyka, the probability of hwax is 6%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.06 +0.30 * (0.06 - 0.47) + 0.29 * (0.94 - 0.53) = 0.14 +0.14 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 47%. For those who are jyka, the probability of hwax is 6%. For those who are not jyka and are not hwax, the probability of lirg is 57%. For those who are not jyka and are hwax, the probability of lirg is 29%. For those who are jyka and are not hwax, the probability of lirg is 63%. For those who are jyka and are hwax, the probability of lirg is 30%. The overall probability of jyka is 21%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.06 +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.21 +0.06 - 0.47 * (0.30 * 0.21 + 0.29 * 0.79)= 0.12 +0.12 > 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 21%. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 61%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.61 +0.21*0.61 - 0.79*0.44 = 0.47 +0.47 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 21%. The probability of not jyka and lirg is 35%. The probability of jyka and lirg is 13%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.13 +0.13/0.21 - 0.35/0.79 = 0.17 +0.17 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 36%. For those who are jyka, the probability of hwax is 65%. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 82%. The overall probability of jyka is 88%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.36 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.88 +(0.65 - 0.36)* (0.82 * 0.88) + (0.35 - 0.64) * (0.82 * 0.12) = 0.05 +0.05 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 36%. For those who are jyka, the probability of hwax is 65%. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 82%. The overall probability of jyka is 88%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.36 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.88 +(0.65 - 0.36)* (0.82 * 0.88) + (0.35 - 0.64) * (0.82 * 0.12) = 0.05 +0.05 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 36%. For those who are jyka, the probability of hwax is 65%. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 82%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 82%. The overall probability of jyka is 88%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.36 +P(V3=1 | X=1) = 0.65 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.88 +0.65 - 0.36 * (0.82 * 0.88 + 0.82 * 0.12)= 0.05 +0.05 > 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 88%. For those who are not jyka, the probability of lirg is 71%. For those who are jyka, the probability of lirg is 76%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.76 +0.88*0.76 - 0.12*0.71 = 0.76 +0.76 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 88%. The probability of not jyka and lirg is 8%. The probability of jyka and lirg is 68%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.68 +0.68/0.88 - 0.08/0.12 = 0.05 +0.05 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 88%. The probability of not jyka and lirg is 8%. The probability of jyka and lirg is 68%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.68 +0.68/0.88 - 0.08/0.12 = 0.05 +0.05 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 98%. For those who are jyka, the probability of hwax is 72%. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 53%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 53%. The overall probability of jyka is 65%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.65 +(0.72 - 0.98)* (0.53 * 0.65) + (0.28 - 0.02) * (0.53 * 0.35) = 0.03 +0.03 > 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 53%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 53%. For those who are not jyka, the probability of hwax is 98%. For those who are jyka, the probability of hwax is 72%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.72 +0.53 * (0.72 - 0.98) + 0.53 * (0.28 - 0.02) = 0.03 +0.03 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 53%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 53%. For those who are not jyka, the probability of hwax is 98%. For those who are jyka, the probability of hwax is 72%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.72 +0.53 * (0.72 - 0.98) + 0.53 * (0.28 - 0.02) = 0.03 +0.03 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 98%. For those who are jyka, the probability of hwax is 72%. For those who are not jyka and are not hwax, the probability of lirg is 65%. For those who are not jyka and are hwax, the probability of lirg is 53%. For those who are jyka and are not hwax, the probability of lirg is 65%. For those who are jyka and are hwax, the probability of lirg is 53%. The overall probability of jyka is 65%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.65 +0.72 - 0.98 * (0.53 * 0.65 + 0.53 * 0.35)= 0.03 +0.03 > 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 65%. For those who are not jyka, the probability of lirg is 54%. For those who are jyka, the probability of lirg is 57%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.57 +0.65*0.57 - 0.35*0.54 = 0.56 +0.56 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 65%. For those who are not jyka, the probability of lirg is 54%. For those who are jyka, the probability of lirg is 57%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.57 +0.65*0.57 - 0.35*0.54 = 0.56 +0.56 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 81%. For those who are not jyka and are hwax, the probability of lirg is 87%. For those who are jyka and are not hwax, the probability of lirg is 77%. For those who are jyka and are hwax, the probability of lirg is 82%. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 23%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.23 +0.82 * (0.23 - 0.86) + 0.87 * (0.77 - 0.14) = -0.03 +-0.03 < 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 81%. For those who are not jyka and are hwax, the probability of lirg is 87%. For those who are jyka and are not hwax, the probability of lirg is 77%. For those who are jyka and are hwax, the probability of lirg is 82%. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 23%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.23 +0.82 * (0.23 - 0.86) + 0.87 * (0.77 - 0.14) = -0.03 +-0.03 < 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 23%. For those who are not jyka and are not hwax, the probability of lirg is 81%. For those who are not jyka and are hwax, the probability of lirg is 87%. For those who are jyka and are not hwax, the probability of lirg is 77%. For those who are jyka and are hwax, the probability of lirg is 82%. The overall probability of jyka is 74%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.74 +0.23 - 0.86 * (0.82 * 0.74 + 0.87 * 0.26)= -0.03 +-0.03 < 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 86%. For those who are jyka, the probability of hwax is 23%. For those who are not jyka and are not hwax, the probability of lirg is 81%. For those who are not jyka and are hwax, the probability of lirg is 87%. For those who are jyka and are not hwax, the probability of lirg is 77%. For those who are jyka and are hwax, the probability of lirg is 82%. The overall probability of jyka is 74%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.23 +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.77 +P(Y=1 | X=1, V3=1) = 0.82 +P(X=1) = 0.74 +0.23 - 0.86 * (0.82 * 0.74 + 0.87 * 0.26)= -0.03 +-0.03 < 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30350,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 74%. For those who are not jyka, the probability of lirg is 86%. For those who are jyka, the probability of lirg is 78%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.78 +0.74*0.78 - 0.26*0.86 = 0.80 +0.80 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 74%. The probability of not jyka and lirg is 23%. The probability of jyka and lirg is 58%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.58 +0.58/0.74 - 0.23/0.26 = -0.08 +-0.08 < 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 74%. The probability of not jyka and lirg is 23%. The probability of jyka and lirg is 58%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.58 +0.58/0.74 - 0.23/0.26 = -0.08 +-0.08 < 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 80%. For those who are not jyka and are hwax, the probability of lirg is 69%. For those who are jyka and are not hwax, the probability of lirg is 80%. For those who are jyka and are hwax, the probability of lirg is 67%. For those who are not jyka, the probability of hwax is 53%. For those who are jyka, the probability of hwax is 36%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.67 +P(V3=1 | X=0) = 0.53 +P(V3=1 | X=1) = 0.36 +0.67 * (0.36 - 0.53) + 0.69 * (0.64 - 0.47) = 0.02 +0.02 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 80%. For those who are not jyka and are hwax, the probability of lirg is 69%. For those who are jyka and are not hwax, the probability of lirg is 80%. For those who are jyka and are hwax, the probability of lirg is 67%. For those who are not jyka, the probability of hwax is 53%. For those who are jyka, the probability of hwax is 36%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.67 +P(V3=1 | X=0) = 0.53 +P(V3=1 | X=1) = 0.36 +0.67 * (0.36 - 0.53) + 0.69 * (0.64 - 0.47) = 0.02 +0.02 > 0",frontdoor,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 53%. For those who are jyka, the probability of hwax is 36%. For those who are not jyka and are not hwax, the probability of lirg is 80%. For those who are not jyka and are hwax, the probability of lirg is 69%. For those who are jyka and are not hwax, the probability of lirg is 80%. For those who are jyka and are hwax, the probability of lirg is 67%. The overall probability of jyka is 40%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.53 +P(V3=1 | X=1) = 0.36 +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.69 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.67 +P(X=1) = 0.40 +0.36 - 0.53 * (0.67 * 0.40 + 0.69 * 0.60)= 0.02 +0.02 > 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 40%. The probability of not jyka and lirg is 44%. The probability of jyka and lirg is 30%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.30 +0.30/0.40 - 0.44/0.60 = 0.01 +0.01 > 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 69%. For those who are jyka, the probability of hwax is 7%. For those who are not jyka and are not hwax, the probability of lirg is 60%. For those who are not jyka and are hwax, the probability of lirg is 72%. For those who are jyka and are not hwax, the probability of lirg is 57%. For those who are jyka and are hwax, the probability of lirg is 60%. The overall probability of jyka is 94%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.94 +(0.07 - 0.69)* (0.60 * 0.94) + (0.93 - 0.31) * (0.72 * 0.06) = -0.02 +-0.02 < 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 69%. For those who are jyka, the probability of hwax is 7%. For those who are not jyka and are not hwax, the probability of lirg is 60%. For those who are not jyka and are hwax, the probability of lirg is 72%. For those who are jyka and are not hwax, the probability of lirg is 57%. For those who are jyka and are hwax, the probability of lirg is 60%. The overall probability of jyka is 94%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.94 +(0.07 - 0.69)* (0.60 * 0.94) + (0.93 - 0.31) * (0.72 * 0.06) = -0.02 +-0.02 < 0",frontdoor,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 69%. For those who are jyka, the probability of hwax is 7%. For those who are not jyka and are not hwax, the probability of lirg is 60%. For those who are not jyka and are hwax, the probability of lirg is 72%. For those who are jyka and are not hwax, the probability of lirg is 57%. For those who are jyka and are hwax, the probability of lirg is 60%. The overall probability of jyka is 94%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.94 +0.07 - 0.69 * (0.60 * 0.94 + 0.72 * 0.06)= -0.02 +-0.02 < 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of hwax is 69%. For those who are jyka, the probability of hwax is 7%. For those who are not jyka and are not hwax, the probability of lirg is 60%. For those who are not jyka and are hwax, the probability of lirg is 72%. For those who are jyka and are not hwax, the probability of lirg is 57%. For those who are jyka and are hwax, the probability of lirg is 60%. The overall probability of jyka is 94%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.60 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.60 +P(X=1) = 0.94 +0.07 - 0.69 * (0.60 * 0.94 + 0.72 * 0.06)= -0.02 +-0.02 < 0",frontdoor,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 94%. For those who are not jyka, the probability of lirg is 68%. For those who are jyka, the probability of lirg is 58%.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.58 +0.94*0.58 - 0.06*0.68 = 0.58 +0.58 > 0",frontdoor,nonsense4,1,marginal,P(Y) +30377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 94%. The probability of not jyka and lirg is 4%. The probability of jyka and lirg is 54%.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.54 +0.54/0.94 - 0.04/0.06 = -0.11 +-0.11 < 0",frontdoor,nonsense4,1,correlation,P(Y | X) +30380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 28%. For those who are hwax, the probability of lirg is 28%. For those who are not hwax, the probability of jyka is 18%. For those who are hwax, the probability of jyka is 16%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.28 +P(Y=1 | V2=1) = 0.28 +P(X=1 | V2=0) = 0.18 +P(X=1 | V2=1) = 0.16 +(0.28 - 0.28) / (0.16 - 0.18) = 0.32 +0.32 > 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 28%. For those who are hwax, the probability of lirg is 28%. For those who are not hwax, the probability of jyka is 18%. For those who are hwax, the probability of jyka is 16%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.28 +P(Y=1 | V2=1) = 0.28 +P(X=1 | V2=0) = 0.18 +P(X=1 | V2=1) = 0.16 +(0.28 - 0.28) / (0.16 - 0.18) = 0.32 +0.32 > 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 17%. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 54%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.54 +0.17*0.54 - 0.83*0.21 = 0.28 +0.28 > 0",IV,nonsense4,1,marginal,P(Y) +30383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 17%. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 54%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.54 +0.17*0.54 - 0.83*0.21 = 0.28 +0.28 > 0",IV,nonsense4,1,marginal,P(Y) +30384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 17%. The probability of not jyka and lirg is 17%. The probability of jyka and lirg is 9%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.09 +0.09/0.17 - 0.17/0.83 = 0.33 +0.33 > 0",IV,nonsense4,1,correlation,P(Y | X) +30385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 17%. The probability of not jyka and lirg is 17%. The probability of jyka and lirg is 9%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.09 +0.09/0.17 - 0.17/0.83 = 0.33 +0.33 > 0",IV,nonsense4,1,correlation,P(Y | X) +30387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. For those who are not jyka, the probability of lirg is 85%. For those who are jyka, the probability of lirg is 48%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.48 +0.54*0.48 - 0.46*0.85 = 0.66 +0.66 > 0",IV,nonsense4,1,marginal,P(Y) +30392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. The probability of not jyka and lirg is 39%. The probability of jyka and lirg is 26%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.26 +0.26/0.54 - 0.39/0.46 = -0.37 +-0.37 < 0",IV,nonsense4,1,correlation,P(Y | X) +30393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 54%. The probability of not jyka and lirg is 39%. The probability of jyka and lirg is 26%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.26 +0.26/0.54 - 0.39/0.46 = -0.37 +-0.37 < 0",IV,nonsense4,1,correlation,P(Y | X) +30394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 50%. For those who are hwax, the probability of lirg is 58%. For those who are not hwax, the probability of jyka is 59%. For those who are hwax, the probability of jyka is 78%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.50 +P(Y=1 | V2=1) = 0.58 +P(X=1 | V2=0) = 0.59 +P(X=1 | V2=1) = 0.78 +(0.58 - 0.50) / (0.78 - 0.59) = 0.45 +0.45 > 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 73%. For those who are not jyka, the probability of lirg is 32%. For those who are jyka, the probability of lirg is 72%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.72 +0.73*0.72 - 0.27*0.32 = 0.56 +0.56 > 0",IV,nonsense4,1,marginal,P(Y) +30401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 73%. The probability of not jyka and lirg is 9%. The probability of jyka and lirg is 52%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.52 +0.52/0.73 - 0.09/0.27 = 0.39 +0.39 > 0",IV,nonsense4,1,correlation,P(Y | X) +30402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 65%. For those who are hwax, the probability of lirg is 65%. For those who are not hwax, the probability of jyka is 73%. For those who are hwax, the probability of jyka is 80%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.65 +P(Y=1 | V2=1) = 0.65 +P(X=1 | V2=0) = 0.73 +P(X=1 | V2=1) = 0.80 +(0.65 - 0.65) / (0.80 - 0.73) = -0.04 +-0.04 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 65%. For those who are hwax, the probability of lirg is 65%. For those who are not hwax, the probability of jyka is 73%. For those who are hwax, the probability of jyka is 80%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.65 +P(Y=1 | V2=1) = 0.65 +P(X=1 | V2=0) = 0.73 +P(X=1 | V2=1) = 0.80 +(0.65 - 0.65) / (0.80 - 0.73) = -0.04 +-0.04 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 77%. For those who are not jyka, the probability of lirg is 42%. For those who are jyka, the probability of lirg is 74%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.74 +0.77*0.74 - 0.23*0.42 = 0.65 +0.65 > 0",IV,nonsense4,1,marginal,P(Y) +30409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 77%. The probability of not jyka and lirg is 10%. The probability of jyka and lirg is 57%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.57 +0.57/0.77 - 0.10/0.23 = 0.31 +0.31 > 0",IV,nonsense4,1,correlation,P(Y | X) +30412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 39%. For those who are hwax, the probability of lirg is 40%. For those who are not hwax, the probability of jyka is 49%. For those who are hwax, the probability of jyka is 76%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.40 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.76 +(0.40 - 0.39) / (0.76 - 0.49) = 0.05 +0.05 > 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 39%. For those who are hwax, the probability of lirg is 40%. For those who are not hwax, the probability of jyka is 49%. For those who are hwax, the probability of jyka is 76%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.40 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.76 +(0.40 - 0.39) / (0.76 - 0.49) = 0.05 +0.05 > 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 62%. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 41%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.41 +0.62*0.41 - 0.38*0.37 = 0.40 +0.40 > 0",IV,nonsense4,1,marginal,P(Y) +30417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 62%. The probability of not jyka and lirg is 14%. The probability of jyka and lirg is 26%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.26 +0.26/0.62 - 0.14/0.38 = 0.04 +0.04 > 0",IV,nonsense4,1,correlation,P(Y | X) +30419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 32%. For those who are not jyka, the probability of lirg is 64%. For those who are jyka, the probability of lirg is 9%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.09 +0.32*0.09 - 0.68*0.64 = 0.46 +0.46 > 0",IV,nonsense4,1,marginal,P(Y) +30425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 32%. The probability of not jyka and lirg is 43%. The probability of jyka and lirg is 3%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.03 +0.03/0.32 - 0.43/0.68 = -0.55 +-0.55 < 0",IV,nonsense4,1,correlation,P(Y | X) +30426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 75%. For those who are hwax, the probability of lirg is 57%. For those who are not hwax, the probability of jyka is 41%. For those who are hwax, the probability of jyka is 91%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.75 +P(Y=1 | V2=1) = 0.57 +P(X=1 | V2=0) = 0.41 +P(X=1 | V2=1) = 0.91 +(0.57 - 0.75) / (0.91 - 0.41) = -0.36 +-0.36 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 81%. For those who are not jyka, the probability of lirg is 90%. For those who are jyka, the probability of lirg is 53%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.53 +0.81*0.53 - 0.19*0.90 = 0.60 +0.60 > 0",IV,nonsense4,1,marginal,P(Y) +30433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 81%. The probability of not jyka and lirg is 17%. The probability of jyka and lirg is 43%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.43 +0.43/0.81 - 0.17/0.19 = -0.37 +-0.37 < 0",IV,nonsense4,1,correlation,P(Y | X) +30436,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 75%. For those who are hwax, the probability of lirg is 80%. For those who are not hwax, the probability of jyka is 61%. For those who are hwax, the probability of jyka is 37%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.75 +P(Y=1 | V2=1) = 0.80 +P(X=1 | V2=0) = 0.61 +P(X=1 | V2=1) = 0.37 +(0.80 - 0.75) / (0.37 - 0.61) = -0.19 +-0.19 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 55%. For those who are not jyka, the probability of lirg is 90%. For those who are jyka, the probability of lirg is 68%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.68 +0.55*0.68 - 0.45*0.90 = 0.77 +0.77 > 0",IV,nonsense4,1,marginal,P(Y) +30439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 55%. For those who are not jyka, the probability of lirg is 90%. For those who are jyka, the probability of lirg is 68%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.68 +0.55*0.68 - 0.45*0.90 = 0.77 +0.77 > 0",IV,nonsense4,1,marginal,P(Y) +30440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 55%. The probability of not jyka and lirg is 41%. The probability of jyka and lirg is 37%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.37 +0.37/0.55 - 0.41/0.45 = -0.21 +-0.21 < 0",IV,nonsense4,1,correlation,P(Y | X) +30441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 55%. The probability of not jyka and lirg is 41%. The probability of jyka and lirg is 37%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.37 +0.37/0.55 - 0.41/0.45 = -0.21 +-0.21 < 0",IV,nonsense4,1,correlation,P(Y | X) +30442,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 55%. For those who are hwax, the probability of lirg is 50%. For those who are not hwax, the probability of jyka is 30%. For those who are hwax, the probability of jyka is 76%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.55 +P(Y=1 | V2=1) = 0.50 +P(X=1 | V2=0) = 0.30 +P(X=1 | V2=1) = 0.76 +(0.50 - 0.55) / (0.76 - 0.30) = -0.10 +-0.10 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 55%. For those who are hwax, the probability of lirg is 50%. For those who are not hwax, the probability of jyka is 30%. For those who are hwax, the probability of jyka is 76%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.55 +P(Y=1 | V2=1) = 0.50 +P(X=1 | V2=0) = 0.30 +P(X=1 | V2=1) = 0.76 +(0.50 - 0.55) / (0.76 - 0.30) = -0.10 +-0.10 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 43%. For those who are not jyka, the probability of lirg is 68%. For those who are jyka, the probability of lirg is 39%.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.39 +0.43*0.39 - 0.57*0.68 = 0.54 +0.54 > 0",IV,nonsense4,1,marginal,P(Y) +30449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 43%. The probability of not jyka and lirg is 39%. The probability of jyka and lirg is 17%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.17 +0.17/0.43 - 0.39/0.57 = -0.29 +-0.29 < 0",IV,nonsense4,1,correlation,P(Y | X) +30450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. For those who are not hwax, the probability of lirg is 27%. For those who are hwax, the probability of lirg is 27%. For those who are not hwax, the probability of jyka is 55%. For those who are hwax, the probability of jyka is 53%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.27 +P(Y=1 | V2=1) = 0.27 +P(X=1 | V2=0) = 0.55 +P(X=1 | V2=1) = 0.53 +(0.27 - 0.27) / (0.53 - 0.55) = -0.24 +-0.24 < 0",IV,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 53%. For those who are not jyka, the probability of lirg is 41%. For those who are jyka, the probability of lirg is 24%.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.24 +0.53*0.24 - 0.47*0.41 = 0.27 +0.27 > 0",IV,nonsense4,1,marginal,P(Y) +30458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 51%. For those who are jyka, the probability of lirg is 59%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.59 +0.59 - 0.51 = 0.08 +0.08 > 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 51%. For those who are jyka, the probability of lirg is 59%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.59 +0.59 - 0.51 = 0.08 +0.08 > 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 51%. For those who are jyka, the probability of lirg is 59%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.59 +0.59 - 0.51 = 0.08 +0.08 > 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 51%. For those who are jyka, the probability of lirg is 59%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.59 +0.59 - 0.51 = 0.08 +0.08 > 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 51%. For those who are not jyka and are hwax, the probability of lirg is 68%. For those who are jyka and are not hwax, the probability of lirg is 56%. For those who are jyka and are hwax, the probability of lirg is 61%. For those who are not jyka and are not gyzp, the probability of hwax is 79%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 56%. For those who are jyka and are gyzp, the probability of hwax is 59%. The overall probability of gyzp is 37%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.37 +0.37 * 0.68 * (0.59 - 0.56)+ 0.63 * 0.68 * (0.31 - 0.79)= -0.01 +-0.01 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 51%. For those who are not jyka and are hwax, the probability of lirg is 68%. For those who are jyka and are not hwax, the probability of lirg is 56%. For those who are jyka and are hwax, the probability of lirg is 61%. For those who are not jyka and are not gyzp, the probability of hwax is 79%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 56%. For those who are jyka and are gyzp, the probability of hwax is 59%. The overall probability of gyzp is 37%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.37 +0.37 * 0.68 * (0.59 - 0.56)+ 0.63 * 0.68 * (0.31 - 0.79)= -0.01 +-0.01 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 51%. For those who are not jyka and are hwax, the probability of lirg is 68%. For those who are jyka and are not hwax, the probability of lirg is 56%. For those who are jyka and are hwax, the probability of lirg is 61%. For those who are not jyka and are not gyzp, the probability of hwax is 79%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 56%. For those who are jyka and are gyzp, the probability of hwax is 59%. The overall probability of gyzp is 37%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.79 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.59 +P(V2=1) = 0.37 +0.37 * (0.61 - 0.56) * 0.31 + 0.63 * (0.68 - 0.51) * 0.56 = 0.08 +0.08 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 93%. For those who are not jyka, the probability of lirg is 51%. For those who are jyka, the probability of lirg is 59%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.59 +0.93*0.59 - 0.07*0.51 = 0.59 +0.59 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 77%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.77 +0.77 - 0.33 = 0.44 +0.44 > 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 77%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.77 +0.77 - 0.33 = 0.44 +0.44 > 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 23%. For those who are not jyka and are hwax, the probability of lirg is 57%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 92%. For those who are not jyka and are not gyzp, the probability of hwax is 39%. For those who are not jyka and are gyzp, the probability of hwax is 18%. For those who are jyka and are not gyzp, the probability of hwax is 69%. For those who are jyka and are gyzp, the probability of hwax is 63%. The overall probability of gyzp is 85%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.92 +P(V3=1 | X=0, V2=0) = 0.39 +P(V3=1 | X=0, V2=1) = 0.18 +P(V3=1 | X=1, V2=0) = 0.69 +P(V3=1 | X=1, V2=1) = 0.63 +P(V2=1) = 0.85 +0.85 * 0.57 * (0.63 - 0.69)+ 0.15 * 0.57 * (0.18 - 0.39)= 0.18 +0.18 > 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 23%. For those who are not jyka and are hwax, the probability of lirg is 57%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 92%. For those who are not jyka and are not gyzp, the probability of hwax is 39%. For those who are not jyka and are gyzp, the probability of hwax is 18%. For those who are jyka and are not gyzp, the probability of hwax is 69%. For those who are jyka and are gyzp, the probability of hwax is 63%. The overall probability of gyzp is 85%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.92 +P(V3=1 | X=0, V2=0) = 0.39 +P(V3=1 | X=0, V2=1) = 0.18 +P(V3=1 | X=1, V2=0) = 0.69 +P(V3=1 | X=1, V2=1) = 0.63 +P(V2=1) = 0.85 +0.85 * (0.92 - 0.51) * 0.18 + 0.15 * (0.57 - 0.23) * 0.69 = 0.26 +0.26 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 4%. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 77%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.77 +0.04*0.77 - 0.96*0.33 = 0.35 +0.35 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 4%. The probability of not jyka and lirg is 29%. The probability of jyka and lirg is 3%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.03 +0.03/0.04 - 0.29/0.96 = 0.47 +0.47 > 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 51%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.51 +0.51 - 0.21 = 0.30 +0.30 > 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 17%. For those who are not jyka and are hwax, the probability of lirg is 38%. For those who are jyka and are not hwax, the probability of lirg is 44%. For those who are jyka and are hwax, the probability of lirg is 88%. For those who are not jyka and are not gyzp, the probability of hwax is 20%. For those who are not jyka and are gyzp, the probability of hwax is 9%. For those who are jyka and are not gyzp, the probability of hwax is 39%. For those who are jyka and are gyzp, the probability of hwax is 2%. The overall probability of gyzp is 82%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.82 +0.82 * 0.38 * (0.02 - 0.39)+ 0.18 * 0.38 * (0.09 - 0.20)= -0.01 +-0.01 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 17%. For those who are not jyka and are hwax, the probability of lirg is 38%. For those who are jyka and are not hwax, the probability of lirg is 44%. For those who are jyka and are hwax, the probability of lirg is 88%. For those who are not jyka and are not gyzp, the probability of hwax is 20%. For those who are not jyka and are gyzp, the probability of hwax is 9%. For those who are jyka and are not gyzp, the probability of hwax is 39%. For those who are jyka and are gyzp, the probability of hwax is 2%. The overall probability of gyzp is 82%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.82 +0.82 * 0.38 * (0.02 - 0.39)+ 0.18 * 0.38 * (0.09 - 0.20)= -0.01 +-0.01 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 17%. For those who are not jyka and are hwax, the probability of lirg is 38%. For those who are jyka and are not hwax, the probability of lirg is 44%. For those who are jyka and are hwax, the probability of lirg is 88%. For those who are not jyka and are not gyzp, the probability of hwax is 20%. For those who are not jyka and are gyzp, the probability of hwax is 9%. For those who are jyka and are not gyzp, the probability of hwax is 39%. For those who are jyka and are gyzp, the probability of hwax is 2%. The overall probability of gyzp is 82%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.82 +0.82 * (0.88 - 0.44) * 0.09 + 0.18 * (0.38 - 0.17) * 0.39 = 0.31 +0.31 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 17%. For those who are not jyka and are hwax, the probability of lirg is 38%. For those who are jyka and are not hwax, the probability of lirg is 44%. For those who are jyka and are hwax, the probability of lirg is 88%. For those who are not jyka and are not gyzp, the probability of hwax is 20%. For those who are not jyka and are gyzp, the probability of hwax is 9%. For those who are jyka and are not gyzp, the probability of hwax is 39%. For those who are jyka and are gyzp, the probability of hwax is 2%. The overall probability of gyzp is 82%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0, V2=0) = 0.20 +P(V3=1 | X=0, V2=1) = 0.09 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.02 +P(V2=1) = 0.82 +0.82 * (0.88 - 0.44) * 0.09 + 0.18 * (0.38 - 0.17) * 0.39 = 0.31 +0.31 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 39%. For those who are not jyka, the probability of lirg is 21%. For those who are jyka, the probability of lirg is 51%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.51 +0.39*0.51 - 0.61*0.21 = 0.33 +0.33 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 39%. The probability of not jyka and lirg is 12%. The probability of jyka and lirg is 19%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.19 +0.19/0.39 - 0.12/0.61 = 0.28 +0.28 > 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 97%. For those who are jyka, the probability of lirg is 51%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.51 +0.51 - 0.97 = -0.46 +-0.46 < 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 97%. For those who are jyka, the probability of lirg is 51%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.51 +0.51 - 0.97 = -0.46 +-0.46 < 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 97%. For those who are jyka, the probability of lirg is 51%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.51 +0.51 - 0.97 = -0.46 +-0.46 < 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 97%. For those who are not jyka and are hwax, the probability of lirg is 97%. For those who are jyka and are not hwax, the probability of lirg is 30%. For those who are jyka and are hwax, the probability of lirg is 94%. For those who are not jyka and are not gyzp, the probability of hwax is 29%. For those who are not jyka and are gyzp, the probability of hwax is 54%. For those who are jyka and are not gyzp, the probability of hwax is 66%. For those who are jyka and are gyzp, the probability of hwax is 30%. The overall probability of gyzp is 97%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.94 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.54 +P(V3=1 | X=1, V2=0) = 0.66 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.97 +0.97 * (0.94 - 0.30) * 0.54 + 0.03 * (0.97 - 0.97) * 0.66 = -0.32 +-0.32 < 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 97%. For those who are not jyka and are hwax, the probability of lirg is 97%. For those who are jyka and are not hwax, the probability of lirg is 30%. For those who are jyka and are hwax, the probability of lirg is 94%. For those who are not jyka and are not gyzp, the probability of hwax is 29%. For those who are not jyka and are gyzp, the probability of hwax is 54%. For those who are jyka and are not gyzp, the probability of hwax is 66%. For those who are jyka and are gyzp, the probability of hwax is 30%. The overall probability of gyzp is 97%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.94 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.54 +P(V3=1 | X=1, V2=0) = 0.66 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.97 +0.97 * (0.94 - 0.30) * 0.54 + 0.03 * (0.97 - 0.97) * 0.66 = -0.32 +-0.32 < 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 90%. The probability of not jyka and lirg is 10%. The probability of jyka and lirg is 45%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.45 +0.45/0.90 - 0.10/0.10 = -0.47 +-0.47 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 90%. The probability of not jyka and lirg is 10%. The probability of jyka and lirg is 45%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.45 +0.45/0.90 - 0.10/0.10 = -0.47 +-0.47 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 37%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.37 +0.37 - 0.33 = 0.03 +0.03 > 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 50%. For those who are jyka and are not hwax, the probability of lirg is 92%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka and are not gyzp, the probability of hwax is 52%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 96%. For those who are jyka and are gyzp, the probability of hwax is 55%. The overall probability of gyzp is 66%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.66 +0.66 * 0.50 * (0.55 - 0.96)+ 0.34 * 0.50 * (0.31 - 0.52)= 0.04 +0.04 > 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 50%. For those who are jyka and are not hwax, the probability of lirg is 92%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka and are not gyzp, the probability of hwax is 52%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 96%. For those who are jyka and are gyzp, the probability of hwax is 55%. The overall probability of gyzp is 66%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.66 +0.66 * 0.50 * (0.55 - 0.96)+ 0.34 * 0.50 * (0.31 - 0.52)= 0.04 +0.04 > 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 50%. For those who are jyka and are not hwax, the probability of lirg is 92%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka and are not gyzp, the probability of hwax is 52%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 96%. For those who are jyka and are gyzp, the probability of hwax is 55%. The overall probability of gyzp is 66%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.66 +0.66 * (0.19 - 0.92) * 0.31 + 0.34 * (0.50 - 0.30) * 0.96 = 0.20 +0.20 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 30%. For those who are not jyka and are hwax, the probability of lirg is 50%. For those who are jyka and are not hwax, the probability of lirg is 92%. For those who are jyka and are hwax, the probability of lirg is 19%. For those who are not jyka and are not gyzp, the probability of hwax is 52%. For those who are not jyka and are gyzp, the probability of hwax is 31%. For those who are jyka and are not gyzp, the probability of hwax is 96%. For those who are jyka and are gyzp, the probability of hwax is 55%. The overall probability of gyzp is 66%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.31 +P(V3=1 | X=1, V2=0) = 0.96 +P(V3=1 | X=1, V2=1) = 0.55 +P(V2=1) = 0.66 +0.66 * (0.19 - 0.92) * 0.31 + 0.34 * (0.50 - 0.30) * 0.96 = 0.20 +0.20 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 73%. For those who are not jyka, the probability of lirg is 33%. For those who are jyka, the probability of lirg is 37%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.37 +0.73*0.37 - 0.27*0.33 = 0.40 +0.40 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 73%. The probability of not jyka and lirg is 10%. The probability of jyka and lirg is 30%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.30 +0.30/0.73 - 0.10/0.27 = 0.04 +0.04 > 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 47%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.47 - 0.46 = 0.00 +0.00 = 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 47%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.47 - 0.46 = 0.00 +0.00 = 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 47%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.47 - 0.46 = 0.00 +0.00 = 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 34%. For those who are not jyka and are hwax, the probability of lirg is 50%. For those who are jyka and are not hwax, the probability of lirg is 36%. For those who are jyka and are hwax, the probability of lirg is 48%. For those who are not jyka and are not gyzp, the probability of hwax is 80%. For those who are not jyka and are gyzp, the probability of hwax is 56%. For those who are jyka and are not gyzp, the probability of hwax is 13%. For those who are jyka and are gyzp, the probability of hwax is 96%. The overall probability of gyzp is 18%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.96 +P(V2=1) = 0.18 +0.18 * 0.50 * (0.96 - 0.13)+ 0.82 * 0.50 * (0.56 - 0.80)= -0.07 +-0.07 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 34%. For those who are not jyka and are hwax, the probability of lirg is 50%. For those who are jyka and are not hwax, the probability of lirg is 36%. For those who are jyka and are hwax, the probability of lirg is 48%. For those who are not jyka and are not gyzp, the probability of hwax is 80%. For those who are not jyka and are gyzp, the probability of hwax is 56%. For those who are jyka and are not gyzp, the probability of hwax is 13%. For those who are jyka and are gyzp, the probability of hwax is 96%. The overall probability of gyzp is 18%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.80 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.96 +P(V2=1) = 0.18 +0.18 * 0.50 * (0.96 - 0.13)+ 0.82 * 0.50 * (0.56 - 0.80)= -0.07 +-0.07 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 56%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 47%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.56*0.47 - 0.44*0.46 = 0.46 +0.46 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 56%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 47%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.47 +0.56*0.47 - 0.44*0.46 = 0.46 +0.46 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 56%. The probability of not jyka and lirg is 20%. The probability of jyka and lirg is 22%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.22 +0.22/0.56 - 0.20/0.44 = -0.07 +-0.07 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 56%. The probability of not jyka and lirg is 20%. The probability of jyka and lirg is 22%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.22 +0.22/0.56 - 0.20/0.44 = -0.07 +-0.07 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 91%. For those who are jyka, the probability of lirg is 75%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.75 +0.75 - 0.91 = -0.16 +-0.16 < 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 91%. For those who are jyka, the probability of lirg is 75%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.75 +0.75 - 0.91 = -0.16 +-0.16 < 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 91%. For those who are not jyka and are hwax, the probability of lirg is 96%. For those who are jyka and are not hwax, the probability of lirg is 93%. For those who are jyka and are hwax, the probability of lirg is 21%. For those who are not jyka and are not gyzp, the probability of hwax is 58%. For those who are not jyka and are gyzp, the probability of hwax is 17%. For those who are jyka and are not gyzp, the probability of hwax is 19%. For those who are jyka and are gyzp, the probability of hwax is 26%. The overall probability of gyzp is 97%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.93 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0, V2=0) = 0.58 +P(V3=1 | X=0, V2=1) = 0.17 +P(V3=1 | X=1, V2=0) = 0.19 +P(V3=1 | X=1, V2=1) = 0.26 +P(V2=1) = 0.97 +0.97 * (0.21 - 0.93) * 0.17 + 0.03 * (0.96 - 0.91) * 0.19 = -0.11 +-0.11 < 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 41%. For those who are not jyka, the probability of lirg is 91%. For those who are jyka, the probability of lirg is 75%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.75 +0.41*0.75 - 0.59*0.91 = 0.86 +0.86 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 41%. The probability of not jyka and lirg is 54%. The probability of jyka and lirg is 31%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.31 +0.31/0.41 - 0.54/0.59 = -0.17 +-0.17 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 41%. The probability of not jyka and lirg is 54%. The probability of jyka and lirg is 31%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.31 +0.31/0.41 - 0.54/0.59 = -0.17 +-0.17 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 64%. For those who are jyka, the probability of lirg is 65%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.65 +0.65 - 0.64 = 0.01 +0.01 > 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 64%. For those who are jyka, the probability of lirg is 65%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.65 +0.65 - 0.64 = 0.01 +0.01 > 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 64%. For those who are jyka, the probability of lirg is 65%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.65 +0.65 - 0.64 = 0.01 +0.01 > 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 86%. For those who are not jyka and are hwax, the probability of lirg is 54%. For those who are jyka and are not hwax, the probability of lirg is 79%. For those who are jyka and are hwax, the probability of lirg is 60%. For those who are not jyka and are not gyzp, the probability of hwax is 57%. For those who are not jyka and are gyzp, the probability of hwax is 99%. For those who are jyka and are not gyzp, the probability of hwax is 47%. For those who are jyka and are gyzp, the probability of hwax is 91%. The overall probability of gyzp is 23%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.99 +P(V3=1 | X=1, V2=0) = 0.47 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.23 +0.23 * 0.54 * (0.91 - 0.47)+ 0.77 * 0.54 * (0.99 - 0.57)= 0.03 +0.03 > 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 86%. For those who are not jyka and are hwax, the probability of lirg is 54%. For those who are jyka and are not hwax, the probability of lirg is 79%. For those who are jyka and are hwax, the probability of lirg is 60%. For those who are not jyka and are not gyzp, the probability of hwax is 57%. For those who are not jyka and are gyzp, the probability of hwax is 99%. For those who are jyka and are not gyzp, the probability of hwax is 47%. For those who are jyka and are gyzp, the probability of hwax is 91%. The overall probability of gyzp is 23%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.57 +P(V3=1 | X=0, V2=1) = 0.99 +P(V3=1 | X=1, V2=0) = 0.47 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.23 +0.23 * (0.60 - 0.79) * 0.99 + 0.77 * (0.54 - 0.86) * 0.47 = 0.00 +0.00 = 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30567,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 28%. For those who are not jyka, the probability of lirg is 64%. For those who are jyka, the probability of lirg is 65%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.65 +0.28*0.65 - 0.72*0.64 = 0.64 +0.64 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 28%. The probability of not jyka and lirg is 47%. The probability of jyka and lirg is 19%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.19 +0.19/0.28 - 0.47/0.72 = 0.03 +0.03 > 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30573,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 32%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.32 +0.32 - 0.46 = -0.13 +-0.13 < 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 32%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.32 +0.32 - 0.46 = -0.13 +-0.13 < 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 54%. For those who are not jyka and are hwax, the probability of lirg is 45%. For those who are jyka and are not hwax, the probability of lirg is 40%. For those who are jyka and are hwax, the probability of lirg is 28%. For those who are not jyka and are not gyzp, the probability of hwax is 34%. For those who are not jyka and are gyzp, the probability of hwax is 75%. For those who are jyka and are not gyzp, the probability of hwax is 34%. For those who are jyka and are gyzp, the probability of hwax is 62%. The overall probability of gyzp is 95%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.28 +P(V3=1 | X=0, V2=0) = 0.34 +P(V3=1 | X=0, V2=1) = 0.75 +P(V3=1 | X=1, V2=0) = 0.34 +P(V3=1 | X=1, V2=1) = 0.62 +P(V2=1) = 0.95 +0.95 * 0.45 * (0.62 - 0.34)+ 0.05 * 0.45 * (0.75 - 0.34)= 0.01 +0.01 > 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 54%. For those who are not jyka and are hwax, the probability of lirg is 45%. For those who are jyka and are not hwax, the probability of lirg is 40%. For those who are jyka and are hwax, the probability of lirg is 28%. For those who are not jyka and are not gyzp, the probability of hwax is 34%. For those who are not jyka and are gyzp, the probability of hwax is 75%. For those who are jyka and are not gyzp, the probability of hwax is 34%. For those who are jyka and are gyzp, the probability of hwax is 62%. The overall probability of gyzp is 95%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.28 +P(V3=1 | X=0, V2=0) = 0.34 +P(V3=1 | X=0, V2=1) = 0.75 +P(V3=1 | X=1, V2=0) = 0.34 +P(V3=1 | X=1, V2=1) = 0.62 +P(V2=1) = 0.95 +0.95 * (0.28 - 0.40) * 0.75 + 0.05 * (0.45 - 0.54) * 0.34 = -0.15 +-0.15 < 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 49%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 32%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.32 +0.49*0.32 - 0.51*0.46 = 0.39 +0.39 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 49%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 32%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.32 +0.49*0.32 - 0.51*0.46 = 0.39 +0.39 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30582,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 49%. The probability of not jyka and lirg is 24%. The probability of jyka and lirg is 16%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.16 +0.16/0.49 - 0.24/0.51 = -0.15 +-0.15 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 43%. For those who are jyka, the probability of lirg is 42%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.42 +0.42 - 0.43 = -0.01 +-0.01 < 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 43%. For those who are jyka, the probability of lirg is 42%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.42 +0.42 - 0.43 = -0.01 +-0.01 < 0",arrowhead,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka, the probability of lirg is 43%. For those who are jyka, the probability of lirg is 42%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.42 +0.42 - 0.43 = -0.01 +-0.01 < 0",arrowhead,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 58%. For those who are not jyka and are hwax, the probability of lirg is 33%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 35%. For those who are not jyka and are not gyzp, the probability of hwax is 53%. For those who are not jyka and are gyzp, the probability of hwax is 25%. For those who are jyka and are not gyzp, the probability of hwax is 91%. For those who are jyka and are gyzp, the probability of hwax is 67%. The overall probability of gyzp is 38%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0, V2=0) = 0.53 +P(V3=1 | X=0, V2=1) = 0.25 +P(V3=1 | X=1, V2=0) = 0.91 +P(V3=1 | X=1, V2=1) = 0.67 +P(V2=1) = 0.38 +0.38 * 0.33 * (0.67 - 0.91)+ 0.62 * 0.33 * (0.25 - 0.53)= -0.07 +-0.07 < 0",arrowhead,nonsense4,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +30593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. For those who are not jyka and are not hwax, the probability of lirg is 58%. For those who are not jyka and are hwax, the probability of lirg is 33%. For those who are jyka and are not hwax, the probability of lirg is 51%. For those who are jyka and are hwax, the probability of lirg is 35%. For those who are not jyka and are not gyzp, the probability of hwax is 53%. For those who are not jyka and are gyzp, the probability of hwax is 25%. For those who are jyka and are not gyzp, the probability of hwax is 91%. For those who are jyka and are gyzp, the probability of hwax is 67%. The overall probability of gyzp is 38%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0, V2=0) = 0.53 +P(V3=1 | X=0, V2=1) = 0.25 +P(V3=1 | X=1, V2=0) = 0.91 +P(V3=1 | X=1, V2=1) = 0.67 +P(V2=1) = 0.38 +0.38 * (0.35 - 0.51) * 0.25 + 0.62 * (0.33 - 0.58) * 0.91 = 0.05 +0.05 > 0",arrowhead,nonsense4,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +30594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 12%. For those who are not jyka, the probability of lirg is 43%. For those who are jyka, the probability of lirg is 42%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.42 +0.12*0.42 - 0.88*0.43 = 0.43 +0.43 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 12%. For those who are not jyka, the probability of lirg is 43%. For those who are jyka, the probability of lirg is 42%.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.42 +0.12*0.42 - 0.88*0.43 = 0.43 +0.43 > 0",arrowhead,nonsense4,1,marginal,P(Y) +30596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. The overall probability of jyka is 12%. The probability of not jyka and lirg is 42%. The probability of jyka and lirg is 5%.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.05 +0.05/0.12 - 0.42/0.88 = -0.09 +-0.09 < 0",arrowhead,nonsense4,1,correlation,P(Y | X) +30598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 58%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.62 +0.62 - 0.58 = 0.03 +0.03 > 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 58%. For those who are jyka, the probability of lirg is 62%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.62 +0.62 - 0.58 = 0.03 +0.03 > 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 58%. For those who are jyka, the probability of lirg is 62%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.62 +0.62 - 0.58 = 0.03 +0.03 > 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 91%. For those who are not jyka, the probability of lirg is 58%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.62 +0.91*0.62 - 0.09*0.58 = 0.63 +0.63 > 0",diamond,nonsense4,1,marginal,P(Y) +30608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 91%. The probability of not jyka and lirg is 5%. The probability of jyka and lirg is 56%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.56 +0.56/0.91 - 0.05/0.09 = 0.03 +0.03 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 91%. The probability of not jyka and lirg is 5%. The probability of jyka and lirg is 56%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.56 +0.56/0.91 - 0.05/0.09 = 0.03 +0.03 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 54%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30613,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 54%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 54%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30617,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 54%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 58%. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 54%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.58*0.54 - 0.42*0.57 = 0.55 +0.55 > 0",diamond,nonsense4,1,marginal,P(Y) +30619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 58%. For those who are not jyka, the probability of lirg is 57%. For those who are jyka, the probability of lirg is 54%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.58*0.54 - 0.42*0.57 = 0.55 +0.55 > 0",diamond,nonsense4,1,marginal,P(Y) +30620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 58%. The probability of not jyka and lirg is 24%. The probability of jyka and lirg is 31%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.31 +0.31/0.58 - 0.24/0.42 = -0.03 +-0.03 < 0",diamond,nonsense4,1,correlation,P(Y | X) +30623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 27%. For those who are jyka, the probability of lirg is 72%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.72 +0.72 - 0.27 = 0.45 +0.45 > 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 27%. For those who are jyka, the probability of lirg is 72%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.72 +0.72 - 0.27 = 0.45 +0.45 > 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 27%. For those who are jyka, the probability of lirg is 72%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.72 +0.72 - 0.27 = 0.45 +0.45 > 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 27%. For those who are jyka, the probability of lirg is 72%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.72 +0.72 - 0.27 = 0.45 +0.45 > 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 23%. For those who are not jyka, the probability of lirg is 27%. For those who are jyka, the probability of lirg is 72%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.72 +0.23*0.72 - 0.77*0.27 = 0.37 +0.37 > 0",diamond,nonsense4,1,marginal,P(Y) +30633,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 23%. The probability of not jyka and lirg is 21%. The probability of jyka and lirg is 16%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.23 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.16 +0.16/0.23 - 0.21/0.77 = 0.45 +0.45 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 32%. For those who are jyka, the probability of lirg is 22%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.22 +0.22 - 0.32 = -0.11 +-0.11 < 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 32%. For those who are jyka, the probability of lirg is 22%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.22 +0.22 - 0.32 = -0.11 +-0.11 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 37%. The probability of not jyka and lirg is 20%. The probability of jyka and lirg is 8%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.08 +0.08/0.37 - 0.20/0.63 = -0.11 +-0.11 < 0",diamond,nonsense4,1,correlation,P(Y | X) +30646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 29%. For those who are jyka, the probability of lirg is 41%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.41 +0.41 - 0.29 = 0.12 +0.12 > 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 29%. For those who are jyka, the probability of lirg is 41%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.41 +0.41 - 0.29 = 0.12 +0.12 > 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. For those who are not jyka, the probability of lirg is 29%. For those who are jyka, the probability of lirg is 41%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.41 +0.38*0.41 - 0.62*0.29 = 0.33 +0.33 > 0",diamond,nonsense4,1,marginal,P(Y) +30655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. For those who are not jyka, the probability of lirg is 29%. For those who are jyka, the probability of lirg is 41%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.41 +0.38*0.41 - 0.62*0.29 = 0.33 +0.33 > 0",diamond,nonsense4,1,marginal,P(Y) +30656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. The probability of not jyka and lirg is 18%. The probability of jyka and lirg is 16%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.16 +0.16/0.38 - 0.18/0.62 = 0.12 +0.12 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. The probability of not jyka and lirg is 18%. The probability of jyka and lirg is 16%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.16 +0.16/0.38 - 0.18/0.62 = 0.12 +0.12 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 62%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.62 - 0.80 = -0.18 +-0.18 < 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.62 - 0.80 = -0.18 +-0.18 < 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 62%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.62 - 0.80 = -0.18 +-0.18 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.62 - 0.80 = -0.18 +-0.18 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 67%. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 62%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.67*0.62 - 0.33*0.80 = 0.65 +0.65 > 0",diamond,nonsense4,1,marginal,P(Y) +30667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 67%. For those who are not jyka, the probability of lirg is 80%. For those who are jyka, the probability of lirg is 62%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.62 +0.67*0.62 - 0.33*0.80 = 0.65 +0.65 > 0",diamond,nonsense4,1,marginal,P(Y) +30670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 50%. For those who are jyka, the probability of lirg is 40%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.40 +0.40 - 0.50 = -0.10 +-0.10 < 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 50%. For those who are jyka, the probability of lirg is 40%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.40 +0.40 - 0.50 = -0.10 +-0.10 < 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 50%. For those who are jyka, the probability of lirg is 40%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.40 +0.40 - 0.50 = -0.10 +-0.10 < 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 50%. For those who are jyka, the probability of lirg is 40%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.40 +0.40 - 0.50 = -0.10 +-0.10 < 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 50%. For those who are jyka, the probability of lirg is 40%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.40 +0.40 - 0.50 = -0.10 +-0.10 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 50%. For those who are jyka, the probability of lirg is 40%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.40 +0.40 - 0.50 = -0.10 +-0.10 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 97%. The probability of not jyka and lirg is 1%. The probability of jyka and lirg is 39%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.39 +0.39/0.97 - 0.01/0.03 = -0.10 +-0.10 < 0",diamond,nonsense4,1,correlation,P(Y | X) +30682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 74%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.74 +0.74 - 0.77 = -0.03 +-0.03 < 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 74%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.74 +0.74 - 0.77 = -0.03 +-0.03 < 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 74%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.74 +0.74 - 0.77 = -0.03 +-0.03 < 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 74%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.74 +0.74 - 0.77 = -0.03 +-0.03 < 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 51%. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 74%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.74 +0.51*0.74 - 0.49*0.77 = 0.76 +0.76 > 0",diamond,nonsense4,1,marginal,P(Y) +30691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 51%. For those who are not jyka, the probability of lirg is 77%. For those who are jyka, the probability of lirg is 74%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.74 +0.51*0.74 - 0.49*0.77 = 0.76 +0.76 > 0",diamond,nonsense4,1,marginal,P(Y) +30692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 51%. The probability of not jyka and lirg is 38%. The probability of jyka and lirg is 37%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.37 +0.37/0.51 - 0.38/0.49 = -0.03 +-0.03 < 0",diamond,nonsense4,1,correlation,P(Y | X) +30693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 51%. The probability of not jyka and lirg is 38%. The probability of jyka and lirg is 37%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.37 +0.37/0.51 - 0.38/0.49 = -0.03 +-0.03 < 0",diamond,nonsense4,1,correlation,P(Y | X) +30694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 60%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.60 +0.60 - 0.52 = 0.08 +0.08 > 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 60%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.60 +0.60 - 0.52 = 0.08 +0.08 > 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 60%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.60 +0.60 - 0.52 = 0.08 +0.08 > 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 60%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.60 +0.60 - 0.52 = 0.08 +0.08 > 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 52%. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 60%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.60 +0.52*0.60 - 0.48*0.52 = 0.56 +0.56 > 0",diamond,nonsense4,1,marginal,P(Y) +30704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 52%. The probability of not jyka and lirg is 25%. The probability of jyka and lirg is 31%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.31 +0.31/0.52 - 0.25/0.48 = 0.08 +0.08 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 50%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.50 +0.50 - 0.44 = 0.05 +0.05 > 0",diamond,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 50%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.50 +0.50 - 0.44 = 0.05 +0.05 > 0",diamond,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 50%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.50 +0.50 - 0.44 = 0.05 +0.05 > 0",diamond,nonsense4,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +30714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 53%. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 50%.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.50 +0.53*0.50 - 0.47*0.44 = 0.47 +0.47 > 0",diamond,nonsense4,1,marginal,P(Y) +30716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 53%. The probability of not jyka and lirg is 21%. The probability of jyka and lirg is 26%.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.26 +0.26/0.53 - 0.21/0.47 = 0.05 +0.05 > 0",diamond,nonsense4,1,correlation,P(Y | X) +30718,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 90%. For those who are not hwax and are jyka, the probability of lirg is 58%. For those who are hwax and are not jyka, the probability of lirg is 94%. For those who are hwax and are jyka, the probability of lirg is 35%. The overall probability of hwax is 67%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.58 +P(Y=1 | V1=1, X=0) = 0.94 +P(Y=1 | V1=1, X=1) = 0.35 +P(V1=1) = 0.67 +0.33 * (0.58 - 0.90) 0.67 * (0.35 - 0.94) = -0.50 +-0.50 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 99%. For those who are not jyka and are gyzp, the probability of lirg is 83%. For those who are jyka and are not gyzp, the probability of lirg is 11%. For those who are jyka and are gyzp, the probability of lirg is 96%. For those who are not jyka, the probability of gyzp is 42%. For those who are jyka, the probability of gyzp is 33%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.99 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.11 +P(Y=1 | X=1, V3=1) = 0.96 +P(V3=1 | X=0) = 0.42 +P(V3=1 | X=1) = 0.33 +0.33 * (0.96 - 0.11) + 0.42 * (0.83 - 0.99) = -0.54 +-0.54 < 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 56%. The probability of not jyka and lirg is 40%. The probability of jyka and lirg is 22%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.22 +0.22/0.56 - 0.40/0.44 = -0.53 +-0.53 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 56%. The probability of not jyka and lirg is 40%. The probability of jyka and lirg is 22%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.22 +0.22/0.56 - 0.40/0.44 = -0.53 +-0.53 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 52%. For those who are not hwax and are jyka, the probability of lirg is 24%. For those who are hwax and are not jyka, the probability of lirg is 48%. For those who are hwax and are jyka, the probability of lirg is 35%. The overall probability of hwax is 86%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.52 +P(Y=1 | V1=0, X=1) = 0.24 +P(Y=1 | V1=1, X=0) = 0.48 +P(Y=1 | V1=1, X=1) = 0.35 +P(V1=1) = 0.86 +0.14 * (0.24 - 0.52) 0.86 * (0.35 - 0.48) = -0.15 +-0.15 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 52%. For those who are not hwax and are jyka, the probability of lirg is 24%. For those who are hwax and are not jyka, the probability of lirg is 48%. For those who are hwax and are jyka, the probability of lirg is 35%. The overall probability of hwax is 86%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.52 +P(Y=1 | V1=0, X=1) = 0.24 +P(Y=1 | V1=1, X=0) = 0.48 +P(Y=1 | V1=1, X=1) = 0.35 +P(V1=1) = 0.86 +0.14 * (0.24 - 0.52) 0.86 * (0.35 - 0.48) = -0.15 +-0.15 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 43%. For those who are not jyka, the probability of lirg is 49%. For those who are jyka, the probability of lirg is 33%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.33 +0.43*0.33 - 0.57*0.49 = 0.42 +0.42 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 43%. The probability of not jyka and lirg is 28%. The probability of jyka and lirg is 14%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.14 +0.14/0.43 - 0.28/0.57 = -0.15 +-0.15 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 43%. The probability of not jyka and lirg is 28%. The probability of jyka and lirg is 14%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.14 +0.14/0.43 - 0.28/0.57 = -0.15 +-0.15 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 47%. For those who are not hwax and are jyka, the probability of lirg is 67%. For those who are hwax and are not jyka, the probability of lirg is 34%. For those who are hwax and are jyka, the probability of lirg is 80%. The overall probability of hwax is 26%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.47 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.80 +P(V1=1) = 0.26 +0.74 * (0.67 - 0.47) 0.26 * (0.80 - 0.34) = 0.26 +0.26 > 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 47%. For those who are not hwax and are jyka, the probability of lirg is 67%. For those who are hwax and are not jyka, the probability of lirg is 34%. For those who are hwax and are jyka, the probability of lirg is 80%. The overall probability of hwax is 26%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.47 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.34 +P(Y=1 | V1=1, X=1) = 0.80 +P(V1=1) = 0.26 +0.74 * (0.67 - 0.47) 0.26 * (0.80 - 0.34) = 0.26 +0.26 > 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 27%. For those who are not jyka and are gyzp, the probability of lirg is 99%. For those who are jyka and are not gyzp, the probability of lirg is 86%. For those who are jyka and are gyzp, the probability of lirg is 18%. For those who are not jyka, the probability of gyzp is 26%. For those who are jyka, the probability of gyzp is 22%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.27 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.86 +P(Y=1 | X=1, V3=1) = 0.18 +P(V3=1 | X=0) = 0.26 +P(V3=1 | X=1) = 0.22 +0.22 * (0.18 - 0.86) + 0.26 * (0.99 - 0.27) = 0.28 +0.28 > 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 77%. For those who are not jyka, the probability of lirg is 46%. For those who are jyka, the probability of lirg is 71%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.71 +0.77*0.71 - 0.23*0.46 = 0.64 +0.64 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 77%. The probability of not jyka and lirg is 10%. The probability of jyka and lirg is 55%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.55 +0.55/0.77 - 0.10/0.23 = 0.25 +0.25 > 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 98%. For those who are not jyka and are gyzp, the probability of lirg is 41%. For those who are jyka and are not gyzp, the probability of lirg is 86%. For those who are jyka and are gyzp, the probability of lirg is 96%. For those who are not jyka, the probability of gyzp is 40%. For those who are jyka, the probability of gyzp is 49%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.41 +P(Y=1 | X=1, V3=0) = 0.86 +P(Y=1 | X=1, V3=1) = 0.96 +P(V3=1 | X=0) = 0.40 +P(V3=1 | X=1) = 0.49 +0.49 * (0.96 - 0.86) + 0.40 * (0.41 - 0.98) = 0.20 +0.20 > 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 18%. For those who are not jyka, the probability of lirg is 75%. For those who are jyka, the probability of lirg is 91%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.91 +0.18*0.91 - 0.82*0.75 = 0.77 +0.77 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 18%. For those who are not jyka, the probability of lirg is 75%. For those who are jyka, the probability of lirg is 91%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.91 +0.18*0.91 - 0.82*0.75 = 0.77 +0.77 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 18%. The probability of not jyka and lirg is 61%. The probability of jyka and lirg is 17%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.61 +P(Y=1, X=1=1) = 0.17 +0.17/0.18 - 0.61/0.82 = 0.16 +0.16 > 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 92%. For those who are not hwax and are jyka, the probability of lirg is 67%. For those who are hwax and are not jyka, the probability of lirg is 90%. For those who are hwax and are jyka, the probability of lirg is 65%. The overall probability of hwax is 93%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.92 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.90 +P(Y=1 | V1=1, X=1) = 0.65 +P(V1=1) = 0.93 +0.07 * (0.67 - 0.92) 0.93 * (0.65 - 0.90) = -0.25 +-0.25 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 98%. For those who are not jyka and are gyzp, the probability of lirg is 56%. For those who are jyka and are not gyzp, the probability of lirg is 76%. For those who are jyka and are gyzp, the probability of lirg is 15%. For those who are not jyka, the probability of gyzp is 18%. For those who are jyka, the probability of gyzp is 18%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.98 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0) = 0.18 +P(V3=1 | X=1) = 0.18 +0.18 * (0.15 - 0.76) + 0.18 * (0.56 - 0.98) = -0.25 +-0.25 < 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 65%. For those who are not jyka, the probability of lirg is 90%. For those who are jyka, the probability of lirg is 65%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.65 +0.65*0.65 - 0.35*0.90 = 0.74 +0.74 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 65%. The probability of not jyka and lirg is 32%. The probability of jyka and lirg is 42%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.42 +0.42/0.65 - 0.32/0.35 = -0.25 +-0.25 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 44%. For those who are not hwax and are jyka, the probability of lirg is 14%. For those who are hwax and are not jyka, the probability of lirg is 52%. For those who are hwax and are jyka, the probability of lirg is 27%. The overall probability of hwax is 57%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.14 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.27 +P(V1=1) = 0.57 +0.43 * (0.14 - 0.44) 0.57 * (0.27 - 0.52) = -0.27 +-0.27 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 44%. For those who are not hwax and are jyka, the probability of lirg is 14%. For those who are hwax and are not jyka, the probability of lirg is 52%. For those who are hwax and are jyka, the probability of lirg is 27%. The overall probability of hwax is 57%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.14 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.27 +P(V1=1) = 0.57 +0.43 * (0.14 - 0.44) 0.57 * (0.27 - 0.52) = -0.27 +-0.27 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 36%. For those who are not jyka and are gyzp, the probability of lirg is 74%. For those who are jyka and are not gyzp, the probability of lirg is 2%. For those who are jyka and are gyzp, the probability of lirg is 63%. For those who are not jyka, the probability of gyzp is 30%. For those who are jyka, the probability of gyzp is 41%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.02 +P(Y=1 | X=1, V3=1) = 0.63 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.41 +0.41 * (0.63 - 0.02) + 0.30 * (0.74 - 0.36) = -0.25 +-0.25 < 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 36%. For those who are not jyka and are gyzp, the probability of lirg is 74%. For those who are jyka and are not gyzp, the probability of lirg is 2%. For those who are jyka and are gyzp, the probability of lirg is 63%. For those who are not jyka, the probability of gyzp is 30%. For those who are jyka, the probability of gyzp is 41%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.02 +P(Y=1 | X=1, V3=1) = 0.63 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.41 +0.41 * (0.63 - 0.02) + 0.30 * (0.74 - 0.36) = -0.25 +-0.25 < 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 24%. For those who are not jyka, the probability of lirg is 47%. For those who are jyka, the probability of lirg is 27%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.27 +0.24*0.27 - 0.76*0.47 = 0.42 +0.42 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 24%. The probability of not jyka and lirg is 36%. The probability of jyka and lirg is 6%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.06 +0.06/0.24 - 0.36/0.76 = -0.21 +-0.21 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 59%. For those who are not jyka and are gyzp, the probability of lirg is 50%. For those who are jyka and are not gyzp, the probability of lirg is 75%. For those who are jyka and are gyzp, the probability of lirg is 50%. For those who are not jyka, the probability of gyzp is 75%. For those who are jyka, the probability of gyzp is 77%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.50 +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.77 +0.77 * (0.50 - 0.75) + 0.75 * (0.50 - 0.59) = 0.04 +0.04 > 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 56%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.38*0.56 - 0.62*0.52 = 0.54 +0.54 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. For those who are not jyka, the probability of lirg is 52%. For those who are jyka, the probability of lirg is 56%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.56 +0.38*0.56 - 0.62*0.52 = 0.54 +0.54 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. The probability of not jyka and lirg is 32%. The probability of jyka and lirg is 21%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.21 +0.21/0.38 - 0.32/0.62 = 0.04 +0.04 > 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 73%. For those who are not hwax and are jyka, the probability of lirg is 38%. For those who are hwax and are not jyka, the probability of lirg is 72%. For those who are hwax and are jyka, the probability of lirg is 35%. The overall probability of hwax is 98%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.73 +P(Y=1 | V1=0, X=1) = 0.38 +P(Y=1 | V1=1, X=0) = 0.72 +P(Y=1 | V1=1, X=1) = 0.35 +P(V1=1) = 0.98 +0.02 * (0.38 - 0.73) 0.98 * (0.35 - 0.72) = -0.37 +-0.37 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 73%. For those who are not hwax and are jyka, the probability of lirg is 38%. For those who are hwax and are not jyka, the probability of lirg is 72%. For those who are hwax and are jyka, the probability of lirg is 35%. The overall probability of hwax is 98%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.73 +P(Y=1 | V1=0, X=1) = 0.38 +P(Y=1 | V1=1, X=0) = 0.72 +P(Y=1 | V1=1, X=1) = 0.35 +P(V1=1) = 0.98 +0.02 * (0.38 - 0.73) 0.98 * (0.35 - 0.72) = -0.37 +-0.37 < 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 78%. For those who are not jyka and are gyzp, the probability of lirg is 66%. For those who are jyka and are not gyzp, the probability of lirg is 52%. For those who are jyka and are gyzp, the probability of lirg is 19%. For those who are not jyka, the probability of gyzp is 52%. For those who are jyka, the probability of gyzp is 52%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0) = 0.52 +P(V3=1 | X=1) = 0.52 +0.52 * (0.19 - 0.52) + 0.52 * (0.66 - 0.78) = -0.37 +-0.37 < 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 78%. For those who are not jyka and are gyzp, the probability of lirg is 66%. For those who are jyka and are not gyzp, the probability of lirg is 52%. For those who are jyka and are gyzp, the probability of lirg is 19%. For those who are not jyka, the probability of gyzp is 52%. For those who are jyka, the probability of gyzp is 52%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0) = 0.52 +P(V3=1 | X=1) = 0.52 +0.52 * (0.19 - 0.52) + 0.52 * (0.66 - 0.78) = -0.37 +-0.37 < 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 18%. For those who are not jyka, the probability of lirg is 72%. For those who are jyka, the probability of lirg is 35%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.35 +0.18*0.35 - 0.82*0.72 = 0.65 +0.65 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 18%. For those who are not jyka, the probability of lirg is 72%. For those who are jyka, the probability of lirg is 35%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.35 +0.18*0.35 - 0.82*0.72 = 0.65 +0.65 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 18%. The probability of not jyka and lirg is 59%. The probability of jyka and lirg is 6%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.59 +P(Y=1, X=1=1) = 0.06 +0.06/0.18 - 0.59/0.82 = -0.37 +-0.37 < 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 10%. For those who are not hwax and are jyka, the probability of lirg is 55%. For those who are hwax and are not jyka, the probability of lirg is 4%. For those who are hwax and are jyka, the probability of lirg is 33%. The overall probability of hwax is 16%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.10 +P(Y=1 | V1=0, X=1) = 0.55 +P(Y=1 | V1=1, X=0) = 0.04 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.16 +0.84 * (0.55 - 0.10) 0.16 * (0.33 - 0.04) = 0.42 +0.42 > 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 10%. For those who are not jyka and are gyzp, the probability of lirg is 1%. For those who are jyka and are not gyzp, the probability of lirg is 55%. For those who are jyka and are gyzp, the probability of lirg is 22%. For those who are not jyka, the probability of gyzp is 7%. For those who are jyka, the probability of gyzp is 64%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.01 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.22 +P(V3=1 | X=0) = 0.07 +P(V3=1 | X=1) = 0.64 +0.64 * (0.22 - 0.55) + 0.07 * (0.01 - 0.10) = 0.30 +0.30 > 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 10%. For those who are not jyka, the probability of lirg is 9%. For those who are jyka, the probability of lirg is 34%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.34 +0.10*0.34 - 0.90*0.09 = 0.13 +0.13 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 10%. The probability of not jyka and lirg is 8%. The probability of jyka and lirg is 3%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.03 +0.03/0.10 - 0.08/0.90 = 0.25 +0.25 > 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to gyzp.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to gyzp. Method 2: We look directly at how jyka correlates with lirg in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not hwax and are not jyka, the probability of lirg is 31%. For those who are not hwax and are jyka, the probability of lirg is 39%. For those who are hwax and are not jyka, the probability of lirg is 41%. For those who are hwax and are jyka, the probability of lirg is 35%. The overall probability of hwax is 30%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.31 +P(Y=1 | V1=0, X=1) = 0.39 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.35 +P(V1=1) = 0.30 +0.70 * (0.39 - 0.31) 0.30 * (0.35 - 0.41) = 0.04 +0.04 > 0",diamondcut,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 86%. For those who are not jyka and are gyzp, the probability of lirg is 0%. For those who are jyka and are not gyzp, the probability of lirg is 16%. For those who are jyka and are gyzp, the probability of lirg is 52%. For those who are not jyka, the probability of gyzp is 63%. For those who are jyka, the probability of gyzp is 58%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.00 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.58 +0.58 * (0.52 - 0.16) + 0.63 * (0.00 - 0.86) = 0.00 +0.00 = 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. For those who are not jyka and are not gyzp, the probability of lirg is 86%. For those who are not jyka and are gyzp, the probability of lirg is 0%. For those who are jyka and are not gyzp, the probability of lirg is 16%. For those who are jyka and are gyzp, the probability of lirg is 52%. For those who are not jyka, the probability of gyzp is 63%. For those who are jyka, the probability of gyzp is 58%.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.00 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.58 +0.58 * (0.52 - 0.16) + 0.63 * (0.00 - 0.86) = 0.00 +0.00 = 0",diamondcut,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. For those who are not jyka, the probability of lirg is 32%. For those who are jyka, the probability of lirg is 37%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.37 +0.38*0.37 - 0.62*0.32 = 0.35 +0.35 > 0",diamondcut,nonsense4,1,marginal,P(Y) +30816,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. The overall probability of jyka is 38%. The probability of not jyka and lirg is 20%. The probability of jyka and lirg is 14%.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.14 +0.14/0.38 - 0.20/0.62 = 0.05 +0.05 > 0",diamondcut,nonsense4,1,correlation,P(Y | X) +30821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 30%. For those who are jyka, the probability of lirg is 46%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.46 +0.46 - 0.30 = 0.16 +0.16 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 76%. For those who are not jyka, the probability of lirg is 30%. For those who are jyka, the probability of lirg is 46%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.46 +0.76*0.46 - 0.24*0.30 = 0.42 +0.42 > 0",fork,nonsense4,1,marginal,P(Y) +30827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 76%. The probability of not jyka and lirg is 7%. The probability of jyka and lirg is 35%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.35 +0.35/0.76 - 0.07/0.24 = 0.16 +0.16 > 0",fork,nonsense4,1,correlation,P(Y | X) +30828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 71%. For those who are jyka, the probability of lirg is 36%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.36 +0.36 - 0.71 = -0.35 +-0.35 < 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 61%. For those who are not jyka, the probability of lirg is 71%. For those who are jyka, the probability of lirg is 36%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.36 +0.61*0.36 - 0.39*0.71 = 0.50 +0.50 > 0",fork,nonsense4,1,marginal,P(Y) +30835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 61%. For those who are not jyka, the probability of lirg is 71%. For those who are jyka, the probability of lirg is 36%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.36 +0.61*0.36 - 0.39*0.71 = 0.50 +0.50 > 0",fork,nonsense4,1,marginal,P(Y) +30837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 61%. The probability of not jyka and lirg is 28%. The probability of jyka and lirg is 22%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.22 +0.22/0.61 - 0.28/0.39 = -0.35 +-0.35 < 0",fork,nonsense4,1,correlation,P(Y | X) +30838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 32%. For those who are jyka, the probability of lirg is 41%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.41 +0.41 - 0.32 = 0.09 +0.09 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 32%. For those who are jyka, the probability of lirg is 41%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.41 +0.41 - 0.32 = 0.09 +0.09 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30846,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 86%. The probability of not jyka and lirg is 4%. The probability of jyka and lirg is 35%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.35 +0.35/0.86 - 0.04/0.14 = 0.09 +0.09 > 0",fork,nonsense4,1,correlation,P(Y | X) +30849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30850,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 21%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.21 +0.21 - 0.37 = -0.16 +-0.16 < 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 21%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.21 +0.21 - 0.37 = -0.16 +-0.16 < 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 21%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.21 +0.21 - 0.37 = -0.16 +-0.16 < 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 40%. For those who are not jyka, the probability of lirg is 37%. For those who are jyka, the probability of lirg is 21%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.21 +0.40*0.21 - 0.60*0.37 = 0.30 +0.30 > 0",fork,nonsense4,1,marginal,P(Y) +30856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 40%. The probability of not jyka and lirg is 22%. The probability of jyka and lirg is 8%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.08 +0.08/0.40 - 0.22/0.60 = -0.16 +-0.16 < 0",fork,nonsense4,1,correlation,P(Y | X) +30858,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 53%. For those who are jyka, the probability of lirg is 55%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.55 +0.55 - 0.53 = 0.02 +0.02 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 53%. For those who are jyka, the probability of lirg is 55%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.55 +0.55 - 0.53 = 0.02 +0.02 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 13%. For those who are not jyka, the probability of lirg is 53%. For those who are jyka, the probability of lirg is 55%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.55 +0.13*0.55 - 0.87*0.53 = 0.53 +0.53 > 0",fork,nonsense4,1,marginal,P(Y) +30866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 13%. The probability of not jyka and lirg is 46%. The probability of jyka and lirg is 7%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.07 +0.07/0.13 - 0.46/0.87 = 0.02 +0.02 > 0",fork,nonsense4,1,correlation,P(Y | X) +30867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 13%. The probability of not jyka and lirg is 46%. The probability of jyka and lirg is 7%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.07 +0.07/0.13 - 0.46/0.87 = 0.02 +0.02 > 0",fork,nonsense4,1,correlation,P(Y | X) +30868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 67%. For those who are jyka, the probability of lirg is 61%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.61 +0.61 - 0.67 = -0.07 +-0.07 < 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 67%. For those who are jyka, the probability of lirg is 61%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.61 +0.61 - 0.67 = -0.07 +-0.07 < 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30875,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 54%. For those who are not jyka, the probability of lirg is 67%. For those who are jyka, the probability of lirg is 61%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.61 +0.54*0.61 - 0.46*0.67 = 0.64 +0.64 > 0",fork,nonsense4,1,marginal,P(Y) +30876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 54%. The probability of not jyka and lirg is 31%. The probability of jyka and lirg is 33%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.33 +0.33/0.54 - 0.31/0.46 = -0.07 +-0.07 < 0",fork,nonsense4,1,correlation,P(Y | X) +30877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 54%. The probability of not jyka and lirg is 31%. The probability of jyka and lirg is 33%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.33 +0.33/0.54 - 0.31/0.46 = -0.07 +-0.07 < 0",fork,nonsense4,1,correlation,P(Y | X) +30879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 81%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.81 +0.81 - 0.44 = 0.38 +0.38 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 81%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.81 +0.81 - 0.44 = 0.38 +0.38 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 81%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.81 +0.81 - 0.44 = 0.38 +0.38 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 44%. For those who are jyka, the probability of lirg is 81%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.81 +0.81 - 0.44 = 0.38 +0.38 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 76%. The probability of not jyka and lirg is 11%. The probability of jyka and lirg is 62%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.62 +0.62/0.76 - 0.11/0.24 = 0.38 +0.38 > 0",fork,nonsense4,1,correlation,P(Y | X) +30887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 76%. The probability of not jyka and lirg is 11%. The probability of jyka and lirg is 62%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.62 +0.62/0.76 - 0.11/0.24 = 0.38 +0.38 > 0",fork,nonsense4,1,correlation,P(Y | X) +30891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 49%. For those who are jyka, the probability of lirg is 61%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.61 +0.61 - 0.49 = 0.11 +0.11 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 49%. For those who are jyka, the probability of lirg is 61%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.61 +0.61 - 0.49 = 0.11 +0.11 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 49%. For those who are jyka, the probability of lirg is 61%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.61 +0.61 - 0.49 = 0.11 +0.11 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 63%. For those who are not jyka, the probability of lirg is 49%. For those who are jyka, the probability of lirg is 61%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.61 +0.63*0.61 - 0.37*0.49 = 0.56 +0.56 > 0",fork,nonsense4,1,marginal,P(Y) +30895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 63%. For those who are not jyka, the probability of lirg is 49%. For those who are jyka, the probability of lirg is 61%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.61 +0.63*0.61 - 0.37*0.49 = 0.56 +0.56 > 0",fork,nonsense4,1,marginal,P(Y) +30897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 63%. The probability of not jyka and lirg is 18%. The probability of jyka and lirg is 38%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.38 +0.38/0.63 - 0.18/0.37 = 0.11 +0.11 > 0",fork,nonsense4,1,correlation,P(Y | X) +30898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30899,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 40%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.40 +0.40 - 0.20 = 0.21 +0.21 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 40%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.40 +0.40 - 0.20 = 0.21 +0.21 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 40%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.40 +0.40 - 0.20 = 0.21 +0.21 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 40%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.40 +0.40 - 0.20 = 0.21 +0.21 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 71%. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 40%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.40 +0.71*0.40 - 0.29*0.20 = 0.34 +0.34 > 0",fork,nonsense4,1,marginal,P(Y) +30905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 71%. For those who are not jyka, the probability of lirg is 20%. For those who are jyka, the probability of lirg is 40%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.40 +0.71*0.40 - 0.29*0.20 = 0.34 +0.34 > 0",fork,nonsense4,1,marginal,P(Y) +30906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 71%. The probability of not jyka and lirg is 6%. The probability of jyka and lirg is 29%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.29 +0.29/0.71 - 0.06/0.29 = 0.21 +0.21 > 0",fork,nonsense4,1,correlation,P(Y | X) +30908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look at how jyka correlates with lirg case by case according to hwax. Method 2: We look directly at how jyka correlates with lirg in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 4%. For those who are jyka, the probability of lirg is 90%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.90 +0.90 - 0.04 = 0.86 +0.86 > 0",fork,nonsense4,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. For those who are not jyka, the probability of lirg is 4%. For those who are jyka, the probability of lirg is 90%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.90 +0.90 - 0.04 = 0.86 +0.86 > 0",fork,nonsense4,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 6%. For those who are not jyka, the probability of lirg is 4%. For those who are jyka, the probability of lirg is 90%.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.90 +0.06*0.90 - 0.94*0.04 = 0.09 +0.09 > 0",fork,nonsense4,1,marginal,P(Y) +30915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. The overall probability of jyka is 6%. For those who are not jyka, the probability of lirg is 4%. For those who are jyka, the probability of lirg is 90%.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.90 +0.06*0.90 - 0.94*0.04 = 0.09 +0.09 > 0",fork,nonsense4,1,marginal,P(Y) +30919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. Method 1: We look directly at how jyka correlates with lirg in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense4,2,backadj,[backdoor adjustment set for Y given X] +30921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 42%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.42 +0.42 - 0.58 = -0.16 +-0.16 < 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 42%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.42 +0.42 - 0.58 = -0.16 +-0.16 < 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 42%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.42 +0.42 - 0.58 = -0.16 +-0.16 < 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 73%. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 42%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.42 +0.73*0.42 - 0.27*0.58 = 0.47 +0.47 > 0",chain,nonsense5,1,marginal,P(Y) +30928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 73%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 31%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.31 +0.31/0.73 - 0.16/0.27 = -0.16 +-0.16 < 0",chain,nonsense5,1,correlation,P(Y | X) +30929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 73%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 31%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.31 +0.31/0.73 - 0.16/0.27 = -0.16 +-0.16 < 0",chain,nonsense5,1,correlation,P(Y | X) +30930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +30932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 77%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.77 +0.77 - 0.66 = 0.11 +0.11 > 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 77%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.77 +0.77 - 0.66 = 0.11 +0.11 > 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 77%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.77 +0.77 - 0.66 = 0.11 +0.11 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 77%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.77 +0.77 - 0.66 = 0.11 +0.11 > 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 77%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.77 +0.77 - 0.66 = 0.11 +0.11 > 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 59%. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 77%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.77 +0.59*0.77 - 0.41*0.66 = 0.73 +0.73 > 0",chain,nonsense5,1,marginal,P(Y) +30940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 59%. The probability of not jyka and kwox is 27%. The probability of jyka and kwox is 45%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.45 +0.45/0.59 - 0.27/0.41 = 0.11 +0.11 > 0",chain,nonsense5,1,correlation,P(Y | X) +30942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +30944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 13%. For those who are jyka, the probability of kwox is 20%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.20 +0.20 - 0.13 = 0.07 +0.07 > 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 13%. For those who are jyka, the probability of kwox is 20%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.20 +0.20 - 0.13 = 0.07 +0.07 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 13%. For those who are jyka, the probability of kwox is 20%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.20 +0.20 - 0.13 = 0.07 +0.07 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 68%. For those who are not jyka, the probability of kwox is 13%. For those who are jyka, the probability of kwox is 20%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.20 +0.68*0.20 - 0.32*0.13 = 0.18 +0.18 > 0",chain,nonsense5,1,marginal,P(Y) +30951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 68%. For those who are not jyka, the probability of kwox is 13%. For those who are jyka, the probability of kwox is 20%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.20 +0.68*0.20 - 0.32*0.13 = 0.18 +0.18 > 0",chain,nonsense5,1,marginal,P(Y) +30952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 68%. The probability of not jyka and kwox is 4%. The probability of jyka and kwox is 14%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.14 +0.14/0.68 - 0.04/0.32 = 0.07 +0.07 > 0",chain,nonsense5,1,correlation,P(Y | X) +30954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +30955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +30957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 2%. For those who are jyka, the probability of kwox is 2%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.02 - 0.02 = -0.00 +0.00 = 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 2%. For those who are jyka, the probability of kwox is 2%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.02 +0.02 - 0.02 = -0.00 +0.00 = 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 60%. The probability of not jyka and kwox is 1%. The probability of jyka and kwox is 1%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.01 +0.01/0.60 - 0.01/0.40 = -0.00 +0.00 = 0",chain,nonsense5,1,correlation,P(Y | X) +30965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 60%. The probability of not jyka and kwox is 1%. The probability of jyka and kwox is 1%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.01 +0.01/0.60 - 0.01/0.40 = -0.00 +0.00 = 0",chain,nonsense5,1,correlation,P(Y | X) +30967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +30968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.07 - 0.06 = 0.01 +0.01 > 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.07 - 0.06 = 0.01 +0.01 > 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.07 - 0.06 = 0.01 +0.01 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.07 - 0.06 = 0.01 +0.01 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.07 - 0.06 = 0.01 +0.01 > 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.07 - 0.06 = 0.01 +0.01 > 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 72%. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 7%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.07 +0.72*0.07 - 0.28*0.06 = 0.07 +0.07 > 0",chain,nonsense5,1,marginal,P(Y) +30976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 72%. The probability of not jyka and kwox is 2%. The probability of jyka and kwox is 5%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.05 +0.05/0.72 - 0.02/0.28 = 0.01 +0.01 > 0",chain,nonsense5,1,correlation,P(Y | X) +30977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 72%. The probability of not jyka and kwox is 2%. The probability of jyka and kwox is 5%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.05 +0.05/0.72 - 0.02/0.28 = 0.01 +0.01 > 0",chain,nonsense5,1,correlation,P(Y | X) +30979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +30980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 38%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.38 +0.38 - 0.45 = -0.07 +-0.07 < 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 38%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.38 +0.38 - 0.45 = -0.07 +-0.07 < 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 38%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.38 +0.38 - 0.45 = -0.07 +-0.07 < 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 38%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.38 +0.38 - 0.45 = -0.07 +-0.07 < 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 38%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.38 +0.38 - 0.45 = -0.07 +-0.07 < 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +30987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 81%. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 38%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.38 +0.81*0.38 - 0.19*0.45 = 0.39 +0.39 > 0",chain,nonsense5,1,marginal,P(Y) +30992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 34%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.34 +0.34 - 0.32 = 0.03 +0.03 > 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +30994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 34%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.34 +0.34 - 0.32 = 0.03 +0.03 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 34%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.34 +0.34 - 0.32 = 0.03 +0.03 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +30998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 58%. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 34%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.34 +0.58*0.34 - 0.42*0.32 = 0.33 +0.33 > 0",chain,nonsense5,1,marginal,P(Y) +30999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 58%. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 34%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.34 +0.58*0.34 - 0.42*0.32 = 0.33 +0.33 > 0",chain,nonsense5,1,marginal,P(Y) +31003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 16%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.16 +0.16 - 0.21 = -0.04 +-0.04 < 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 16%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.16 +0.16 - 0.21 = -0.04 +-0.04 < 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 16%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.16 +0.16 - 0.21 = -0.04 +-0.04 < 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 16%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.16 +0.16 - 0.21 = -0.04 +-0.04 < 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 47%. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 16%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.16 +0.47*0.16 - 0.53*0.21 = 0.19 +0.19 > 0",chain,nonsense5,1,marginal,P(Y) +31013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 47%. The probability of not jyka and kwox is 11%. The probability of jyka and kwox is 8%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.08 +0.08/0.47 - 0.11/0.53 = -0.04 +-0.04 < 0",chain,nonsense5,1,correlation,P(Y | X) +31014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 80%. For those who are jyka, the probability of kwox is 87%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.87 +0.87 - 0.80 = 0.08 +0.08 > 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 80%. For those who are jyka, the probability of kwox is 87%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.87 +0.87 - 0.80 = 0.08 +0.08 > 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. For those who are not jyka, the probability of kwox is 80%. For those who are jyka, the probability of kwox is 87%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.87 +0.65*0.87 - 0.35*0.80 = 0.85 +0.85 > 0",chain,nonsense5,1,marginal,P(Y) +31023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. For those who are not jyka, the probability of kwox is 80%. For those who are jyka, the probability of kwox is 87%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.87 +0.65*0.87 - 0.35*0.80 = 0.85 +0.85 > 0",chain,nonsense5,1,marginal,P(Y) +31024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. The probability of not jyka and kwox is 28%. The probability of jyka and kwox is 57%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.57 +0.57/0.65 - 0.28/0.35 = 0.08 +0.08 > 0",chain,nonsense5,1,correlation,P(Y | X) +31025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. The probability of not jyka and kwox is 28%. The probability of jyka and kwox is 57%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.57 +0.57/0.65 - 0.28/0.35 = 0.08 +0.08 > 0",chain,nonsense5,1,correlation,P(Y | X) +31026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 3%. For those who are jyka, the probability of kwox is 3%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.03 +0.03 - 0.03 = -0.00 +0.00 = 0",chain,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 3%. For those who are jyka, the probability of kwox is 3%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.03 +0.03 - 0.03 = -0.00 +0.00 = 0",chain,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 3%. For those who are jyka, the probability of kwox is 3%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.03 +0.03 - 0.03 = -0.00 +0.00 = 0",chain,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 10%. For those who are not jyka, the probability of kwox is 3%. For those who are jyka, the probability of kwox is 3%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.03 +P(Y=1 | X=1) = 0.03 +0.10*0.03 - 0.90*0.03 = 0.03 +0.03 > 0",chain,nonsense5,1,marginal,P(Y) +31037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. The overall probability of jyka is 10%. The probability of not jyka and kwox is 3%. The probability of jyka and kwox is 0%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.00 +0.00/0.10 - 0.03/0.90 = -0.00 +0.00 = 0",chain,nonsense5,1,correlation,P(Y | X) +31038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 33%. For those who are not jyka, the probability of kwox is 4%. For those who are jyka, the probability of kwox is 4%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.04 +P(Y=1 | X=1) = 0.04 +0.33*0.04 - 0.67*0.04 = 0.04 +0.04 > 0",collision,nonsense5,1,marginal,P(Y) +31046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is 0.12.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is 0.12.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 87%. For those who are not jyka, the probability of kwox is 57%. For those who are jyka, the probability of kwox is 57%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.57 +0.87*0.57 - 0.13*0.57 = 0.57 +0.57 > 0",collision,nonsense5,1,marginal,P(Y) +31054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is -0.20.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 87%. For those who are not jyka and are not yupt, the probability of kwox is 12%. For those who are not jyka and are yupt, the probability of kwox is 85%. For those who are jyka and are not yupt, the probability of kwox is 59%. For those who are jyka and are yupt, the probability of kwox is 57%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.87 +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.57 +0.57 - (0.87*0.57 + 0.13*0.85) = -0.04 +-0.04 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 87%. For those who are not jyka and are not yupt, the probability of kwox is 12%. For those who are not jyka and are yupt, the probability of kwox is 85%. For those who are jyka and are not yupt, the probability of kwox is 59%. For those who are jyka and are yupt, the probability of kwox is 57%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.87 +P(Y=1 | X=0, V3=0) = 0.12 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.57 +0.57 - (0.87*0.57 + 0.13*0.85) = -0.04 +-0.04 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 97%. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 45%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.97*0.45 - 0.03*0.45 = 0.45 +0.45 > 0",collision,nonsense5,1,marginal,P(Y) +31061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 97%. For those who are not jyka, the probability of kwox is 45%. For those who are jyka, the probability of kwox is 45%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.97*0.45 - 0.03*0.45 = 0.45 +0.45 > 0",collision,nonsense5,1,marginal,P(Y) +31065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 97%. For those who are not jyka and are not yupt, the probability of kwox is 39%. For those who are not jyka and are yupt, the probability of kwox is 53%. For those who are jyka and are not yupt, the probability of kwox is 44%. For those who are jyka and are yupt, the probability of kwox is 51%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.97 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.51 +0.51 - (0.97*0.51 + 0.03*0.53) = -0.00 +0.00 = 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31070,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 77%. For those who are not jyka, the probability of kwox is 67%. For those who are jyka, the probability of kwox is 67%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.67 +0.77*0.67 - 0.23*0.67 = 0.67 +0.67 > 0",collision,nonsense5,1,marginal,P(Y) +31074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is 0.30.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 77%. For those who are not jyka and are not yupt, the probability of kwox is 90%. For those who are not jyka and are yupt, the probability of kwox is 57%. For those who are jyka and are not yupt, the probability of kwox is 51%. For those who are jyka and are yupt, the probability of kwox is 85%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.77 +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.85 +0.85 - (0.77*0.85 + 0.23*0.57) = 0.09 +0.09 > 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 29%. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 25%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.29*0.25 - 0.71*0.25 = 0.25 +0.25 > 0",collision,nonsense5,1,marginal,P(Y) +31085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is -0.13.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is -0.13.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 29%. For those who are not jyka and are not yupt, the probability of kwox is 28%. For those who are not jyka and are yupt, the probability of kwox is 17%. For those who are jyka and are not yupt, the probability of kwox is 39%. For those who are jyka and are yupt, the probability of kwox is 8%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.29 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.08 +0.08 - (0.29*0.08 + 0.71*0.17) = -0.06 +-0.06 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 29%. For those who are not jyka and are not yupt, the probability of kwox is 28%. For those who are not jyka and are yupt, the probability of kwox is 17%. For those who are jyka and are not yupt, the probability of kwox is 39%. For those who are jyka and are yupt, the probability of kwox is 8%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.29 +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.08 +0.08 - (0.29*0.08 + 0.71*0.17) = -0.06 +-0.06 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 54%. For those who are not jyka, the probability of kwox is 5%. For those who are jyka, the probability of kwox is 5%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.05 +P(Y=1 | X=1) = 0.05 +0.54*0.05 - 0.46*0.05 = 0.05 +0.05 > 0",collision,nonsense5,1,marginal,P(Y) +31094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is 0.32.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 54%. For those who are not jyka and are not yupt, the probability of kwox is 6%. For those who are not jyka and are yupt, the probability of kwox is 4%. For those who are jyka and are not yupt, the probability of kwox is 0%. For those who are jyka and are yupt, the probability of kwox is 26%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.54 +P(Y=1 | X=0, V3=0) = 0.06 +P(Y=1 | X=0, V3=1) = 0.04 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.26 +0.26 - (0.54*0.26 + 0.46*0.04) = 0.13 +0.13 > 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 54%. For those who are not jyka and are not yupt, the probability of kwox is 6%. For those who are not jyka and are yupt, the probability of kwox is 4%. For those who are jyka and are not yupt, the probability of kwox is 0%. For those who are jyka and are yupt, the probability of kwox is 26%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.54 +P(Y=1 | X=0, V3=0) = 0.06 +P(Y=1 | X=0, V3=1) = 0.04 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.26 +0.26 - (0.54*0.26 + 0.46*0.04) = 0.13 +0.13 > 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 77%. For those who are not jyka, the probability of kwox is 88%. For those who are jyka, the probability of kwox is 88%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.77*0.88 - 0.23*0.88 = 0.88 +0.88 > 0",collision,nonsense5,1,marginal,P(Y) +31101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 77%. For those who are not jyka, the probability of kwox is 88%. For those who are jyka, the probability of kwox is 88%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.88 +0.77*0.88 - 0.23*0.88 = 0.88 +0.88 > 0",collision,nonsense5,1,marginal,P(Y) +31104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is -0.10.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is -0.10.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 77%. For those who are not jyka and are not yupt, the probability of kwox is 10%. For those who are not jyka and are yupt, the probability of kwox is 91%. For those who are jyka and are not yupt, the probability of kwox is 96%. For those who are jyka and are yupt, the probability of kwox is 83%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.77 +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.83 +0.83 - (0.77*0.83 + 0.23*0.91) = -0.02 +-0.02 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 21%. For those who are not jyka, the probability of kwox is 86%. For those who are jyka, the probability of kwox is 86%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.86 +P(Y=1 | X=1) = 0.86 +0.21*0.86 - 0.79*0.86 = 0.86 +0.86 > 0",collision,nonsense5,1,marginal,P(Y) +31115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is -0.14.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 21%. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 93%. For those who are jyka and are not yupt, the probability of kwox is 90%. For those who are jyka and are yupt, the probability of kwox is 82%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.21 +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.90 +P(Y=1 | X=1, V3=1) = 0.82 +0.82 - (0.21*0.82 + 0.79*0.93) = -0.10 +-0.10 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 21%. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 93%. For those who are jyka and are not yupt, the probability of kwox is 90%. For those who are jyka and are yupt, the probability of kwox is 82%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.21 +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.93 +P(Y=1 | X=1, V3=0) = 0.90 +P(Y=1 | X=1, V3=1) = 0.82 +0.82 - (0.21*0.82 + 0.79*0.93) = -0.10 +-0.10 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 59%. For those who are not jyka, the probability of kwox is 33%. For those who are jyka, the probability of kwox is 33%.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.33 +0.59*0.33 - 0.41*0.33 = 0.33 +0.33 > 0",collision,nonsense5,1,marginal,P(Y) +31121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 59%. For those who are not jyka, the probability of kwox is 33%. For those who are jyka, the probability of kwox is 33%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.33 +0.59*0.33 - 0.41*0.33 = 0.33 +0.33 > 0",collision,nonsense5,1,marginal,P(Y) +31124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. The overall probability of jyka is 59%. For those who are not jyka and are not yupt, the probability of kwox is 1%. For those who are not jyka and are yupt, the probability of kwox is 84%. For those who are jyka and are not yupt, the probability of kwox is 38%. For those who are jyka and are yupt, the probability of kwox is 27%.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.84 +P(Y=1 | X=1, V3=0) = 0.38 +P(Y=1 | X=1, V3=1) = 0.27 +0.27 - (0.59*0.27 + 0.41*0.84) = -0.20 +-0.20 < 0",collision,nonsense5,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +31134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is 0.40.",no,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Kwox has a direct effect on yupt. For those who are yupt, the correlation between jyka and kwox is 0.40.",yes,"Let Y = kwox; X = jyka; V3 = yupt. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense5,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +31141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 39%. For those who are not yu'detpt and are jyka, the probability of kwox is 75%. For those who are yupt and are not jyka, the probability of kwox is 61%. For those who are yupt and are jyka, the probability of kwox is 56%. The overall probability of yupt is 90%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.39 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.61 +P(Y=1 | V1=1, X=1) = 0.56 +P(V1=1) = 0.90 +0.10 * (0.75 - 0.39) + 0.90 * (0.56 - 0.61) = -0.00 +0.00 = 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 39%. For those who are not yu'detpt and are jyka, the probability of kwox is 75%. For those who are yupt and are not jyka, the probability of kwox is 61%. For those who are yupt and are jyka, the probability of kwox is 56%. The overall probability of yupt is 90%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.39 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.61 +P(Y=1 | V1=1, X=1) = 0.56 +P(V1=1) = 0.90 +0.10 * (0.75 - 0.39) + 0.90 * (0.56 - 0.61) = -0.04 +-0.04 < 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 85%. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 56%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.56 +0.85*0.56 - 0.15*0.47 = 0.58 +0.58 > 0",confounding,nonsense5,1,marginal,P(Y) +31146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 85%. The probability of not jyka and kwox is 7%. The probability of jyka and kwox is 48%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.85 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.48 +0.48/0.85 - 0.07/0.15 = 0.09 +0.09 > 0",confounding,nonsense5,1,correlation,P(Y | X) +31148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 29%. For those who are not yu'detpt and are jyka, the probability of kwox is 56%. For those who are yupt and are not jyka, the probability of kwox is 87%. For those who are yupt and are jyka, the probability of kwox is 81%. The overall probability of yupt is 49%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.87 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.49 +0.51 * (0.56 - 0.29) + 0.49 * (0.81 - 0.87) = 0.11 +0.11 > 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 29%. For those who are not yu'detpt and are jyka, the probability of kwox is 56%. For those who are yupt and are not jyka, the probability of kwox is 87%. For those who are yupt and are jyka, the probability of kwox is 81%. The overall probability of yupt is 49%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.87 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.49 +0.51 * (0.56 - 0.29) + 0.49 * (0.81 - 0.87) = 0.11 +0.11 > 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 29%. For those who are not yu'detpt and are jyka, the probability of kwox is 56%. For those who are yupt and are not jyka, the probability of kwox is 87%. For those who are yupt and are jyka, the probability of kwox is 81%. The overall probability of yupt is 49%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.87 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.49 +0.51 * (0.56 - 0.29) + 0.49 * (0.81 - 0.87) = 0.23 +0.23 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 29%. For those who are not yu'detpt and are jyka, the probability of kwox is 56%. For those who are yupt and are not jyka, the probability of kwox is 87%. For those who are yupt and are jyka, the probability of kwox is 81%. The overall probability of yupt is 49%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.87 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.49 +0.51 * (0.56 - 0.29) + 0.49 * (0.81 - 0.87) = 0.23 +0.23 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 18%. For those who are not jyka, the probability of kwox is 61%. For those who are jyka, the probability of kwox is 60%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.60 +0.18*0.60 - 0.82*0.61 = 0.59 +0.59 > 0",confounding,nonsense5,1,marginal,P(Y) +31158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 90%. For those who are not yu'detpt and are jyka, the probability of kwox is 16%. For those who are yupt and are not jyka, the probability of kwox is 50%. For those who are yupt and are jyka, the probability of kwox is 45%. The overall probability of yupt is 11%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.11 +0.89 * (0.16 - 0.90) + 0.11 * (0.45 - 0.50) = -0.66 +-0.66 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 90%. For those who are not yu'detpt and are jyka, the probability of kwox is 16%. For those who are yupt and are not jyka, the probability of kwox is 50%. For those who are yupt and are jyka, the probability of kwox is 45%. The overall probability of yupt is 11%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.11 +0.89 * (0.16 - 0.90) + 0.11 * (0.45 - 0.50) = -0.66 +-0.66 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 90%. For those who are not yu'detpt and are jyka, the probability of kwox is 16%. For those who are yupt and are not jyka, the probability of kwox is 50%. For those who are yupt and are jyka, the probability of kwox is 45%. The overall probability of yupt is 11%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.90 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.11 +0.89 * (0.16 - 0.90) + 0.11 * (0.45 - 0.50) = -0.70 +-0.70 < 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 40%. For those who are not jyka, the probability of kwox is 84%. For those who are jyka, the probability of kwox is 18%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.18 +0.40*0.18 - 0.60*0.84 = 0.59 +0.59 > 0",confounding,nonsense5,1,marginal,P(Y) +31165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 40%. For those who are not jyka, the probability of kwox is 84%. For those who are jyka, the probability of kwox is 18%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.18 +0.40*0.18 - 0.60*0.84 = 0.59 +0.59 > 0",confounding,nonsense5,1,marginal,P(Y) +31166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 40%. The probability of not jyka and kwox is 50%. The probability of jyka and kwox is 7%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.07 +0.07/0.40 - 0.50/0.60 = -0.66 +-0.66 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 40%. The probability of not jyka and kwox is 50%. The probability of jyka and kwox is 7%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.07 +0.07/0.40 - 0.50/0.60 = -0.66 +-0.66 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 44%. For those who are not yu'detpt and are jyka, the probability of kwox is 30%. For those who are yupt and are not jyka, the probability of kwox is 44%. For those who are yupt and are jyka, the probability of kwox is 73%. The overall probability of yupt is 60%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 0.30 +P(Y=1 | V1=1, X=0) = 0.44 +P(Y=1 | V1=1, X=1) = 0.73 +P(V1=1) = 0.60 +0.40 * (0.30 - 0.44) + 0.60 * (0.73 - 0.44) = 0.03 +0.03 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 34%. For those who are not jyka, the probability of kwox is 44%. For those who are jyka, the probability of kwox is 47%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.47 +0.34*0.47 - 0.66*0.44 = 0.48 +0.48 > 0",confounding,nonsense5,1,marginal,P(Y) +31176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 34%. The probability of not jyka and kwox is 29%. The probability of jyka and kwox is 16%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.16 +0.16/0.34 - 0.29/0.66 = 0.03 +0.03 > 0",confounding,nonsense5,1,correlation,P(Y | X) +31179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 84%. For those who are not yu'detpt and are jyka, the probability of kwox is 82%. For those who are yupt and are not jyka, the probability of kwox is 66%. For those who are yupt and are jyka, the probability of kwox is 42%. The overall probability of yupt is 5%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.84 +P(Y=1 | V1=0, X=1) = 0.82 +P(Y=1 | V1=1, X=0) = 0.66 +P(Y=1 | V1=1, X=1) = 0.42 +P(V1=1) = 0.05 +0.95 * (0.82 - 0.84) + 0.05 * (0.42 - 0.66) = -0.02 +-0.02 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 84%. For those who are not yu'detpt and are jyka, the probability of kwox is 82%. For those who are yupt and are not jyka, the probability of kwox is 66%. For those who are yupt and are jyka, the probability of kwox is 42%. The overall probability of yupt is 5%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.84 +P(Y=1 | V1=0, X=1) = 0.82 +P(Y=1 | V1=1, X=0) = 0.66 +P(Y=1 | V1=1, X=1) = 0.42 +P(V1=1) = 0.05 +0.95 * (0.82 - 0.84) + 0.05 * (0.42 - 0.66) = -0.14 +-0.14 < 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 84%. For those who are not yu'detpt and are jyka, the probability of kwox is 82%. For those who are yupt and are not jyka, the probability of kwox is 66%. For those who are yupt and are jyka, the probability of kwox is 42%. The overall probability of yupt is 5%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.84 +P(Y=1 | V1=0, X=1) = 0.82 +P(Y=1 | V1=1, X=0) = 0.66 +P(Y=1 | V1=1, X=1) = 0.42 +P(V1=1) = 0.05 +0.95 * (0.82 - 0.84) + 0.05 * (0.42 - 0.66) = -0.14 +-0.14 < 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 7%. For those who are not jyka, the probability of kwox is 83%. For those who are jyka, the probability of kwox is 60%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.07 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.60 +0.07*0.60 - 0.93*0.83 = 0.83 +0.83 > 0",confounding,nonsense5,1,marginal,P(Y) +31186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 7%. The probability of not jyka and kwox is 78%. The probability of jyka and kwox is 4%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.07 +P(Y=1, X=0=1) = 0.78 +P(Y=1, X=1=1) = 0.04 +0.04/0.07 - 0.78/0.93 = -0.23 +-0.23 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 7%. The probability of not jyka and kwox is 78%. The probability of jyka and kwox is 4%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.07 +P(Y=1, X=0=1) = 0.78 +P(Y=1, X=1=1) = 0.04 +0.04/0.07 - 0.78/0.93 = -0.23 +-0.23 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 40%. For those who are not yu'detpt and are jyka, the probability of kwox is 61%. For those who are yupt and are not jyka, the probability of kwox is 58%. For those who are yupt and are jyka, the probability of kwox is 62%. The overall probability of yupt is 59%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.40 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.59 +0.41 * (0.61 - 0.40) + 0.59 * (0.62 - 0.58) = 0.11 +0.11 > 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 40%. For those who are not yu'detpt and are jyka, the probability of kwox is 61%. For those who are yupt and are not jyka, the probability of kwox is 58%. For those who are yupt and are jyka, the probability of kwox is 62%. The overall probability of yupt is 59%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.40 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.59 +0.41 * (0.61 - 0.40) + 0.59 * (0.62 - 0.58) = 0.07 +0.07 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 40%. For those who are not yu'detpt and are jyka, the probability of kwox is 61%. For those who are yupt and are not jyka, the probability of kwox is 58%. For those who are yupt and are jyka, the probability of kwox is 62%. The overall probability of yupt is 59%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.40 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.59 +0.41 * (0.61 - 0.40) + 0.59 * (0.62 - 0.58) = 0.07 +0.07 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 54%. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 62%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.62 +0.54*0.62 - 0.46*0.46 = 0.57 +0.57 > 0",confounding,nonsense5,1,marginal,P(Y) +31197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 54%. The probability of not jyka and kwox is 21%. The probability of jyka and kwox is 34%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.34 +0.34/0.54 - 0.21/0.46 = 0.16 +0.16 > 0",confounding,nonsense5,1,correlation,P(Y | X) +31201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 70%. For those who are not yu'detpt and are jyka, the probability of kwox is 49%. For those who are yupt and are not jyka, the probability of kwox is 26%. For those who are yupt and are jyka, the probability of kwox is 73%. The overall probability of yupt is 87%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.70 +P(Y=1 | V1=0, X=1) = 0.49 +P(Y=1 | V1=1, X=0) = 0.26 +P(Y=1 | V1=1, X=1) = 0.73 +P(V1=1) = 0.87 +0.13 * (0.49 - 0.70) + 0.87 * (0.73 - 0.26) = 0.38 +0.38 > 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 70%. For those who are not yu'detpt and are jyka, the probability of kwox is 49%. For those who are yupt and are not jyka, the probability of kwox is 26%. For those who are yupt and are jyka, the probability of kwox is 73%. The overall probability of yupt is 87%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.70 +P(Y=1 | V1=0, X=1) = 0.49 +P(Y=1 | V1=1, X=0) = 0.26 +P(Y=1 | V1=1, X=1) = 0.73 +P(V1=1) = 0.87 +0.13 * (0.49 - 0.70) + 0.87 * (0.73 - 0.26) = 0.42 +0.42 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 88%. For those who are not jyka, the probability of kwox is 49%. For those who are jyka, the probability of kwox is 71%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.71 +0.88*0.71 - 0.12*0.49 = 0.66 +0.66 > 0",confounding,nonsense5,1,marginal,P(Y) +31208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 59%. For those who are not yu'detpt and are jyka, the probability of kwox is 13%. For those who are yupt and are not jyka, the probability of kwox is 6%. For those who are yupt and are jyka, the probability of kwox is 88%. The overall probability of yupt is 14%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.13 +P(Y=1 | V1=1, X=0) = 0.06 +P(Y=1 | V1=1, X=1) = 0.88 +P(V1=1) = 0.14 +0.86 * (0.13 - 0.59) + 0.14 * (0.88 - 0.06) = -0.29 +-0.29 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 59%. For those who are not yu'detpt and are jyka, the probability of kwox is 13%. For those who are yupt and are not jyka, the probability of kwox is 6%. For those who are yupt and are jyka, the probability of kwox is 88%. The overall probability of yupt is 14%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.13 +P(Y=1 | V1=1, X=0) = 0.06 +P(Y=1 | V1=1, X=1) = 0.88 +P(V1=1) = 0.14 +0.86 * (0.13 - 0.59) + 0.14 * (0.88 - 0.06) = -0.18 +-0.18 < 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 55%. For those who are not jyka, the probability of kwox is 57%. For those who are jyka, the probability of kwox is 29%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.29 +0.55*0.29 - 0.45*0.57 = 0.36 +0.36 > 0",confounding,nonsense5,1,marginal,P(Y) +31216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 55%. The probability of not jyka and kwox is 25%. The probability of jyka and kwox is 16%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.16 +0.16/0.55 - 0.25/0.45 = -0.28 +-0.28 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 55%. The probability of not jyka and kwox is 25%. The probability of jyka and kwox is 16%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.16 +0.16/0.55 - 0.25/0.45 = -0.28 +-0.28 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 69%. For those who are not yu'detpt and are jyka, the probability of kwox is 4%. For those who are yupt and are not jyka, the probability of kwox is 53%. For those who are yupt and are jyka, the probability of kwox is 13%. The overall probability of yupt is 86%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.69 +P(Y=1 | V1=0, X=1) = 0.04 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.86 +0.14 * (0.04 - 0.69) + 0.86 * (0.13 - 0.53) = -0.43 +-0.43 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 69%. For those who are not yu'detpt and are jyka, the probability of kwox is 4%. For those who are yupt and are not jyka, the probability of kwox is 53%. For those who are yupt and are jyka, the probability of kwox is 13%. The overall probability of yupt is 86%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.69 +P(Y=1 | V1=0, X=1) = 0.04 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.86 +0.14 * (0.04 - 0.69) + 0.86 * (0.13 - 0.53) = -0.43 +-0.43 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 32%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 13%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.13 +0.32*0.13 - 0.68*0.56 = 0.41 +0.41 > 0",confounding,nonsense5,1,marginal,P(Y) +31226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 32%. The probability of not jyka and kwox is 38%. The probability of jyka and kwox is 4%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.04 +0.04/0.32 - 0.38/0.68 = -0.43 +-0.43 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 9%. For those who are not yu'detpt and are jyka, the probability of kwox is 55%. For those who are yupt and are not jyka, the probability of kwox is 80%. For those who are yupt and are jyka, the probability of kwox is 1%. The overall probability of yupt is 46%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.09 +P(Y=1 | V1=0, X=1) = 0.55 +P(Y=1 | V1=1, X=0) = 0.80 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.46 +0.54 * (0.55 - 0.09) + 0.46 * (0.01 - 0.80) = -0.12 +-0.12 < 0",confounding,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 9%. For those who are not yu'detpt and are jyka, the probability of kwox is 55%. For those who are yupt and are not jyka, the probability of kwox is 80%. For those who are yupt and are jyka, the probability of kwox is 1%. The overall probability of yupt is 46%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.09 +P(Y=1 | V1=0, X=1) = 0.55 +P(Y=1 | V1=1, X=0) = 0.80 +P(Y=1 | V1=1, X=1) = 0.01 +P(V1=1) = 0.46 +0.54 * (0.55 - 0.09) + 0.46 * (0.01 - 0.80) = 0.34 +0.34 > 0",confounding,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 52%. For those who are not jyka, the probability of kwox is 69%. For those who are jyka, the probability of kwox is 50%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.50 +0.52*0.50 - 0.48*0.69 = 0.36 +0.36 > 0",confounding,nonsense5,1,marginal,P(Y) +31235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 52%. For those who are not jyka, the probability of kwox is 69%. For those who are jyka, the probability of kwox is 50%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.50 +0.52*0.50 - 0.48*0.69 = 0.36 +0.36 > 0",confounding,nonsense5,1,marginal,P(Y) +31236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 52%. The probability of not jyka and kwox is 34%. The probability of jyka and kwox is 26%.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.26 +0.26/0.52 - 0.34/0.48 = -0.20 +-0.20 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. The overall probability of jyka is 52%. The probability of not jyka and kwox is 34%. The probability of jyka and kwox is 26%.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.26 +0.26/0.52 - 0.34/0.48 = -0.20 +-0.20 < 0",confounding,nonsense5,1,correlation,P(Y | X) +31238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 31%. For those who are jyka, the probability of kwox is 65%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.65 +0.65 - 0.31 = 0.34 +0.34 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 31%. For those who are jyka, the probability of kwox is 65%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.65 +0.65 - 0.31 = 0.34 +0.34 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 31%. For those who are jyka, the probability of kwox is 65%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.65 +0.65 - 0.31 = 0.34 +0.34 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 0%. For those who are not jyka and are yupt, the probability of kwox is 53%. For those who are jyka and are not yupt, the probability of kwox is 52%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka, the probability of yupt is 58%. For those who are jyka, the probability of yupt is 71%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.53 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.70 +P(V2=1 | X=0) = 0.58 +P(V2=1 | X=1) = 0.71 +0.71 * (0.53 - 0.00)+ 0.58 * (0.70 - 0.52)= 0.07 +0.07 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 0%. For those who are not jyka and are yupt, the probability of kwox is 53%. For those who are jyka and are not yupt, the probability of kwox is 52%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka, the probability of yupt is 58%. For those who are jyka, the probability of yupt is 71%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.53 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.70 +P(V2=1 | X=0) = 0.58 +P(V2=1 | X=1) = 0.71 +0.58 * (0.70 - 0.52) + 0.71 * (0.53 - 0.00) = 0.31 +0.31 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 0%. For those who are not jyka and are yupt, the probability of kwox is 53%. For those who are jyka and are not yupt, the probability of kwox is 52%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka, the probability of yupt is 58%. For those who are jyka, the probability of yupt is 71%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.00 +P(Y=1 | X=0, V2=1) = 0.53 +P(Y=1 | X=1, V2=0) = 0.52 +P(Y=1 | X=1, V2=1) = 0.70 +P(V2=1 | X=0) = 0.58 +P(V2=1 | X=1) = 0.71 +0.58 * (0.70 - 0.52) + 0.71 * (0.53 - 0.00) = 0.31 +0.31 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 57%. For those who are not jyka, the probability of kwox is 31%. For those who are jyka, the probability of kwox is 65%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.65 +0.57*0.65 - 0.43*0.31 = 0.51 +0.51 > 0",mediation,nonsense5,1,marginal,P(Y) +31249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 57%. For those who are not jyka, the probability of kwox is 31%. For those who are jyka, the probability of kwox is 65%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.65 +0.57*0.65 - 0.43*0.31 = 0.51 +0.51 > 0",mediation,nonsense5,1,marginal,P(Y) +31250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 57%. The probability of not jyka and kwox is 13%. The probability of jyka and kwox is 37%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.37 +0.37/0.57 - 0.13/0.43 = 0.34 +0.34 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 51%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.51 +0.51 - 0.18 = 0.34 +0.34 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 51%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.51 +0.51 - 0.18 = 0.34 +0.34 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 51%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.51 +0.51 - 0.18 = 0.34 +0.34 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 11%. For those who are jyka and are not yupt, the probability of kwox is 68%. For those who are jyka and are yupt, the probability of kwox is 10%. For those who are not jyka, the probability of yupt is 83%. For those who are jyka, the probability of yupt is 29%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.51 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.68 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.29 +0.29 * (0.11 - 0.51)+ 0.83 * (0.10 - 0.68)= 0.22 +0.22 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 11%. For those who are jyka and are not yupt, the probability of kwox is 68%. For those who are jyka and are yupt, the probability of kwox is 10%. For those who are not jyka, the probability of yupt is 83%. For those who are jyka, the probability of yupt is 29%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.51 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.68 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.29 +0.29 * (0.11 - 0.51)+ 0.83 * (0.10 - 0.68)= 0.22 +0.22 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 11%. For those who are jyka and are not yupt, the probability of kwox is 68%. For those who are jyka and are yupt, the probability of kwox is 10%. For those who are not jyka, the probability of yupt is 83%. For those who are jyka, the probability of yupt is 29%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.51 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.68 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.83 +P(V2=1 | X=1) = 0.29 +0.83 * (0.10 - 0.68) + 0.29 * (0.11 - 0.51) = 0.02 +0.02 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 46%. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 51%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.51 +0.46*0.51 - 0.54*0.18 = 0.31 +0.31 > 0",mediation,nonsense5,1,marginal,P(Y) +31263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 46%. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 51%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.51 +0.46*0.51 - 0.54*0.18 = 0.31 +0.31 > 0",mediation,nonsense5,1,marginal,P(Y) +31264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 46%. The probability of not jyka and kwox is 10%. The probability of jyka and kwox is 24%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.24 +0.24/0.46 - 0.10/0.54 = 0.34 +0.34 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 46%. The probability of not jyka and kwox is 10%. The probability of jyka and kwox is 24%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.24 +0.24/0.46 - 0.10/0.54 = 0.34 +0.34 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 24%. For those who are jyka, the probability of kwox is 57%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.57 +0.57 - 0.24 = 0.32 +0.32 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 24%. For those who are jyka, the probability of kwox is 57%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.57 +0.57 - 0.24 = 0.32 +0.32 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 6%. For those who are not jyka and are yupt, the probability of kwox is 25%. For those who are jyka and are not yupt, the probability of kwox is 76%. For those who are jyka and are yupt, the probability of kwox is 15%. For those who are not jyka, the probability of yupt is 98%. For those who are jyka, the probability of yupt is 32%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.06 +P(Y=1 | X=0, V2=1) = 0.25 +P(Y=1 | X=1, V2=0) = 0.76 +P(Y=1 | X=1, V2=1) = 0.15 +P(V2=1 | X=0) = 0.98 +P(V2=1 | X=1) = 0.32 +0.32 * (0.25 - 0.06)+ 0.98 * (0.15 - 0.76)= -0.12 +-0.12 < 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 9%. For those who are not jyka, the probability of kwox is 24%. For those who are jyka, the probability of kwox is 57%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.57 +0.09*0.57 - 0.91*0.24 = 0.23 +0.23 > 0",mediation,nonsense5,1,marginal,P(Y) +31279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 9%. The probability of not jyka and kwox is 22%. The probability of jyka and kwox is 5%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.05 +0.05/0.09 - 0.22/0.91 = 0.32 +0.32 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 91%. For those who are jyka, the probability of kwox is 41%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.41 +0.41 - 0.91 = -0.50 +-0.50 < 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 91%. For those who are jyka, the probability of kwox is 41%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.41 +0.41 - 0.91 = -0.50 +-0.50 < 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 91%. For those who are jyka, the probability of kwox is 41%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.41 +0.41 - 0.91 = -0.50 +-0.50 < 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 56%. For those who are not jyka and are yupt, the probability of kwox is 96%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 72%. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 51%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.09 +P(Y=1 | X=1, V2=1) = 0.72 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.51 +0.51 * (0.96 - 0.56)+ 0.87 * (0.72 - 0.09)= -0.15 +-0.15 < 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 56%. For those who are not jyka and are yupt, the probability of kwox is 96%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 72%. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 51%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.09 +P(Y=1 | X=1, V2=1) = 0.72 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.51 +0.87 * (0.72 - 0.09) + 0.51 * (0.96 - 0.56) = -0.27 +-0.27 < 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 56%. For those who are not jyka and are yupt, the probability of kwox is 96%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 72%. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 51%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.96 +P(Y=1 | X=1, V2=0) = 0.09 +P(Y=1 | X=1, V2=1) = 0.72 +P(V2=1 | X=0) = 0.87 +P(V2=1 | X=1) = 0.51 +0.87 * (0.72 - 0.09) + 0.51 * (0.96 - 0.56) = -0.27 +-0.27 < 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 30%. The probability of not jyka and kwox is 64%. The probability of jyka and kwox is 12%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.64 +P(Y=1, X=1=1) = 0.12 +0.12/0.30 - 0.64/0.70 = -0.50 +-0.50 < 0",mediation,nonsense5,1,correlation,P(Y | X) +31294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 23%. For those who are jyka, the probability of kwox is 45%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.45 +0.45 - 0.23 = 0.22 +0.22 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 21%. For those who are not jyka and are yupt, the probability of kwox is 42%. For those who are jyka and are not yupt, the probability of kwox is 36%. For those who are jyka and are yupt, the probability of kwox is 78%. For those who are not jyka, the probability of yupt is 11%. For those who are jyka, the probability of yupt is 21%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.78 +P(V2=1 | X=0) = 0.11 +P(V2=1 | X=1) = 0.21 +0.21 * (0.42 - 0.21)+ 0.11 * (0.78 - 0.36)= 0.02 +0.02 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 21%. For those who are not jyka and are yupt, the probability of kwox is 42%. For those who are jyka and are not yupt, the probability of kwox is 36%. For those who are jyka and are yupt, the probability of kwox is 78%. For those who are not jyka, the probability of yupt is 11%. For those who are jyka, the probability of yupt is 21%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.78 +P(V2=1 | X=0) = 0.11 +P(V2=1 | X=1) = 0.21 +0.21 * (0.42 - 0.21)+ 0.11 * (0.78 - 0.36)= 0.02 +0.02 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 21%. For those who are not jyka and are yupt, the probability of kwox is 42%. For those who are jyka and are not yupt, the probability of kwox is 36%. For those who are jyka and are yupt, the probability of kwox is 78%. For those who are not jyka, the probability of yupt is 11%. For those who are jyka, the probability of yupt is 21%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.42 +P(Y=1 | X=1, V2=0) = 0.36 +P(Y=1 | X=1, V2=1) = 0.78 +P(V2=1 | X=0) = 0.11 +P(V2=1 | X=1) = 0.21 +0.11 * (0.78 - 0.36) + 0.21 * (0.42 - 0.21) = 0.18 +0.18 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 41%. The probability of not jyka and kwox is 13%. The probability of jyka and kwox is 19%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.19 +0.19/0.41 - 0.13/0.59 = 0.22 +0.22 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 41%. The probability of not jyka and kwox is 13%. The probability of jyka and kwox is 19%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.19 +0.19/0.41 - 0.13/0.59 = 0.22 +0.22 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 67%. For those who are jyka, the probability of kwox is 23%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.23 +0.23 - 0.67 = -0.43 +-0.43 < 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 67%. For those who are jyka, the probability of kwox is 23%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.23 +0.23 - 0.67 = -0.43 +-0.43 < 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31314,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 96%. For those who are not jyka and are yupt, the probability of kwox is 47%. For those who are jyka and are not yupt, the probability of kwox is 69%. For those who are jyka and are yupt, the probability of kwox is 4%. For those who are not jyka, the probability of yupt is 60%. For those who are jyka, the probability of yupt is 70%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.96 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.69 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.60 +P(V2=1 | X=1) = 0.70 +0.70 * (0.47 - 0.96)+ 0.60 * (0.04 - 0.69)= -0.05 +-0.05 < 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 96%. For those who are not jyka and are yupt, the probability of kwox is 47%. For those who are jyka and are not yupt, the probability of kwox is 69%. For those who are jyka and are yupt, the probability of kwox is 4%. For those who are not jyka, the probability of yupt is 60%. For those who are jyka, the probability of yupt is 70%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.96 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.69 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.60 +P(V2=1 | X=1) = 0.70 +0.60 * (0.04 - 0.69) + 0.70 * (0.47 - 0.96) = -0.36 +-0.36 < 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 96%. For those who are not jyka and are yupt, the probability of kwox is 47%. For those who are jyka and are not yupt, the probability of kwox is 69%. For those who are jyka and are yupt, the probability of kwox is 4%. For those who are not jyka, the probability of yupt is 60%. For those who are jyka, the probability of yupt is 70%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.96 +P(Y=1 | X=0, V2=1) = 0.47 +P(Y=1 | X=1, V2=0) = 0.69 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.60 +P(V2=1 | X=1) = 0.70 +0.60 * (0.04 - 0.69) + 0.70 * (0.47 - 0.96) = -0.36 +-0.36 < 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. For those who are not jyka, the probability of kwox is 67%. For those who are jyka, the probability of kwox is 23%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.23 +0.65*0.23 - 0.35*0.67 = 0.39 +0.39 > 0",mediation,nonsense5,1,marginal,P(Y) +31319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. For those who are not jyka, the probability of kwox is 67%. For those who are jyka, the probability of kwox is 23%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.23 +0.65*0.23 - 0.35*0.67 = 0.39 +0.39 > 0",mediation,nonsense5,1,marginal,P(Y) +31320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. The probability of not jyka and kwox is 24%. The probability of jyka and kwox is 15%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.15 +0.15/0.65 - 0.24/0.35 = -0.43 +-0.43 < 0",mediation,nonsense5,1,correlation,P(Y | X) +31321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 65%. The probability of not jyka and kwox is 24%. The probability of jyka and kwox is 15%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.15 +0.15/0.65 - 0.24/0.35 = -0.43 +-0.43 < 0",mediation,nonsense5,1,correlation,P(Y | X) +31323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 20%. For those who are not jyka and are yupt, the probability of kwox is 24%. For those who are jyka and are not yupt, the probability of kwox is 29%. For those who are jyka and are yupt, the probability of kwox is 60%. For those who are not jyka, the probability of yupt is 0%. For those who are jyka, the probability of yupt is 62%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.20 +P(Y=1 | X=0, V2=1) = 0.24 +P(Y=1 | X=1, V2=0) = 0.29 +P(Y=1 | X=1, V2=1) = 0.60 +P(V2=1 | X=0) = 0.00 +P(V2=1 | X=1) = 0.62 +0.62 * (0.24 - 0.20)+ 0.00 * (0.60 - 0.29)= 0.02 +0.02 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 20%. For those who are not jyka and are yupt, the probability of kwox is 24%. For those who are jyka and are not yupt, the probability of kwox is 29%. For those who are jyka and are yupt, the probability of kwox is 60%. For those who are not jyka, the probability of yupt is 0%. For those who are jyka, the probability of yupt is 62%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.20 +P(Y=1 | X=0, V2=1) = 0.24 +P(Y=1 | X=1, V2=0) = 0.29 +P(Y=1 | X=1, V2=1) = 0.60 +P(V2=1 | X=0) = 0.00 +P(V2=1 | X=1) = 0.62 +0.00 * (0.60 - 0.29) + 0.62 * (0.24 - 0.20) = 0.09 +0.09 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 20%. For those who are not jyka and are yupt, the probability of kwox is 24%. For those who are jyka and are not yupt, the probability of kwox is 29%. For those who are jyka and are yupt, the probability of kwox is 60%. For those who are not jyka, the probability of yupt is 0%. For those who are jyka, the probability of yupt is 62%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.20 +P(Y=1 | X=0, V2=1) = 0.24 +P(Y=1 | X=1, V2=0) = 0.29 +P(Y=1 | X=1, V2=1) = 0.60 +P(V2=1 | X=0) = 0.00 +P(V2=1 | X=1) = 0.62 +0.00 * (0.60 - 0.29) + 0.62 * (0.24 - 0.20) = 0.09 +0.09 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 23%. For those who are not jyka, the probability of kwox is 20%. For those who are jyka, the probability of kwox is 48%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.48 +0.23*0.48 - 0.77*0.20 = 0.24 +0.24 > 0",mediation,nonsense5,1,marginal,P(Y) +31334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 23%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 11%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.23 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.11 +0.11/0.23 - 0.16/0.77 = 0.28 +0.28 > 0",mediation,nonsense5,1,correlation,P(Y | X) +31336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 10%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.56 +0.56 - 0.10 = 0.46 +0.46 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 10%. For those who are jyka, the probability of kwox is 56%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.56 +0.56 - 0.10 = 0.46 +0.46 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 10%. For those who are jyka, the probability of kwox is 56%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.56 +0.56 - 0.10 = 0.46 +0.46 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 10%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.56 +0.56 - 0.10 = 0.46 +0.46 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 12%. For those who are not jyka and are yupt, the probability of kwox is 6%. For those who are jyka and are not yupt, the probability of kwox is 54%. For those who are jyka and are yupt, the probability of kwox is 61%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 31%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.12 +P(Y=1 | X=0, V2=1) = 0.06 +P(Y=1 | X=1, V2=0) = 0.54 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.31 +0.31 * (0.06 - 0.12)+ 0.30 * (0.61 - 0.54)= -0.00 +0.00 = 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 93%. For those who are not jyka, the probability of kwox is 10%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.56 +0.93*0.56 - 0.07*0.10 = 0.53 +0.53 > 0",mediation,nonsense5,1,marginal,P(Y) +31353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 68%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.68 +0.68 - 0.46 = 0.22 +0.22 > 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 68%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.68 +0.68 - 0.46 = 0.22 +0.22 > 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 32%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 89%. For those who are jyka and are yupt, the probability of kwox is 28%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 35%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.89 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.35 +0.35 * (0.78 - 0.32)+ 0.30 * (0.28 - 0.89)= 0.02 +0.02 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 32%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 89%. For those who are jyka and are yupt, the probability of kwox is 28%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 35%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.89 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.35 +0.35 * (0.78 - 0.32)+ 0.30 * (0.28 - 0.89)= 0.02 +0.02 > 0",mediation,nonsense5,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +31358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 32%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 89%. For those who are jyka and are yupt, the probability of kwox is 28%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 35%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.89 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.35 +0.30 * (0.28 - 0.89) + 0.35 * (0.78 - 0.32) = 0.25 +0.25 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka and are not yupt, the probability of kwox is 32%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 89%. For those who are jyka and are yupt, the probability of kwox is 28%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 35%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.32 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.89 +P(Y=1 | X=1, V2=1) = 0.28 +P(V2=1 | X=0) = 0.30 +P(V2=1 | X=1) = 0.35 +0.30 * (0.28 - 0.89) + 0.35 * (0.78 - 0.32) = 0.25 +0.25 > 0",mediation,nonsense5,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +31360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 82%. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 68%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.68 +0.82*0.68 - 0.18*0.46 = 0.64 +0.64 > 0",mediation,nonsense5,1,marginal,P(Y) +31361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 82%. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 68%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.68 +0.82*0.68 - 0.18*0.46 = 0.64 +0.64 > 0",mediation,nonsense5,1,marginal,P(Y) +31365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 42%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.42 +0.42 - 0.47 = -0.05 +-0.05 < 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 42%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.42 +0.42 - 0.47 = -0.05 +-0.05 < 0",mediation,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 42%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.42 +0.42 - 0.47 = -0.05 +-0.05 < 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 42%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.42 +0.42 - 0.47 = -0.05 +-0.05 < 0",mediation,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 43%. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 42%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.42 +0.43*0.42 - 0.57*0.47 = 0.52 +0.52 > 0",mediation,nonsense5,1,marginal,P(Y) +31376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 43%. The probability of not jyka and kwox is 27%. The probability of jyka and kwox is 18%.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.18 +0.18/0.43 - 0.27/0.57 = -0.05 +-0.05 < 0",mediation,nonsense5,1,correlation,P(Y | X) +31377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 43%. The probability of not jyka and kwox is 27%. The probability of jyka and kwox is 18%.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.18 +0.18/0.43 - 0.27/0.57 = -0.05 +-0.05 < 0",mediation,nonsense5,1,correlation,P(Y | X) +31379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 47%. For those who are jyka, the probability of yupt is 18%. For those who are not jyka and are not yupt, the probability of kwox is 24%. For those who are not jyka and are yupt, the probability of kwox is 43%. For those who are jyka and are not yupt, the probability of kwox is 23%. For those who are jyka and are yupt, the probability of kwox is 41%. The overall probability of jyka is 59%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.18 +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.59 +(0.18 - 0.47)* (0.41 * 0.59) + (0.82 - 0.53) * (0.43 * 0.41) = -0.05 +-0.05 < 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 47%. For those who are jyka, the probability of yupt is 18%. For those who are not jyka and are not yupt, the probability of kwox is 24%. For those who are not jyka and are yupt, the probability of kwox is 43%. For those who are jyka and are not yupt, the probability of kwox is 23%. For those who are jyka and are yupt, the probability of kwox is 41%. The overall probability of jyka is 59%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.18 +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.59 +(0.18 - 0.47)* (0.41 * 0.59) + (0.82 - 0.53) * (0.43 * 0.41) = -0.05 +-0.05 < 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 24%. For those who are not jyka and are yupt, the probability of kwox is 43%. For those who are jyka and are not yupt, the probability of kwox is 23%. For those who are jyka and are yupt, the probability of kwox is 41%. For those who are not jyka, the probability of yupt is 47%. For those who are jyka, the probability of yupt is 18%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.41 +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.18 +0.41 * (0.18 - 0.47) + 0.43 * (0.82 - 0.53) = -0.05 +-0.05 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 24%. For those who are not jyka and are yupt, the probability of kwox is 43%. For those who are jyka and are not yupt, the probability of kwox is 23%. For those who are jyka and are yupt, the probability of kwox is 41%. For those who are not jyka, the probability of yupt is 47%. For those who are jyka, the probability of yupt is 18%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.41 +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.18 +0.41 * (0.18 - 0.47) + 0.43 * (0.82 - 0.53) = -0.05 +-0.05 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 47%. For those who are jyka, the probability of yupt is 18%. For those who are not jyka and are not yupt, the probability of kwox is 24%. For those who are not jyka and are yupt, the probability of kwox is 43%. For those who are jyka and are not yupt, the probability of kwox is 23%. For those who are jyka and are yupt, the probability of kwox is 41%. The overall probability of jyka is 59%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.18 +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.59 +0.18 - 0.47 * (0.41 * 0.59 + 0.43 * 0.41)= -0.05 +-0.05 < 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 47%. For those who are jyka, the probability of yupt is 18%. For those who are not jyka and are not yupt, the probability of kwox is 24%. For those who are not jyka and are yupt, the probability of kwox is 43%. For those who are jyka and are not yupt, the probability of kwox is 23%. For those who are jyka and are yupt, the probability of kwox is 41%. The overall probability of jyka is 59%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.47 +P(V3=1 | X=1) = 0.18 +P(Y=1 | X=0, V3=0) = 0.24 +P(Y=1 | X=0, V3=1) = 0.43 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.59 +0.18 - 0.47 * (0.41 * 0.59 + 0.43 * 0.41)= -0.05 +-0.05 < 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 59%. For those who are not jyka, the probability of kwox is 33%. For those who are jyka, the probability of kwox is 26%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.26 +0.59*0.26 - 0.41*0.33 = 0.29 +0.29 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 59%. The probability of not jyka and kwox is 14%. The probability of jyka and kwox is 16%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.16 +0.16/0.59 - 0.14/0.41 = -0.07 +-0.07 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 59%. The probability of not jyka and kwox is 14%. The probability of jyka and kwox is 16%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.16 +0.16/0.59 - 0.14/0.41 = -0.07 +-0.07 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 13%. For those who are not jyka, the probability of kwox is 36%. For those who are jyka, the probability of kwox is 49%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.49 +0.13*0.49 - 0.87*0.36 = 0.38 +0.38 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 13%. The probability of not jyka and kwox is 32%. The probability of jyka and kwox is 6%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.06 +0.06/0.13 - 0.32/0.87 = 0.13 +0.13 > 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 22%. For those who are jyka, the probability of yupt is 82%. For those who are not jyka and are not yupt, the probability of kwox is 46%. For those who are not jyka and are yupt, the probability of kwox is 56%. For those who are jyka and are not yupt, the probability of kwox is 47%. For those who are jyka and are yupt, the probability of kwox is 53%. The overall probability of jyka is 78%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.82 +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.78 +0.82 - 0.22 * (0.53 * 0.78 + 0.56 * 0.22)= 0.05 +0.05 > 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 22%. For those who are jyka, the probability of yupt is 82%. For those who are not jyka and are not yupt, the probability of kwox is 46%. For those who are not jyka and are yupt, the probability of kwox is 56%. For those who are jyka and are not yupt, the probability of kwox is 47%. For those who are jyka and are yupt, the probability of kwox is 53%. The overall probability of jyka is 78%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.82 +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.56 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.78 +0.82 - 0.22 * (0.53 * 0.78 + 0.56 * 0.22)= 0.05 +0.05 > 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 78%. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 52%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.52 +0.78*0.52 - 0.22*0.48 = 0.52 +0.52 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 78%. The probability of not jyka and kwox is 10%. The probability of jyka and kwox is 41%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.41 +0.41/0.78 - 0.10/0.22 = 0.04 +0.04 > 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 38%. For those who are jyka, the probability of yupt is 8%. For those who are not jyka and are not yupt, the probability of kwox is 94%. For those who are not jyka and are yupt, the probability of kwox is 76%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 76%. The overall probability of jyka is 9%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.38 +P(V3=1 | X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.76 +P(X=1) = 0.09 +(0.08 - 0.38)* (0.76 * 0.09) + (0.92 - 0.62) * (0.76 * 0.91) = 0.05 +0.05 > 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 94%. For those who are not jyka and are yupt, the probability of kwox is 76%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 76%. For those who are not jyka, the probability of yupt is 38%. For those who are jyka, the probability of yupt is 8%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.76 +P(V3=1 | X=0) = 0.38 +P(V3=1 | X=1) = 0.08 +0.76 * (0.08 - 0.38) + 0.76 * (0.92 - 0.62) = -0.03 +-0.03 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 38%. For those who are jyka, the probability of yupt is 8%. For those who are not jyka and are not yupt, the probability of kwox is 94%. For those who are not jyka and are yupt, the probability of kwox is 76%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 76%. The overall probability of jyka is 9%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.38 +P(V3=1 | X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.94 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.76 +P(X=1) = 0.09 +0.08 - 0.38 * (0.76 * 0.09 + 0.76 * 0.91)= 0.05 +0.05 > 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 9%. For those who are not jyka, the probability of kwox is 87%. For those who are jyka, the probability of kwox is 66%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.66 +0.09*0.66 - 0.91*0.87 = 0.86 +0.86 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 9%. For those who are not jyka, the probability of kwox is 87%. For those who are jyka, the probability of kwox is 66%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.66 +0.09*0.66 - 0.91*0.87 = 0.86 +0.86 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 9%. The probability of not jyka and kwox is 79%. The probability of jyka and kwox is 6%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.06 +0.06/0.09 - 0.79/0.91 = -0.21 +-0.21 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 9%. The probability of not jyka and kwox is 79%. The probability of jyka and kwox is 6%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.79 +P(Y=1, X=1=1) = 0.06 +0.06/0.09 - 0.79/0.91 = -0.21 +-0.21 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 85%. For those who are not jyka and are not yupt, the probability of kwox is 77%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 59%. For those who are jyka and are yupt, the probability of kwox is 61%. The overall probability of jyka is 82%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.87 +P(V3=1 | X=1) = 0.85 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.61 +P(X=1) = 0.82 +(0.85 - 0.87)* (0.61 * 0.82) + (0.15 - 0.13) * (0.78 * 0.18) = -0.00 +0.00 = 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 85%. For those who are not jyka and are not yupt, the probability of kwox is 77%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 59%. For those who are jyka and are yupt, the probability of kwox is 61%. The overall probability of jyka is 82%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.87 +P(V3=1 | X=1) = 0.85 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.61 +P(X=1) = 0.82 +(0.85 - 0.87)* (0.61 * 0.82) + (0.15 - 0.13) * (0.78 * 0.18) = -0.00 +0.00 = 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 85%. For those who are not jyka and are not yupt, the probability of kwox is 77%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 59%. For those who are jyka and are yupt, the probability of kwox is 61%. The overall probability of jyka is 82%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.87 +P(V3=1 | X=1) = 0.85 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.61 +P(X=1) = 0.82 +0.85 - 0.87 * (0.61 * 0.82 + 0.78 * 0.18)= -0.00 +0.00 = 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 87%. For those who are jyka, the probability of yupt is 85%. For those who are not jyka and are not yupt, the probability of kwox is 77%. For those who are not jyka and are yupt, the probability of kwox is 78%. For those who are jyka and are not yupt, the probability of kwox is 59%. For those who are jyka and are yupt, the probability of kwox is 61%. The overall probability of jyka is 82%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.87 +P(V3=1 | X=1) = 0.85 +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.61 +P(X=1) = 0.82 +0.85 - 0.87 * (0.61 * 0.82 + 0.78 * 0.18)= -0.00 +0.00 = 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 82%. For those who are not jyka, the probability of kwox is 78%. For those who are jyka, the probability of kwox is 61%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.61 +0.82*0.61 - 0.18*0.78 = 0.64 +0.64 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 82%. For those who are not jyka, the probability of kwox is 78%. For those who are jyka, the probability of kwox is 61%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.61 +0.82*0.61 - 0.18*0.78 = 0.64 +0.64 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 9%. For those who are jyka, the probability of yupt is 2%. For those who are not jyka and are not yupt, the probability of kwox is 72%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 33%. The overall probability of jyka is 46%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.02 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.33 +P(X=1) = 0.46 +(0.02 - 0.09)* (0.33 * 0.46) + (0.98 - 0.91) * (0.36 * 0.54) = 0.02 +0.02 > 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 9%. For those who are jyka, the probability of yupt is 2%. For those who are not jyka and are not yupt, the probability of kwox is 72%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 33%. The overall probability of jyka is 46%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.02 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.33 +P(X=1) = 0.46 +(0.02 - 0.09)* (0.33 * 0.46) + (0.98 - 0.91) * (0.36 * 0.54) = 0.02 +0.02 > 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31442,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 72%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 33%. For those who are not jyka, the probability of yupt is 9%. For those who are jyka, the probability of yupt is 2%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.02 +0.33 * (0.02 - 0.09) + 0.36 * (0.98 - 0.91) = 0.02 +0.02 > 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 72%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 65%. For those who are jyka and are yupt, the probability of kwox is 33%. For those who are not jyka, the probability of yupt is 9%. For those who are jyka, the probability of yupt is 2%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.02 +0.33 * (0.02 - 0.09) + 0.36 * (0.98 - 0.91) = 0.02 +0.02 > 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 46%. For those who are not jyka, the probability of kwox is 69%. For those who are jyka, the probability of kwox is 64%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.64 +0.46*0.64 - 0.54*0.69 = 0.67 +0.67 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 46%. For those who are not jyka, the probability of kwox is 69%. For those who are jyka, the probability of kwox is 64%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.64 +0.46*0.64 - 0.54*0.69 = 0.67 +0.67 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 46%. The probability of not jyka and kwox is 37%. The probability of jyka and kwox is 29%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.29 +0.29/0.46 - 0.37/0.54 = -0.05 +-0.05 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 84%. For those who are jyka, the probability of yupt is 71%. For those who are not jyka and are not yupt, the probability of kwox is 14%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 30%. The overall probability of jyka is 51%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.71 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.51 +(0.71 - 0.84)* (0.30 * 0.51) + (0.29 - 0.16) * (0.36 * 0.49) = -0.03 +-0.03 < 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 14%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 30%. For those who are not jyka, the probability of yupt is 84%. For those who are jyka, the probability of yupt is 71%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.71 +0.30 * (0.71 - 0.84) + 0.36 * (0.29 - 0.16) = -0.03 +-0.03 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 14%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 30%. For those who are not jyka, the probability of yupt is 84%. For those who are jyka, the probability of yupt is 71%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.71 +0.30 * (0.71 - 0.84) + 0.36 * (0.29 - 0.16) = -0.03 +-0.03 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 84%. For those who are jyka, the probability of yupt is 71%. For those who are not jyka and are not yupt, the probability of kwox is 14%. For those who are not jyka and are yupt, the probability of kwox is 36%. For those who are jyka and are not yupt, the probability of kwox is 9%. For those who are jyka and are yupt, the probability of kwox is 30%. The overall probability of jyka is 51%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.71 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.51 +0.71 - 0.84 * (0.30 * 0.51 + 0.36 * 0.49)= -0.03 +-0.03 < 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 51%. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 24%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.24 +0.51*0.24 - 0.49*0.32 = 0.28 +0.28 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 51%. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 24%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.24 +0.51*0.24 - 0.49*0.32 = 0.28 +0.28 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 51%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 12%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.12 +0.12/0.51 - 0.16/0.49 = -0.08 +-0.08 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 51%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 12%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.12 +0.12/0.51 - 0.16/0.49 = -0.08 +-0.08 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 60%. For those who are jyka, the probability of yupt is 49%. For those who are not jyka and are not yupt, the probability of kwox is 39%. For those who are not jyka and are yupt, the probability of kwox is 76%. For those who are jyka and are not yupt, the probability of kwox is 33%. For those who are jyka and are yupt, the probability of kwox is 52%. The overall probability of jyka is 5%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.60 +P(V3=1 | X=1) = 0.49 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.52 +P(X=1) = 0.05 +(0.49 - 0.60)* (0.52 * 0.05) + (0.51 - 0.40) * (0.76 * 0.95) = -0.04 +-0.04 < 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 39%. For those who are not jyka and are yupt, the probability of kwox is 76%. For those who are jyka and are not yupt, the probability of kwox is 33%. For those who are jyka and are yupt, the probability of kwox is 52%. For those who are not jyka, the probability of yupt is 60%. For those who are jyka, the probability of yupt is 49%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0) = 0.60 +P(V3=1 | X=1) = 0.49 +0.52 * (0.49 - 0.60) + 0.76 * (0.51 - 0.40) = -0.02 +-0.02 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 60%. For those who are jyka, the probability of yupt is 49%. For those who are not jyka and are not yupt, the probability of kwox is 39%. For those who are not jyka and are yupt, the probability of kwox is 76%. For those who are jyka and are not yupt, the probability of kwox is 33%. For those who are jyka and are yupt, the probability of kwox is 52%. The overall probability of jyka is 5%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.60 +P(V3=1 | X=1) = 0.49 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.76 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.52 +P(X=1) = 0.05 +0.49 - 0.60 * (0.52 * 0.05 + 0.76 * 0.95)= -0.04 +-0.04 < 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 5%. The probability of not jyka and kwox is 58%. The probability of jyka and kwox is 2%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.58/0.95 = -0.19 +-0.19 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 22%. For those who are jyka, the probability of yupt is 17%. For those who are not jyka and are not yupt, the probability of kwox is 44%. For those who are not jyka and are yupt, the probability of kwox is 44%. For those who are jyka and are not yupt, the probability of kwox is 34%. For those who are jyka and are yupt, the probability of kwox is 46%. The overall probability of jyka is 49%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.17 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.34 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.49 +(0.17 - 0.22)* (0.46 * 0.49) + (0.83 - 0.78) * (0.44 * 0.51) = -0.00 +0.00 = 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 44%. For those who are not jyka and are yupt, the probability of kwox is 44%. For those who are jyka and are not yupt, the probability of kwox is 34%. For those who are jyka and are yupt, the probability of kwox is 46%. For those who are not jyka, the probability of yupt is 22%. For those who are jyka, the probability of yupt is 17%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.34 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.17 +0.46 * (0.17 - 0.22) + 0.44 * (0.83 - 0.78) = -0.01 +-0.01 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 44%. For those who are not jyka and are yupt, the probability of kwox is 44%. For those who are jyka and are not yupt, the probability of kwox is 34%. For those who are jyka and are yupt, the probability of kwox is 46%. For those who are not jyka, the probability of yupt is 22%. For those who are jyka, the probability of yupt is 17%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.34 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.17 +0.46 * (0.17 - 0.22) + 0.44 * (0.83 - 0.78) = -0.01 +-0.01 < 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 22%. For those who are jyka, the probability of yupt is 17%. For those who are not jyka and are not yupt, the probability of kwox is 44%. For those who are not jyka and are yupt, the probability of kwox is 44%. For those who are jyka and are not yupt, the probability of kwox is 34%. For those who are jyka and are yupt, the probability of kwox is 46%. The overall probability of jyka is 49%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.17 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.34 +P(Y=1 | X=1, V3=1) = 0.46 +P(X=1) = 0.49 +0.17 - 0.22 * (0.46 * 0.49 + 0.44 * 0.51)= -0.00 +0.00 = 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 49%. The probability of not jyka and kwox is 22%. The probability of jyka and kwox is 18%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.18 +0.18/0.49 - 0.22/0.51 = -0.07 +-0.07 < 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 1%. For those who are not jyka and are not yupt, the probability of kwox is 97%. For those who are not jyka and are yupt, the probability of kwox is 29%. For those who are jyka and are not yupt, the probability of kwox is 99%. For those who are jyka and are yupt, the probability of kwox is 53%. The overall probability of jyka is 57%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.57 +(0.01 - 0.30)* (0.53 * 0.57) + (0.99 - 0.70) * (0.29 * 0.43) = 0.16 +0.16 > 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 1%. For those who are not jyka and are not yupt, the probability of kwox is 97%. For those who are not jyka and are yupt, the probability of kwox is 29%. For those who are jyka and are not yupt, the probability of kwox is 99%. For those who are jyka and are yupt, the probability of kwox is 53%. The overall probability of jyka is 57%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.57 +(0.01 - 0.30)* (0.53 * 0.57) + (0.99 - 0.70) * (0.29 * 0.43) = 0.16 +0.16 > 0",frontdoor,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 97%. For those who are not jyka and are yupt, the probability of kwox is 29%. For those who are jyka and are not yupt, the probability of kwox is 99%. For those who are jyka and are yupt, the probability of kwox is 53%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 1%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.01 +0.53 * (0.01 - 0.30) + 0.29 * (0.99 - 0.70) = 0.13 +0.13 > 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 97%. For those who are not jyka and are yupt, the probability of kwox is 29%. For those who are jyka and are not yupt, the probability of kwox is 99%. For those who are jyka and are yupt, the probability of kwox is 53%. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 1%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.53 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.01 +0.53 * (0.01 - 0.30) + 0.29 * (0.99 - 0.70) = 0.13 +0.13 > 0",frontdoor,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 1%. For those who are not jyka and are not yupt, the probability of kwox is 97%. For those who are not jyka and are yupt, the probability of kwox is 29%. For those who are jyka and are not yupt, the probability of kwox is 99%. For those who are jyka and are yupt, the probability of kwox is 53%. The overall probability of jyka is 57%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.57 +0.01 - 0.30 * (0.53 * 0.57 + 0.29 * 0.43)= 0.16 +0.16 > 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of yupt is 30%. For those who are jyka, the probability of yupt is 1%. For those who are not jyka and are not yupt, the probability of kwox is 97%. For those who are not jyka and are yupt, the probability of kwox is 29%. For those who are jyka and are not yupt, the probability of kwox is 99%. For those who are jyka and are yupt, the probability of kwox is 53%. The overall probability of jyka is 57%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.01 +P(Y=1 | X=0, V3=0) = 0.97 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.53 +P(X=1) = 0.57 +0.01 - 0.30 * (0.53 * 0.57 + 0.29 * 0.43)= 0.16 +0.16 > 0",frontdoor,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 57%. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 99%.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.99 +0.57*0.99 - 0.43*0.77 = 0.91 +0.91 > 0",frontdoor,nonsense5,1,marginal,P(Y) +31496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 57%. The probability of not jyka and kwox is 33%. The probability of jyka and kwox is 56%.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.56 +0.56/0.57 - 0.33/0.43 = 0.22 +0.22 > 0",frontdoor,nonsense5,1,correlation,P(Y | X) +31498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 75%. For those who are yupt, the probability of kwox is 74%. For those who are not yu'detpt, the probability of jyka is 72%. For those who are yupt, the probability of jyka is 48%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.75 +P(Y=1 | V2=1) = 0.74 +P(X=1 | V2=0) = 0.72 +P(X=1 | V2=1) = 0.48 +(0.74 - 0.75) / (0.48 - 0.72) = 0.06 +0.06 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 75%. For those who are yupt, the probability of kwox is 74%. For those who are not yu'detpt, the probability of jyka is 72%. For those who are yupt, the probability of jyka is 48%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.75 +P(Y=1 | V2=1) = 0.74 +P(X=1 | V2=0) = 0.72 +P(X=1 | V2=1) = 0.48 +(0.74 - 0.75) / (0.48 - 0.72) = 0.06 +0.06 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 50%. For those who are not jyka, the probability of kwox is 71%. For those who are jyka, the probability of kwox is 61%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.61 +0.50*0.61 - 0.50*0.71 = 0.74 +0.74 > 0",IV,nonsense5,1,marginal,P(Y) +31505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 50%. The probability of not jyka and kwox is 36%. The probability of jyka and kwox is 30%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.30 +0.30/0.50 - 0.36/0.50 = -0.11 +-0.11 < 0",IV,nonsense5,1,correlation,P(Y | X) +31506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 12%. For those who are not jyka, the probability of kwox is 54%. For those who are jyka, the probability of kwox is 52%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.52 +0.12*0.52 - 0.88*0.54 = 0.53 +0.53 > 0",IV,nonsense5,1,marginal,P(Y) +31512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 12%. The probability of not jyka and kwox is 47%. The probability of jyka and kwox is 6%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.06 +0.06/0.12 - 0.47/0.88 = -0.02 +-0.02 < 0",IV,nonsense5,1,correlation,P(Y | X) +31513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 12%. The probability of not jyka and kwox is 47%. The probability of jyka and kwox is 6%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.06 +0.06/0.12 - 0.47/0.88 = -0.02 +-0.02 < 0",IV,nonsense5,1,correlation,P(Y | X) +31514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 39%. For those who are yupt, the probability of kwox is 46%. For those who are not yu'detpt, the probability of jyka is 64%. For those who are yupt, the probability of jyka is 30%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.46 +P(X=1 | V2=0) = 0.64 +P(X=1 | V2=1) = 0.30 +(0.46 - 0.39) / (0.30 - 0.64) = -0.22 +-0.22 < 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 39%. For those who are yupt, the probability of kwox is 46%. For those who are not yu'detpt, the probability of jyka is 64%. For those who are yupt, the probability of jyka is 30%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.46 +P(X=1 | V2=0) = 0.64 +P(X=1 | V2=1) = 0.30 +(0.46 - 0.39) / (0.30 - 0.64) = -0.22 +-0.22 < 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 52%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 30%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.30 +0.52*0.30 - 0.48*0.56 = 0.42 +0.42 > 0",IV,nonsense5,1,marginal,P(Y) +31519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 52%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 30%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.30 +0.52*0.30 - 0.48*0.56 = 0.42 +0.42 > 0",IV,nonsense5,1,marginal,P(Y) +31523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 20%. For those who are not jyka, the probability of kwox is 65%. For those who are jyka, the probability of kwox is 58%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.58 +0.20*0.58 - 0.80*0.65 = 0.62 +0.62 > 0",IV,nonsense5,1,marginal,P(Y) +31527,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 20%. For those who are not jyka, the probability of kwox is 65%. For those who are jyka, the probability of kwox is 58%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.58 +0.20*0.58 - 0.80*0.65 = 0.62 +0.62 > 0",IV,nonsense5,1,marginal,P(Y) +31528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 20%. The probability of not jyka and kwox is 52%. The probability of jyka and kwox is 12%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.12 +0.12/0.20 - 0.52/0.80 = -0.07 +-0.07 < 0",IV,nonsense5,1,correlation,P(Y | X) +31530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 75%. For those who are yupt, the probability of kwox is 69%. For those who are not yu'detpt, the probability of jyka is 72%. For those who are yupt, the probability of jyka is 29%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.75 +P(Y=1 | V2=1) = 0.69 +P(X=1 | V2=0) = 0.72 +P(X=1 | V2=1) = 0.29 +(0.69 - 0.75) / (0.29 - 0.72) = 0.12 +0.12 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 39%. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 63%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.63 +0.39*0.63 - 0.61*0.66 = 0.71 +0.71 > 0",IV,nonsense5,1,marginal,P(Y) +31535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 39%. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 63%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.63 +0.39*0.63 - 0.61*0.66 = 0.71 +0.71 > 0",IV,nonsense5,1,marginal,P(Y) +31536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 39%. The probability of not jyka and kwox is 40%. The probability of jyka and kwox is 24%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.24 +0.24/0.39 - 0.40/0.61 = -0.03 +-0.03 < 0",IV,nonsense5,1,correlation,P(Y | X) +31537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 39%. The probability of not jyka and kwox is 40%. The probability of jyka and kwox is 24%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.24 +0.24/0.39 - 0.40/0.61 = -0.03 +-0.03 < 0",IV,nonsense5,1,correlation,P(Y | X) +31540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 32%. For those who are yupt, the probability of kwox is 44%. For those who are not yu'detpt, the probability of jyka is 17%. For those who are yupt, the probability of jyka is 75%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.32 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.17 +P(X=1 | V2=1) = 0.75 +(0.44 - 0.32) / (0.75 - 0.17) = 0.19 +0.19 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 57%. For those who are yupt, the probability of kwox is 62%. For those who are not yu'detpt, the probability of jyka is 55%. For those who are yupt, the probability of jyka is 90%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.57 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.55 +P(X=1 | V2=1) = 0.90 +(0.62 - 0.57) / (0.90 - 0.55) = 0.14 +0.14 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 89%. For those who are not jyka, the probability of kwox is 61%. For those who are jyka, the probability of kwox is 62%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.62 +0.89*0.62 - 0.11*0.61 = 0.61 +0.61 > 0",IV,nonsense5,1,marginal,P(Y) +31551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 89%. For those who are not jyka, the probability of kwox is 61%. For those who are jyka, the probability of kwox is 62%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.89 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.62 +0.89*0.62 - 0.11*0.61 = 0.61 +0.61 > 0",IV,nonsense5,1,marginal,P(Y) +31553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 89%. The probability of not jyka and kwox is 7%. The probability of jyka and kwox is 55%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.55 +0.55/0.89 - 0.07/0.11 = 0.01 +0.01 > 0",IV,nonsense5,1,correlation,P(Y | X) +31554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 12%. For those who are yupt, the probability of kwox is 17%. For those who are not yu'detpt, the probability of jyka is 29%. For those who are yupt, the probability of jyka is 49%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.12 +P(Y=1 | V2=1) = 0.17 +P(X=1 | V2=0) = 0.29 +P(X=1 | V2=1) = 0.49 +(0.17 - 0.12) / (0.49 - 0.29) = 0.21 +0.21 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 12%. For those who are yupt, the probability of kwox is 17%. For those who are not yu'detpt, the probability of jyka is 29%. For those who are yupt, the probability of jyka is 49%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.12 +P(Y=1 | V2=1) = 0.17 +P(X=1 | V2=0) = 0.29 +P(X=1 | V2=1) = 0.49 +(0.17 - 0.12) / (0.49 - 0.29) = 0.21 +0.21 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 41%. For those who are not jyka, the probability of kwox is 6%. For those who are jyka, the probability of kwox is 28%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.06 +P(Y=1 | X=1) = 0.28 +0.41*0.28 - 0.59*0.06 = 0.15 +0.15 > 0",IV,nonsense5,1,marginal,P(Y) +31560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 41%. The probability of not jyka and kwox is 4%. The probability of jyka and kwox is 11%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.11 +0.11/0.41 - 0.04/0.59 = 0.22 +0.22 > 0",IV,nonsense5,1,correlation,P(Y | X) +31561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 41%. The probability of not jyka and kwox is 4%. The probability of jyka and kwox is 11%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.11 +0.11/0.41 - 0.04/0.59 = 0.22 +0.22 > 0",IV,nonsense5,1,correlation,P(Y | X) +31563,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 54%. For those who are yupt, the probability of kwox is 48%. For those who are not yu'detpt, the probability of jyka is 53%. For those who are yupt, the probability of jyka is 34%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.48 +P(X=1 | V2=0) = 0.53 +P(X=1 | V2=1) = 0.34 +(0.48 - 0.54) / (0.34 - 0.53) = 0.37 +0.37 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 54%. For those who are yupt, the probability of kwox is 48%. For those who are not yu'detpt, the probability of jyka is 53%. For those who are yupt, the probability of jyka is 34%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.48 +P(X=1 | V2=0) = 0.53 +P(X=1 | V2=1) = 0.34 +(0.48 - 0.54) / (0.34 - 0.53) = 0.37 +0.37 > 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 47%. For those who are not jyka, the probability of kwox is 35%. For those who are jyka, the probability of kwox is 72%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.72 +0.47*0.72 - 0.53*0.35 = 0.52 +0.52 > 0",IV,nonsense5,1,marginal,P(Y) +31568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 47%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 34%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.34 +0.34/0.47 - 0.19/0.53 = 0.37 +0.37 > 0",IV,nonsense5,1,correlation,P(Y | X) +31569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 47%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 34%.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.34 +0.34/0.47 - 0.19/0.53 = 0.37 +0.37 > 0",IV,nonsense5,1,correlation,P(Y | X) +31570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31573,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. For those who are not yu'detpt, the probability of kwox is 61%. For those who are yupt, the probability of kwox is 44%. For those who are not yu'detpt, the probability of jyka is 10%. For those who are yupt, the probability of jyka is 74%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.61 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.10 +P(X=1 | V2=1) = 0.74 +(0.44 - 0.61) / (0.74 - 0.10) = -0.26 +-0.26 < 0",IV,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 73%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 28%.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.28 +0.28/0.73 - 0.19/0.27 = -0.34 +-0.34 < 0",IV,nonsense5,1,correlation,P(Y | X) +31578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 52%. For those who are jyka, the probability of kwox is 19%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.19 +0.19 - 0.52 = -0.33 +-0.33 < 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 53%. For those who are jyka and are not yupt, the probability of kwox is 10%. For those who are jyka and are yupt, the probability of kwox is 38%. For those who are not jyka and are not qwiu, the probability of yupt is 52%. For those who are not jyka and are qwiu, the probability of yupt is 72%. For those who are jyka and are not qwiu, the probability of yupt is 25%. For those who are jyka and are qwiu, the probability of yupt is 93%. The overall probability of qwiu is 4%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.72 +P(V3=1 | X=1, V2=0) = 0.25 +P(V3=1 | X=1, V2=1) = 0.93 +P(V2=1) = 0.04 +0.04 * 0.53 * (0.93 - 0.25)+ 0.96 * 0.53 * (0.72 - 0.52)= -0.00 +0.00 = 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 51%. For those who are not jyka and are yupt, the probability of kwox is 53%. For those who are jyka and are not yupt, the probability of kwox is 10%. For those who are jyka and are yupt, the probability of kwox is 38%. For those who are not jyka and are not qwiu, the probability of yupt is 52%. For those who are not jyka and are qwiu, the probability of yupt is 72%. For those who are jyka and are not qwiu, the probability of yupt is 25%. For those who are jyka and are qwiu, the probability of yupt is 93%. The overall probability of qwiu is 4%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.72 +P(V3=1 | X=1, V2=0) = 0.25 +P(V3=1 | X=1, V2=1) = 0.93 +P(V2=1) = 0.04 +0.04 * (0.38 - 0.10) * 0.72 + 0.96 * (0.53 - 0.51) * 0.25 = -0.26 +-0.26 < 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 28%. For those who are not jyka, the probability of kwox is 52%. For those who are jyka, the probability of kwox is 19%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.19 +0.28*0.19 - 0.72*0.52 = 0.44 +0.44 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 28%. The probability of not jyka and kwox is 38%. The probability of jyka and kwox is 5%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.05 +0.05/0.28 - 0.38/0.72 = -0.35 +-0.35 < 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 34%. For those who are jyka, the probability of kwox is 77%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.77 +0.77 - 0.34 = 0.43 +0.43 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 34%. For those who are jyka, the probability of kwox is 77%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.77 +0.77 - 0.34 = 0.43 +0.43 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 34%. For those who are jyka, the probability of kwox is 77%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.77 +0.77 - 0.34 = 0.43 +0.43 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 34%. For those who are jyka, the probability of kwox is 77%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.77 +0.77 - 0.34 = 0.43 +0.43 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 29%. For those who are not jyka and are yupt, the probability of kwox is 37%. For those who are jyka and are not yupt, the probability of kwox is 75%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka and are not qwiu, the probability of yupt is 65%. For those who are not jyka and are qwiu, the probability of yupt is 55%. For those who are jyka and are not qwiu, the probability of yupt is 62%. For those who are jyka and are qwiu, the probability of yupt is 29%. The overall probability of qwiu is 55%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.62 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.55 +0.55 * 0.37 * (0.29 - 0.62)+ 0.45 * 0.37 * (0.55 - 0.65)= -0.01 +-0.01 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 29%. For those who are not jyka and are yupt, the probability of kwox is 37%. For those who are jyka and are not yupt, the probability of kwox is 75%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka and are not qwiu, the probability of yupt is 65%. For those who are not jyka and are qwiu, the probability of yupt is 55%. For those who are jyka and are not qwiu, the probability of yupt is 62%. For those who are jyka and are qwiu, the probability of yupt is 29%. The overall probability of qwiu is 55%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.62 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.55 +0.55 * 0.37 * (0.29 - 0.62)+ 0.45 * 0.37 * (0.55 - 0.65)= -0.01 +-0.01 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 29%. For those who are not jyka and are yupt, the probability of kwox is 37%. For those who are jyka and are not yupt, the probability of kwox is 75%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka and are not qwiu, the probability of yupt is 65%. For those who are not jyka and are qwiu, the probability of yupt is 55%. For those who are jyka and are not qwiu, the probability of yupt is 62%. For those who are jyka and are qwiu, the probability of yupt is 29%. The overall probability of qwiu is 55%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.62 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.55 +0.55 * (0.70 - 0.75) * 0.55 + 0.45 * (0.37 - 0.29) * 0.62 = 0.43 +0.43 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 29%. For those who are not jyka and are yupt, the probability of kwox is 37%. For those who are jyka and are not yupt, the probability of kwox is 75%. For those who are jyka and are yupt, the probability of kwox is 70%. For those who are not jyka and are not qwiu, the probability of yupt is 65%. For those who are not jyka and are qwiu, the probability of yupt is 55%. For those who are jyka and are not qwiu, the probability of yupt is 62%. For those who are jyka and are qwiu, the probability of yupt is 29%. The overall probability of qwiu is 55%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0, V2=0) = 0.65 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.62 +P(V3=1 | X=1, V2=1) = 0.29 +P(V2=1) = 0.55 +0.55 * (0.70 - 0.75) * 0.55 + 0.45 * (0.37 - 0.29) * 0.62 = 0.43 +0.43 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 4%. For those who are not jyka, the probability of kwox is 34%. For those who are jyka, the probability of kwox is 77%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.77 +0.04*0.77 - 0.96*0.34 = 0.36 +0.36 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 4%. The probability of not jyka and kwox is 32%. The probability of jyka and kwox is 3%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.03 +0.03/0.04 - 0.32/0.96 = 0.39 +0.39 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 61%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 61%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.61 - 0.46 = 0.15 +0.15 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 19%. For those who are not jyka and are yupt, the probability of kwox is 46%. For those who are jyka and are not yupt, the probability of kwox is 32%. For those who are jyka and are yupt, the probability of kwox is 77%. For those who are not jyka and are not qwiu, the probability of yupt is 92%. For those who are not jyka and are qwiu, the probability of yupt is 98%. For those who are jyka and are not qwiu, the probability of yupt is 37%. For those who are jyka and are qwiu, the probability of yupt is 71%. The overall probability of qwiu is 74%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.98 +P(V3=1 | X=1, V2=0) = 0.37 +P(V3=1 | X=1, V2=1) = 0.71 +P(V2=1) = 0.74 +0.74 * 0.46 * (0.71 - 0.37)+ 0.26 * 0.46 * (0.98 - 0.92)= -0.07 +-0.07 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 19%. For those who are not jyka and are yupt, the probability of kwox is 46%. For those who are jyka and are not yupt, the probability of kwox is 32%. For those who are jyka and are yupt, the probability of kwox is 77%. For those who are not jyka and are not qwiu, the probability of yupt is 92%. For those who are not jyka and are qwiu, the probability of yupt is 98%. For those who are jyka and are not qwiu, the probability of yupt is 37%. For those who are jyka and are qwiu, the probability of yupt is 71%. The overall probability of qwiu is 74%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.77 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.98 +P(V3=1 | X=1, V2=0) = 0.37 +P(V3=1 | X=1, V2=1) = 0.71 +P(V2=1) = 0.74 +0.74 * (0.77 - 0.32) * 0.98 + 0.26 * (0.46 - 0.19) * 0.37 = 0.31 +0.31 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 63%. For those who are not jyka, the probability of kwox is 46%. For those who are jyka, the probability of kwox is 61%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.61 +0.63*0.61 - 0.37*0.46 = 0.58 +0.58 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 63%. The probability of not jyka and kwox is 17%. The probability of jyka and kwox is 38%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.63 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.38 +0.38/0.63 - 0.17/0.37 = 0.15 +0.15 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31622,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 30%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.30 +0.30 - 0.25 = 0.04 +0.04 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 30%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.30 +0.30 - 0.25 = 0.04 +0.04 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 30%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.30 +0.30 - 0.25 = 0.04 +0.04 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 19%. For those who are not jyka and are yupt, the probability of kwox is 54%. For those who are jyka and are not yupt, the probability of kwox is 43%. For those who are jyka and are yupt, the probability of kwox is 30%. For those who are not jyka and are not qwiu, the probability of yupt is 31%. For those who are not jyka and are qwiu, the probability of yupt is 11%. For those who are jyka and are not qwiu, the probability of yupt is 89%. For those who are jyka and are qwiu, the probability of yupt is 15%. The overall probability of qwiu is 23%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.89 +P(V3=1 | X=1, V2=1) = 0.15 +P(V2=1) = 0.23 +0.23 * 0.54 * (0.15 - 0.89)+ 0.77 * 0.54 * (0.11 - 0.31)= 0.14 +0.14 > 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 19%. For those who are not jyka and are yupt, the probability of kwox is 54%. For those who are jyka and are not yupt, the probability of kwox is 43%. For those who are jyka and are yupt, the probability of kwox is 30%. For those who are not jyka and are not qwiu, the probability of yupt is 31%. For those who are not jyka and are qwiu, the probability of yupt is 11%. For those who are jyka and are not qwiu, the probability of yupt is 89%. For those who are jyka and are qwiu, the probability of yupt is 15%. The overall probability of qwiu is 23%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.30 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.89 +P(V3=1 | X=1, V2=1) = 0.15 +P(V2=1) = 0.23 +0.23 * (0.30 - 0.43) * 0.11 + 0.77 * (0.54 - 0.19) * 0.89 = 0.12 +0.12 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 31%. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 30%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.30 +0.31*0.30 - 0.69*0.25 = 0.31 +0.31 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 31%. The probability of not jyka and kwox is 20%. The probability of jyka and kwox is 10%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.10 +0.10/0.31 - 0.20/0.69 = 0.05 +0.05 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 59%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.59 +0.59 - 0.58 = 0.01 +0.01 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 59%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.59 +0.59 - 0.58 = 0.01 +0.01 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 59%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.59 +0.59 - 0.58 = 0.01 +0.01 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 66%. For those who are not jyka and are yupt, the probability of kwox is 67%. For those who are jyka and are not yupt, the probability of kwox is 88%. For those who are jyka and are yupt, the probability of kwox is 55%. For those who are not jyka and are not qwiu, the probability of yupt is 21%. For those who are not jyka and are qwiu, the probability of yupt is 85%. For those who are jyka and are not qwiu, the probability of yupt is 63%. For those who are jyka and are qwiu, the probability of yupt is 95%. The overall probability of qwiu is 70%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.21 +P(V3=1 | X=0, V2=1) = 0.85 +P(V3=1 | X=1, V2=0) = 0.63 +P(V3=1 | X=1, V2=1) = 0.95 +P(V2=1) = 0.70 +0.70 * 0.67 * (0.95 - 0.63)+ 0.30 * 0.67 * (0.85 - 0.21)= 0.07 +0.07 > 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 66%. For those who are not jyka and are yupt, the probability of kwox is 67%. For those who are jyka and are not yupt, the probability of kwox is 88%. For those who are jyka and are yupt, the probability of kwox is 55%. For those who are not jyka and are not qwiu, the probability of yupt is 21%. For those who are not jyka and are qwiu, the probability of yupt is 85%. For those who are jyka and are not qwiu, the probability of yupt is 63%. For those who are jyka and are qwiu, the probability of yupt is 95%. The overall probability of qwiu is 70%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.21 +P(V3=1 | X=0, V2=1) = 0.85 +P(V3=1 | X=1, V2=0) = 0.63 +P(V3=1 | X=1, V2=1) = 0.95 +P(V2=1) = 0.70 +0.70 * (0.55 - 0.88) * 0.85 + 0.30 * (0.67 - 0.66) * 0.63 = 0.06 +0.06 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31643,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 66%. For those who are not jyka and are yupt, the probability of kwox is 67%. For those who are jyka and are not yupt, the probability of kwox is 88%. For those who are jyka and are yupt, the probability of kwox is 55%. For those who are not jyka and are not qwiu, the probability of yupt is 21%. For those who are not jyka and are qwiu, the probability of yupt is 85%. For those who are jyka and are not qwiu, the probability of yupt is 63%. For those who are jyka and are qwiu, the probability of yupt is 95%. The overall probability of qwiu is 70%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.21 +P(V3=1 | X=0, V2=1) = 0.85 +P(V3=1 | X=1, V2=0) = 0.63 +P(V3=1 | X=1, V2=1) = 0.95 +P(V2=1) = 0.70 +0.70 * (0.55 - 0.88) * 0.85 + 0.30 * (0.67 - 0.66) * 0.63 = 0.06 +0.06 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 56%. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 59%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.59 +0.56*0.59 - 0.44*0.58 = 0.61 +0.61 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 56%. The probability of not jyka and kwox is 29%. The probability of jyka and kwox is 33%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.33 +0.33/0.56 - 0.29/0.44 = -0.07 +-0.07 < 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 63%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.63 +0.63 - 0.40 = 0.23 +0.23 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 63%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.63 +0.63 - 0.40 = 0.23 +0.23 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 63%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.63 +0.63 - 0.40 = 0.23 +0.23 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 29%. For those who are not jyka and are yupt, the probability of kwox is 47%. For those who are jyka and are not yupt, the probability of kwox is 88%. For those who are jyka and are yupt, the probability of kwox is 55%. For those who are not jyka and are not qwiu, the probability of yupt is 49%. For those who are not jyka and are qwiu, the probability of yupt is 63%. For those who are jyka and are not qwiu, the probability of yupt is 92%. For those who are jyka and are qwiu, the probability of yupt is 76%. The overall probability of qwiu is 96%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.49 +P(V3=1 | X=0, V2=1) = 0.63 +P(V3=1 | X=1, V2=0) = 0.92 +P(V3=1 | X=1, V2=1) = 0.76 +P(V2=1) = 0.96 +0.96 * 0.47 * (0.76 - 0.92)+ 0.04 * 0.47 * (0.63 - 0.49)= 0.03 +0.03 > 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 29%. For those who are not jyka and are yupt, the probability of kwox is 47%. For those who are jyka and are not yupt, the probability of kwox is 88%. For those who are jyka and are yupt, the probability of kwox is 55%. For those who are not jyka and are not qwiu, the probability of yupt is 49%. For those who are not jyka and are qwiu, the probability of yupt is 63%. For those who are jyka and are not qwiu, the probability of yupt is 92%. For those who are jyka and are qwiu, the probability of yupt is 76%. The overall probability of qwiu is 96%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.49 +P(V3=1 | X=0, V2=1) = 0.63 +P(V3=1 | X=1, V2=0) = 0.92 +P(V3=1 | X=1, V2=1) = 0.76 +P(V2=1) = 0.96 +0.96 * (0.55 - 0.88) * 0.63 + 0.04 * (0.47 - 0.29) * 0.92 = 0.27 +0.27 > 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 75%. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 63%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.63 +0.75*0.63 - 0.25*0.40 = 0.59 +0.59 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 75%. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 63%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.63 +0.75*0.63 - 0.25*0.40 = 0.59 +0.59 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 75%. The probability of not jyka and kwox is 10%. The probability of jyka and kwox is 47%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.47 +0.47/0.75 - 0.10/0.25 = 0.23 +0.23 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 15%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.15 +0.15 - 0.21 = -0.05 +-0.05 < 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 15%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.15 +0.15 - 0.21 = -0.05 +-0.05 < 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 54%. For those who are not jyka and are yupt, the probability of kwox is 13%. For those who are jyka and are not yupt, the probability of kwox is 24%. For those who are jyka and are yupt, the probability of kwox is 5%. For those who are not jyka and are not qwiu, the probability of yupt is 84%. For those who are not jyka and are qwiu, the probability of yupt is 68%. For those who are jyka and are not qwiu, the probability of yupt is 57%. For those who are jyka and are qwiu, the probability of yupt is 20%. The overall probability of qwiu is 5%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.84 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.57 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.05 +0.05 * (0.05 - 0.24) * 0.68 + 0.95 * (0.13 - 0.54) * 0.57 = -0.10 +-0.10 < 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 54%. For those who are not jyka and are yupt, the probability of kwox is 13%. For those who are jyka and are not yupt, the probability of kwox is 24%. For those who are jyka and are yupt, the probability of kwox is 5%. For those who are not jyka and are not qwiu, the probability of yupt is 84%. For those who are not jyka and are qwiu, the probability of yupt is 68%. For those who are jyka and are not qwiu, the probability of yupt is 57%. For those who are jyka and are qwiu, the probability of yupt is 20%. The overall probability of qwiu is 5%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.84 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.57 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.05 +0.05 * (0.05 - 0.24) * 0.68 + 0.95 * (0.13 - 0.54) * 0.57 = -0.10 +-0.10 < 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 11%. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 15%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.15 +0.11*0.15 - 0.89*0.21 = 0.21 +0.21 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 11%. For those who are not jyka, the probability of kwox is 21%. For those who are jyka, the probability of kwox is 15%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.15 +0.11*0.15 - 0.89*0.21 = 0.21 +0.21 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 11%. The probability of not jyka and kwox is 18%. The probability of jyka and kwox is 1%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.01 +0.01/0.11 - 0.18/0.89 = -0.06 +-0.06 < 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 34%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.34 +0.34 - 0.18 = 0.16 +0.16 > 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 34%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.34 +0.34 - 0.18 = 0.16 +0.16 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 34%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.34 +0.34 - 0.18 = 0.16 +0.16 > 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 36%. For those who are not jyka and are yupt, the probability of kwox is 4%. For those who are jyka and are not yupt, the probability of kwox is 43%. For those who are jyka and are yupt, the probability of kwox is 17%. For those who are not jyka and are not qwiu, the probability of yupt is 16%. For those who are not jyka and are qwiu, the probability of yupt is 95%. For those who are jyka and are not qwiu, the probability of yupt is 4%. For those who are jyka and are qwiu, the probability of yupt is 78%. The overall probability of qwiu is 81%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.04 +P(Y=1 | X=1, V3=0) = 0.43 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0, V2=0) = 0.16 +P(V3=1 | X=0, V2=1) = 0.95 +P(V3=1 | X=1, V2=0) = 0.04 +P(V3=1 | X=1, V2=1) = 0.78 +P(V2=1) = 0.81 +0.81 * 0.04 * (0.78 - 0.04)+ 0.19 * 0.04 * (0.95 - 0.16)= 0.03 +0.03 > 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 0%. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 34%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.00 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.34 +0.00*0.34 - 1.00*0.18 = 0.18 +0.18 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 0%. The probability of not jyka and kwox is 11%. The probability of jyka and kwox is 0%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.00 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.00 +0.00/0.00 - 0.11/1.00 = 0.16 +0.16 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 0%. The probability of not jyka and kwox is 11%. The probability of jyka and kwox is 0%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.00 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.00 +0.00/0.00 - 0.11/1.00 = 0.16 +0.16 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 64%. For those who are jyka, the probability of kwox is 41%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.41 +0.41 - 0.64 = -0.23 +-0.23 < 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 64%. For those who are jyka, the probability of kwox is 41%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.41 +0.41 - 0.64 = -0.23 +-0.23 < 0",arrowhead,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka, the probability of kwox is 64%. For those who are jyka, the probability of kwox is 41%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.41 +0.41 - 0.64 = -0.23 +-0.23 < 0",arrowhead,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 45%. For those who are not jyka and are yupt, the probability of kwox is 83%. For those who are jyka and are not yupt, the probability of kwox is 31%. For those who are jyka and are yupt, the probability of kwox is 61%. For those who are not jyka and are not qwiu, the probability of yupt is 50%. For those who are not jyka and are qwiu, the probability of yupt is 56%. For those who are jyka and are not qwiu, the probability of yupt is 64%. For those who are jyka and are qwiu, the probability of yupt is 15%. The overall probability of qwiu is 63%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.15 +P(V2=1) = 0.63 +0.63 * 0.83 * (0.15 - 0.64)+ 0.37 * 0.83 * (0.56 - 0.50)= -0.08 +-0.08 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 45%. For those who are not jyka and are yupt, the probability of kwox is 83%. For those who are jyka and are not yupt, the probability of kwox is 31%. For those who are jyka and are yupt, the probability of kwox is 61%. For those who are not jyka and are not qwiu, the probability of yupt is 50%. For those who are not jyka and are qwiu, the probability of yupt is 56%. For those who are jyka and are not qwiu, the probability of yupt is 64%. For those who are jyka and are qwiu, the probability of yupt is 15%. The overall probability of qwiu is 63%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.15 +P(V2=1) = 0.63 +0.63 * 0.83 * (0.15 - 0.64)+ 0.37 * 0.83 * (0.56 - 0.50)= -0.08 +-0.08 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 45%. For those who are not jyka and are yupt, the probability of kwox is 83%. For those who are jyka and are not yupt, the probability of kwox is 31%. For those who are jyka and are yupt, the probability of kwox is 61%. For those who are not jyka and are not qwiu, the probability of yupt is 50%. For those who are not jyka and are qwiu, the probability of yupt is 56%. For those who are jyka and are not qwiu, the probability of yupt is 64%. For those who are jyka and are qwiu, the probability of yupt is 15%. The overall probability of qwiu is 63%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.61 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.56 +P(V3=1 | X=1, V2=0) = 0.64 +P(V3=1 | X=1, V2=1) = 0.15 +P(V2=1) = 0.63 +0.63 * (0.61 - 0.31) * 0.56 + 0.37 * (0.83 - 0.45) * 0.64 = -0.13 +-0.13 < 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 34%. For those who are not jyka, the probability of kwox is 64%. For those who are jyka, the probability of kwox is 41%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.41 +0.34*0.41 - 0.66*0.64 = 0.57 +0.57 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 34%. The probability of not jyka and kwox is 43%. The probability of jyka and kwox is 14%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.14 +0.14/0.34 - 0.43/0.66 = -0.24 +-0.24 < 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 34%. The probability of not jyka and kwox is 43%. The probability of jyka and kwox is 14%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.14 +0.14/0.34 - 0.43/0.66 = -0.24 +-0.24 < 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 96%. For those who are not jyka and are yupt, the probability of kwox is 30%. For those who are jyka and are not yupt, the probability of kwox is 92%. For those who are jyka and are yupt, the probability of kwox is 98%. For those who are not jyka and are not qwiu, the probability of yupt is 3%. For those who are not jyka and are qwiu, the probability of yupt is 20%. For those who are jyka and are not qwiu, the probability of yupt is 81%. For those who are jyka and are qwiu, the probability of yupt is 72%. The overall probability of qwiu is 0%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.98 +P(V3=1 | X=0, V2=0) = 0.03 +P(V3=1 | X=0, V2=1) = 0.20 +P(V3=1 | X=1, V2=0) = 0.81 +P(V3=1 | X=1, V2=1) = 0.72 +P(V2=1) = 0.00 +0.00 * 0.30 * (0.72 - 0.81)+ 1.00 * 0.30 * (0.20 - 0.03)= -0.53 +-0.53 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 96%. For those who are not jyka and are yupt, the probability of kwox is 30%. For those who are jyka and are not yupt, the probability of kwox is 92%. For those who are jyka and are yupt, the probability of kwox is 98%. For those who are not jyka and are not qwiu, the probability of yupt is 3%. For those who are not jyka and are qwiu, the probability of yupt is 20%. For those who are jyka and are not qwiu, the probability of yupt is 81%. For those who are jyka and are qwiu, the probability of yupt is 72%. The overall probability of qwiu is 0%.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.98 +P(V3=1 | X=0, V2=0) = 0.03 +P(V3=1 | X=0, V2=1) = 0.20 +P(V3=1 | X=1, V2=0) = 0.81 +P(V3=1 | X=1, V2=1) = 0.72 +P(V2=1) = 0.00 +0.00 * 0.30 * (0.72 - 0.81)+ 1.00 * 0.30 * (0.20 - 0.03)= -0.53 +-0.53 < 0",arrowhead,nonsense5,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +31712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. For those who are not jyka and are not yupt, the probability of kwox is 96%. For those who are not jyka and are yupt, the probability of kwox is 30%. For those who are jyka and are not yupt, the probability of kwox is 92%. For those who are jyka and are yupt, the probability of kwox is 98%. For those who are not jyka and are not qwiu, the probability of yupt is 3%. For those who are not jyka and are qwiu, the probability of yupt is 20%. For those who are jyka and are not qwiu, the probability of yupt is 81%. For those who are jyka and are qwiu, the probability of yupt is 72%. The overall probability of qwiu is 0%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.98 +P(V3=1 | X=0, V2=0) = 0.03 +P(V3=1 | X=0, V2=1) = 0.20 +P(V3=1 | X=1, V2=0) = 0.81 +P(V3=1 | X=1, V2=1) = 0.72 +P(V2=1) = 0.00 +0.00 * (0.98 - 0.92) * 0.20 + 1.00 * (0.30 - 0.96) * 0.81 = -0.02 +-0.02 < 0",arrowhead,nonsense5,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +31715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 90%. For those who are not jyka, the probability of kwox is 94%. For those who are jyka, the probability of kwox is 97%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.97 +0.90*0.97 - 0.10*0.94 = 0.92 +0.92 > 0",arrowhead,nonsense5,1,marginal,P(Y) +31717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. The overall probability of jyka is 90%. The probability of not jyka and kwox is 10%. The probability of jyka and kwox is 87%.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.87 +0.87/0.90 - 0.10/0.10 = 0.03 +0.03 > 0",arrowhead,nonsense5,1,correlation,P(Y | X) +31718,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 55%. For those who are jyka, the probability of kwox is 84%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.84 +0.84 - 0.55 = 0.30 +0.30 > 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 55%. For those who are jyka, the probability of kwox is 84%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.84 +0.84 - 0.55 = 0.30 +0.30 > 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 55%. For those who are jyka, the probability of kwox is 84%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.84 +0.84 - 0.55 = 0.30 +0.30 > 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 55%. For those who are jyka, the probability of kwox is 84%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.84 +0.84 - 0.55 = 0.30 +0.30 > 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 28%. The probability of not jyka and kwox is 39%. The probability of jyka and kwox is 24%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.24 +0.24/0.28 - 0.39/0.72 = 0.30 +0.30 > 0",diamond,nonsense5,1,correlation,P(Y | X) +31729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 28%. The probability of not jyka and kwox is 39%. The probability of jyka and kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.24 +0.24/0.28 - 0.39/0.72 = 0.30 +0.30 > 0",diamond,nonsense5,1,correlation,P(Y | X) +31730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 76%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.76 +0.76 - 0.77 = -0.01 +-0.01 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 76%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.76 +0.76 - 0.77 = -0.01 +-0.01 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 76%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.76 +0.76 - 0.77 = -0.01 +-0.01 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 88%. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 76%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.76 +0.88*0.76 - 0.12*0.77 = 0.77 +0.77 > 0",diamond,nonsense5,1,marginal,P(Y) +31739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 88%. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 76%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.76 +0.88*0.76 - 0.12*0.77 = 0.77 +0.77 > 0",diamond,nonsense5,1,marginal,P(Y) +31744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 9%. For those who are jyka, the probability of kwox is 64%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.64 +0.64 - 0.09 = 0.55 +0.55 > 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 9%. For those who are jyka, the probability of kwox is 64%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.64 +0.64 - 0.09 = 0.55 +0.55 > 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 9%. For those who are jyka, the probability of kwox is 64%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.64 +0.64 - 0.09 = 0.55 +0.55 > 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 13%. The probability of not jyka and kwox is 8%. The probability of jyka and kwox is 8%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.08 +0.08/0.13 - 0.08/0.87 = 0.55 +0.55 > 0",diamond,nonsense5,1,correlation,P(Y | X) +31754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.24 +0.24 - 0.25 = -0.01 +-0.01 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 24%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.24 +0.24 - 0.25 = -0.01 +-0.01 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 24%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.24 +0.24 - 0.25 = -0.01 +-0.01 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.24 +0.24 - 0.25 = -0.01 +-0.01 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.24 +0.24 - 0.25 = -0.01 +-0.01 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 5%. For those who are not jyka, the probability of kwox is 25%. For those who are jyka, the probability of kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.24 +0.05*0.24 - 0.95*0.25 = 0.25 +0.25 > 0",diamond,nonsense5,1,marginal,P(Y) +31769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 42%. For those who are jyka, the probability of kwox is 56%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.56 +0.56 - 0.42 = 0.14 +0.14 > 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 42%. For those who are jyka, the probability of kwox is 56%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.56 +0.56 - 0.42 = 0.14 +0.14 > 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 42%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.56 +0.56 - 0.42 = 0.14 +0.14 > 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 42%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.56 +0.56 - 0.42 = 0.14 +0.14 > 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 12%. For those who are not jyka, the probability of kwox is 42%. For those who are jyka, the probability of kwox is 56%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.56 +0.12*0.56 - 0.88*0.42 = 0.44 +0.44 > 0",diamond,nonsense5,1,marginal,P(Y) +31776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 12%. The probability of not jyka and kwox is 37%. The probability of jyka and kwox is 7%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.07 +0.07/0.12 - 0.37/0.88 = 0.14 +0.14 > 0",diamond,nonsense5,1,correlation,P(Y | X) +31778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 43%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.43 +0.43 - 0.56 = -0.14 +-0.14 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 43%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.43 +0.43 - 0.56 = -0.14 +-0.14 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 43%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.43 +0.43 - 0.56 = -0.14 +-0.14 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 43%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.43 +0.43 - 0.56 = -0.14 +-0.14 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 52%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 43%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.43 +0.52*0.43 - 0.48*0.56 = 0.48 +0.48 > 0",diamond,nonsense5,1,marginal,P(Y) +31787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 52%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 43%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.43 +0.52*0.43 - 0.48*0.56 = 0.48 +0.48 > 0",diamond,nonsense5,1,marginal,P(Y) +31788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 52%. The probability of not jyka and kwox is 27%. The probability of jyka and kwox is 22%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.22 +0.22/0.52 - 0.27/0.48 = -0.14 +-0.14 < 0",diamond,nonsense5,1,correlation,P(Y | X) +31789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 52%. The probability of not jyka and kwox is 27%. The probability of jyka and kwox is 22%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.22 +0.22/0.52 - 0.27/0.48 = -0.14 +-0.14 < 0",diamond,nonsense5,1,correlation,P(Y | X) +31791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 60%. For those who are jyka, the probability of kwox is 50%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.50 +0.50 - 0.60 = -0.10 +-0.10 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 60%. For those who are jyka, the probability of kwox is 50%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.50 +0.50 - 0.60 = -0.10 +-0.10 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 60%. For those who are jyka, the probability of kwox is 50%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.50 +0.50 - 0.60 = -0.10 +-0.10 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 60%. For those who are jyka, the probability of kwox is 50%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.50 +0.50 - 0.60 = -0.10 +-0.10 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. For those who are not jyka, the probability of kwox is 60%. For those who are jyka, the probability of kwox is 50%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.50 +0.53*0.50 - 0.47*0.60 = 0.56 +0.56 > 0",diamond,nonsense5,1,marginal,P(Y) +31800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. The probability of not jyka and kwox is 28%. The probability of jyka and kwox is 26%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.26 +0.26/0.53 - 0.28/0.47 = -0.10 +-0.10 < 0",diamond,nonsense5,1,correlation,P(Y | X) +31801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. The probability of not jyka and kwox is 28%. The probability of jyka and kwox is 26%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.26 +0.26/0.53 - 0.28/0.47 = -0.10 +-0.10 < 0",diamond,nonsense5,1,correlation,P(Y | X) +31802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.64 - 0.66 = -0.03 +-0.03 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.64 - 0.66 = -0.03 +-0.03 < 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.64 - 0.66 = -0.03 +-0.03 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.64 - 0.66 = -0.03 +-0.03 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.64 - 0.66 = -0.03 +-0.03 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 78%. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.78*0.64 - 0.22*0.66 = 0.65 +0.65 > 0",diamond,nonsense5,1,marginal,P(Y) +31811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 78%. For those who are not jyka, the probability of kwox is 66%. For those who are jyka, the probability of kwox is 64%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.64 +0.78*0.64 - 0.22*0.66 = 0.65 +0.65 > 0",diamond,nonsense5,1,marginal,P(Y) +31813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 78%. The probability of not jyka and kwox is 14%. The probability of jyka and kwox is 50%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.50 +0.50/0.78 - 0.14/0.22 = -0.03 +-0.03 < 0",diamond,nonsense5,1,correlation,P(Y | X) +31814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 57%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.56 +0.56 - 0.57 = -0.01 +-0.01 < 0",diamond,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 57%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.56 +0.56 - 0.57 = -0.01 +-0.01 < 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 43%. For those who are not jyka, the probability of kwox is 57%. For those who are jyka, the probability of kwox is 56%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.56 +0.43*0.56 - 0.57*0.57 = 0.64 +0.64 > 0",diamond,nonsense5,1,marginal,P(Y) +31824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 43%. The probability of not jyka and kwox is 33%. The probability of jyka and kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.24 +0.24/0.43 - 0.33/0.57 = -0.01 +-0.01 < 0",diamond,nonsense5,1,correlation,P(Y | X) +31827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 45%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.45 +0.45 - 0.40 = 0.05 +0.05 > 0",diamond,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 45%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.45 +0.45 - 0.40 = 0.05 +0.05 > 0",diamond,nonsense5,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +31834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 45%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.45 +0.53*0.45 - 0.47*0.40 = 0.43 +0.43 > 0",diamond,nonsense5,1,marginal,P(Y) +31835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. For those who are not jyka, the probability of kwox is 40%. For those who are jyka, the probability of kwox is 45%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.45 +0.53*0.45 - 0.47*0.40 = 0.43 +0.43 > 0",diamond,nonsense5,1,marginal,P(Y) +31836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 24%.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.24 +0.24/0.53 - 0.19/0.47 = 0.05 +0.05 > 0",diamond,nonsense5,1,correlation,P(Y | X) +31837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 53%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 24%.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.24 +0.24/0.53 - 0.19/0.47 = 0.05 +0.05 > 0",diamond,nonsense5,1,correlation,P(Y | X) +31838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31839,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 58%. For those who are not yu'detpt and are jyka, the probability of kwox is 45%. For those who are yupt and are not jyka, the probability of kwox is 58%. For those who are yupt and are jyka, the probability of kwox is 45%. The overall probability of yupt is 38%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.58 +P(Y=1 | V1=0, X=1) = 0.45 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.38 +0.62 * (0.45 - 0.58) 0.38 * (0.45 - 0.58) = -0.13 +-0.13 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 58%. For those who are not yu'detpt and are jyka, the probability of kwox is 45%. For those who are yupt and are not jyka, the probability of kwox is 58%. For those who are yupt and are jyka, the probability of kwox is 45%. The overall probability of yupt is 38%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.58 +P(Y=1 | V1=0, X=1) = 0.45 +P(Y=1 | V1=1, X=0) = 0.58 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.38 +0.62 * (0.45 - 0.58) 0.38 * (0.45 - 0.58) = -0.13 +-0.13 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 71%. For those who are not jyka and are qwiu, the probability of kwox is 36%. For those who are jyka and are not qwiu, the probability of kwox is 45%. For those who are jyka and are qwiu, the probability of kwox is 46%. For those who are not jyka, the probability of qwiu is 37%. For those who are jyka, the probability of qwiu is 37%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.37 +P(V3=1 | X=1) = 0.37 +0.37 * (0.46 - 0.45) + 0.37 * (0.36 - 0.71) = -0.12 +-0.12 < 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 71%. For those who are not jyka and are qwiu, the probability of kwox is 36%. For those who are jyka and are not qwiu, the probability of kwox is 45%. For those who are jyka and are qwiu, the probability of kwox is 46%. For those who are not jyka, the probability of qwiu is 37%. For those who are jyka, the probability of qwiu is 37%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0) = 0.37 +P(V3=1 | X=1) = 0.37 +0.37 * (0.46 - 0.45) + 0.37 * (0.36 - 0.71) = -0.12 +-0.12 < 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 19%. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 45%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.45 +0.19*0.45 - 0.81*0.58 = 0.56 +0.56 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 19%. For those who are not jyka, the probability of kwox is 58%. For those who are jyka, the probability of kwox is 45%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.45 +0.19*0.45 - 0.81*0.58 = 0.56 +0.56 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 74%. For those who are not jyka and are qwiu, the probability of kwox is 89%. For those who are jyka and are not qwiu, the probability of kwox is 19%. For those who are jyka and are qwiu, the probability of kwox is 17%. For those who are not jyka, the probability of qwiu is 24%. For those who are jyka, the probability of qwiu is 15%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.15 +0.15 * (0.17 - 0.19) + 0.24 * (0.89 - 0.74) = -0.57 +-0.57 < 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 74%. For those who are not jyka and are qwiu, the probability of kwox is 89%. For those who are jyka and are not qwiu, the probability of kwox is 19%. For those who are jyka and are qwiu, the probability of kwox is 17%. For those who are not jyka, the probability of qwiu is 24%. For those who are jyka, the probability of qwiu is 15%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.19 +P(Y=1 | X=1, V3=1) = 0.17 +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.15 +0.15 * (0.17 - 0.19) + 0.24 * (0.89 - 0.74) = -0.57 +-0.57 < 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 47%. For those who are not jyka, the probability of kwox is 77%. For those who are jyka, the probability of kwox is 19%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.19 +0.47*0.19 - 0.53*0.77 = 0.49 +0.49 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 47%. The probability of not jyka and kwox is 41%. The probability of jyka and kwox is 9%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.09 +0.09/0.47 - 0.41/0.53 = -0.59 +-0.59 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 47%. The probability of not jyka and kwox is 41%. The probability of jyka and kwox is 9%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.09 +0.09/0.47 - 0.41/0.53 = -0.59 +-0.59 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 28%. For those who are not yu'detpt and are jyka, the probability of kwox is 55%. For those who are yupt and are not jyka, the probability of kwox is 19%. For those who are yupt and are jyka, the probability of kwox is 65%. The overall probability of yupt is 65%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.28 +P(Y=1 | V1=0, X=1) = 0.55 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.65 +P(V1=1) = 0.65 +0.35 * (0.55 - 0.28) 0.65 * (0.65 - 0.19) = 0.39 +0.39 > 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 28%. For those who are not yu'detpt and are jyka, the probability of kwox is 55%. For those who are yupt and are not jyka, the probability of kwox is 19%. For those who are yupt and are jyka, the probability of kwox is 65%. The overall probability of yupt is 65%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.28 +P(Y=1 | V1=0, X=1) = 0.55 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.65 +P(V1=1) = 0.65 +0.35 * (0.55 - 0.28) 0.65 * (0.65 - 0.19) = 0.39 +0.39 > 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 28%. For those who are not jyka and are qwiu, the probability of kwox is 16%. For those who are jyka and are not qwiu, the probability of kwox is 54%. For those who are jyka and are qwiu, the probability of kwox is 68%. For those who are not jyka, the probability of qwiu is 74%. For those who are jyka, the probability of qwiu is 42%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.16 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.68 +P(V3=1 | X=0) = 0.74 +P(V3=1 | X=1) = 0.42 +0.42 * (0.68 - 0.54) + 0.74 * (0.16 - 0.28) = 0.36 +0.36 > 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 28%. For those who are not jyka and are qwiu, the probability of kwox is 16%. For those who are jyka and are not qwiu, the probability of kwox is 54%. For those who are jyka and are qwiu, the probability of kwox is 68%. For those who are not jyka, the probability of qwiu is 74%. For those who are jyka, the probability of qwiu is 42%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.16 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.68 +P(V3=1 | X=0) = 0.74 +P(V3=1 | X=1) = 0.42 +0.42 * (0.68 - 0.54) + 0.74 * (0.16 - 0.28) = 0.36 +0.36 > 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 64%. For those who are not jyka, the probability of kwox is 19%. For those who are jyka, the probability of kwox is 60%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.60 +0.64*0.60 - 0.36*0.19 = 0.47 +0.47 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 64%. The probability of not jyka and kwox is 7%. The probability of jyka and kwox is 38%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.38 +0.38/0.64 - 0.07/0.36 = 0.40 +0.40 > 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 76%. For those who are not yu'detpt and are jyka, the probability of kwox is 64%. For those who are yupt and are not jyka, the probability of kwox is 38%. For those who are yupt and are jyka, the probability of kwox is 68%. The overall probability of yupt is 50%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.64 +P(Y=1 | V1=1, X=0) = 0.38 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.50 +0.50 * (0.64 - 0.76) 0.50 * (0.68 - 0.38) = 0.09 +0.09 > 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 35%. For those who are not jyka and are qwiu, the probability of kwox is 88%. For those who are jyka and are not qwiu, the probability of kwox is 68%. For those who are jyka and are qwiu, the probability of kwox is 62%. For those who are not jyka, the probability of qwiu is 33%. For those who are jyka, the probability of qwiu is 47%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.33 +P(V3=1 | X=1) = 0.47 +0.47 * (0.62 - 0.68) + 0.33 * (0.88 - 0.35) = 0.06 +0.06 > 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 35%. For those who are not jyka and are qwiu, the probability of kwox is 88%. For those who are jyka and are not qwiu, the probability of kwox is 68%. For those who are jyka and are qwiu, the probability of kwox is 62%. For those who are not jyka, the probability of qwiu is 33%. For those who are jyka, the probability of qwiu is 47%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.33 +P(V3=1 | X=1) = 0.47 +0.47 * (0.62 - 0.68) + 0.33 * (0.88 - 0.35) = 0.06 +0.06 > 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 62%. The probability of not jyka and kwox is 20%. The probability of jyka and kwox is 41%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.41 +0.41/0.62 - 0.20/0.38 = 0.13 +0.13 > 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 73%. For those who are not yu'detpt and are jyka, the probability of kwox is 63%. For those who are yupt and are not jyka, the probability of kwox is 76%. For those who are yupt and are jyka, the probability of kwox is 56%. The overall probability of yupt is 83%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.73 +P(Y=1 | V1=0, X=1) = 0.63 +P(Y=1 | V1=1, X=0) = 0.76 +P(Y=1 | V1=1, X=1) = 0.56 +P(V1=1) = 0.83 +0.17 * (0.63 - 0.73) 0.83 * (0.56 - 0.76) = -0.19 +-0.19 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 56%. For those who are not jyka, the probability of kwox is 76%. For those who are jyka, the probability of kwox is 57%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.57 +0.56*0.57 - 0.44*0.76 = 0.65 +0.65 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 56%. For those who are not jyka, the probability of kwox is 76%. For those who are jyka, the probability of kwox is 57%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.57 +0.56*0.57 - 0.44*0.76 = 0.65 +0.65 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 56%. The probability of not jyka and kwox is 33%. The probability of jyka and kwox is 32%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.32 +0.32/0.56 - 0.33/0.44 = -0.19 +-0.19 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 48%. For those who are not yu'detpt and are jyka, the probability of kwox is 22%. For those who are yupt and are not jyka, the probability of kwox is 47%. For those who are yupt and are jyka, the probability of kwox is 20%. The overall probability of yupt is 22%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.48 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.47 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.22 +0.78 * (0.22 - 0.48) 0.22 * (0.20 - 0.47) = -0.27 +-0.27 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 90%. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 21%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.21 +0.90*0.21 - 0.10*0.48 = 0.24 +0.24 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 90%. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 21%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.21 +0.90*0.21 - 0.10*0.48 = 0.24 +0.24 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 90%. The probability of not jyka and kwox is 5%. The probability of jyka and kwox is 19%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.19 +0.19/0.90 - 0.05/0.10 = -0.26 +-0.26 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 90%. The probability of not jyka and kwox is 5%. The probability of jyka and kwox is 19%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.19 +0.19/0.90 - 0.05/0.10 = -0.26 +-0.26 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31899,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 21%. For those who are not yu'detpt and are jyka, the probability of kwox is 18%. For those who are yupt and are not jyka, the probability of kwox is 16%. For those who are yupt and are jyka, the probability of kwox is 12%. The overall probability of yupt is 46%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.21 +P(Y=1 | V1=0, X=1) = 0.18 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.46 +0.54 * (0.18 - 0.21) 0.46 * (0.12 - 0.16) = -0.03 +-0.03 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 21%. For those who are not yu'detpt and are jyka, the probability of kwox is 18%. For those who are yupt and are not jyka, the probability of kwox is 16%. For those who are yupt and are jyka, the probability of kwox is 12%. The overall probability of yupt is 46%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.21 +P(Y=1 | V1=0, X=1) = 0.18 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.46 +0.54 * (0.18 - 0.21) 0.46 * (0.12 - 0.16) = -0.03 +-0.03 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 13%. For those who are not jyka and are qwiu, the probability of kwox is 51%. For those who are jyka and are not qwiu, the probability of kwox is 9%. For those who are jyka and are qwiu, the probability of kwox is 56%. For those who are not jyka, the probability of qwiu is 14%. For those who are jyka, the probability of qwiu is 15%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.13 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.56 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.15 +0.15 * (0.56 - 0.09) + 0.14 * (0.51 - 0.13) = -0.03 +-0.03 < 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 15%. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 16%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.16 +0.15*0.16 - 0.85*0.18 = 0.18 +0.18 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 15%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 2%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.02 +0.02/0.15 - 0.16/0.85 = -0.03 +-0.03 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 15%. The probability of not jyka and kwox is 16%. The probability of jyka and kwox is 2%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.02 +0.02/0.15 - 0.16/0.85 = -0.03 +-0.03 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 80%. For those who are not yu'detpt and are jyka, the probability of kwox is 71%. For those who are yupt and are not jyka, the probability of kwox is 29%. For those who are yupt and are jyka, the probability of kwox is 11%. The overall probability of yupt is 96%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.29 +P(Y=1 | V1=1, X=1) = 0.11 +P(V1=1) = 0.96 +0.04 * (0.71 - 0.80) 0.96 * (0.11 - 0.29) = -0.17 +-0.17 < 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 29%. For those who are not jyka and are qwiu, the probability of kwox is 99%. For those who are jyka and are not qwiu, the probability of kwox is 11%. For those who are jyka and are qwiu, the probability of kwox is 94%. For those who are not jyka, the probability of qwiu is 1%. For those who are jyka, the probability of qwiu is 5%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.29 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.11 +P(Y=1 | X=1, V3=1) = 0.94 +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.05 +0.05 * (0.94 - 0.11) + 0.01 * (0.99 - 0.29) = -0.17 +-0.17 < 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 61%. For those who are not jyka, the probability of kwox is 30%. For those who are jyka, the probability of kwox is 15%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.15 +0.61*0.15 - 0.39*0.30 = 0.21 +0.21 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 61%. The probability of not jyka and kwox is 12%. The probability of jyka and kwox is 9%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.09 +0.09/0.61 - 0.12/0.39 = -0.14 +-0.14 < 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 17%. For those who are not yu'detpt and are jyka, the probability of kwox is 81%. For those who are yupt and are not jyka, the probability of kwox is 16%. For those who are yupt and are jyka, the probability of kwox is 81%. The overall probability of yupt is 99%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.17 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.99 +0.01 * (0.81 - 0.17) 0.99 * (0.81 - 0.16) = 0.65 +0.65 > 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 13%. For those who are not jyka and are qwiu, the probability of kwox is 26%. For those who are jyka and are not qwiu, the probability of kwox is 80%. For those who are jyka and are qwiu, the probability of kwox is 84%. For those who are not jyka, the probability of qwiu is 21%. For those who are jyka, the probability of qwiu is 21%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.13 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0) = 0.21 +P(V3=1 | X=1) = 0.21 +0.21 * (0.84 - 0.80) + 0.21 * (0.26 - 0.13) = 0.65 +0.65 > 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 86%. For those who are not jyka, the probability of kwox is 16%. For those who are jyka, the probability of kwox is 81%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.16 +P(Y=1 | X=1) = 0.81 +0.86*0.81 - 0.14*0.16 = 0.72 +0.72 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not yu'detpt and are not jyka, the probability of kwox is 47%. For those who are not yu'detpt and are jyka, the probability of kwox is 88%. For those who are yupt and are not jyka, the probability of kwox is 48%. For those who are yupt and are jyka, the probability of kwox is 76%. The overall probability of yupt is 42%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.47 +P(Y=1 | V1=0, X=1) = 0.88 +P(Y=1 | V1=1, X=0) = 0.48 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.42 +0.58 * (0.88 - 0.47) 0.42 * (0.76 - 0.48) = 0.35 +0.35 > 0",diamondcut,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. For those who are not jyka and are not qwiu, the probability of kwox is 57%. For those who are not jyka and are qwiu, the probability of kwox is 46%. For those who are jyka and are not qwiu, the probability of kwox is 2%. For those who are jyka and are qwiu, the probability of kwox is 97%. For those who are not jyka, the probability of qwiu is 86%. For those who are jyka, the probability of qwiu is 84%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.57 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.02 +P(Y=1 | X=1, V3=1) = 0.97 +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.84 +0.84 * (0.97 - 0.02) + 0.86 * (0.46 - 0.57) = 0.34 +0.34 > 0",diamondcut,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 59%. For those who are not jyka, the probability of kwox is 47%. For those who are jyka, the probability of kwox is 82%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.82 +0.59*0.82 - 0.41*0.47 = 0.68 +0.68 > 0",diamondcut,nonsense5,1,marginal,P(Y) +31936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 59%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 49%.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.49 +0.49/0.59 - 0.19/0.41 = 0.35 +0.35 > 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. The overall probability of jyka is 59%. The probability of not jyka and kwox is 19%. The probability of jyka and kwox is 49%.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.49 +0.49/0.59 - 0.19/0.41 = 0.35 +0.35 > 0",diamondcut,nonsense5,1,correlation,P(Y | X) +31938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to qwiu.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to qwiu. Method 2: We look directly at how jyka correlates with kwox in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 38%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.38 +0.38 - 0.32 = 0.06 +0.06 > 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 32%. For those who are jyka, the probability of kwox is 38%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.38 +0.38 - 0.32 = 0.06 +0.06 > 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 80%. The probability of not jyka and kwox is 6%. The probability of jyka and kwox is 31%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.31 +0.31/0.80 - 0.06/0.20 = 0.06 +0.06 > 0",fork,nonsense5,1,correlation,P(Y | X) +31948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 65%. For those who are jyka, the probability of kwox is 19%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.19 +0.19 - 0.65 = -0.46 +-0.46 < 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 65%. For those who are jyka, the probability of kwox is 19%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.19 +0.19 - 0.65 = -0.46 +-0.46 < 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 60%. For those who are not jyka, the probability of kwox is 65%. For those who are jyka, the probability of kwox is 19%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.19 +0.60*0.19 - 0.40*0.65 = 0.37 +0.37 > 0",fork,nonsense5,1,marginal,P(Y) +31956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 60%. The probability of not jyka and kwox is 26%. The probability of jyka and kwox is 11%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.11 +0.11/0.60 - 0.26/0.40 = -0.46 +-0.46 < 0",fork,nonsense5,1,correlation,P(Y | X) +31960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 58%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.58 +0.58 - 0.18 = 0.40 +0.40 > 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 58%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.58 +0.58 - 0.18 = 0.40 +0.40 > 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 43%. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 58%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.58 +0.43*0.58 - 0.57*0.18 = 0.35 +0.35 > 0",fork,nonsense5,1,marginal,P(Y) +31965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 43%. For those who are not jyka, the probability of kwox is 18%. For those who are jyka, the probability of kwox is 58%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.58 +0.43*0.58 - 0.57*0.18 = 0.35 +0.35 > 0",fork,nonsense5,1,marginal,P(Y) +31966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 43%. The probability of not jyka and kwox is 10%. The probability of jyka and kwox is 25%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.25 +0.25/0.43 - 0.10/0.57 = 0.40 +0.40 > 0",fork,nonsense5,1,correlation,P(Y | X) +31968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 32%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.32 +0.32 - 0.75 = -0.43 +-0.43 < 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 32%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.32 +0.32 - 0.75 = -0.43 +-0.43 < 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 32%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.32 +0.32 - 0.75 = -0.43 +-0.43 < 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 59%. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 32%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.32 +0.59*0.32 - 0.41*0.75 = 0.49 +0.49 > 0",fork,nonsense5,1,marginal,P(Y) +31976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 59%. The probability of not jyka and kwox is 31%. The probability of jyka and kwox is 18%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.18 +0.18/0.59 - 0.31/0.41 = -0.43 +-0.43 < 0",fork,nonsense5,1,correlation,P(Y | X) +31979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +31980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 85%. For those who are jyka, the probability of kwox is 32%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.32 +0.32 - 0.85 = -0.54 +-0.54 < 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 85%. For those who are jyka, the probability of kwox is 32%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.32 +0.32 - 0.85 = -0.54 +-0.54 < 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 85%. For those who are jyka, the probability of kwox is 32%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.32 +0.32 - 0.85 = -0.54 +-0.54 < 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 85%. For those who are jyka, the probability of kwox is 32%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.32 +0.32 - 0.85 = -0.54 +-0.54 < 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 94%. The probability of not jyka and kwox is 5%. The probability of jyka and kwox is 30%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.30 +0.30/0.94 - 0.05/0.06 = -0.54 +-0.54 < 0",fork,nonsense5,1,correlation,P(Y | X) +31987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 94%. The probability of not jyka and kwox is 5%. The probability of jyka and kwox is 30%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.30 +0.30/0.94 - 0.05/0.06 = -0.54 +-0.54 < 0",fork,nonsense5,1,correlation,P(Y | X) +31990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 48%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.48 +0.48 - 0.48 = 0.00 +0.00 = 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +31993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 48%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.48 +0.48 - 0.48 = 0.00 +0.00 = 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +31994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 18%. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 48%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.48 +0.18*0.48 - 0.82*0.48 = 0.48 +0.48 > 0",fork,nonsense5,1,marginal,P(Y) +31997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 18%. The probability of not jyka and kwox is 39%. The probability of jyka and kwox is 9%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.09 +0.09/0.18 - 0.39/0.82 = 0.00 +0.00 = 0",fork,nonsense5,1,correlation,P(Y | X) +31998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 76%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.76 +0.76 - 0.56 = 0.21 +0.21 > 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 76%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.76 +0.76 - 0.56 = 0.21 +0.21 > 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 76%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.76 +0.76 - 0.56 = 0.21 +0.21 > 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 76%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.76 +0.76 - 0.56 = 0.21 +0.21 > 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 16%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 76%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.76 +0.16*0.76 - 0.84*0.56 = 0.59 +0.59 > 0",fork,nonsense5,1,marginal,P(Y) +32005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 16%. For those who are not jyka, the probability of kwox is 56%. For those who are jyka, the probability of kwox is 76%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.76 +0.16*0.76 - 0.84*0.56 = 0.59 +0.59 > 0",fork,nonsense5,1,marginal,P(Y) +32006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 16%. The probability of not jyka and kwox is 46%. The probability of jyka and kwox is 12%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.12 +0.12/0.16 - 0.46/0.84 = 0.21 +0.21 > 0",fork,nonsense5,1,correlation,P(Y | X) +32008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 17%. For those who are jyka, the probability of kwox is 36%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.36 +0.36 - 0.17 = 0.19 +0.19 > 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 17%. For those who are jyka, the probability of kwox is 36%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.36 +0.36 - 0.17 = 0.19 +0.19 > 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 45%. For those who are not jyka, the probability of kwox is 17%. For those who are jyka, the probability of kwox is 36%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.36 +0.45*0.36 - 0.55*0.17 = 0.26 +0.26 > 0",fork,nonsense5,1,marginal,P(Y) +32015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 45%. For those who are not jyka, the probability of kwox is 17%. For those who are jyka, the probability of kwox is 36%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.36 +0.45*0.36 - 0.55*0.17 = 0.26 +0.26 > 0",fork,nonsense5,1,marginal,P(Y) +32017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 45%. The probability of not jyka and kwox is 9%. The probability of jyka and kwox is 16%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.16 +0.16/0.45 - 0.09/0.55 = 0.19 +0.19 > 0",fork,nonsense5,1,correlation,P(Y | X) +32019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 36%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.36 +0.36 - 0.75 = -0.39 +-0.39 < 0",fork,nonsense5,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 36%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.36 +0.36 - 0.75 = -0.39 +-0.39 < 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 98%. For those who are not jyka, the probability of kwox is 75%. For those who are jyka, the probability of kwox is 36%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.36 +0.98*0.36 - 0.02*0.75 = 0.37 +0.37 > 0",fork,nonsense5,1,marginal,P(Y) +32026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 98%. The probability of not jyka and kwox is 2%. The probability of jyka and kwox is 35%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.35 +0.35/0.98 - 0.02/0.02 = -0.39 +-0.39 < 0",fork,nonsense5,1,correlation,P(Y | X) +32027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 98%. The probability of not jyka and kwox is 2%. The probability of jyka and kwox is 35%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.35 +0.35/0.98 - 0.02/0.02 = -0.39 +-0.39 < 0",fork,nonsense5,1,correlation,P(Y | X) +32028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 27%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.27 +0.27 - 0.48 = -0.21 +-0.21 < 0",fork,nonsense5,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 21%. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 27%.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.27 +0.21*0.27 - 0.79*0.48 = 0.44 +0.44 > 0",fork,nonsense5,1,marginal,P(Y) +32035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 21%. For those who are not jyka, the probability of kwox is 48%. For those who are jyka, the probability of kwox is 27%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.27 +0.21*0.27 - 0.79*0.48 = 0.44 +0.44 > 0",fork,nonsense5,1,marginal,P(Y) +32037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. The overall probability of jyka is 21%. The probability of not jyka and kwox is 38%. The probability of jyka and kwox is 6%.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.06 +0.06/0.21 - 0.38/0.79 = -0.21 +-0.21 < 0",fork,nonsense5,1,correlation,P(Y | X) +32038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look at how jyka correlates with kwox case by case according to yupt. Method 2: We look directly at how jyka correlates with kwox in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. Method 1: We look directly at how jyka correlates with kwox in general. Method 2: We look at this correlation case by case according to yupt.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense5,2,backadj,[backdoor adjustment set for Y given X] +32043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 76%. For those who are yupt, the probability of muvq is 77%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.77 +0.77 - 0.76 = 0.01 +0.01 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 76%. For those who are yupt, the probability of muvq is 77%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.77 +0.77 - 0.76 = 0.01 +0.01 > 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 69%. The probability of not yupt and muvq is 23%. The probability of yupt and muvq is 53%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.53 +0.53/0.69 - 0.23/0.31 = 0.01 +0.01 > 0",chain,nonsense6,1,correlation,P(Y | X) +32053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 10%. For those who are yupt, the probability of muvq is 28%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.28 +0.28 - 0.10 = 0.18 +0.18 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 10%. For those who are yupt, the probability of muvq is 28%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.28 +0.28 - 0.10 = 0.18 +0.18 > 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 56%. For those who are not yupt, the probability of muvq is 10%. For those who are yupt, the probability of muvq is 28%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.28 +0.56*0.28 - 0.44*0.10 = 0.20 +0.20 > 0",chain,nonsense6,1,marginal,P(Y) +32059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 56%. For those who are not yupt, the probability of muvq is 10%. For those who are yupt, the probability of muvq is 28%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.28 +0.56*0.28 - 0.44*0.10 = 0.20 +0.20 > 0",chain,nonsense6,1,marginal,P(Y) +32060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 56%. The probability of not yupt and muvq is 4%. The probability of yupt and muvq is 16%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.16 +0.16/0.56 - 0.04/0.44 = 0.18 +0.18 > 0",chain,nonsense6,1,correlation,P(Y | X) +32061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 56%. The probability of not yupt and muvq is 4%. The probability of yupt and muvq is 16%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.16 +0.16/0.56 - 0.04/0.44 = 0.18 +0.18 > 0",chain,nonsense6,1,correlation,P(Y | X) +32062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 97%. For those who are yupt, the probability of muvq is 93%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.93 +0.93 - 0.97 = -0.04 +-0.04 < 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 97%. For those who are yupt, the probability of muvq is 93%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.93 +0.93 - 0.97 = -0.04 +-0.04 < 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32070,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 44%. For those who are not yupt, the probability of muvq is 97%. For those who are yupt, the probability of muvq is 93%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.93 +0.44*0.93 - 0.56*0.97 = 0.95 +0.95 > 0",chain,nonsense6,1,marginal,P(Y) +32071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 44%. For those who are not yupt, the probability of muvq is 97%. For those who are yupt, the probability of muvq is 93%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.97 +P(Y=1 | X=1) = 0.93 +0.44*0.93 - 0.56*0.97 = 0.95 +0.95 > 0",chain,nonsense6,1,marginal,P(Y) +32072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 44%. The probability of not yupt and muvq is 54%. The probability of yupt and muvq is 41%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.41 +0.41/0.44 - 0.54/0.56 = -0.04 +-0.04 < 0",chain,nonsense6,1,correlation,P(Y | X) +32073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 44%. The probability of not yupt and muvq is 54%. The probability of yupt and muvq is 41%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.41 +0.41/0.44 - 0.54/0.56 = -0.04 +-0.04 < 0",chain,nonsense6,1,correlation,P(Y | X) +32075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32076,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 62%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.62 +0.62 - 0.59 = 0.03 +0.03 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 62%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.62 +0.62 - 0.59 = 0.03 +0.03 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 62%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.62 +0.62 - 0.59 = 0.03 +0.03 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 62%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.62 +0.62 - 0.59 = 0.03 +0.03 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 62%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.62 +0.62 - 0.59 = 0.03 +0.03 > 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 46%. The probability of not yupt and muvq is 32%. The probability of yupt and muvq is 29%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.29 +0.29/0.46 - 0.32/0.54 = 0.03 +0.03 > 0",chain,nonsense6,1,correlation,P(Y | X) +32086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 83%. For those who are yupt, the probability of muvq is 86%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.86 +0.86 - 0.83 = 0.02 +0.02 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32093,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 83%. For those who are yupt, the probability of muvq is 86%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.86 +0.86 - 0.83 = 0.02 +0.02 > 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 82%. For those who are not yupt, the probability of muvq is 83%. For those who are yupt, the probability of muvq is 86%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.86 +0.82*0.86 - 0.18*0.83 = 0.85 +0.85 > 0",chain,nonsense6,1,marginal,P(Y) +32095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 82%. For those who are not yupt, the probability of muvq is 83%. For those who are yupt, the probability of muvq is 86%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.86 +0.82*0.86 - 0.18*0.83 = 0.85 +0.85 > 0",chain,nonsense6,1,marginal,P(Y) +32096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 82%. The probability of not yupt and muvq is 15%. The probability of yupt and muvq is 70%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.70 +0.70/0.82 - 0.15/0.18 = 0.02 +0.02 > 0",chain,nonsense6,1,correlation,P(Y | X) +32099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 47%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32102,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 47%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 47%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 47%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.47 - 0.51 = -0.04 +-0.04 < 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 54%. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 47%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.54*0.47 - 0.46*0.51 = 0.49 +0.49 > 0",chain,nonsense6,1,marginal,P(Y) +32107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 54%. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 47%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.47 +0.54*0.47 - 0.46*0.51 = 0.49 +0.49 > 0",chain,nonsense6,1,marginal,P(Y) +32108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 54%. The probability of not yupt and muvq is 23%. The probability of yupt and muvq is 25%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.25 +0.25/0.54 - 0.23/0.46 = -0.04 +-0.04 < 0",chain,nonsense6,1,correlation,P(Y | X) +32110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 15%. For those who are yupt, the probability of muvq is 81%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.81 +0.81 - 0.15 = 0.66 +0.66 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 15%. For those who are yupt, the probability of muvq is 81%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.81 +0.81 - 0.15 = 0.66 +0.66 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 15%. For those who are yupt, the probability of muvq is 81%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.81 +0.81 - 0.15 = 0.66 +0.66 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 15%. For those who are yupt, the probability of muvq is 81%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.81 +0.81 - 0.15 = 0.66 +0.66 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 15%. For those who are yupt, the probability of muvq is 81%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.81 +0.81 - 0.15 = 0.66 +0.66 > 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 15%. For those who are yupt, the probability of muvq is 81%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.81 +0.81 - 0.15 = 0.66 +0.66 > 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 14%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.14 +0.14 - 0.11 = 0.03 +0.03 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 14%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.14 +0.14 - 0.11 = 0.03 +0.03 > 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 14%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.14 +0.14 - 0.11 = 0.03 +0.03 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 14%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.14 +0.14 - 0.11 = 0.03 +0.03 > 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 91%. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 14%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.14 +0.91*0.14 - 0.09*0.11 = 0.14 +0.14 > 0",chain,nonsense6,1,marginal,P(Y) +32131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 91%. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 14%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.14 +0.91*0.14 - 0.09*0.11 = 0.14 +0.14 > 0",chain,nonsense6,1,marginal,P(Y) +32132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 91%. The probability of not yupt and muvq is 1%. The probability of yupt and muvq is 13%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.13 +0.13/0.91 - 0.01/0.09 = 0.03 +0.03 > 0",chain,nonsense6,1,correlation,P(Y | X) +32133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 91%. The probability of not yupt and muvq is 1%. The probability of yupt and muvq is 13%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.13 +0.13/0.91 - 0.01/0.09 = 0.03 +0.03 > 0",chain,nonsense6,1,correlation,P(Y | X) +32134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 25%. For those who are yupt, the probability of muvq is 25%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.25 - 0.25 = -0.00 +0.00 = 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 25%. For those who are yupt, the probability of muvq is 25%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.25 - 0.25 = -0.00 +0.00 = 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 25%. For those who are yupt, the probability of muvq is 25%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.25 - 0.25 = -0.00 +0.00 = 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 25%. For those who are yupt, the probability of muvq is 25%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.25 - 0.25 = -0.00 +0.00 = 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 67%. For those who are not yupt, the probability of muvq is 25%. For those who are yupt, the probability of muvq is 25%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.67*0.25 - 0.33*0.25 = 0.25 +0.25 > 0",chain,nonsense6,1,marginal,P(Y) +32143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 67%. For those who are not yupt, the probability of muvq is 25%. For those who are yupt, the probability of muvq is 25%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.25 +0.67*0.25 - 0.33*0.25 = 0.25 +0.25 > 0",chain,nonsense6,1,marginal,P(Y) +32145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 67%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 17%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.17 +0.17/0.67 - 0.08/0.33 = -0.00 +0.00 = 0",chain,nonsense6,1,correlation,P(Y | X) +32148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 56%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.56 +0.56 - 0.59 = -0.02 +-0.02 < 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 56%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.56 +0.56 - 0.59 = -0.02 +-0.02 < 0",chain,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 56%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.56 +0.56 - 0.59 = -0.02 +-0.02 < 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 56%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.56 +0.56 - 0.59 = -0.02 +-0.02 < 0",chain,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 56%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.56 +0.56 - 0.59 = -0.02 +-0.02 < 0",chain,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. The overall probability of yupt is 2%. The probability of not yupt and muvq is 58%. The probability of yupt and muvq is 1%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.58/0.98 = -0.02 +-0.02 < 0",chain,nonsense6,1,correlation,P(Y | X) +32158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 81%. For those who are not yupt, the probability of muvq is 13%. For those who are yupt, the probability of muvq is 13%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.13 +0.81*0.13 - 0.19*0.13 = 0.13 +0.13 > 0",collision,nonsense6,1,marginal,P(Y) +32164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.19.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 97%. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 11%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.11 +0.97*0.11 - 0.03*0.11 = 0.11 +0.11 > 0",collision,nonsense6,1,marginal,P(Y) +32171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 97%. For those who are not yupt, the probability of muvq is 11%. For those who are yupt, the probability of muvq is 11%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.11 +0.97*0.11 - 0.03*0.11 = 0.11 +0.11 > 0",collision,nonsense6,1,marginal,P(Y) +32179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 97%. For those who are not yupt and are not zupj, the probability of muvq is 3%. For those who are not yupt and are zupj, the probability of muvq is 62%. For those who are yupt and are not zupj, the probability of muvq is 12%. For those who are yupt and are zupj, the probability of muvq is 10%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.97 +P(Y=1 | X=0, V3=0) = 0.03 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.12 +P(Y=1 | X=1, V3=1) = 0.10 +0.10 - (0.97*0.10 + 0.03*0.62) = -0.01 +-0.01 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 5%. For those who are not yupt, the probability of muvq is 13%. For those who are yupt, the probability of muvq is 13%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.13 +0.05*0.13 - 0.95*0.13 = 0.13 +0.13 > 0",collision,nonsense6,1,marginal,P(Y) +32181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 5%. For those who are not yupt, the probability of muvq is 13%. For those who are yupt, the probability of muvq is 13%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.13 +0.05*0.13 - 0.95*0.13 = 0.13 +0.13 > 0",collision,nonsense6,1,marginal,P(Y) +32184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.21.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.21.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 5%. For those who are not yupt and are not zupj, the probability of muvq is 0%. For those who are not yupt and are zupj, the probability of muvq is 47%. For those who are yupt and are not zupj, the probability of muvq is 13%. For those who are yupt and are zupj, the probability of muvq is 13%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.13 +P(Y=1 | X=1, V3=1) = 0.13 +0.13 - (0.05*0.13 + 0.95*0.47) = -0.31 +-0.31 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 5%. For those who are not yupt and are not zupj, the probability of muvq is 0%. For those who are not yupt and are zupj, the probability of muvq is 47%. For those who are yupt and are not zupj, the probability of muvq is 13%. For those who are yupt and are zupj, the probability of muvq is 13%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.13 +P(Y=1 | X=1, V3=1) = 0.13 +0.13 - (0.05*0.13 + 0.95*0.47) = -0.31 +-0.31 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 5%. For those who are not yupt, the probability of muvq is 94%. For those who are yupt, the probability of muvq is 94%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.94 +0.05*0.94 - 0.95*0.94 = 0.94 +0.94 > 0",collision,nonsense6,1,marginal,P(Y) +32194,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.40.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.40.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 5%. For those who are not yupt and are not zupj, the probability of muvq is 76%. For those who are not yupt and are zupj, the probability of muvq is 99%. For those who are yupt and are not zupj, the probability of muvq is 99%. For those who are yupt and are zupj, the probability of muvq is 34%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.05 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.99 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.34 +0.34 - (0.05*0.34 + 0.95*0.99) = -0.64 +-0.64 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 52%. For those who are not yupt, the probability of muvq is 22%. For those who are yupt, the probability of muvq is 22%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.22 +0.52*0.22 - 0.48*0.22 = 0.22 +0.22 > 0",collision,nonsense6,1,marginal,P(Y) +32204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.12.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 52%. For those who are not yupt and are not zupj, the probability of muvq is 34%. For those who are not yupt and are zupj, the probability of muvq is 19%. For those who are yupt and are not zupj, the probability of muvq is 88%. For those who are yupt and are zupj, the probability of muvq is 10%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.52 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.19 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.10 +0.10 - (0.52*0.10 + 0.48*0.19) = -0.04 +-0.04 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 52%. For those who are not yupt and are not zupj, the probability of muvq is 34%. For those who are not yupt and are zupj, the probability of muvq is 19%. For those who are yupt and are not zupj, the probability of muvq is 88%. For those who are yupt and are zupj, the probability of muvq is 10%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.52 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.19 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.10 +0.10 - (0.52*0.10 + 0.48*0.19) = -0.04 +-0.04 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 43%. For those who are not yupt, the probability of muvq is 50%. For those who are yupt, the probability of muvq is 50%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.50 +0.43*0.50 - 0.57*0.50 = 0.50 +0.50 > 0",collision,nonsense6,1,marginal,P(Y) +32215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is 0.21.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 43%. For those who are not yupt and are not zupj, the probability of muvq is 85%. For those who are not yupt and are zupj, the probability of muvq is 25%. For those who are yupt and are not zupj, the probability of muvq is 75%. For those who are yupt and are zupj, the probability of muvq is 46%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.43 +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.25 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.46 +0.46 - (0.43*0.46 + 0.57*0.25) = 0.10 +0.10 > 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 20%. For those who are not yupt, the probability of muvq is 27%. For those who are yupt, the probability of muvq is 27%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.27 +0.20*0.27 - 0.80*0.27 = 0.27 +0.27 > 0",collision,nonsense6,1,marginal,P(Y) +32224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.17.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 20%. For those who are not yupt and are not zupj, the probability of muvq is 9%. For those who are not yupt and are zupj, the probability of muvq is 35%. For those who are yupt and are not zupj, the probability of muvq is 37%. For those who are yupt and are zupj, the probability of muvq is 12%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.20 +P(Y=1 | X=0, V3=0) = 0.09 +P(Y=1 | X=0, V3=1) = 0.35 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.12 +0.12 - (0.20*0.12 + 0.80*0.35) = -0.21 +-0.21 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.10.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.10.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 94%. For those who are not yupt and are not zupj, the probability of muvq is 14%. For those who are not yupt and are zupj, the probability of muvq is 30%. For those who are yupt and are not zupj, the probability of muvq is 29%. For those who are yupt and are zupj, the probability of muvq is 12%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.94 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.12 +0.12 - (0.94*0.12 + 0.06*0.30) = -0.01 +-0.01 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 32%. For those who are not yupt, the probability of muvq is 89%. For those who are yupt, the probability of muvq is 89%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.89 +0.32*0.89 - 0.68*0.89 = 0.89 +0.89 > 0",collision,nonsense6,1,marginal,P(Y) +32241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 32%. For those who are not yupt, the probability of muvq is 89%. For those who are yupt, the probability of muvq is 89%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.89 +P(Y=1 | X=1) = 0.89 +0.32*0.89 - 0.68*0.89 = 0.89 +0.89 > 0",collision,nonsense6,1,marginal,P(Y) +32245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is -0.14.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 32%. For those who are not yupt and are not zupj, the probability of muvq is 85%. For those who are not yupt and are zupj, the probability of muvq is 98%. For those who are yupt and are not zupj, the probability of muvq is 90%. For those who are yupt and are zupj, the probability of muvq is 87%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.32 +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.98 +P(Y=1 | X=1, V3=0) = 0.90 +P(Y=1 | X=1, V3=1) = 0.87 +0.87 - (0.32*0.87 + 0.68*0.98) = -0.11 +-0.11 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 32%. For those who are not yupt and are not zupj, the probability of muvq is 85%. For those who are not yupt and are zupj, the probability of muvq is 98%. For those who are yupt and are not zupj, the probability of muvq is 90%. For those who are yupt and are zupj, the probability of muvq is 87%.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.32 +P(Y=1 | X=0, V3=0) = 0.85 +P(Y=1 | X=0, V3=1) = 0.98 +P(Y=1 | X=1, V3=0) = 0.90 +P(Y=1 | X=1, V3=1) = 0.87 +0.87 - (0.32*0.87 + 0.68*0.98) = -0.11 +-0.11 < 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 88%. For those who are not yupt, the probability of muvq is 31%. For those who are yupt, the probability of muvq is 31%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.31 +0.88*0.31 - 0.12*0.31 = 0.31 +0.31 > 0",collision,nonsense6,1,marginal,P(Y) +32255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. For those who are zupj, the correlation between yupt and muvq is 0.10.",yes,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense6,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +32259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Muvq has a direct effect on zupj. The overall probability of yupt is 88%. For those who are not yupt and are not zupj, the probability of muvq is 67%. For those who are not yupt and are zupj, the probability of muvq is 16%. For those who are yupt and are not zupj, the probability of muvq is 32%. For those who are yupt and are zupj, the probability of muvq is 31%.",no,"Let Y = muvq; X = yupt; V3 = zupj. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.88 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.16 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.31 +0.31 - (0.88*0.31 + 0.12*0.16) = 0.02 +0.02 > 0",collision,nonsense6,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +32261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 68%. For those who are not zupj and are yupt, the probability of muvq is 93%. For those who are zupj and are not yupt, the probability of muvq is 19%. For those who are zupj and are yupt, the probability of muvq is 50%. The overall probability of zupj is 65%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.93 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.65 +0.35 * (0.93 - 0.68) + 0.65 * (0.50 - 0.19) = 0.29 +0.29 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 68%. For those who are not zupj and are yupt, the probability of muvq is 93%. For those who are zupj and are not yupt, the probability of muvq is 19%. For those who are zupj and are yupt, the probability of muvq is 50%. The overall probability of zupj is 65%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.93 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.65 +0.35 * (0.93 - 0.68) + 0.65 * (0.50 - 0.19) = 0.29 +0.29 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 68%. For those who are not zupj and are yupt, the probability of muvq is 93%. For those who are zupj and are not yupt, the probability of muvq is 19%. For those who are zupj and are yupt, the probability of muvq is 50%. The overall probability of zupj is 65%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.93 +P(Y=1 | V1=1, X=0) = 0.19 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.65 +0.35 * (0.93 - 0.68) + 0.65 * (0.50 - 0.19) = 0.29 +0.29 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 86%. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 62%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.62 +0.86*0.62 - 0.14*0.56 = 0.61 +0.61 > 0",confounding,nonsense6,1,marginal,P(Y) +32266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 86%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 53%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.53 +0.53/0.86 - 0.08/0.14 = 0.05 +0.05 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 86%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 53%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.53 +0.53/0.86 - 0.08/0.14 = 0.05 +0.05 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 11%. For those who are not zupj and are yupt, the probability of muvq is 59%. For those who are zupj and are not yupt, the probability of muvq is 43%. For those who are zupj and are yupt, the probability of muvq is 16%. The overall probability of zupj is 2%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.11 +P(Y=1 | V1=0, X=1) = 0.59 +P(Y=1 | V1=1, X=0) = 0.43 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.02 +0.98 * (0.59 - 0.11) + 0.02 * (0.16 - 0.43) = 0.47 +0.47 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 11%. For those who are not zupj and are yupt, the probability of muvq is 59%. For those who are zupj and are not yupt, the probability of muvq is 43%. For those who are zupj and are yupt, the probability of muvq is 16%. The overall probability of zupj is 2%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.11 +P(Y=1 | V1=0, X=1) = 0.59 +P(Y=1 | V1=1, X=0) = 0.43 +P(Y=1 | V1=1, X=1) = 0.16 +P(V1=1) = 0.02 +0.98 * (0.59 - 0.11) + 0.02 * (0.16 - 0.43) = 0.41 +0.41 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 6%. The probability of not yupt and muvq is 11%. The probability of yupt and muvq is 3%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.03 +0.03/0.06 - 0.11/0.94 = 0.44 +0.44 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 65%. For those who are not zupj and are yupt, the probability of muvq is 78%. For those who are zupj and are not yupt, the probability of muvq is 27%. For those who are zupj and are yupt, the probability of muvq is 88%. The overall probability of zupj is 60%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.78 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.88 +P(V1=1) = 0.60 +0.40 * (0.78 - 0.65) + 0.60 * (0.88 - 0.27) = 0.60 +0.60 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 65%. For those who are not zupj and are yupt, the probability of muvq is 78%. For those who are zupj and are not yupt, the probability of muvq is 27%. For those who are zupj and are yupt, the probability of muvq is 88%. The overall probability of zupj is 60%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.78 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.88 +P(V1=1) = 0.60 +0.40 * (0.78 - 0.65) + 0.60 * (0.88 - 0.27) = 0.60 +0.60 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 47%. For those who are not yupt, the probability of muvq is 55%. For those who are yupt, the probability of muvq is 87%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.87 +0.47*0.87 - 0.53*0.55 = 0.62 +0.62 > 0",confounding,nonsense6,1,marginal,P(Y) +32289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 27%. For those who are not zupj and are yupt, the probability of muvq is 75%. For those who are zupj and are not yupt, the probability of muvq is 25%. For those who are zupj and are yupt, the probability of muvq is 21%. The overall probability of zupj is 14%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.21 +P(V1=1) = 0.14 +0.86 * (0.75 - 0.27) + 0.14 * (0.21 - 0.25) = 0.40 +0.40 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 27%. For those who are not zupj and are yupt, the probability of muvq is 75%. For those who are zupj and are not yupt, the probability of muvq is 25%. For those who are zupj and are yupt, the probability of muvq is 21%. The overall probability of zupj is 14%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.21 +P(V1=1) = 0.14 +0.86 * (0.75 - 0.27) + 0.14 * (0.21 - 0.25) = 0.40 +0.40 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 6%. For those who are not yupt, the probability of muvq is 27%. For those who are yupt, the probability of muvq is 37%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.37 +0.06*0.37 - 0.94*0.27 = 0.29 +0.29 > 0",confounding,nonsense6,1,marginal,P(Y) +32295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 6%. For those who are not yupt, the probability of muvq is 27%. For those who are yupt, the probability of muvq is 37%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.37 +0.06*0.37 - 0.94*0.27 = 0.29 +0.29 > 0",confounding,nonsense6,1,marginal,P(Y) +32296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 6%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 2%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.02 +0.02/0.06 - 0.25/0.94 = 0.10 +0.10 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 6%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 2%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.02 +0.02/0.06 - 0.25/0.94 = 0.10 +0.10 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 55%. For those who are not zupj and are yupt, the probability of muvq is 83%. For those who are zupj and are not yupt, the probability of muvq is 100%. For those who are zupj and are yupt, the probability of muvq is 43%. The overall probability of zupj is 91%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.55 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 1.00 +P(Y=1 | V1=1, X=1) = 0.43 +P(V1=1) = 0.91 +0.09 * (0.83 - 0.55) + 0.91 * (0.43 - 1.00) = -0.49 +-0.49 < 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 55%. For those who are not zupj and are yupt, the probability of muvq is 83%. For those who are zupj and are not yupt, the probability of muvq is 100%. For those who are zupj and are yupt, the probability of muvq is 43%. The overall probability of zupj is 91%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.55 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 1.00 +P(Y=1 | V1=1, X=1) = 0.43 +P(V1=1) = 0.91 +0.09 * (0.83 - 0.55) + 0.91 * (0.43 - 1.00) = -0.49 +-0.49 < 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 55%. For those who are not zupj and are yupt, the probability of muvq is 83%. For those who are zupj and are not yupt, the probability of muvq is 100%. For those who are zupj and are yupt, the probability of muvq is 43%. The overall probability of zupj is 91%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.55 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 1.00 +P(Y=1 | V1=1, X=1) = 0.43 +P(V1=1) = 0.91 +0.09 * (0.83 - 0.55) + 0.91 * (0.43 - 1.00) = -0.50 +-0.50 < 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 44%. For those who are not yupt, the probability of muvq is 95%. For those who are yupt, the probability of muvq is 46%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.95 +P(Y=1 | X=1) = 0.46 +0.44*0.46 - 0.56*0.95 = 0.74 +0.74 > 0",confounding,nonsense6,1,marginal,P(Y) +32308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 53%. For those who are not zupj and are yupt, the probability of muvq is 65%. For those who are zupj and are not yupt, the probability of muvq is 7%. For those who are zupj and are yupt, the probability of muvq is 8%. The overall probability of zupj is 13%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.07 +P(Y=1 | V1=1, X=1) = 0.08 +P(V1=1) = 0.13 +0.87 * (0.65 - 0.53) + 0.13 * (0.08 - 0.07) = 0.11 +0.11 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 53%. For those who are not zupj and are yupt, the probability of muvq is 65%. For those who are zupj and are not yupt, the probability of muvq is 7%. For those who are zupj and are yupt, the probability of muvq is 8%. The overall probability of zupj is 13%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.07 +P(Y=1 | V1=1, X=1) = 0.08 +P(V1=1) = 0.13 +0.87 * (0.65 - 0.53) + 0.13 * (0.08 - 0.07) = 0.11 +0.11 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 58%. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 61%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.61 +0.58*0.61 - 0.42*0.45 = 0.54 +0.54 > 0",confounding,nonsense6,1,marginal,P(Y) +32316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 58%. The probability of not yupt and muvq is 19%. The probability of yupt and muvq is 35%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.35 +0.35/0.58 - 0.19/0.42 = 0.16 +0.16 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 58%. The probability of not yupt and muvq is 19%. The probability of yupt and muvq is 35%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.35 +0.35/0.58 - 0.19/0.42 = 0.16 +0.16 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 4%. For those who are not zupj and are yupt, the probability of muvq is 42%. For those who are zupj and are not yupt, the probability of muvq is 13%. For those who are zupj and are yupt, the probability of muvq is 76%. The overall probability of zupj is 28%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.13 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.28 +0.72 * (0.42 - 0.04) + 0.28 * (0.76 - 0.13) = 0.45 +0.45 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 4%. For those who are not zupj and are yupt, the probability of muvq is 42%. For those who are zupj and are not yupt, the probability of muvq is 13%. For those who are zupj and are yupt, the probability of muvq is 76%. The overall probability of zupj is 28%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.13 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.28 +0.72 * (0.42 - 0.04) + 0.28 * (0.76 - 0.13) = 0.45 +0.45 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 4%. For those who are not zupj and are yupt, the probability of muvq is 42%. For those who are zupj and are not yupt, the probability of muvq is 13%. For those who are zupj and are yupt, the probability of muvq is 76%. The overall probability of zupj is 28%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.13 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.28 +0.72 * (0.42 - 0.04) + 0.28 * (0.76 - 0.13) = 0.44 +0.44 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 4%. For those who are not zupj and are yupt, the probability of muvq is 42%. For those who are zupj and are not yupt, the probability of muvq is 13%. For those who are zupj and are yupt, the probability of muvq is 76%. The overall probability of zupj is 28%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.42 +P(Y=1 | V1=1, X=0) = 0.13 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.28 +0.72 * (0.42 - 0.04) + 0.28 * (0.76 - 0.13) = 0.44 +0.44 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 88%. For those who are not yupt, the probability of muvq is 10%. For those who are yupt, the probability of muvq is 50%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.50 +0.88*0.50 - 0.12*0.10 = 0.46 +0.46 > 0",confounding,nonsense6,1,marginal,P(Y) +32325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 88%. For those who are not yupt, the probability of muvq is 10%. For those who are yupt, the probability of muvq is 50%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.88 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.50 +0.88*0.50 - 0.12*0.10 = 0.46 +0.46 > 0",confounding,nonsense6,1,marginal,P(Y) +32326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 88%. The probability of not yupt and muvq is 1%. The probability of yupt and muvq is 44%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.88 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.44 +0.44/0.88 - 0.01/0.12 = 0.40 +0.40 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 7%. For those who are not zupj and are yupt, the probability of muvq is 16%. For those who are zupj and are not yupt, the probability of muvq is 74%. For those who are zupj and are yupt, the probability of muvq is 93%. The overall probability of zupj is 0%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.07 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.93 +P(V1=1) = 0.00 +1.00 * (0.16 - 0.07) + 0.00 * (0.93 - 0.74) = 0.08 +0.08 > 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 7%. For those who are not zupj and are yupt, the probability of muvq is 16%. For those who are zupj and are not yupt, the probability of muvq is 74%. For those who are zupj and are yupt, the probability of muvq is 93%. The overall probability of zupj is 0%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.07 +P(Y=1 | V1=0, X=1) = 0.16 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.93 +P(V1=1) = 0.00 +1.00 * (0.16 - 0.07) + 0.00 * (0.93 - 0.74) = 0.08 +0.08 > 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 73%. For those who are not yupt, the probability of muvq is 8%. For those who are yupt, the probability of muvq is 16%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.08 +P(Y=1 | X=1) = 0.16 +0.73*0.16 - 0.27*0.08 = 0.14 +0.14 > 0",confounding,nonsense6,1,marginal,P(Y) +32337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 73%. The probability of not yupt and muvq is 2%. The probability of yupt and muvq is 12%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.12 +0.12/0.73 - 0.02/0.27 = 0.08 +0.08 > 0",confounding,nonsense6,1,correlation,P(Y | X) +32338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 4%. For those who are not zupj and are yupt, the probability of muvq is 3%. For those who are zupj and are not yupt, the probability of muvq is 71%. For those who are zupj and are yupt, the probability of muvq is 32%. The overall probability of zupj is 70%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.04 +P(Y=1 | V1=0, X=1) = 0.03 +P(Y=1 | V1=1, X=0) = 0.71 +P(Y=1 | V1=1, X=1) = 0.32 +P(V1=1) = 0.70 +0.30 * (0.03 - 0.04) + 0.70 * (0.32 - 0.71) = -0.27 +-0.27 < 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 20%. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 31%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.31 +0.20*0.31 - 0.80*0.46 = 0.45 +0.45 > 0",confounding,nonsense6,1,marginal,P(Y) +32346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 20%. The probability of not yupt and muvq is 37%. The probability of yupt and muvq is 6%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.06 +0.06/0.20 - 0.37/0.80 = -0.15 +-0.15 < 0",confounding,nonsense6,1,correlation,P(Y | X) +32347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 20%. The probability of not yupt and muvq is 37%. The probability of yupt and muvq is 6%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.06 +0.06/0.20 - 0.37/0.80 = -0.15 +-0.15 < 0",confounding,nonsense6,1,correlation,P(Y | X) +32348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32350,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 96%. For those who are not zupj and are yupt, the probability of muvq is 75%. For those who are zupj and are not yupt, the probability of muvq is 85%. For those who are zupj and are yupt, the probability of muvq is 37%. The overall probability of zupj is 37%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.37 +P(V1=1) = 0.37 +0.63 * (0.75 - 0.96) + 0.37 * (0.37 - 0.85) = -0.31 +-0.31 < 0",confounding,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 96%. For those who are not zupj and are yupt, the probability of muvq is 75%. For those who are zupj and are not yupt, the probability of muvq is 85%. For those who are zupj and are yupt, the probability of muvq is 37%. The overall probability of zupj is 37%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.37 +P(V1=1) = 0.37 +0.63 * (0.75 - 0.96) + 0.37 * (0.37 - 0.85) = -0.29 +-0.29 < 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 96%. For those who are not zupj and are yupt, the probability of muvq is 75%. For those who are zupj and are not yupt, the probability of muvq is 85%. For those who are zupj and are yupt, the probability of muvq is 37%. The overall probability of zupj is 37%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.85 +P(Y=1 | V1=1, X=1) = 0.37 +P(V1=1) = 0.37 +0.63 * (0.75 - 0.96) + 0.37 * (0.37 - 0.85) = -0.29 +-0.29 < 0",confounding,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 70%. For those who are not yupt, the probability of muvq is 90%. For those who are yupt, the probability of muvq is 63%.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.63 +0.70*0.63 - 0.30*0.90 = 0.70 +0.70 > 0",confounding,nonsense6,1,marginal,P(Y) +32355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 70%. For those who are not yupt, the probability of muvq is 90%. For those who are yupt, the probability of muvq is 63%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.63 +0.70*0.63 - 0.30*0.90 = 0.70 +0.70 > 0",confounding,nonsense6,1,marginal,P(Y) +32356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. The overall probability of yupt is 70%. The probability of not yupt and muvq is 28%. The probability of yupt and muvq is 44%.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.44 +0.44/0.70 - 0.28/0.30 = -0.27 +-0.27 < 0",confounding,nonsense6,1,correlation,P(Y | X) +32359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 80%. For those who are yupt, the probability of muvq is 58%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.58 +0.58 - 0.80 = -0.22 +-0.22 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 80%. For those who are yupt, the probability of muvq is 58%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.80 +P(Y=1 | X=1) = 0.58 +0.58 - 0.80 = -0.22 +-0.22 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 76%. For those who are not yupt and are zupj, the probability of muvq is 98%. For those who are yupt and are not zupj, the probability of muvq is 50%. For those who are yupt and are zupj, the probability of muvq is 61%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 71%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.76 +P(Y=1 | X=0, V2=1) = 0.98 +P(Y=1 | X=1, V2=0) = 0.50 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.71 +0.71 * (0.98 - 0.76)+ 0.17 * (0.61 - 0.50)= 0.12 +0.12 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 76%. For those who are not yupt and are zupj, the probability of muvq is 98%. For those who are yupt and are not zupj, the probability of muvq is 50%. For those who are yupt and are zupj, the probability of muvq is 61%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 71%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.76 +P(Y=1 | X=0, V2=1) = 0.98 +P(Y=1 | X=1, V2=0) = 0.50 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.71 +0.17 * (0.61 - 0.50) + 0.71 * (0.98 - 0.76) = -0.28 +-0.28 < 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 76%. For those who are not yupt and are zupj, the probability of muvq is 98%. For those who are yupt and are not zupj, the probability of muvq is 50%. For those who are yupt and are zupj, the probability of muvq is 61%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 71%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.76 +P(Y=1 | X=0, V2=1) = 0.98 +P(Y=1 | X=1, V2=0) = 0.50 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.71 +0.17 * (0.61 - 0.50) + 0.71 * (0.98 - 0.76) = -0.28 +-0.28 < 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 58%. The probability of not yupt and muvq is 34%. The probability of yupt and muvq is 33%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.33 +0.33/0.58 - 0.34/0.42 = -0.22 +-0.22 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 58%. The probability of not yupt and muvq is 34%. The probability of yupt and muvq is 33%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.33 +0.33/0.58 - 0.34/0.42 = -0.22 +-0.22 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 16%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.16 +0.16 - 0.45 = -0.28 +-0.28 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 16%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.16 +0.16 - 0.45 = -0.28 +-0.28 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 16%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.16 +0.16 - 0.45 = -0.28 +-0.28 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 31%. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 16%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.16 +0.31*0.16 - 0.69*0.45 = 0.36 +0.36 > 0",mediation,nonsense6,1,marginal,P(Y) +32383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 31%. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 16%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.16 +0.31*0.16 - 0.69*0.45 = 0.36 +0.36 > 0",mediation,nonsense6,1,marginal,P(Y) +32384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 31%. The probability of not yupt and muvq is 31%. The probability of yupt and muvq is 5%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.05 +0.05/0.31 - 0.31/0.69 = -0.28 +-0.28 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 31%. The probability of not yupt and muvq is 31%. The probability of yupt and muvq is 5%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.05 +0.05/0.31 - 0.31/0.69 = -0.28 +-0.28 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 40%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.40 +0.40 - 0.71 = -0.31 +-0.31 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 40%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.40 +0.40 - 0.71 = -0.31 +-0.31 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 40%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.40 +0.40 - 0.71 = -0.31 +-0.31 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 56%. For those who are not yupt and are zupj, the probability of muvq is 76%. For those who are yupt and are not zupj, the probability of muvq is 40%. For those who are yupt and are zupj, the probability of muvq is 39%. For those who are not yupt, the probability of zupj is 74%. For those who are yupt, the probability of zupj is 52%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.76 +P(Y=1 | X=1, V2=0) = 0.40 +P(Y=1 | X=1, V2=1) = 0.39 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.52 +0.52 * (0.76 - 0.56)+ 0.74 * (0.39 - 0.40)= -0.04 +-0.04 < 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 56%. For those who are not yupt and are zupj, the probability of muvq is 76%. For those who are yupt and are not zupj, the probability of muvq is 40%. For those who are yupt and are zupj, the probability of muvq is 39%. For those who are not yupt, the probability of zupj is 74%. For those who are yupt, the probability of zupj is 52%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.56 +P(Y=1 | X=0, V2=1) = 0.76 +P(Y=1 | X=1, V2=0) = 0.40 +P(Y=1 | X=1, V2=1) = 0.39 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.52 +0.52 * (0.76 - 0.56)+ 0.74 * (0.39 - 0.40)= -0.04 +-0.04 < 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 79%. For those who are yupt, the probability of muvq is 5%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.05 +0.05 - 0.79 = -0.74 +-0.74 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 79%. For those who are yupt, the probability of muvq is 5%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.05 +0.05 - 0.79 = -0.74 +-0.74 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 79%. For those who are yupt, the probability of muvq is 5%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.05 +0.05 - 0.79 = -0.74 +-0.74 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 82%. For those who are yupt and are not zupj, the probability of muvq is 6%. For those who are yupt and are zupj, the probability of muvq is 4%. For those who are not yupt, the probability of zupj is 69%. For those who are yupt, the probability of zupj is 58%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.69 +P(V2=1 | X=1) = 0.58 +0.58 * (0.82 - 0.73)+ 0.69 * (0.04 - 0.06)= -0.01 +-0.01 < 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 82%. For those who are yupt and are not zupj, the probability of muvq is 6%. For those who are yupt and are zupj, the probability of muvq is 4%. For those who are not yupt, the probability of zupj is 69%. For those who are yupt, the probability of zupj is 58%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.69 +P(V2=1 | X=1) = 0.58 +0.58 * (0.82 - 0.73)+ 0.69 * (0.04 - 0.06)= -0.01 +-0.01 < 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 82%. For those who are yupt and are not zupj, the probability of muvq is 6%. For those who are yupt and are zupj, the probability of muvq is 4%. For those who are not yupt, the probability of zupj is 69%. For those who are yupt, the probability of zupj is 58%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.69 +P(V2=1 | X=1) = 0.58 +0.69 * (0.04 - 0.06) + 0.58 * (0.82 - 0.73) = -0.74 +-0.74 < 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 82%. For those who are yupt and are not zupj, the probability of muvq is 6%. For those who are yupt and are zupj, the probability of muvq is 4%. For those who are not yupt, the probability of zupj is 69%. For those who are yupt, the probability of zupj is 58%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.06 +P(Y=1 | X=1, V2=1) = 0.04 +P(V2=1 | X=0) = 0.69 +P(V2=1 | X=1) = 0.58 +0.69 * (0.04 - 0.06) + 0.58 * (0.82 - 0.73) = -0.74 +-0.74 < 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 84%. For those who are not yupt, the probability of muvq is 79%. For those who are yupt, the probability of muvq is 5%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.05 +0.84*0.05 - 0.16*0.79 = 0.16 +0.16 > 0",mediation,nonsense6,1,marginal,P(Y) +32412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 84%. The probability of not yupt and muvq is 13%. The probability of yupt and muvq is 4%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.84 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.04 +0.04/0.84 - 0.13/0.16 = -0.74 +-0.74 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 60%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.60 +0.60 - 0.24 = 0.36 +0.36 > 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 60%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.60 +0.60 - 0.24 = 0.36 +0.36 > 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 60%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.60 +0.60 - 0.24 = 0.36 +0.36 > 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 54%. For those who are not yupt and are zupj, the probability of muvq is 18%. For those who are yupt and are not zupj, the probability of muvq is 62%. For those who are yupt and are zupj, the probability of muvq is 46%. For those who are not yupt, the probability of zupj is 85%. For those who are yupt, the probability of zupj is 14%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.54 +P(Y=1 | X=0, V2=1) = 0.18 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.46 +P(V2=1 | X=0) = 0.85 +P(V2=1 | X=1) = 0.14 +0.14 * (0.18 - 0.54)+ 0.85 * (0.46 - 0.62)= 0.25 +0.25 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 54%. For those who are not yupt and are zupj, the probability of muvq is 18%. For those who are yupt and are not zupj, the probability of muvq is 62%. For those who are yupt and are zupj, the probability of muvq is 46%. For those who are not yupt, the probability of zupj is 85%. For those who are yupt, the probability of zupj is 14%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.54 +P(Y=1 | X=0, V2=1) = 0.18 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.46 +P(V2=1 | X=0) = 0.85 +P(V2=1 | X=1) = 0.14 +0.85 * (0.46 - 0.62) + 0.14 * (0.18 - 0.54) = 0.24 +0.24 > 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 75%. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 60%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.60 +0.75*0.60 - 0.25*0.24 = 0.53 +0.53 > 0",mediation,nonsense6,1,marginal,P(Y) +32425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 75%. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 60%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.60 +0.75*0.60 - 0.25*0.24 = 0.53 +0.53 > 0",mediation,nonsense6,1,marginal,P(Y) +32429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 40%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.40 +0.40 - 0.81 = -0.41 +-0.41 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 40%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.40 +0.40 - 0.81 = -0.41 +-0.41 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 40%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.40 +0.40 - 0.81 = -0.41 +-0.41 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 76%. For those who are not yupt and are zupj, the probability of muvq is 81%. For those who are yupt and are not zupj, the probability of muvq is 72%. For those who are yupt and are zupj, the probability of muvq is 31%. For those who are not yupt, the probability of zupj is 88%. For those who are yupt, the probability of zupj is 79%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.76 +P(Y=1 | X=0, V2=1) = 0.81 +P(Y=1 | X=1, V2=0) = 0.72 +P(Y=1 | X=1, V2=1) = 0.31 +P(V2=1 | X=0) = 0.88 +P(V2=1 | X=1) = 0.79 +0.79 * (0.81 - 0.76)+ 0.88 * (0.31 - 0.72)= -0.00 +0.00 = 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 43%. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 40%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.40 +0.43*0.40 - 0.57*0.81 = 0.62 +0.62 > 0",mediation,nonsense6,1,marginal,P(Y) +32439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 43%. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 40%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.40 +0.43*0.40 - 0.57*0.81 = 0.62 +0.62 > 0",mediation,nonsense6,1,marginal,P(Y) +32441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 43%. The probability of not yupt and muvq is 46%. The probability of yupt and muvq is 17%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.17 +0.17/0.43 - 0.46/0.57 = -0.41 +-0.41 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 20%. For those who are yupt, the probability of muvq is 44%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.44 +0.44 - 0.20 = 0.23 +0.23 > 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 71%. For those who are not yupt and are zupj, the probability of muvq is 2%. For those who are yupt and are not zupj, the probability of muvq is 26%. For those who are yupt and are zupj, the probability of muvq is 91%. For those who are not yupt, the probability of zupj is 74%. For those who are yupt, the probability of zupj is 27%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.02 +P(Y=1 | X=1, V2=0) = 0.26 +P(Y=1 | X=1, V2=1) = 0.91 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.27 +0.27 * (0.02 - 0.71)+ 0.74 * (0.91 - 0.26)= 0.32 +0.32 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 71%. For those who are not yupt and are zupj, the probability of muvq is 2%. For those who are yupt and are not zupj, the probability of muvq is 26%. For those who are yupt and are zupj, the probability of muvq is 91%. For those who are not yupt, the probability of zupj is 74%. For those who are yupt, the probability of zupj is 27%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.71 +P(Y=1 | X=0, V2=1) = 0.02 +P(Y=1 | X=1, V2=0) = 0.26 +P(Y=1 | X=1, V2=1) = 0.91 +P(V2=1 | X=0) = 0.74 +P(V2=1 | X=1) = 0.27 +0.74 * (0.91 - 0.26) + 0.27 * (0.02 - 0.71) = 0.54 +0.54 > 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 61%. For those who are not yupt, the probability of muvq is 20%. For those who are yupt, the probability of muvq is 44%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.44 +0.61*0.44 - 0.39*0.20 = 0.49 +0.49 > 0",mediation,nonsense6,1,marginal,P(Y) +32453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 61%. For those who are not yupt, the probability of muvq is 20%. For those who are yupt, the probability of muvq is 44%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.44 +0.61*0.44 - 0.39*0.20 = 0.49 +0.49 > 0",mediation,nonsense6,1,marginal,P(Y) +32454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 61%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 27%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.27 +0.27/0.61 - 0.08/0.39 = 0.23 +0.23 > 0",mediation,nonsense6,1,correlation,P(Y | X) +32455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 61%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 27%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.27 +0.27/0.61 - 0.08/0.39 = 0.23 +0.23 > 0",mediation,nonsense6,1,correlation,P(Y | X) +32456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 55%. For those who are yupt, the probability of muvq is 46%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.46 +0.46 - 0.55 = -0.08 +-0.08 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 55%. For those who are yupt, the probability of muvq is 46%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.46 +0.46 - 0.55 = -0.08 +-0.08 < 0",mediation,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 82%. For those who are not yupt and are zupj, the probability of muvq is 40%. For those who are yupt and are not zupj, the probability of muvq is 12%. For those who are yupt and are zupj, the probability of muvq is 94%. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 42%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.82 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.94 +P(V2=1 | X=0) = 0.65 +P(V2=1 | X=1) = 0.42 +0.42 * (0.40 - 0.82)+ 0.65 * (0.94 - 0.12)= 0.10 +0.10 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 82%. For those who are not yupt and are zupj, the probability of muvq is 40%. For those who are yupt and are not zupj, the probability of muvq is 12%. For those who are yupt and are zupj, the probability of muvq is 94%. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 42%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.82 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.94 +P(V2=1 | X=0) = 0.65 +P(V2=1 | X=1) = 0.42 +0.42 * (0.40 - 0.82)+ 0.65 * (0.94 - 0.12)= 0.10 +0.10 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 82%. For those who are not yupt and are zupj, the probability of muvq is 40%. For those who are yupt and are not zupj, the probability of muvq is 12%. For those who are yupt and are zupj, the probability of muvq is 94%. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 42%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.82 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.94 +P(V2=1 | X=0) = 0.65 +P(V2=1 | X=1) = 0.42 +0.65 * (0.94 - 0.12) + 0.42 * (0.40 - 0.82) = 0.10 +0.10 > 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 82%. For those who are not yupt and are zupj, the probability of muvq is 40%. For those who are yupt and are not zupj, the probability of muvq is 12%. For those who are yupt and are zupj, the probability of muvq is 94%. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 42%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.82 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.94 +P(V2=1 | X=0) = 0.65 +P(V2=1 | X=1) = 0.42 +0.65 * (0.94 - 0.12) + 0.42 * (0.40 - 0.82) = 0.10 +0.10 > 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 5%. For those who are not yupt, the probability of muvq is 55%. For those who are yupt, the probability of muvq is 46%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.46 +0.05*0.46 - 0.95*0.55 = 0.56 +0.56 > 0",mediation,nonsense6,1,marginal,P(Y) +32468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 5%. The probability of not yupt and muvq is 52%. The probability of yupt and muvq is 2%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.52/0.95 = -0.08 +-0.08 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 5%. The probability of not yupt and muvq is 52%. The probability of yupt and muvq is 2%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.52 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.52/0.95 = -0.08 +-0.08 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 39%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.39 +0.39 - 0.56 = -0.17 +-0.17 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 39%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.39 +0.39 - 0.56 = -0.17 +-0.17 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 52%. For those who are not yupt and are zupj, the probability of muvq is 71%. For those who are yupt and are not zupj, the probability of muvq is 56%. For those who are yupt and are zupj, the probability of muvq is 9%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 36%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.52 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.36 +0.36 * (0.71 - 0.52)+ 0.17 * (0.09 - 0.56)= 0.04 +0.04 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 52%. For those who are not yupt and are zupj, the probability of muvq is 71%. For those who are yupt and are not zupj, the probability of muvq is 56%. For those who are yupt and are zupj, the probability of muvq is 9%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 36%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.52 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.36 +0.36 * (0.71 - 0.52)+ 0.17 * (0.09 - 0.56)= 0.04 +0.04 > 0",mediation,nonsense6,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +32478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 52%. For those who are not yupt and are zupj, the probability of muvq is 71%. For those who are yupt and are not zupj, the probability of muvq is 56%. For those who are yupt and are zupj, the probability of muvq is 9%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 36%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.52 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.36 +0.17 * (0.09 - 0.56) + 0.36 * (0.71 - 0.52) = -0.08 +-0.08 < 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 52%. For those who are not yupt and are zupj, the probability of muvq is 71%. For those who are yupt and are not zupj, the probability of muvq is 56%. For those who are yupt and are zupj, the probability of muvq is 9%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 36%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.52 +P(Y=1 | X=0, V2=1) = 0.71 +P(Y=1 | X=1, V2=0) = 0.56 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.17 +P(V2=1 | X=1) = 0.36 +0.17 * (0.09 - 0.56) + 0.36 * (0.71 - 0.52) = -0.08 +-0.08 < 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 31%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.31 +0.31 - 0.36 = -0.05 +-0.05 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 31%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.31 +0.31 - 0.36 = -0.05 +-0.05 < 0",mediation,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 64%. For those who are not yupt and are zupj, the probability of muvq is 16%. For those who are yupt and are not zupj, the probability of muvq is 82%. For those who are yupt and are zupj, the probability of muvq is 13%. For those who are not yupt, the probability of zupj is 59%. For those who are yupt, the probability of zupj is 74%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.64 +P(Y=1 | X=0, V2=1) = 0.16 +P(Y=1 | X=1, V2=0) = 0.82 +P(Y=1 | X=1, V2=1) = 0.13 +P(V2=1 | X=0) = 0.59 +P(V2=1 | X=1) = 0.74 +0.59 * (0.13 - 0.82) + 0.74 * (0.16 - 0.64) = 0.06 +0.06 > 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. For those who are not yupt and are not zupj, the probability of muvq is 64%. For those who are not yupt and are zupj, the probability of muvq is 16%. For those who are yupt and are not zupj, the probability of muvq is 82%. For those who are yupt and are zupj, the probability of muvq is 13%. For those who are not yupt, the probability of zupj is 59%. For those who are yupt, the probability of zupj is 74%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.64 +P(Y=1 | X=0, V2=1) = 0.16 +P(Y=1 | X=1, V2=0) = 0.82 +P(Y=1 | X=1, V2=1) = 0.13 +P(V2=1 | X=0) = 0.59 +P(V2=1 | X=1) = 0.74 +0.59 * (0.13 - 0.82) + 0.74 * (0.16 - 0.64) = 0.06 +0.06 > 0",mediation,nonsense6,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +32494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 38%. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 31%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.31 +0.38*0.31 - 0.62*0.36 = 0.35 +0.35 > 0",mediation,nonsense6,1,marginal,P(Y) +32495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 38%. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 31%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.31 +0.38*0.31 - 0.62*0.36 = 0.35 +0.35 > 0",mediation,nonsense6,1,marginal,P(Y) +32496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 38%. The probability of not yupt and muvq is 22%. The probability of yupt and muvq is 12%.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.12 +0.12/0.38 - 0.22/0.62 = -0.05 +-0.05 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 38%. The probability of not yupt and muvq is 22%. The probability of yupt and muvq is 12%.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.12 +0.12/0.38 - 0.22/0.62 = -0.05 +-0.05 < 0",mediation,nonsense6,1,correlation,P(Y | X) +32498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 80%. For those who are yupt, the probability of zupj is 39%. For those who are not yupt and are not zupj, the probability of muvq is 23%. For those who are not yupt and are zupj, the probability of muvq is 87%. For those who are yupt and are not zupj, the probability of muvq is 23%. For those who are yupt and are zupj, the probability of muvq is 86%. The overall probability of yupt is 27%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.80 +P(V3=1 | X=1) = 0.39 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.86 +P(X=1) = 0.27 +(0.39 - 0.80)* (0.86 * 0.27) + (0.61 - 0.20) * (0.87 * 0.73) = -0.26 +-0.26 < 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 80%. For those who are yupt, the probability of zupj is 39%. For those who are not yupt and are not zupj, the probability of muvq is 23%. For those who are not yupt and are zupj, the probability of muvq is 87%. For those who are yupt and are not zupj, the probability of muvq is 23%. For those who are yupt and are zupj, the probability of muvq is 86%. The overall probability of yupt is 27%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.80 +P(V3=1 | X=1) = 0.39 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.86 +P(X=1) = 0.27 +0.39 - 0.80 * (0.86 * 0.27 + 0.87 * 0.73)= -0.26 +-0.26 < 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 80%. For those who are yupt, the probability of zupj is 39%. For those who are not yupt and are not zupj, the probability of muvq is 23%. For those who are not yupt and are zupj, the probability of muvq is 87%. For those who are yupt and are not zupj, the probability of muvq is 23%. For those who are yupt and are zupj, the probability of muvq is 86%. The overall probability of yupt is 27%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.80 +P(V3=1 | X=1) = 0.39 +P(Y=1 | X=0, V3=0) = 0.23 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.86 +P(X=1) = 0.27 +0.39 - 0.80 * (0.86 * 0.27 + 0.87 * 0.73)= -0.26 +-0.26 < 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 27%. For those who are not yupt, the probability of muvq is 75%. For those who are yupt, the probability of muvq is 48%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.48 +0.27*0.48 - 0.73*0.75 = 0.67 +0.67 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 27%. The probability of not yupt and muvq is 54%. The probability of yupt and muvq is 13%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.54 +P(Y=1, X=1=1) = 0.13 +0.13/0.27 - 0.54/0.73 = -0.27 +-0.27 < 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 51%. For those who are yupt, the probability of zupj is 34%. For those who are not yupt and are not zupj, the probability of muvq is 90%. For those who are not yupt and are zupj, the probability of muvq is 54%. For those who are yupt and are not zupj, the probability of muvq is 96%. For those who are yupt and are zupj, the probability of muvq is 57%. The overall probability of yupt is 69%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.51 +P(V3=1 | X=1) = 0.34 +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.57 +P(X=1) = 0.69 +(0.34 - 0.51)* (0.57 * 0.69) + (0.66 - 0.49) * (0.54 * 0.31) = 0.06 +0.06 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 90%. For those who are not yupt and are zupj, the probability of muvq is 54%. For those who are yupt and are not zupj, the probability of muvq is 96%. For those who are yupt and are zupj, the probability of muvq is 57%. For those who are not yupt, the probability of zupj is 51%. For those who are yupt, the probability of zupj is 34%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.57 +P(V3=1 | X=0) = 0.51 +P(V3=1 | X=1) = 0.34 +0.57 * (0.34 - 0.51) + 0.54 * (0.66 - 0.49) = 0.06 +0.06 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 69%. For those who are not yupt, the probability of muvq is 72%. For those who are yupt, the probability of muvq is 82%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.82 +0.69*0.82 - 0.31*0.72 = 0.79 +0.79 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 69%. For those who are not yupt, the probability of muvq is 72%. For those who are yupt, the probability of muvq is 82%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.82 +0.69*0.82 - 0.31*0.72 = 0.79 +0.79 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 69%. The probability of not yupt and muvq is 23%. The probability of yupt and muvq is 56%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.56 +0.56/0.69 - 0.23/0.31 = 0.11 +0.11 > 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 69%. The probability of not yupt and muvq is 23%. The probability of yupt and muvq is 56%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.56 +0.56/0.69 - 0.23/0.31 = 0.11 +0.11 > 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 12%. For those who are yupt, the probability of zupj is 10%. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 48%. For those who are yupt and are not zupj, the probability of muvq is 81%. For those who are yupt and are zupj, the probability of muvq is 45%. The overall probability of yupt is 83%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.10 +P(Y=1 | X=0, V3=0) = 0.73 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.45 +P(X=1) = 0.83 +(0.10 - 0.12)* (0.45 * 0.83) + (0.90 - 0.88) * (0.48 * 0.17) = 0.01 +0.01 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 48%. For those who are yupt and are not zupj, the probability of muvq is 81%. For those who are yupt and are zupj, the probability of muvq is 45%. For those who are not yupt, the probability of zupj is 12%. For those who are yupt, the probability of zupj is 10%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.73 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.45 +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.10 +0.45 * (0.10 - 0.12) + 0.48 * (0.90 - 0.88) = 0.01 +0.01 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 12%. For those who are yupt, the probability of zupj is 10%. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 48%. For those who are yupt and are not zupj, the probability of muvq is 81%. For those who are yupt and are zupj, the probability of muvq is 45%. The overall probability of yupt is 83%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.10 +P(Y=1 | X=0, V3=0) = 0.73 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.45 +P(X=1) = 0.83 +0.10 - 0.12 * (0.45 * 0.83 + 0.48 * 0.17)= 0.01 +0.01 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 12%. For those who are yupt, the probability of zupj is 10%. For those who are not yupt and are not zupj, the probability of muvq is 73%. For those who are not yupt and are zupj, the probability of muvq is 48%. For those who are yupt and are not zupj, the probability of muvq is 81%. For those who are yupt and are zupj, the probability of muvq is 45%. The overall probability of yupt is 83%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.12 +P(V3=1 | X=1) = 0.10 +P(Y=1 | X=0, V3=0) = 0.73 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.45 +P(X=1) = 0.83 +0.10 - 0.12 * (0.45 * 0.83 + 0.48 * 0.17)= 0.01 +0.01 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 83%. For those who are not yupt, the probability of muvq is 70%. For those who are yupt, the probability of muvq is 77%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.77 +0.83*0.77 - 0.17*0.70 = 0.76 +0.76 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 83%. The probability of not yupt and muvq is 12%. The probability of yupt and muvq is 64%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.64 +0.64/0.83 - 0.12/0.17 = 0.07 +0.07 > 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 72%. For those who are not yupt and are not zupj, the probability of muvq is 45%. For those who are not yupt and are zupj, the probability of muvq is 70%. For those who are yupt and are not zupj, the probability of muvq is 52%. For those who are yupt and are zupj, the probability of muvq is 66%. The overall probability of yupt is 21%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.65 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(X=1) = 0.21 +(0.72 - 0.65)* (0.66 * 0.21) + (0.28 - 0.35) * (0.70 * 0.79) = 0.02 +0.02 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 72%. For those who are not yupt and are not zupj, the probability of muvq is 45%. For those who are not yupt and are zupj, the probability of muvq is 70%. For those who are yupt and are not zupj, the probability of muvq is 52%. For those who are yupt and are zupj, the probability of muvq is 66%. The overall probability of yupt is 21%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.65 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(X=1) = 0.21 +(0.72 - 0.65)* (0.66 * 0.21) + (0.28 - 0.35) * (0.70 * 0.79) = 0.02 +0.02 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 45%. For those who are not yupt and are zupj, the probability of muvq is 70%. For those who are yupt and are not zupj, the probability of muvq is 52%. For those who are yupt and are zupj, the probability of muvq is 66%. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 72%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(V3=1 | X=0) = 0.65 +P(V3=1 | X=1) = 0.72 +0.66 * (0.72 - 0.65) + 0.70 * (0.28 - 0.35) = 0.01 +0.01 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32539,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 45%. For those who are not yupt and are zupj, the probability of muvq is 70%. For those who are yupt and are not zupj, the probability of muvq is 52%. For those who are yupt and are zupj, the probability of muvq is 66%. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 72%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(V3=1 | X=0) = 0.65 +P(V3=1 | X=1) = 0.72 +0.66 * (0.72 - 0.65) + 0.70 * (0.28 - 0.35) = 0.01 +0.01 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 65%. For those who are yupt, the probability of zupj is 72%. For those who are not yupt and are not zupj, the probability of muvq is 45%. For those who are not yupt and are zupj, the probability of muvq is 70%. For those who are yupt and are not zupj, the probability of muvq is 52%. For those who are yupt and are zupj, the probability of muvq is 66%. The overall probability of yupt is 21%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.65 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.66 +P(X=1) = 0.21 +0.72 - 0.65 * (0.66 * 0.21 + 0.70 * 0.79)= 0.02 +0.02 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 21%. For those who are not yupt, the probability of muvq is 61%. For those who are yupt, the probability of muvq is 62%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.62 +0.21*0.62 - 0.79*0.61 = 0.62 +0.62 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 21%. For those who are not yupt, the probability of muvq is 61%. For those who are yupt, the probability of muvq is 62%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.62 +0.21*0.62 - 0.79*0.61 = 0.62 +0.62 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 21%. The probability of not yupt and muvq is 49%. The probability of yupt and muvq is 13%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.13 +0.13/0.21 - 0.49/0.79 = 0.00 +0.00 = 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 21%. The probability of not yupt and muvq is 49%. The probability of yupt and muvq is 13%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.13 +0.13/0.21 - 0.49/0.79 = 0.00 +0.00 = 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 1%. For those who are yupt, the probability of zupj is 92%. For those who are not yupt and are not zupj, the probability of muvq is 92%. For those who are not yupt and are zupj, the probability of muvq is 92%. For those who are yupt and are not zupj, the probability of muvq is 63%. For those who are yupt and are zupj, the probability of muvq is 85%. The overall probability of yupt is 61%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.92 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.61 +(0.92 - 0.01)* (0.85 * 0.61) + (0.08 - 0.99) * (0.92 * 0.39) = 0.12 +0.12 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 1%. For those who are yupt, the probability of zupj is 92%. For those who are not yupt and are not zupj, the probability of muvq is 92%. For those who are not yupt and are zupj, the probability of muvq is 92%. For those who are yupt and are not zupj, the probability of muvq is 63%. For those who are yupt and are zupj, the probability of muvq is 85%. The overall probability of yupt is 61%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.92 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.61 +(0.92 - 0.01)* (0.85 * 0.61) + (0.08 - 0.99) * (0.92 * 0.39) = 0.12 +0.12 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 92%. For those who are not yupt and are zupj, the probability of muvq is 92%. For those who are yupt and are not zupj, the probability of muvq is 63%. For those who are yupt and are zupj, the probability of muvq is 85%. For those who are not yupt, the probability of zupj is 1%. For those who are yupt, the probability of zupj is 92%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.92 +0.85 * (0.92 - 0.01) + 0.92 * (0.08 - 0.99) = 0.19 +0.19 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 92%. For those who are not yupt and are zupj, the probability of muvq is 92%. For those who are yupt and are not zupj, the probability of muvq is 63%. For those who are yupt and are zupj, the probability of muvq is 85%. For those who are not yupt, the probability of zupj is 1%. For those who are yupt, the probability of zupj is 92%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.92 +0.85 * (0.92 - 0.01) + 0.92 * (0.08 - 0.99) = 0.19 +0.19 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 1%. For those who are yupt, the probability of zupj is 92%. For those who are not yupt and are not zupj, the probability of muvq is 92%. For those who are not yupt and are zupj, the probability of muvq is 92%. For those who are yupt and are not zupj, the probability of muvq is 63%. For those who are yupt and are zupj, the probability of muvq is 85%. The overall probability of yupt is 61%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.92 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.92 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.61 +0.92 - 0.01 * (0.85 * 0.61 + 0.92 * 0.39)= 0.12 +0.12 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 61%. For those who are not yupt, the probability of muvq is 92%. For those who are yupt, the probability of muvq is 83%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.83 +0.61*0.83 - 0.39*0.92 = 0.82 +0.82 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 61%. For those who are not yupt, the probability of muvq is 92%. For those who are yupt, the probability of muvq is 83%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.92 +P(Y=1 | X=1) = 0.83 +0.61*0.83 - 0.39*0.92 = 0.82 +0.82 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 61%. The probability of not yupt and muvq is 36%. The probability of yupt and muvq is 51%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.51 +0.51/0.61 - 0.36/0.39 = -0.09 +-0.09 < 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 9%. For those who are yupt, the probability of zupj is 15%. For those who are not yupt and are not zupj, the probability of muvq is 17%. For those who are not yupt and are zupj, the probability of muvq is 91%. For those who are yupt and are not zupj, the probability of muvq is 5%. For those who are yupt and are zupj, the probability of muvq is 91%. The overall probability of yupt is 47%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.91 +P(X=1) = 0.47 +(0.15 - 0.09)* (0.91 * 0.47) + (0.85 - 0.91) * (0.91 * 0.53) = 0.05 +0.05 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 9%. For those who are yupt, the probability of zupj is 15%. For those who are not yupt and are not zupj, the probability of muvq is 17%. For those who are not yupt and are zupj, the probability of muvq is 91%. For those who are yupt and are not zupj, the probability of muvq is 5%. For those who are yupt and are zupj, the probability of muvq is 91%. The overall probability of yupt is 47%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.91 +P(X=1) = 0.47 +(0.15 - 0.09)* (0.91 * 0.47) + (0.85 - 0.91) * (0.91 * 0.53) = 0.05 +0.05 > 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 17%. For those who are not yupt and are zupj, the probability of muvq is 91%. For those who are yupt and are not zupj, the probability of muvq is 5%. For those who are yupt and are zupj, the probability of muvq is 91%. For those who are not yupt, the probability of zupj is 9%. For those who are yupt, the probability of zupj is 15%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.91 +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.15 +0.91 * (0.15 - 0.09) + 0.91 * (0.85 - 0.91) = 0.05 +0.05 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32563,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 17%. For those who are not yupt and are zupj, the probability of muvq is 91%. For those who are yupt and are not zupj, the probability of muvq is 5%. For those who are yupt and are zupj, the probability of muvq is 91%. For those who are not yupt, the probability of zupj is 9%. For those who are yupt, the probability of zupj is 15%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.91 +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.15 +0.91 * (0.15 - 0.09) + 0.91 * (0.85 - 0.91) = 0.05 +0.05 > 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 9%. For those who are yupt, the probability of zupj is 15%. For those who are not yupt and are not zupj, the probability of muvq is 17%. For those who are not yupt and are zupj, the probability of muvq is 91%. For those who are yupt and are not zupj, the probability of muvq is 5%. For those who are yupt and are zupj, the probability of muvq is 91%. The overall probability of yupt is 47%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.91 +P(X=1) = 0.47 +0.15 - 0.09 * (0.91 * 0.47 + 0.91 * 0.53)= 0.05 +0.05 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 9%. For those who are yupt, the probability of zupj is 15%. For those who are not yupt and are not zupj, the probability of muvq is 17%. For those who are not yupt and are zupj, the probability of muvq is 91%. For those who are yupt and are not zupj, the probability of muvq is 5%. For those who are yupt and are zupj, the probability of muvq is 91%. The overall probability of yupt is 47%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.09 +P(V3=1 | X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.05 +P(Y=1 | X=1, V3=1) = 0.91 +P(X=1) = 0.47 +0.15 - 0.09 * (0.91 * 0.47 + 0.91 * 0.53)= 0.05 +0.05 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 47%. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 18%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.18 +0.47*0.18 - 0.53*0.24 = 0.21 +0.21 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 47%. The probability of not yupt and muvq is 13%. The probability of yupt and muvq is 9%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.09 +0.09/0.47 - 0.13/0.53 = -0.06 +-0.06 < 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 37%. For those who are yupt, the probability of zupj is 29%. For those who are not yupt and are not zupj, the probability of muvq is 68%. For those who are not yupt and are zupj, the probability of muvq is 46%. For those who are yupt and are not zupj, the probability of muvq is 82%. For those who are yupt and are zupj, the probability of muvq is 30%. The overall probability of yupt is 72%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.37 +P(V3=1 | X=1) = 0.29 +P(Y=1 | X=0, V3=0) = 0.68 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.72 +0.29 - 0.37 * (0.30 * 0.72 + 0.46 * 0.28)= 0.04 +0.04 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 72%. The probability of not yupt and muvq is 17%. The probability of yupt and muvq is 48%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.48 +0.48/0.72 - 0.17/0.28 = 0.07 +0.07 > 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 61%. For those who are yupt, the probability of zupj is 94%. For those who are not yupt and are not zupj, the probability of muvq is 63%. For those who are not yupt and are zupj, the probability of muvq is 10%. For those who are yupt and are not zupj, the probability of muvq is 74%. For those who are yupt and are zupj, the probability of muvq is 8%. The overall probability of yupt is 38%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.94 +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.08 +P(X=1) = 0.38 +(0.94 - 0.61)* (0.08 * 0.38) + (0.06 - 0.39) * (0.10 * 0.62) = -0.19 +-0.19 < 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 63%. For those who are not yupt and are zupj, the probability of muvq is 10%. For those who are yupt and are not zupj, the probability of muvq is 74%. For those who are yupt and are zupj, the probability of muvq is 8%. For those who are not yupt, the probability of zupj is 61%. For those who are yupt, the probability of zupj is 94%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.08 +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.94 +0.08 * (0.94 - 0.61) + 0.10 * (0.06 - 0.39) = -0.22 +-0.22 < 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 63%. For those who are not yupt and are zupj, the probability of muvq is 10%. For those who are yupt and are not zupj, the probability of muvq is 74%. For those who are yupt and are zupj, the probability of muvq is 8%. For those who are not yupt, the probability of zupj is 61%. For those who are yupt, the probability of zupj is 94%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.08 +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.94 +0.08 * (0.94 - 0.61) + 0.10 * (0.06 - 0.39) = -0.22 +-0.22 < 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 38%. The probability of not yupt and muvq is 19%. The probability of yupt and muvq is 4%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.04 +0.04/0.38 - 0.19/0.62 = -0.19 +-0.19 < 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 53%. For those who are yupt, the probability of zupj is 37%. For those who are not yupt and are not zupj, the probability of muvq is 90%. For those who are not yupt and are zupj, the probability of muvq is 58%. For those who are yupt and are not zupj, the probability of muvq is 60%. For those who are yupt and are zupj, the probability of muvq is 41%. The overall probability of yupt is 35%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.53 +P(V3=1 | X=1) = 0.37 +P(Y=1 | X=0, V3=0) = 0.90 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.35 +0.37 - 0.53 * (0.41 * 0.35 + 0.58 * 0.65)= 0.04 +0.04 > 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 35%. For those who are not yupt, the probability of muvq is 73%. For those who are yupt, the probability of muvq is 53%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.53 +0.35*0.53 - 0.65*0.73 = 0.67 +0.67 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 35%. The probability of not yupt and muvq is 48%. The probability of yupt and muvq is 19%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.19 +0.19/0.35 - 0.48/0.65 = -0.20 +-0.20 < 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 8%. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 89%. For those who are yupt and are not zupj, the probability of muvq is 41%. For those who are yupt and are zupj, the probability of muvq is 84%. The overall probability of yupt is 3%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.84 +P(X=1) = 0.03 +(0.08 - 0.17)* (0.84 * 0.03) + (0.92 - 0.83) * (0.89 * 0.97) = -0.04 +-0.04 < 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 8%. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 89%. For those who are yupt and are not zupj, the probability of muvq is 41%. For those who are yupt and are zupj, the probability of muvq is 84%. The overall probability of yupt is 3%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.84 +P(X=1) = 0.03 +(0.08 - 0.17)* (0.84 * 0.03) + (0.92 - 0.83) * (0.89 * 0.97) = -0.04 +-0.04 < 0",frontdoor,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 89%. For those who are yupt and are not zupj, the probability of muvq is 41%. For those who are yupt and are zupj, the probability of muvq is 84%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 8%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.08 +0.84 * (0.08 - 0.17) + 0.89 * (0.92 - 0.83) = -0.04 +-0.04 < 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 89%. For those who are yupt and are not zupj, the probability of muvq is 41%. For those who are yupt and are zupj, the probability of muvq is 84%. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 8%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.08 +0.84 * (0.08 - 0.17) + 0.89 * (0.92 - 0.83) = -0.04 +-0.04 < 0",frontdoor,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 8%. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 89%. For those who are yupt and are not zupj, the probability of muvq is 41%. For those who are yupt and are zupj, the probability of muvq is 84%. The overall probability of yupt is 3%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.84 +P(X=1) = 0.03 +0.08 - 0.17 * (0.84 * 0.03 + 0.89 * 0.97)= -0.04 +-0.04 < 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32613,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of zupj is 17%. For those who are yupt, the probability of zupj is 8%. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 89%. For those who are yupt and are not zupj, the probability of muvq is 41%. For those who are yupt and are zupj, the probability of muvq is 84%. The overall probability of yupt is 3%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.08 +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.41 +P(Y=1 | X=1, V3=1) = 0.84 +P(X=1) = 0.03 +0.08 - 0.17 * (0.84 * 0.03 + 0.89 * 0.97)= -0.04 +-0.04 < 0",frontdoor,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 3%. For those who are not yupt, the probability of muvq is 52%. For those who are yupt, the probability of muvq is 44%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.44 +0.03*0.44 - 0.97*0.52 = 0.51 +0.51 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 3%. For those who are not yupt, the probability of muvq is 52%. For those who are yupt, the probability of muvq is 44%.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.44 +0.03*0.44 - 0.97*0.52 = 0.51 +0.51 > 0",frontdoor,nonsense6,1,marginal,P(Y) +32617,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 3%. The probability of not yupt and muvq is 50%. The probability of yupt and muvq is 1%.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.50 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.50/0.97 = -0.08 +-0.08 < 0",frontdoor,nonsense6,1,correlation,P(Y | X) +32618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 93%. For those who are zupj, the probability of muvq is 84%. For those who are not zupj, the probability of yupt is 87%. For those who are zupj, the probability of yupt is 63%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.93 +P(Y=1 | V2=1) = 0.84 +P(X=1 | V2=0) = 0.87 +P(X=1 | V2=1) = 0.63 +(0.84 - 0.93) / (0.63 - 0.87) = 0.35 +0.35 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32622,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 83%. For those who are not yupt, the probability of muvq is 55%. For those who are yupt, the probability of muvq is 97%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.97 +0.83*0.97 - 0.17*0.55 = 0.91 +0.91 > 0",IV,nonsense6,1,marginal,P(Y) +32623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 83%. For those who are not yupt, the probability of muvq is 55%. For those who are yupt, the probability of muvq is 97%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.97 +0.83*0.97 - 0.17*0.55 = 0.91 +0.91 > 0",IV,nonsense6,1,marginal,P(Y) +32624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 83%. The probability of not yupt and muvq is 10%. The probability of yupt and muvq is 81%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.81 +0.81/0.83 - 0.10/0.17 = 0.42 +0.42 > 0",IV,nonsense6,1,correlation,P(Y | X) +32625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 83%. The probability of not yupt and muvq is 10%. The probability of yupt and muvq is 81%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.81 +0.81/0.83 - 0.10/0.17 = 0.42 +0.42 > 0",IV,nonsense6,1,correlation,P(Y | X) +32629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 55%. For those who are zupj, the probability of muvq is 44%. For those who are not zupj, the probability of yupt is 22%. For those who are zupj, the probability of yupt is 67%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.55 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.22 +P(X=1 | V2=1) = 0.67 +(0.44 - 0.55) / (0.67 - 0.22) = -0.23 +-0.23 < 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 65%. For those who are not yupt, the probability of muvq is 45%. For those who are yupt, the probability of muvq is 36%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.36 +0.65*0.36 - 0.35*0.45 = 0.45 +0.45 > 0",IV,nonsense6,1,marginal,P(Y) +32632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 65%. The probability of not yupt and muvq is 16%. The probability of yupt and muvq is 23%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.23 +0.23/0.65 - 0.16/0.35 = -0.09 +-0.09 < 0",IV,nonsense6,1,correlation,P(Y | X) +32634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 79%. For those who are zupj, the probability of muvq is 86%. For those who are not zupj, the probability of yupt is 48%. For those who are zupj, the probability of yupt is 71%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.79 +P(Y=1 | V2=1) = 0.86 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.71 +(0.86 - 0.79) / (0.71 - 0.48) = 0.33 +0.33 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 61%. For those who are not yupt, the probability of muvq is 65%. For those who are yupt, the probability of muvq is 96%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.96 +0.61*0.96 - 0.39*0.65 = 0.83 +0.83 > 0",IV,nonsense6,1,marginal,P(Y) +32640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 61%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 59%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.59 +0.59/0.61 - 0.25/0.39 = 0.31 +0.31 > 0",IV,nonsense6,1,correlation,P(Y | X) +32642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 27%. For those who are zupj, the probability of muvq is 32%. For those who are not zupj, the probability of yupt is 53%. For those who are zupj, the probability of yupt is 81%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.27 +P(Y=1 | V2=1) = 0.32 +P(X=1 | V2=0) = 0.53 +P(X=1 | V2=1) = 0.81 +(0.32 - 0.27) / (0.81 - 0.53) = 0.19 +0.19 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 27%. For those who are zupj, the probability of muvq is 32%. For those who are not zupj, the probability of yupt is 53%. For those who are zupj, the probability of yupt is 81%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.27 +P(Y=1 | V2=1) = 0.32 +P(X=1 | V2=0) = 0.53 +P(X=1 | V2=1) = 0.81 +(0.32 - 0.27) / (0.81 - 0.53) = 0.19 +0.19 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 56%. For those who are not yupt, the probability of muvq is 17%. For those who are yupt, the probability of muvq is 37%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.37 +0.56*0.37 - 0.44*0.17 = 0.27 +0.27 > 0",IV,nonsense6,1,marginal,P(Y) +32647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 56%. For those who are not yupt, the probability of muvq is 17%. For those who are yupt, the probability of muvq is 37%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.17 +P(Y=1 | X=1) = 0.37 +0.56*0.37 - 0.44*0.17 = 0.27 +0.27 > 0",IV,nonsense6,1,marginal,P(Y) +32648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 56%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 21%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.21 +0.21/0.56 - 0.08/0.44 = 0.19 +0.19 > 0",IV,nonsense6,1,correlation,P(Y | X) +32650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 43%. For those who are zupj, the probability of muvq is 68%. For those who are not zupj, the probability of yupt is 68%. For those who are zupj, the probability of yupt is 29%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.43 +P(Y=1 | V2=1) = 0.68 +P(X=1 | V2=0) = 0.68 +P(X=1 | V2=1) = 0.29 +(0.68 - 0.43) / (0.29 - 0.68) = -0.65 +-0.65 < 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 27%. For those who are zupj, the probability of muvq is 29%. For those who are not zupj, the probability of yupt is 48%. For those who are zupj, the probability of yupt is 44%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.27 +P(Y=1 | V2=1) = 0.29 +P(X=1 | V2=0) = 0.48 +P(X=1 | V2=1) = 0.44 +(0.29 - 0.27) / (0.44 - 0.48) = -0.37 +-0.37 < 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 48%. For those who are not yupt, the probability of muvq is 47%. For those who are yupt, the probability of muvq is 9%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.09 +0.48*0.09 - 0.52*0.47 = 0.27 +0.27 > 0",IV,nonsense6,1,marginal,P(Y) +32664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 48%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 4%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.04 +0.04/0.48 - 0.25/0.52 = -0.38 +-0.38 < 0",IV,nonsense6,1,correlation,P(Y | X) +32665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 48%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 4%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.04 +0.04/0.48 - 0.25/0.52 = -0.38 +-0.38 < 0",IV,nonsense6,1,correlation,P(Y | X) +32667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 40%. For those who are zupj, the probability of muvq is 44%. For those who are not zupj, the probability of yupt is 39%. For those who are zupj, the probability of yupt is 76%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.40 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.39 +P(X=1 | V2=1) = 0.76 +(0.44 - 0.40) / (0.76 - 0.39) = 0.11 +0.11 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 40%. For those who are zupj, the probability of muvq is 44%. For those who are not zupj, the probability of yupt is 39%. For those who are zupj, the probability of yupt is 76%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.40 +P(Y=1 | V2=1) = 0.44 +P(X=1 | V2=0) = 0.39 +P(X=1 | V2=1) = 0.76 +(0.44 - 0.40) / (0.76 - 0.39) = 0.11 +0.11 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 69%. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 48%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.48 +0.69*0.48 - 0.31*0.38 = 0.43 +0.43 > 0",IV,nonsense6,1,marginal,P(Y) +32674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 53%. For those who are zupj, the probability of muvq is 43%. For those who are not zupj, the probability of yupt is 69%. For those who are zupj, the probability of yupt is 33%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.53 +P(Y=1 | V2=1) = 0.43 +P(X=1 | V2=0) = 0.69 +P(X=1 | V2=1) = 0.33 +(0.43 - 0.53) / (0.33 - 0.69) = 0.27 +0.27 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 53%. For those who are zupj, the probability of muvq is 43%. For those who are not zupj, the probability of yupt is 69%. For those who are zupj, the probability of yupt is 33%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.53 +P(Y=1 | V2=1) = 0.43 +P(X=1 | V2=0) = 0.69 +P(X=1 | V2=1) = 0.33 +(0.43 - 0.53) / (0.33 - 0.69) = 0.27 +0.27 > 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 43%. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 64%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.64 +0.43*0.64 - 0.57*0.38 = 0.45 +0.45 > 0",IV,nonsense6,1,marginal,P(Y) +32680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 43%. The probability of not yupt and muvq is 22%. The probability of yupt and muvq is 28%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.28 +0.28/0.43 - 0.22/0.57 = 0.26 +0.26 > 0",IV,nonsense6,1,correlation,P(Y | X) +32681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 43%. The probability of not yupt and muvq is 22%. The probability of yupt and muvq is 28%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.28 +0.28/0.43 - 0.22/0.57 = 0.26 +0.26 > 0",IV,nonsense6,1,correlation,P(Y | X) +32683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 57%. For those who are not yupt, the probability of muvq is 83%. For those who are yupt, the probability of muvq is 48%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.48 +0.57*0.48 - 0.43*0.83 = 0.64 +0.64 > 0",IV,nonsense6,1,marginal,P(Y) +32687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 57%. For those who are not yupt, the probability of muvq is 83%. For those who are yupt, the probability of muvq is 48%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.57 +P(Y=1 | X=0) = 0.83 +P(Y=1 | X=1) = 0.48 +0.57*0.48 - 0.43*0.83 = 0.64 +0.64 > 0",IV,nonsense6,1,marginal,P(Y) +32688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 57%. The probability of not yupt and muvq is 36%. The probability of yupt and muvq is 27%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.27 +0.27/0.57 - 0.36/0.43 = -0.34 +-0.34 < 0",IV,nonsense6,1,correlation,P(Y | X) +32689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 57%. The probability of not yupt and muvq is 36%. The probability of yupt and muvq is 27%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.27 +0.27/0.57 - 0.36/0.43 = -0.34 +-0.34 < 0",IV,nonsense6,1,correlation,P(Y | X) +32693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. For those who are not zupj, the probability of muvq is 63%. For those who are zupj, the probability of muvq is 41%. For those who are not zupj, the probability of yupt is 32%. For those who are zupj, the probability of yupt is 87%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.41 +P(X=1 | V2=0) = 0.32 +P(X=1 | V2=1) = 0.87 +(0.41 - 0.63) / (0.87 - 0.32) = -0.40 +-0.40 < 0",IV,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 66%. For those who are not yupt, the probability of muvq is 72%. For those who are yupt, the probability of muvq is 35%.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.35 +0.66*0.35 - 0.34*0.72 = 0.49 +0.49 > 0",IV,nonsense6,1,marginal,P(Y) +32696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 66%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 23%.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.23 +0.23/0.66 - 0.25/0.34 = -0.37 +-0.37 < 0",IV,nonsense6,1,correlation,P(Y | X) +32698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 37%. For those who are yupt, the probability of muvq is 51%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.51 +0.51 - 0.37 = 0.13 +0.13 > 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 37%. For those who are yupt, the probability of muvq is 51%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.51 +0.51 - 0.37 = 0.13 +0.13 > 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 22%. For those who are not yupt and are zupj, the probability of muvq is 35%. For those who are yupt and are not zupj, the probability of muvq is 24%. For those who are yupt and are zupj, the probability of muvq is 36%. For those who are not yupt and are not xyfo, the probability of zupj is 50%. For those who are not yupt and are xyfo, the probability of zupj is 85%. For those who are yupt and are not xyfo, the probability of zupj is 13%. For those who are yupt and are xyfo, the probability of zupj is 94%. The overall probability of xyfo is 52%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.35 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.36 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.85 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.94 +P(V2=1) = 0.52 +0.52 * 0.35 * (0.94 - 0.13)+ 0.48 * 0.35 * (0.85 - 0.50)= 0.01 +0.01 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 22%. For those who are not yupt and are zupj, the probability of muvq is 35%. For those who are yupt and are not zupj, the probability of muvq is 24%. For those who are yupt and are zupj, the probability of muvq is 36%. For those who are not yupt and are not xyfo, the probability of zupj is 50%. For those who are not yupt and are xyfo, the probability of zupj is 85%. For those who are yupt and are not xyfo, the probability of zupj is 13%. For those who are yupt and are xyfo, the probability of zupj is 94%. The overall probability of xyfo is 52%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.35 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.36 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.85 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.94 +P(V2=1) = 0.52 +0.52 * (0.36 - 0.24) * 0.85 + 0.48 * (0.35 - 0.22) * 0.13 = 0.12 +0.12 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 22%. For those who are not yupt and are zupj, the probability of muvq is 35%. For those who are yupt and are not zupj, the probability of muvq is 24%. For those who are yupt and are zupj, the probability of muvq is 36%. For those who are not yupt and are not xyfo, the probability of zupj is 50%. For those who are not yupt and are xyfo, the probability of zupj is 85%. For those who are yupt and are not xyfo, the probability of zupj is 13%. For those who are yupt and are xyfo, the probability of zupj is 94%. The overall probability of xyfo is 52%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.35 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.36 +P(V3=1 | X=0, V2=0) = 0.50 +P(V3=1 | X=0, V2=1) = 0.85 +P(V3=1 | X=1, V2=0) = 0.13 +P(V3=1 | X=1, V2=1) = 0.94 +P(V2=1) = 0.52 +0.52 * (0.36 - 0.24) * 0.85 + 0.48 * (0.35 - 0.22) * 0.13 = 0.12 +0.12 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 24%. For those who are not yupt, the probability of muvq is 37%. For those who are yupt, the probability of muvq is 51%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.51 +0.24*0.51 - 0.76*0.37 = 0.40 +0.40 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 24%. The probability of not yupt and muvq is 24%. The probability of yupt and muvq is 7%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.07 +0.07/0.24 - 0.24/0.76 = -0.00 +0.00 = 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 24%. The probability of not yupt and muvq is 24%. The probability of yupt and muvq is 7%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.07 +0.07/0.24 - 0.24/0.76 = -0.00 +0.00 = 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 78%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.78 +0.78 - 0.56 = 0.21 +0.21 > 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 78%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.78 +0.78 - 0.56 = 0.21 +0.21 > 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 78%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.78 +0.78 - 0.56 = 0.21 +0.21 > 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 55%. For those who are not yupt and are zupj, the probability of muvq is 66%. For those who are yupt and are not zupj, the probability of muvq is 66%. For those who are yupt and are zupj, the probability of muvq is 85%. For those who are not yupt and are not xyfo, the probability of zupj is 10%. For those who are not yupt and are xyfo, the probability of zupj is 16%. For those who are yupt and are not xyfo, the probability of zupj is 62%. For those who are yupt and are xyfo, the probability of zupj is 57%. The overall probability of xyfo is 14%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0, V2=0) = 0.10 +P(V3=1 | X=0, V2=1) = 0.16 +P(V3=1 | X=1, V2=0) = 0.62 +P(V3=1 | X=1, V2=1) = 0.57 +P(V2=1) = 0.14 +0.14 * (0.85 - 0.66) * 0.16 + 0.86 * (0.66 - 0.55) * 0.62 = 0.11 +0.11 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 55%. For those who are not yupt and are zupj, the probability of muvq is 66%. For those who are yupt and are not zupj, the probability of muvq is 66%. For those who are yupt and are zupj, the probability of muvq is 85%. For those who are not yupt and are not xyfo, the probability of zupj is 10%. For those who are not yupt and are xyfo, the probability of zupj is 16%. For those who are yupt and are not xyfo, the probability of zupj is 62%. For those who are yupt and are xyfo, the probability of zupj is 57%. The overall probability of xyfo is 14%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.55 +P(Y=1 | X=0, V3=1) = 0.66 +P(Y=1 | X=1, V3=0) = 0.66 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0, V2=0) = 0.10 +P(V3=1 | X=0, V2=1) = 0.16 +P(V3=1 | X=1, V2=0) = 0.62 +P(V3=1 | X=1, V2=1) = 0.57 +P(V2=1) = 0.14 +0.14 * (0.85 - 0.66) * 0.16 + 0.86 * (0.66 - 0.55) * 0.62 = 0.11 +0.11 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32723,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 50%. For those who are not yupt, the probability of muvq is 56%. For those who are yupt, the probability of muvq is 78%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.56 +P(Y=1 | X=1) = 0.78 +0.50*0.78 - 0.50*0.56 = 0.66 +0.66 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 50%. The probability of not yupt and muvq is 28%. The probability of yupt and muvq is 39%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.39 +0.39/0.50 - 0.28/0.50 = 0.22 +0.22 > 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 40%. For those who are yupt, the probability of muvq is 17%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.17 +0.17 - 0.40 = -0.24 +-0.24 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 15%. For those who are not yupt and are zupj, the probability of muvq is 52%. For those who are yupt and are not zupj, the probability of muvq is 72%. For those who are yupt and are zupj, the probability of muvq is 6%. For those who are not yupt and are not xyfo, the probability of zupj is 92%. For those who are not yupt and are xyfo, the probability of zupj is 37%. For those who are yupt and are not xyfo, the probability of zupj is 74%. For those who are yupt and are xyfo, the probability of zupj is 91%. The overall probability of xyfo is 50%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.06 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.37 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.91 +P(V2=1) = 0.50 +0.50 * 0.52 * (0.91 - 0.74)+ 0.50 * 0.52 * (0.37 - 0.92)= 0.01 +0.01 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 95%. For those who are not yupt, the probability of muvq is 40%. For those who are yupt, the probability of muvq is 17%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.17 +0.95*0.17 - 0.05*0.40 = 0.18 +0.18 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 95%. The probability of not yupt and muvq is 2%. The probability of yupt and muvq is 17%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.17 +0.17/0.95 - 0.02/0.05 = -0.22 +-0.22 < 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 95%. The probability of not yupt and muvq is 2%. The probability of yupt and muvq is 17%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.17 +0.17/0.95 - 0.02/0.05 = -0.22 +-0.22 < 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 42%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.42 +0.42 - 0.36 = 0.06 +0.06 > 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 42%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.42 +0.42 - 0.36 = 0.06 +0.06 > 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 42%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.42 +0.42 - 0.36 = 0.06 +0.06 > 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 34%. For those who are not yupt and are zupj, the probability of muvq is 59%. For those who are yupt and are not zupj, the probability of muvq is 30%. For those who are yupt and are zupj, the probability of muvq is 49%. For those who are not yupt and are not xyfo, the probability of zupj is 2%. For those who are not yupt and are xyfo, the probability of zupj is 33%. For those who are yupt and are not xyfo, the probability of zupj is 67%. For those who are yupt and are xyfo, the probability of zupj is 52%. The overall probability of xyfo is 5%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.02 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.67 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.05 +0.05 * 0.59 * (0.52 - 0.67)+ 0.95 * 0.59 * (0.33 - 0.02)= 0.37 +0.37 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 34%. For those who are not yupt and are zupj, the probability of muvq is 59%. For those who are yupt and are not zupj, the probability of muvq is 30%. For those who are yupt and are zupj, the probability of muvq is 49%. For those who are not yupt and are not xyfo, the probability of zupj is 2%. For those who are not yupt and are xyfo, the probability of zupj is 33%. For those who are yupt and are not xyfo, the probability of zupj is 67%. For those who are yupt and are xyfo, the probability of zupj is 52%. The overall probability of xyfo is 5%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.02 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.67 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.05 +0.05 * 0.59 * (0.52 - 0.67)+ 0.95 * 0.59 * (0.33 - 0.02)= 0.37 +0.37 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 34%. For those who are not yupt and are zupj, the probability of muvq is 59%. For those who are yupt and are not zupj, the probability of muvq is 30%. For those who are yupt and are zupj, the probability of muvq is 49%. For those who are not yupt and are not xyfo, the probability of zupj is 2%. For those who are not yupt and are xyfo, the probability of zupj is 33%. For those who are yupt and are not xyfo, the probability of zupj is 67%. For those who are yupt and are xyfo, the probability of zupj is 52%. The overall probability of xyfo is 5%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.02 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.67 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.05 +0.05 * (0.49 - 0.30) * 0.33 + 0.95 * (0.59 - 0.34) * 0.67 = -0.05 +-0.05 < 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 34%. For those who are not yupt and are zupj, the probability of muvq is 59%. For those who are yupt and are not zupj, the probability of muvq is 30%. For those who are yupt and are zupj, the probability of muvq is 49%. For those who are not yupt and are not xyfo, the probability of zupj is 2%. For those who are not yupt and are xyfo, the probability of zupj is 33%. For those who are yupt and are not xyfo, the probability of zupj is 67%. For those who are yupt and are xyfo, the probability of zupj is 52%. The overall probability of xyfo is 5%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.02 +P(V3=1 | X=0, V2=1) = 0.33 +P(V3=1 | X=1, V2=0) = 0.67 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.05 +0.05 * (0.49 - 0.30) * 0.33 + 0.95 * (0.59 - 0.34) * 0.67 = -0.05 +-0.05 < 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32751,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 29%. For those who are not yupt, the probability of muvq is 36%. For those who are yupt, the probability of muvq is 42%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.42 +0.29*0.42 - 0.71*0.36 = 0.43 +0.43 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 29%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 12%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.29 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.12 +0.12/0.29 - 0.25/0.71 = 0.08 +0.08 > 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 29%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 12%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.29 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.12 +0.12/0.29 - 0.25/0.71 = 0.08 +0.08 > 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 41%. For those who are yupt, the probability of muvq is 57%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.57 +0.57 - 0.41 = 0.15 +0.15 > 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 41%. For those who are yupt, the probability of muvq is 57%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.57 +0.57 - 0.41 = 0.15 +0.15 > 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 66%. For those who are not yupt and are zupj, the probability of muvq is 13%. For those who are yupt and are not zupj, the probability of muvq is 60%. For those who are yupt and are zupj, the probability of muvq is 35%. For those who are not yupt and are not xyfo, the probability of zupj is 53%. For those who are not yupt and are xyfo, the probability of zupj is 11%. For those who are yupt and are not xyfo, the probability of zupj is 26%. For those who are yupt and are xyfo, the probability of zupj is 9%. The overall probability of xyfo is 47%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0, V2=0) = 0.53 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.26 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.47 +0.47 * 0.13 * (0.09 - 0.26)+ 0.53 * 0.13 * (0.11 - 0.53)= 0.05 +0.05 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 66%. For those who are not yupt and are zupj, the probability of muvq is 13%. For those who are yupt and are not zupj, the probability of muvq is 60%. For those who are yupt and are zupj, the probability of muvq is 35%. For those who are not yupt and are not xyfo, the probability of zupj is 53%. For those who are not yupt and are xyfo, the probability of zupj is 11%. For those who are yupt and are not xyfo, the probability of zupj is 26%. For those who are yupt and are xyfo, the probability of zupj is 9%. The overall probability of xyfo is 47%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0, V2=0) = 0.53 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.26 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.47 +0.47 * 0.13 * (0.09 - 0.26)+ 0.53 * 0.13 * (0.11 - 0.53)= 0.05 +0.05 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 66%. For those who are not yupt and are zupj, the probability of muvq is 13%. For those who are yupt and are not zupj, the probability of muvq is 60%. For those who are yupt and are zupj, the probability of muvq is 35%. For those who are not yupt and are not xyfo, the probability of zupj is 53%. For those who are not yupt and are xyfo, the probability of zupj is 11%. For those who are yupt and are not xyfo, the probability of zupj is 26%. For those who are yupt and are xyfo, the probability of zupj is 9%. The overall probability of xyfo is 47%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.35 +P(V3=1 | X=0, V2=0) = 0.53 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.26 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.47 +0.47 * (0.35 - 0.60) * 0.11 + 0.53 * (0.13 - 0.66) * 0.26 = 0.12 +0.12 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32764,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 27%. For those who are not yupt, the probability of muvq is 41%. For those who are yupt, the probability of muvq is 57%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.27 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.57 +0.27*0.57 - 0.73*0.41 = 0.46 +0.46 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 27%. The probability of not yupt and muvq is 35%. The probability of yupt and muvq is 15%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.15 +0.15/0.27 - 0.35/0.73 = 0.07 +0.07 > 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 27%. The probability of not yupt and muvq is 35%. The probability of yupt and muvq is 15%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.15 +0.15/0.27 - 0.35/0.73 = 0.07 +0.07 > 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 43%. For those who are yupt, the probability of muvq is 38%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.38 +0.38 - 0.43 = -0.05 +-0.05 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 43%. For those who are yupt, the probability of muvq is 38%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.38 +0.38 - 0.43 = -0.05 +-0.05 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 42%. For those who are not yupt and are zupj, the probability of muvq is 28%. For those who are yupt and are not zupj, the probability of muvq is 26%. For those who are yupt and are zupj, the probability of muvq is 48%. For those who are not yupt and are not xyfo, the probability of zupj is 97%. For those who are not yupt and are xyfo, the probability of zupj is 27%. For those who are yupt and are not xyfo, the probability of zupj is 49%. For those who are yupt and are xyfo, the probability of zupj is 8%. The overall probability of xyfo is 28%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.26 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.27 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.28 +0.28 * 0.28 * (0.08 - 0.49)+ 0.72 * 0.28 * (0.27 - 0.97)= 0.14 +0.14 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 42%. For those who are not yupt and are zupj, the probability of muvq is 28%. For those who are yupt and are not zupj, the probability of muvq is 26%. For those who are yupt and are zupj, the probability of muvq is 48%. For those who are not yupt and are not xyfo, the probability of zupj is 97%. For those who are not yupt and are xyfo, the probability of zupj is 27%. For those who are yupt and are not xyfo, the probability of zupj is 49%. For those who are yupt and are xyfo, the probability of zupj is 8%. The overall probability of xyfo is 28%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.26 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.27 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.28 +0.28 * 0.28 * (0.08 - 0.49)+ 0.72 * 0.28 * (0.27 - 0.97)= 0.14 +0.14 > 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 42%. For those who are not yupt and are zupj, the probability of muvq is 28%. For those who are yupt and are not zupj, the probability of muvq is 26%. For those who are yupt and are zupj, the probability of muvq is 48%. For those who are not yupt and are not xyfo, the probability of zupj is 97%. For those who are not yupt and are xyfo, the probability of zupj is 27%. For those who are yupt and are not xyfo, the probability of zupj is 49%. For those who are yupt and are xyfo, the probability of zupj is 8%. The overall probability of xyfo is 28%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.28 +P(Y=1 | X=1, V3=0) = 0.26 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.97 +P(V3=1 | X=0, V2=1) = 0.27 +P(V3=1 | X=1, V2=0) = 0.49 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.28 +0.28 * (0.48 - 0.26) * 0.27 + 0.72 * (0.28 - 0.42) * 0.49 = 0.04 +0.04 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 73%. For those who are not yupt, the probability of muvq is 43%. For those who are yupt, the probability of muvq is 38%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.38 +0.73*0.38 - 0.27*0.43 = 0.44 +0.44 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 65%. For those who are yupt, the probability of muvq is 48%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.48 +0.48 - 0.65 = -0.17 +-0.17 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 65%. For those who are yupt, the probability of muvq is 48%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.48 +0.48 - 0.65 = -0.17 +-0.17 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 32%. For those who are not yupt and are zupj, the probability of muvq is 68%. For those who are yupt and are not zupj, the probability of muvq is 35%. For those who are yupt and are zupj, the probability of muvq is 52%. For those who are not yupt and are not xyfo, the probability of zupj is 72%. For those who are not yupt and are xyfo, the probability of zupj is 87%. For those who are yupt and are not xyfo, the probability of zupj is 74%. For those who are yupt and are xyfo, the probability of zupj is 54%. The overall probability of xyfo is 60%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.87 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.60 +0.60 * 0.68 * (0.54 - 0.74)+ 0.40 * 0.68 * (0.87 - 0.72)= -0.05 +-0.05 < 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 32%. For those who are not yupt and are zupj, the probability of muvq is 68%. For those who are yupt and are not zupj, the probability of muvq is 35%. For those who are yupt and are zupj, the probability of muvq is 52%. For those who are not yupt and are not xyfo, the probability of zupj is 72%. For those who are not yupt and are xyfo, the probability of zupj is 87%. For those who are yupt and are not xyfo, the probability of zupj is 74%. For those who are yupt and are xyfo, the probability of zupj is 54%. The overall probability of xyfo is 60%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.87 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.60 +0.60 * 0.68 * (0.54 - 0.74)+ 0.40 * 0.68 * (0.87 - 0.72)= -0.05 +-0.05 < 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 32%. For those who are not yupt and are zupj, the probability of muvq is 68%. For those who are yupt and are not zupj, the probability of muvq is 35%. For those who are yupt and are zupj, the probability of muvq is 52%. For those who are not yupt and are not xyfo, the probability of zupj is 72%. For those who are not yupt and are xyfo, the probability of zupj is 87%. For those who are yupt and are not xyfo, the probability of zupj is 74%. For those who are yupt and are xyfo, the probability of zupj is 54%. The overall probability of xyfo is 60%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.32 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.72 +P(V3=1 | X=0, V2=1) = 0.87 +P(V3=1 | X=1, V2=0) = 0.74 +P(V3=1 | X=1, V2=1) = 0.54 +P(V2=1) = 0.60 +0.60 * (0.52 - 0.35) * 0.87 + 0.40 * (0.68 - 0.32) * 0.74 = -0.12 +-0.12 < 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 60%. For those who are not yupt, the probability of muvq is 65%. For those who are yupt, the probability of muvq is 48%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.48 +0.60*0.48 - 0.40*0.65 = 0.55 +0.55 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 60%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 27%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.27 +0.27/0.60 - 0.25/0.40 = -0.16 +-0.16 < 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 28%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.28 +0.28 - 0.60 = -0.32 +-0.32 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 28%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.28 +0.28 - 0.60 = -0.32 +-0.32 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 28%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.28 +0.28 - 0.60 = -0.32 +-0.32 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 65%. For those who are not yupt and are zupj, the probability of muvq is 55%. For those who are yupt and are not zupj, the probability of muvq is 55%. For those who are yupt and are zupj, the probability of muvq is 22%. For those who are not yupt and are not xyfo, the probability of zupj is 81%. For those who are not yupt and are xyfo, the probability of zupj is 22%. For those who are yupt and are not xyfo, the probability of zupj is 82%. For those who are yupt and are xyfo, the probability of zupj is 52%. The overall probability of xyfo is 7%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.55 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.22 +P(V3=1 | X=0, V2=0) = 0.81 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.82 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.07 +0.07 * 0.55 * (0.52 - 0.82)+ 0.93 * 0.55 * (0.22 - 0.81)= -0.01 +-0.01 < 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 65%. For those who are not yupt and are zupj, the probability of muvq is 55%. For those who are yupt and are not zupj, the probability of muvq is 55%. For those who are yupt and are zupj, the probability of muvq is 22%. For those who are not yupt and are not xyfo, the probability of zupj is 81%. For those who are not yupt and are xyfo, the probability of zupj is 22%. For those who are yupt and are not xyfo, the probability of zupj is 82%. For those who are yupt and are xyfo, the probability of zupj is 52%. The overall probability of xyfo is 7%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.65 +P(Y=1 | X=0, V3=1) = 0.55 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.22 +P(V3=1 | X=0, V2=0) = 0.81 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.82 +P(V3=1 | X=1, V2=1) = 0.52 +P(V2=1) = 0.07 +0.07 * (0.22 - 0.55) * 0.22 + 0.93 * (0.55 - 0.65) * 0.82 = -0.31 +-0.31 < 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 5%. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 28%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.28 +0.05*0.28 - 0.95*0.60 = 0.58 +0.58 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 5%. The probability of not yupt and muvq is 55%. The probability of yupt and muvq is 2%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.55 +P(Y=1, X=1=1) = 0.02 +0.02/0.05 - 0.55/0.95 = -0.29 +-0.29 < 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.34 - 0.68 = -0.34 +-0.34 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.34 - 0.68 = -0.34 +-0.34 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32816,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 78%. For those who are not yupt and are zupj, the probability of muvq is 26%. For those who are yupt and are not zupj, the probability of muvq is 64%. For those who are yupt and are zupj, the probability of muvq is 31%. For those who are not yupt and are not xyfo, the probability of zupj is 10%. For those who are not yupt and are xyfo, the probability of zupj is 22%. For those who are yupt and are not xyfo, the probability of zupj is 60%. For those who are yupt and are xyfo, the probability of zupj is 100%. The overall probability of xyfo is 90%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.64 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0, V2=0) = 0.10 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.60 +P(V3=1 | X=1, V2=1) = 1.00 +P(V2=1) = 0.90 +0.90 * 0.26 * (1.00 - 0.60)+ 0.10 * 0.26 * (0.22 - 0.10)= -0.38 +-0.38 < 0",arrowhead,nonsense6,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +32818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 78%. For those who are not yupt and are zupj, the probability of muvq is 26%. For those who are yupt and are not zupj, the probability of muvq is 64%. For those who are yupt and are zupj, the probability of muvq is 31%. For those who are not yupt and are not xyfo, the probability of zupj is 10%. For those who are not yupt and are xyfo, the probability of zupj is 22%. For those who are yupt and are not xyfo, the probability of zupj is 60%. For those who are yupt and are xyfo, the probability of zupj is 100%. The overall probability of xyfo is 90%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.26 +P(Y=1 | X=1, V3=0) = 0.64 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0, V2=0) = 0.10 +P(V3=1 | X=0, V2=1) = 0.22 +P(V3=1 | X=1, V2=0) = 0.60 +P(V3=1 | X=1, V2=1) = 1.00 +P(V2=1) = 0.90 +0.90 * (0.31 - 0.64) * 0.22 + 0.10 * (0.26 - 0.78) * 0.60 = 0.09 +0.09 > 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 55%. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.55*0.34 - 0.45*0.68 = 0.51 +0.51 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 55%. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.55*0.34 - 0.45*0.68 = 0.51 +0.51 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 55%. The probability of not yupt and muvq is 30%. The probability of yupt and muvq is 18%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.18 +0.18/0.55 - 0.30/0.45 = -0.36 +-0.36 < 0",arrowhead,nonsense6,1,correlation,P(Y | X) +32824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 43%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.43 - 0.46 = -0.03 +-0.03 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 43%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.43 - 0.46 = -0.03 +-0.03 < 0",arrowhead,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 43%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.43 - 0.46 = -0.03 +-0.03 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 43%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.43 - 0.46 = -0.03 +-0.03 < 0",arrowhead,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. For those who are not yupt and are not zupj, the probability of muvq is 44%. For those who are not yupt and are zupj, the probability of muvq is 51%. For those who are yupt and are not zupj, the probability of muvq is 57%. For those who are yupt and are zupj, the probability of muvq is 10%. For those who are not yupt and are not xyfo, the probability of zupj is 42%. For those who are not yupt and are xyfo, the probability of zupj is 87%. For those who are yupt and are not xyfo, the probability of zupj is 26%. For those who are yupt and are xyfo, the probability of zupj is 44%. The overall probability of xyfo is 22%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.44 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.10 +P(V3=1 | X=0, V2=0) = 0.42 +P(V3=1 | X=0, V2=1) = 0.87 +P(V3=1 | X=1, V2=0) = 0.26 +P(V3=1 | X=1, V2=1) = 0.44 +P(V2=1) = 0.22 +0.22 * (0.10 - 0.57) * 0.87 + 0.78 * (0.51 - 0.44) * 0.26 = -0.14 +-0.14 < 0",arrowhead,nonsense6,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +32834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 24%. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 43%.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.24*0.43 - 0.76*0.46 = 0.43 +0.43 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. The overall probability of yupt is 24%. For those who are not yupt, the probability of muvq is 46%. For those who are yupt, the probability of muvq is 43%.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.43 +0.24*0.43 - 0.76*0.46 = 0.43 +0.43 > 0",arrowhead,nonsense6,1,marginal,P(Y) +32840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 33%. For those who are yupt, the probability of muvq is 45%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.12 +0.12 > 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 33%. For those who are yupt, the probability of muvq is 45%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.12 +0.12 > 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 33%. For those who are yupt, the probability of muvq is 45%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.45 +0.45 - 0.33 = 0.12 +0.12 > 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 60%. The probability of not yupt and muvq is 13%. The probability of yupt and muvq is 27%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.27 +0.27/0.60 - 0.13/0.40 = 0.12 +0.12 > 0",diamond,nonsense6,1,correlation,P(Y | X) +32849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 60%. The probability of not yupt and muvq is 13%. The probability of yupt and muvq is 27%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.27 +0.27/0.60 - 0.13/0.40 = 0.12 +0.12 > 0",diamond,nonsense6,1,correlation,P(Y | X) +32851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.68 - 0.59 = 0.09 +0.09 > 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.68 - 0.59 = 0.09 +0.09 > 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.68 - 0.59 = 0.09 +0.09 > 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.68 - 0.59 = 0.09 +0.09 > 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.68 - 0.59 = 0.09 +0.09 > 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.68 - 0.59 = 0.09 +0.09 > 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 58%. For those who are not yupt, the probability of muvq is 59%. For those who are yupt, the probability of muvq is 68%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.68 +0.58*0.68 - 0.42*0.59 = 0.64 +0.64 > 0",diamond,nonsense6,1,marginal,P(Y) +32860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 58%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 39%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.39 +0.39/0.58 - 0.25/0.42 = 0.09 +0.09 > 0",diamond,nonsense6,1,correlation,P(Y | X) +32861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 58%. The probability of not yupt and muvq is 25%. The probability of yupt and muvq is 39%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.39 +0.39/0.58 - 0.25/0.42 = 0.09 +0.09 > 0",diamond,nonsense6,1,correlation,P(Y | X) +32862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 57%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.57 +0.57 - 0.71 = -0.14 +-0.14 < 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 57%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.57 +0.57 - 0.71 = -0.14 +-0.14 < 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 57%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.57 +0.57 - 0.71 = -0.14 +-0.14 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 71%. For those who are yupt, the probability of muvq is 57%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.57 +0.57 - 0.71 = -0.14 +-0.14 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 5%. The probability of not yupt and muvq is 67%. The probability of yupt and muvq is 3%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.67 +P(Y=1, X=1=1) = 0.03 +0.03/0.05 - 0.67/0.95 = -0.14 +-0.14 < 0",diamond,nonsense6,1,correlation,P(Y | X) +32877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.19 - 0.48 = -0.29 +-0.29 < 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.19 - 0.48 = -0.29 +-0.29 < 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.19 - 0.48 = -0.29 +-0.29 < 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.19 - 0.48 = -0.29 +-0.29 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.19 - 0.48 = -0.29 +-0.29 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 87%. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.87*0.19 - 0.13*0.48 = 0.23 +0.23 > 0",diamond,nonsense6,1,marginal,P(Y) +32883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 87%. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 19%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.19 +0.87*0.19 - 0.13*0.48 = 0.23 +0.23 > 0",diamond,nonsense6,1,marginal,P(Y) +32884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 87%. The probability of not yupt and muvq is 6%. The probability of yupt and muvq is 16%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.16 +0.16/0.87 - 0.06/0.13 = -0.29 +-0.29 < 0",diamond,nonsense6,1,correlation,P(Y | X) +32885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 87%. The probability of not yupt and muvq is 6%. The probability of yupt and muvq is 16%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.16 +0.16/0.87 - 0.06/0.13 = -0.29 +-0.29 < 0",diamond,nonsense6,1,correlation,P(Y | X) +32886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 26%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.26 +0.26 - 0.66 = -0.40 +-0.40 < 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 26%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.26 +0.26 - 0.66 = -0.40 +-0.40 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 26%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.26 +0.26 - 0.66 = -0.40 +-0.40 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 77%. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 26%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.26 +0.77*0.26 - 0.23*0.66 = 0.30 +0.30 > 0",diamond,nonsense6,1,marginal,P(Y) +32896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 77%. The probability of not yupt and muvq is 15%. The probability of yupt and muvq is 20%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.20 +0.20/0.77 - 0.15/0.23 = -0.40 +-0.40 < 0",diamond,nonsense6,1,correlation,P(Y | X) +32898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 70%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.70 +0.70 - 0.69 = 0.02 +0.02 > 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 70%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.70 +0.70 - 0.69 = 0.02 +0.02 > 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 70%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.70 +0.70 - 0.69 = 0.02 +0.02 > 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 80%. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 70%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.70 +0.80*0.70 - 0.20*0.69 = 0.70 +0.70 > 0",diamond,nonsense6,1,marginal,P(Y) +32907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 80%. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 70%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.80 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.70 +0.80*0.70 - 0.20*0.69 = 0.70 +0.70 > 0",diamond,nonsense6,1,marginal,P(Y) +32908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 80%. The probability of not yupt and muvq is 14%. The probability of yupt and muvq is 56%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.80 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.56 +0.56/0.80 - 0.14/0.20 = 0.02 +0.02 > 0",diamond,nonsense6,1,correlation,P(Y | X) +32910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 57%. For those who are yupt, the probability of muvq is 28%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.28 +0.28 - 0.57 = -0.29 +-0.29 < 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 57%. For those who are yupt, the probability of muvq is 28%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.28 +0.28 - 0.57 = -0.29 +-0.29 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 72%. For those who are not yupt, the probability of muvq is 57%. For those who are yupt, the probability of muvq is 28%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.28 +0.72*0.28 - 0.28*0.57 = 0.36 +0.36 > 0",diamond,nonsense6,1,marginal,P(Y) +32919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 72%. For those who are not yupt, the probability of muvq is 57%. For those who are yupt, the probability of muvq is 28%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.28 +0.72*0.28 - 0.28*0.57 = 0.36 +0.36 > 0",diamond,nonsense6,1,marginal,P(Y) +32922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32923,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 55%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.55 +0.55 - 0.60 = -0.05 +-0.05 < 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 55%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.55 +0.55 - 0.60 = -0.05 +-0.05 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 24%. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 55%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.24 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.55 +0.24*0.55 - 0.76*0.60 = 0.60 +0.60 > 0",diamond,nonsense6,1,marginal,P(Y) +32933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 24%. The probability of not yupt and muvq is 46%. The probability of yupt and muvq is 13%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.24 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.13 +0.13/0.24 - 0.46/0.76 = -0.05 +-0.05 < 0",diamond,nonsense6,1,correlation,P(Y | X) +32935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.58 - 0.69 = -0.12 +-0.12 < 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.58 - 0.69 = -0.12 +-0.12 < 0",diamond,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.58 - 0.69 = -0.12 +-0.12 < 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.58 - 0.69 = -0.12 +-0.12 < 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.58 - 0.69 = -0.12 +-0.12 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.58 - 0.69 = -0.12 +-0.12 < 0",diamond,nonsense6,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +32942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 75%. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.75*0.58 - 0.25*0.69 = 0.60 +0.60 > 0",diamond,nonsense6,1,marginal,P(Y) +32943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 75%. For those who are not yupt, the probability of muvq is 69%. For those who are yupt, the probability of muvq is 58%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.58 +0.75*0.58 - 0.25*0.69 = 0.60 +0.60 > 0",diamond,nonsense6,1,marginal,P(Y) +32944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 75%. The probability of not yupt and muvq is 17%. The probability of yupt and muvq is 43%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.43 +0.43/0.75 - 0.17/0.25 = -0.12 +-0.12 < 0",diamond,nonsense6,1,correlation,P(Y | X) +32950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 14%. For those who are yupt, the probability of muvq is 17%.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.17 +0.17 - 0.14 = 0.03 +0.03 > 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt, the probability of muvq is 14%. For those who are yupt, the probability of muvq is 17%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.17 +0.17 - 0.14 = 0.03 +0.03 > 0",diamond,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 62%. For those who are not yupt, the probability of muvq is 14%. For those who are yupt, the probability of muvq is 17%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.14 +P(Y=1 | X=1) = 0.17 +0.62*0.17 - 0.38*0.14 = 0.16 +0.16 > 0",diamond,nonsense6,1,marginal,P(Y) +32956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 62%. The probability of not yupt and muvq is 5%. The probability of yupt and muvq is 11%.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.11 +0.11/0.62 - 0.05/0.38 = 0.03 +0.03 > 0",diamond,nonsense6,1,correlation,P(Y | X) +32958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 29%. For those who are not zupj and are yupt, the probability of muvq is 67%. For those who are zupj and are not yupt, the probability of muvq is 30%. For those who are zupj and are yupt, the probability of muvq is 47%. The overall probability of zupj is 14%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.29 +P(Y=1 | V1=0, X=1) = 0.67 +P(Y=1 | V1=1, X=0) = 0.30 +P(Y=1 | V1=1, X=1) = 0.47 +P(V1=1) = 0.14 +0.86 * (0.67 - 0.29) 0.14 * (0.47 - 0.30) = 0.35 +0.35 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 30%. For those who are not yupt and are xyfo, the probability of muvq is 29%. For those who are yupt and are not xyfo, the probability of muvq is 31%. For those who are yupt and are xyfo, the probability of muvq is 74%. For those who are not yupt, the probability of xyfo is 78%. For those who are yupt, the probability of xyfo is 77%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0) = 0.78 +P(V3=1 | X=1) = 0.77 +0.77 * (0.74 - 0.31) + 0.78 * (0.29 - 0.30) = 0.35 +0.35 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 30%. For those who are not yupt and are xyfo, the probability of muvq is 29%. For those who are yupt and are not xyfo, the probability of muvq is 31%. For those who are yupt and are xyfo, the probability of muvq is 74%. For those who are not yupt, the probability of xyfo is 78%. For those who are yupt, the probability of xyfo is 77%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.30 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.31 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0) = 0.78 +P(V3=1 | X=1) = 0.77 +0.77 * (0.74 - 0.31) + 0.78 * (0.29 - 0.30) = 0.35 +0.35 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 22%. For those who are not yupt, the probability of muvq is 29%. For those who are yupt, the probability of muvq is 64%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.64 +0.22*0.64 - 0.78*0.29 = 0.37 +0.37 > 0",diamondcut,nonsense6,1,marginal,P(Y) +32965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 22%. For those who are not yupt, the probability of muvq is 29%. For those who are yupt, the probability of muvq is 64%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.64 +0.22*0.64 - 0.78*0.29 = 0.37 +0.37 > 0",diamondcut,nonsense6,1,marginal,P(Y) +32966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 22%. The probability of not yupt and muvq is 23%. The probability of yupt and muvq is 14%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.14 +0.14/0.22 - 0.23/0.78 = 0.35 +0.35 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +32968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 27%. For those who are not zupj and are yupt, the probability of muvq is 30%. For those who are zupj and are not yupt, the probability of muvq is 60%. For those who are zupj and are yupt, the probability of muvq is 40%. The overall probability of zupj is 41%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.30 +P(Y=1 | V1=1, X=0) = 0.60 +P(Y=1 | V1=1, X=1) = 0.40 +P(V1=1) = 0.41 +0.59 * (0.30 - 0.27) 0.41 * (0.40 - 0.60) = -0.06 +-0.06 < 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 83%. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 33%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.33 +0.83*0.33 - 0.17*0.48 = 0.35 +0.35 > 0",diamondcut,nonsense6,1,marginal,P(Y) +32975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 83%. For those who are not yupt, the probability of muvq is 48%. For those who are yupt, the probability of muvq is 33%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.33 +0.83*0.33 - 0.17*0.48 = 0.35 +0.35 > 0",diamondcut,nonsense6,1,marginal,P(Y) +32977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 83%. The probability of not yupt and muvq is 8%. The probability of yupt and muvq is 28%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.28 +0.28/0.83 - 0.08/0.17 = -0.15 +-0.15 < 0",diamondcut,nonsense6,1,correlation,P(Y | X) +32978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 6%. For those who are not zupj and are yupt, the probability of muvq is 27%. For those who are zupj and are not yupt, the probability of muvq is 7%. For those who are zupj and are yupt, the probability of muvq is 22%. The overall probability of zupj is 76%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.06 +P(Y=1 | V1=0, X=1) = 0.27 +P(Y=1 | V1=1, X=0) = 0.07 +P(Y=1 | V1=1, X=1) = 0.22 +P(V1=1) = 0.76 +0.24 * (0.27 - 0.06) 0.76 * (0.22 - 0.07) = 0.17 +0.17 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 8%. For those who are not yupt and are xyfo, the probability of muvq is 5%. For those who are yupt and are not xyfo, the probability of muvq is 16%. For those who are yupt and are xyfo, the probability of muvq is 33%. For those who are not yupt, the probability of xyfo is 45%. For those who are yupt, the probability of xyfo is 41%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.08 +P(Y=1 | X=0, V3=1) = 0.05 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.41 +0.41 * (0.33 - 0.16) + 0.45 * (0.05 - 0.08) = 0.16 +0.16 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 8%. For those who are not yupt and are xyfo, the probability of muvq is 5%. For those who are yupt and are not xyfo, the probability of muvq is 16%. For those who are yupt and are xyfo, the probability of muvq is 33%. For those who are not yupt, the probability of xyfo is 45%. For those who are yupt, the probability of xyfo is 41%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.08 +P(Y=1 | X=0, V3=1) = 0.05 +P(Y=1 | X=1, V3=0) = 0.16 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.41 +0.41 * (0.33 - 0.16) + 0.45 * (0.05 - 0.08) = 0.16 +0.16 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 38%. For those who are not yupt, the probability of muvq is 7%. For those who are yupt, the probability of muvq is 23%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.23 +0.38*0.23 - 0.62*0.07 = 0.13 +0.13 > 0",diamondcut,nonsense6,1,marginal,P(Y) +32985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 38%. For those who are not yupt, the probability of muvq is 7%. For those who are yupt, the probability of muvq is 23%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.23 +0.38*0.23 - 0.62*0.07 = 0.13 +0.13 > 0",diamondcut,nonsense6,1,marginal,P(Y) +32986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 38%. The probability of not yupt and muvq is 4%. The probability of yupt and muvq is 9%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.09 +0.09/0.38 - 0.04/0.62 = 0.16 +0.16 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +32988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +32990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 43%. For those who are not zupj and are yupt, the probability of muvq is 40%. For those who are zupj and are not yupt, the probability of muvq is 16%. For those who are zupj and are yupt, the probability of muvq is 95%. The overall probability of zupj is 65%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.43 +P(Y=1 | V1=0, X=1) = 0.40 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.95 +P(V1=1) = 0.65 +0.35 * (0.40 - 0.43) 0.65 * (0.95 - 0.16) = 0.50 +0.50 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 43%. For those who are not zupj and are yupt, the probability of muvq is 40%. For those who are zupj and are not yupt, the probability of muvq is 16%. For those who are zupj and are yupt, the probability of muvq is 95%. The overall probability of zupj is 65%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.43 +P(Y=1 | V1=0, X=1) = 0.40 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.95 +P(V1=1) = 0.65 +0.35 * (0.40 - 0.43) 0.65 * (0.95 - 0.16) = 0.50 +0.50 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +32992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 16%. For those who are not yupt and are xyfo, the probability of muvq is 60%. For those who are yupt and are not xyfo, the probability of muvq is 96%. For those who are yupt and are xyfo, the probability of muvq is 4%. For those who are not yupt, the probability of xyfo is 15%. For those who are yupt, the probability of xyfo is 48%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.16 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.04 +P(V3=1 | X=0) = 0.15 +P(V3=1 | X=1) = 0.48 +0.48 * (0.04 - 0.96) + 0.15 * (0.60 - 0.16) = 0.14 +0.14 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 16%. For those who are not yupt and are xyfo, the probability of muvq is 60%. For those who are yupt and are not xyfo, the probability of muvq is 96%. For those who are yupt and are xyfo, the probability of muvq is 4%. For those who are not yupt, the probability of xyfo is 15%. For those who are yupt, the probability of xyfo is 48%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.16 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.04 +P(V3=1 | X=0) = 0.15 +P(V3=1 | X=1) = 0.48 +0.48 * (0.04 - 0.96) + 0.15 * (0.60 - 0.16) = 0.14 +0.14 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +32997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 22%. The probability of not yupt and muvq is 18%. The probability of yupt and muvq is 11%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.11 +0.11/0.22 - 0.18/0.78 = 0.29 +0.29 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +32998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 76%. For those who are not zupj and are yupt, the probability of muvq is 22%. For those who are zupj and are not yupt, the probability of muvq is 74%. For those who are zupj and are yupt, the probability of muvq is 30%. The overall probability of zupj is 59%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.30 +P(V1=1) = 0.59 +0.41 * (0.22 - 0.76) 0.59 * (0.30 - 0.74) = -0.48 +-0.48 < 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 76%. For those who are not zupj and are yupt, the probability of muvq is 22%. For those who are zupj and are not yupt, the probability of muvq is 74%. For those who are zupj and are yupt, the probability of muvq is 30%. The overall probability of zupj is 59%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.76 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.30 +P(V1=1) = 0.59 +0.41 * (0.22 - 0.76) 0.59 * (0.30 - 0.74) = -0.48 +-0.48 < 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 73%. For those who are not yupt, the probability of muvq is 75%. For those who are yupt, the probability of muvq is 27%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.27 +0.73*0.27 - 0.27*0.75 = 0.39 +0.39 > 0",diamondcut,nonsense6,1,marginal,P(Y) +33010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 34%. For those who are not zupj and are yupt, the probability of muvq is 95%. For those who are zupj and are not yupt, the probability of muvq is 69%. For those who are zupj and are yupt, the probability of muvq is 88%. The overall probability of zupj is 65%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.34 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.69 +P(Y=1 | V1=1, X=1) = 0.88 +P(V1=1) = 0.65 +0.35 * (0.95 - 0.34) 0.65 * (0.88 - 0.69) = 0.34 +0.34 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 34%. For those who are not zupj and are yupt, the probability of muvq is 95%. For those who are zupj and are not yupt, the probability of muvq is 69%. For those who are zupj and are yupt, the probability of muvq is 88%. The overall probability of zupj is 65%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.34 +P(Y=1 | V1=0, X=1) = 0.95 +P(Y=1 | V1=1, X=0) = 0.69 +P(Y=1 | V1=1, X=1) = 0.88 +P(V1=1) = 0.65 +0.35 * (0.95 - 0.34) 0.65 * (0.88 - 0.69) = 0.34 +0.34 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33012,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 83%. For those who are not yupt and are xyfo, the probability of muvq is 16%. For those who are yupt and are not xyfo, the probability of muvq is 85%. For those who are yupt and are xyfo, the probability of muvq is 99%. For those who are not yupt, the probability of xyfo is 29%. For those who are yupt, the probability of xyfo is 52%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.83 +P(Y=1 | X=0, V3=1) = 0.16 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.99 +P(V3=1 | X=0) = 0.29 +P(V3=1 | X=1) = 0.52 +0.52 * (0.99 - 0.85) + 0.29 * (0.16 - 0.83) = 0.44 +0.44 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 44%. For those who are not yupt, the probability of muvq is 63%. For those who are yupt, the probability of muvq is 92%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.92 +0.44*0.92 - 0.56*0.63 = 0.71 +0.71 > 0",diamondcut,nonsense6,1,marginal,P(Y) +33016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 44%. The probability of not yupt and muvq is 35%. The probability of yupt and muvq is 40%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.40 +0.40/0.44 - 0.35/0.56 = 0.29 +0.29 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 44%. The probability of not yupt and muvq is 35%. The probability of yupt and muvq is 40%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.40 +0.40/0.44 - 0.35/0.56 = 0.29 +0.29 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 53%. For those who are not zupj and are yupt, the probability of muvq is 32%. For those who are zupj and are not yupt, the probability of muvq is 32%. For those who are zupj and are yupt, the probability of muvq is 33%. The overall probability of zupj is 68%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.68 +0.32 * (0.32 - 0.53) 0.68 * (0.33 - 0.32) = -0.06 +-0.06 < 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 53%. For those who are not zupj and are yupt, the probability of muvq is 32%. For those who are zupj and are not yupt, the probability of muvq is 32%. For those who are zupj and are yupt, the probability of muvq is 33%. The overall probability of zupj is 68%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.32 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.68 +0.32 * (0.32 - 0.53) 0.68 * (0.33 - 0.32) = -0.06 +-0.06 < 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 54%. For those who are not yupt and are xyfo, the probability of muvq is 16%. For those who are yupt and are not xyfo, the probability of muvq is 32%. For those who are yupt and are xyfo, the probability of muvq is 34%. For those who are not yupt, the probability of xyfo is 57%. For those who are yupt, the probability of xyfo is 22%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.16 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0) = 0.57 +P(V3=1 | X=1) = 0.22 +0.22 * (0.34 - 0.32) + 0.57 * (0.16 - 0.54) = -0.13 +-0.13 < 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 47%. For those who are not yupt, the probability of muvq is 32%. For those who are yupt, the probability of muvq is 32%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.47*0.32 - 0.53*0.32 = 0.36 +0.36 > 0",diamondcut,nonsense6,1,marginal,P(Y) +33026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 47%. The probability of not yupt and muvq is 17%. The probability of yupt and muvq is 15%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.15 +0.15/0.47 - 0.17/0.53 = -0.00 +0.00 = 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not zupj and are not yupt, the probability of muvq is 54%. For those who are not zupj and are yupt, the probability of muvq is 43%. For those who are zupj and are not yupt, the probability of muvq is 39%. For those who are zupj and are yupt, the probability of muvq is 65%. The overall probability of zupj is 96%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.54 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.65 +P(V1=1) = 0.96 +0.04 * (0.43 - 0.54) 0.96 * (0.65 - 0.39) = 0.24 +0.24 > 0",diamondcut,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 63%. For those who are not yupt and are xyfo, the probability of muvq is 27%. For those who are yupt and are not xyfo, the probability of muvq is 29%. For those who are yupt and are xyfo, the probability of muvq is 84%. For those who are not yupt, the probability of xyfo is 63%. For those who are yupt, the probability of xyfo is 65%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.65 +0.65 * (0.84 - 0.29) + 0.63 * (0.27 - 0.63) = 0.25 +0.25 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 63%. For those who are not yupt and are xyfo, the probability of muvq is 27%. For those who are yupt and are not xyfo, the probability of muvq is 29%. For those who are yupt and are xyfo, the probability of muvq is 84%. For those who are not yupt, the probability of xyfo is 63%. For those who are yupt, the probability of xyfo is 65%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.29 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.65 +0.65 * (0.84 - 0.29) + 0.63 * (0.27 - 0.63) = 0.25 +0.25 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 48%. For those who are not yupt, the probability of muvq is 40%. For those who are yupt, the probability of muvq is 64%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.64 +0.48*0.64 - 0.52*0.40 = 0.51 +0.51 > 0",diamondcut,nonsense6,1,marginal,P(Y) +33036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 48%. The probability of not yupt and muvq is 21%. The probability of yupt and muvq is 31%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.31 +0.31/0.48 - 0.21/0.52 = 0.24 +0.24 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 48%. The probability of not yupt and muvq is 21%. The probability of yupt and muvq is 31%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.31 +0.31/0.48 - 0.21/0.52 = 0.24 +0.24 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 50%. For those who are not yupt and are xyfo, the probability of muvq is 65%. For those who are yupt and are not xyfo, the probability of muvq is 65%. For those who are yupt and are xyfo, the probability of muvq is 47%. For those who are not yupt, the probability of xyfo is 30%. For those who are yupt, the probability of xyfo is 39%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.50 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.65 +P(Y=1 | X=1, V3=1) = 0.47 +P(V3=1 | X=0) = 0.30 +P(V3=1 | X=1) = 0.39 +0.39 * (0.47 - 0.65) + 0.30 * (0.65 - 0.50) = 0.02 +0.02 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 46%. The probability of not yupt and muvq is 29%. The probability of yupt and muvq is 27%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.27 +0.27/0.46 - 0.29/0.54 = 0.04 +0.04 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 46%. The probability of not yupt and muvq is 29%. The probability of yupt and muvq is 27%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.27 +0.27/0.46 - 0.29/0.54 = 0.04 +0.04 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to xyfo.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33052,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. For those who are not yupt and are not xyfo, the probability of muvq is 36%. For those who are not yupt and are xyfo, the probability of muvq is 68%. For those who are yupt and are not xyfo, the probability of muvq is 74%. For those who are yupt and are xyfo, the probability of muvq is 95%. For those who are not yupt, the probability of xyfo is 69%. For those who are yupt, the probability of xyfo is 75%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.36 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.95 +P(V3=1 | X=0) = 0.69 +P(V3=1 | X=1) = 0.75 +0.75 * (0.95 - 0.74) + 0.69 * (0.68 - 0.36) = 0.30 +0.30 > 0",diamondcut,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 72%. For those who are not yupt, the probability of muvq is 58%. For those who are yupt, the probability of muvq is 90%.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.90 +0.72*0.90 - 0.28*0.58 = 0.81 +0.81 > 0",diamondcut,nonsense6,1,marginal,P(Y) +33055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 72%. For those who are not yupt, the probability of muvq is 58%. For those who are yupt, the probability of muvq is 90%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.90 +0.72*0.90 - 0.28*0.58 = 0.81 +0.81 > 0",diamondcut,nonsense6,1,marginal,P(Y) +33057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. The overall probability of yupt is 72%. The probability of not yupt and muvq is 16%. The probability of yupt and muvq is 65%.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.65 +0.65/0.72 - 0.16/0.28 = 0.32 +0.32 > 0",diamondcut,nonsense6,1,correlation,P(Y | X) +33059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to xyfo. Method 2: We look directly at how yupt correlates with muvq in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 86%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.86 +0.86 - 0.24 = 0.62 +0.62 > 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 86%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.86 +0.86 - 0.24 = 0.62 +0.62 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 86%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.86 +0.86 - 0.24 = 0.62 +0.62 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 52%. For those who are not yupt, the probability of muvq is 24%. For those who are yupt, the probability of muvq is 86%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.86 +0.52*0.86 - 0.48*0.24 = 0.56 +0.56 > 0",fork,nonsense6,1,marginal,P(Y) +33066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 52%. The probability of not yupt and muvq is 11%. The probability of yupt and muvq is 45%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.45 +0.45/0.52 - 0.11/0.48 = 0.62 +0.62 > 0",fork,nonsense6,1,correlation,P(Y | X) +33067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 52%. The probability of not yupt and muvq is 11%. The probability of yupt and muvq is 45%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.45 +0.45/0.52 - 0.11/0.48 = 0.62 +0.62 > 0",fork,nonsense6,1,correlation,P(Y | X) +33068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.34 - 0.68 = -0.34 +-0.34 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.34 - 0.68 = -0.34 +-0.34 < 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 12%. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 34%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.34 +0.12*0.34 - 0.88*0.68 = 0.63 +0.63 > 0",fork,nonsense6,1,marginal,P(Y) +33076,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 12%. The probability of not yupt and muvq is 59%. The probability of yupt and muvq is 4%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.59 +P(Y=1, X=1=1) = 0.04 +0.04/0.12 - 0.59/0.88 = -0.34 +-0.34 < 0",fork,nonsense6,1,correlation,P(Y | X) +33079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 25%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.25 +0.25 - 0.81 = -0.56 +-0.56 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 75%. For those who are not yupt, the probability of muvq is 81%. For those who are yupt, the probability of muvq is 25%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.25 +0.75*0.25 - 0.25*0.81 = 0.39 +0.39 > 0",fork,nonsense6,1,marginal,P(Y) +33087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 75%. The probability of not yupt and muvq is 20%. The probability of yupt and muvq is 19%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.19 +0.19/0.75 - 0.20/0.25 = -0.56 +-0.56 < 0",fork,nonsense6,1,correlation,P(Y | X) +33088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 90%. For those who are yupt, the probability of muvq is 17%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.17 +0.17 - 0.90 = -0.72 +-0.72 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 90%. For those who are yupt, the probability of muvq is 17%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.17 +0.17 - 0.90 = -0.72 +-0.72 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 49%. For those who are not yupt, the probability of muvq is 90%. For those who are yupt, the probability of muvq is 17%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.49 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.17 +0.49*0.17 - 0.51*0.90 = 0.54 +0.54 > 0",fork,nonsense6,1,marginal,P(Y) +33097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 49%. The probability of not yupt and muvq is 46%. The probability of yupt and muvq is 8%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.49 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.08 +0.08/0.49 - 0.46/0.51 = -0.72 +-0.72 < 0",fork,nonsense6,1,correlation,P(Y | X) +33100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 38%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.38 +0.38 - 0.51 = -0.13 +-0.13 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 51%. For those who are yupt, the probability of muvq is 38%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.38 +0.38 - 0.51 = -0.13 +-0.13 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 30%. The probability of not yupt and muvq is 36%. The probability of yupt and muvq is 11%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.11 +0.11/0.30 - 0.36/0.70 = -0.13 +-0.13 < 0",fork,nonsense6,1,correlation,P(Y | X) +33109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 82%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.82 +0.82 - 0.68 = 0.14 +0.14 > 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 82%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.82 +0.82 - 0.68 = 0.14 +0.14 > 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 82%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.82 +0.82 - 0.68 = 0.14 +0.14 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 34%. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 82%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.82 +0.34*0.82 - 0.66*0.68 = 0.73 +0.73 > 0",fork,nonsense6,1,marginal,P(Y) +33115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 34%. For those who are not yupt, the probability of muvq is 68%. For those who are yupt, the probability of muvq is 82%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.82 +0.34*0.82 - 0.66*0.68 = 0.73 +0.73 > 0",fork,nonsense6,1,marginal,P(Y) +33117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 34%. The probability of not yupt and muvq is 45%. The probability of yupt and muvq is 28%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.28 +0.28/0.34 - 0.45/0.66 = 0.14 +0.14 > 0",fork,nonsense6,1,correlation,P(Y | X) +33118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 12%. For those who are yupt, the probability of muvq is 22%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.22 +0.22 - 0.12 = 0.10 +0.10 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 12%. For those who are yupt, the probability of muvq is 22%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.22 +0.22 - 0.12 = 0.10 +0.10 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 51%. For those who are not yupt, the probability of muvq is 12%. For those who are yupt, the probability of muvq is 22%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.12 +P(Y=1 | X=1) = 0.22 +0.51*0.22 - 0.49*0.12 = 0.17 +0.17 > 0",fork,nonsense6,1,marginal,P(Y) +33126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 51%. The probability of not yupt and muvq is 6%. The probability of yupt and muvq is 11%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.11 +0.11/0.51 - 0.06/0.49 = 0.10 +0.10 > 0",fork,nonsense6,1,correlation,P(Y | X) +33127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 51%. The probability of not yupt and muvq is 6%. The probability of yupt and muvq is 11%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.11 +0.11/0.51 - 0.06/0.49 = 0.10 +0.10 > 0",fork,nonsense6,1,correlation,P(Y | X) +33130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 22%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.22 +0.22 - 0.60 = -0.38 +-0.38 < 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 22%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.22 +0.22 - 0.60 = -0.38 +-0.38 < 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 22%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.22 +0.22 - 0.60 = -0.38 +-0.38 < 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 70%. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 22%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.22 +0.70*0.22 - 0.30*0.60 = 0.33 +0.33 > 0",fork,nonsense6,1,marginal,P(Y) +33135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 70%. For those who are not yupt, the probability of muvq is 60%. For those who are yupt, the probability of muvq is 22%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.22 +0.70*0.22 - 0.30*0.60 = 0.33 +0.33 > 0",fork,nonsense6,1,marginal,P(Y) +33137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 70%. The probability of not yupt and muvq is 18%. The probability of yupt and muvq is 15%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.15 +0.15/0.70 - 0.18/0.30 = -0.38 +-0.38 < 0",fork,nonsense6,1,correlation,P(Y | X) +33138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 71%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.71 +0.71 - 0.66 = 0.06 +0.06 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 71%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.71 +0.71 - 0.66 = 0.06 +0.06 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 40%. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 71%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.71 +0.40*0.71 - 0.60*0.66 = 0.68 +0.68 > 0",fork,nonsense6,1,marginal,P(Y) +33145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 40%. For those who are not yupt, the probability of muvq is 66%. For those who are yupt, the probability of muvq is 71%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.40 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.71 +0.40*0.71 - 0.60*0.66 = 0.68 +0.68 > 0",fork,nonsense6,1,marginal,P(Y) +33146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 40%. The probability of not yupt and muvq is 40%. The probability of yupt and muvq is 28%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.28 +0.28/0.40 - 0.40/0.60 = 0.06 +0.06 > 0",fork,nonsense6,1,correlation,P(Y | X) +33148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 65%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.65 +0.65 - 0.38 = 0.27 +0.27 > 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 65%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.65 +0.65 - 0.38 = 0.27 +0.27 > 0",fork,nonsense6,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 65%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.65 +0.65 - 0.38 = 0.27 +0.27 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 65%.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.65 +0.65 - 0.38 = 0.27 +0.27 > 0",fork,nonsense6,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 19%. For those who are not yupt, the probability of muvq is 38%. For those who are yupt, the probability of muvq is 65%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.65 +0.19*0.65 - 0.81*0.38 = 0.43 +0.43 > 0",fork,nonsense6,1,marginal,P(Y) +33157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. The overall probability of yupt is 19%. The probability of not yupt and muvq is 31%. The probability of yupt and muvq is 12%.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.19 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.12 +0.12/0.19 - 0.31/0.81 = 0.27 +0.27 > 0",fork,nonsense6,1,correlation,P(Y | X) +33158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look at how yupt correlates with muvq case by case according to zupj. Method 2: We look directly at how yupt correlates with muvq in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. Method 1: We look directly at how yupt correlates with muvq in general. Method 2: We look at this correlation case by case according to zupj.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense6,2,backadj,[backdoor adjustment set for Y given X] +33160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 32%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.32 +0.32 - 0.66 = -0.34 +-0.34 < 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 32%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.32 +0.32 - 0.66 = -0.34 +-0.34 < 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 32%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.32 +0.32 - 0.66 = -0.34 +-0.34 < 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 32%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.32 +0.32 - 0.66 = -0.34 +-0.34 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 30%. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 32%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.30 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.32 +0.30*0.32 - 0.70*0.66 = 0.56 +0.56 > 0",chain,nonsense7,1,marginal,P(Y) +33168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 30%. The probability of not zuph and uvzi is 46%. The probability of zuph and uvzi is 9%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.09 +0.09/0.30 - 0.46/0.70 = -0.34 +-0.34 < 0",chain,nonsense7,1,correlation,P(Y | X) +33170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.47 - 0.42 = 0.06 +0.06 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.47 - 0.42 = 0.06 +0.06 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.47 - 0.42 = 0.06 +0.06 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.47 - 0.42 = 0.06 +0.06 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.47 - 0.42 = 0.06 +0.06 > 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 90%. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.90*0.47 - 0.10*0.42 = 0.47 +0.47 > 0",chain,nonsense7,1,marginal,P(Y) +33179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 90%. For those who are not zuph, the probability of uvzi is 42%. For those who are zuph, the probability of uvzi is 47%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.47 +0.90*0.47 - 0.10*0.42 = 0.47 +0.47 > 0",chain,nonsense7,1,marginal,P(Y) +33180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 90%. The probability of not zuph and uvzi is 4%. The probability of zuph and uvzi is 43%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.90 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.43 +0.43/0.90 - 0.04/0.10 = 0.06 +0.06 > 0",chain,nonsense7,1,correlation,P(Y | X) +33182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 57%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.57 +0.57 - 0.66 = -0.09 +-0.09 < 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 57%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.57 +0.57 - 0.66 = -0.09 +-0.09 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 57%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.57 +0.57 - 0.66 = -0.09 +-0.09 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 26%. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 57%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.26 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.57 +0.26*0.57 - 0.74*0.66 = 0.63 +0.63 > 0",chain,nonsense7,1,marginal,P(Y) +33192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 26%. The probability of not zuph and uvzi is 49%. The probability of zuph and uvzi is 15%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.26 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.15 +0.15/0.26 - 0.49/0.74 = -0.09 +-0.09 < 0",chain,nonsense7,1,correlation,P(Y | X) +33197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 58%. For those who are zuph, the probability of uvzi is 43%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.43 +0.43 - 0.58 = -0.15 +-0.15 < 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 58%. For those who are zuph, the probability of uvzi is 43%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.43 +0.43 - 0.58 = -0.15 +-0.15 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 58%. For those who are zuph, the probability of uvzi is 43%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.43 +0.43 - 0.58 = -0.15 +-0.15 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.36 - 0.35 = 0.01 +0.01 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.36 - 0.35 = 0.01 +0.01 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.36 - 0.35 = 0.01 +0.01 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.36 - 0.35 = 0.01 +0.01 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.36 - 0.35 = 0.01 +0.01 > 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33214,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.42*0.36 - 0.58*0.35 = 0.36 +0.36 > 0",chain,nonsense7,1,marginal,P(Y) +33215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 36%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.36 +0.42*0.36 - 0.58*0.35 = 0.36 +0.36 > 0",chain,nonsense7,1,marginal,P(Y) +33217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 15%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.15 +0.15/0.42 - 0.20/0.58 = 0.01 +0.01 > 0",chain,nonsense7,1,correlation,P(Y | X) +33218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 49%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.39 - 0.49 = -0.10 +-0.10 < 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 49%. For those who are zuph, the probability of uvzi is 39%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.39 - 0.49 = -0.10 +-0.10 < 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 49%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.39 - 0.49 = -0.10 +-0.10 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. For those who are not zuph, the probability of uvzi is 49%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.39 +0.37*0.39 - 0.63*0.49 = 0.46 +0.46 > 0",chain,nonsense7,1,marginal,P(Y) +33228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. The probability of not zuph and uvzi is 31%. The probability of zuph and uvzi is 15%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.15 +0.15/0.37 - 0.31/0.63 = -0.10 +-0.10 < 0",chain,nonsense7,1,correlation,P(Y | X) +33229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. The probability of not zuph and uvzi is 31%. The probability of zuph and uvzi is 15%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.15 +0.15/0.37 - 0.31/0.63 = -0.10 +-0.10 < 0",chain,nonsense7,1,correlation,P(Y | X) +33231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 27%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.27 +0.27 - 0.50 = -0.24 +-0.24 < 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 27%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.27 +0.27 - 0.50 = -0.24 +-0.24 < 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 27%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.27 +0.27 - 0.50 = -0.24 +-0.24 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 27%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.27 +0.27 - 0.50 = -0.24 +-0.24 < 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 3%. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 27%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.27 +0.03*0.27 - 0.97*0.50 = 0.50 +0.50 > 0",chain,nonsense7,1,marginal,P(Y) +33241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 3%. The probability of not zuph and uvzi is 49%. The probability of zuph and uvzi is 1%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.49/0.97 = -0.24 +-0.24 < 0",chain,nonsense7,1,correlation,P(Y | X) +33242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 39%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.39 +0.39 - 0.34 = 0.05 +0.05 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.39 +0.39 - 0.34 = 0.05 +0.05 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 83%. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 39%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.39 +0.83*0.39 - 0.17*0.34 = 0.39 +0.39 > 0",chain,nonsense7,1,marginal,P(Y) +33251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 83%. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.39 +0.83*0.39 - 0.17*0.34 = 0.39 +0.39 > 0",chain,nonsense7,1,marginal,P(Y) +33252,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 83%. The probability of not zuph and uvzi is 6%. The probability of zuph and uvzi is 33%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.33 +0.33/0.83 - 0.06/0.17 = 0.05 +0.05 > 0",chain,nonsense7,1,correlation,P(Y | X) +33255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 85%. For those who are zuph, the probability of uvzi is 87%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.87 +0.87 - 0.85 = 0.02 +0.02 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 85%. For those who are zuph, the probability of uvzi is 87%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.87 +0.87 - 0.85 = 0.02 +0.02 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 85%. For those who are zuph, the probability of uvzi is 87%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.87 +0.87 - 0.85 = 0.02 +0.02 > 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 76%. For those who are not zuph, the probability of uvzi is 85%. For those who are zuph, the probability of uvzi is 87%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.87 +0.76*0.87 - 0.24*0.85 = 0.86 +0.86 > 0",chain,nonsense7,1,marginal,P(Y) +33264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 76%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 66%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.66 +0.66/0.76 - 0.20/0.24 = 0.02 +0.02 > 0",chain,nonsense7,1,correlation,P(Y | X) +33265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 76%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 66%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.66 +0.66/0.76 - 0.20/0.24 = 0.02 +0.02 > 0",chain,nonsense7,1,correlation,P(Y | X) +33266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 81%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.81 +0.81 - 0.62 = 0.19 +0.19 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 81%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.81 +0.81 - 0.62 = 0.19 +0.19 > 0",chain,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 81%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.81 +0.81 - 0.62 = 0.19 +0.19 > 0",chain,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 81%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.81 +0.81 - 0.62 = 0.19 +0.19 > 0",chain,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33274,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 81%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.81 +0.37*0.81 - 0.63*0.62 = 0.69 +0.69 > 0",chain,nonsense7,1,marginal,P(Y) +33276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. The probability of not zuph and uvzi is 39%. The probability of zuph and uvzi is 30%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.30 +0.30/0.37 - 0.39/0.63 = 0.19 +0.19 > 0",chain,nonsense7,1,correlation,P(Y | X) +33277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. The probability of not zuph and uvzi is 39%. The probability of zuph and uvzi is 30%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.30 +0.30/0.37 - 0.39/0.63 = 0.19 +0.19 > 0",chain,nonsense7,1,correlation,P(Y | X) +33284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 87%. For those who are not zuph and are not wibl, the probability of uvzi is 92%. For those who are not zuph and are wibl, the probability of uvzi is 18%. For those who are zuph and are not wibl, the probability of uvzi is 64%. For those who are zuph and are wibl, the probability of uvzi is 6%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.87 +P(Y=1 | X=0, V3=0) = 0.92 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.64 +P(Y=1 | X=1, V3=1) = 0.06 +0.06 - (0.87*0.06 + 0.13*0.18) = -0.03 +-0.03 < 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is 0.02.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 29%. For those who are not zuph and are not wibl, the probability of uvzi is 26%. For those who are not zuph and are wibl, the probability of uvzi is 18%. For those who are zuph and are not wibl, the probability of uvzi is 22%. For those who are zuph and are wibl, the probability of uvzi is 20%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.29 +P(Y=1 | X=0, V3=0) = 0.26 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.20 +0.20 - (0.29*0.20 + 0.71*0.18) = 0.02 +0.02 > 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 47%. For those who are not zuph, the probability of uvzi is 71%. For those who are zuph, the probability of uvzi is 71%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.71 +0.47*0.71 - 0.53*0.71 = 0.71 +0.71 > 0",collision,nonsense7,1,marginal,P(Y) +33301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 47%. For those who are not zuph, the probability of uvzi is 71%. For those who are zuph, the probability of uvzi is 71%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.71 +0.47*0.71 - 0.53*0.71 = 0.71 +0.71 > 0",collision,nonsense7,1,marginal,P(Y) +33304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is 0.54.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 61%. For those who are not zuph, the probability of uvzi is 90%. For those who are zuph, the probability of uvzi is 90%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.90 +0.61*0.90 - 0.39*0.90 = 0.90 +0.90 > 0",collision,nonsense7,1,marginal,P(Y) +33311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 61%. For those who are not zuph, the probability of uvzi is 90%. For those who are zuph, the probability of uvzi is 90%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.90 +0.61*0.90 - 0.39*0.90 = 0.90 +0.90 > 0",collision,nonsense7,1,marginal,P(Y) +33316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is -0.50.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is -0.50.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 61%. For those who are not zuph and are not wibl, the probability of uvzi is 91%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 97%. For those who are zuph and are wibl, the probability of uvzi is 42%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.61 +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.97 +P(Y=1 | X=1, V3=1) = 0.42 +0.42 - (0.61*0.42 + 0.39*0.89) = -0.30 +-0.30 < 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 3%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 35%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.35 +0.03*0.35 - 0.97*0.35 = 0.35 +0.35 > 0",collision,nonsense7,1,marginal,P(Y) +33321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 3%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 35%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.35 +0.03*0.35 - 0.97*0.35 = 0.35 +0.35 > 0",collision,nonsense7,1,marginal,P(Y) +33324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is 0.33.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is 0.33.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 3%. For those who are not zuph and are not wibl, the probability of uvzi is 39%. For those who are not zuph and are wibl, the probability of uvzi is 14%. For those who are zuph and are not wibl, the probability of uvzi is 18%. For those who are zuph and are wibl, the probability of uvzi is 70%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.70 +0.70 - (0.03*0.70 + 0.97*0.14) = 0.53 +0.53 > 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 3%. For those who are not zuph and are not wibl, the probability of uvzi is 39%. For those who are not zuph and are wibl, the probability of uvzi is 14%. For those who are zuph and are not wibl, the probability of uvzi is 18%. For those who are zuph and are wibl, the probability of uvzi is 70%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.03 +P(Y=1 | X=0, V3=0) = 0.39 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.18 +P(Y=1 | X=1, V3=1) = 0.70 +0.70 - (0.03*0.70 + 0.97*0.14) = 0.53 +0.53 > 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 37%. For those who are not zuph, the probability of uvzi is 82%. For those who are zuph, the probability of uvzi is 82%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.37 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.82 +0.37*0.82 - 0.63*0.82 = 0.82 +0.82 > 0",collision,nonsense7,1,marginal,P(Y) +33335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 37%. For those who are not zuph and are not wibl, the probability of uvzi is 45%. For those who are not zuph and are wibl, the probability of uvzi is 97%. For those who are zuph and are not wibl, the probability of uvzi is 68%. For those who are zuph and are wibl, the probability of uvzi is 94%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.37 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.94 +0.94 - (0.37*0.94 + 0.63*0.97) = -0.02 +-0.02 < 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 37%. For those who are not zuph and are not wibl, the probability of uvzi is 45%. For those who are not zuph and are wibl, the probability of uvzi is 97%. For those who are zuph and are not wibl, the probability of uvzi is 68%. For those who are zuph and are wibl, the probability of uvzi is 94%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.37 +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.94 +0.94 - (0.37*0.94 + 0.63*0.97) = -0.02 +-0.02 < 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 61%. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 18%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.18 +0.61*0.18 - 0.39*0.18 = 0.18 +0.18 > 0",collision,nonsense7,1,marginal,P(Y) +33345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is 0.30.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is 0.30.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 61%. For those who are not zuph and are not wibl, the probability of uvzi is 96%. For those who are not zuph and are wibl, the probability of uvzi is 3%. For those who are zuph and are not wibl, the probability of uvzi is 0%. For those who are zuph and are wibl, the probability of uvzi is 24%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.61 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.03 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.24 +0.24 - (0.61*0.24 + 0.39*0.03) = 0.09 +0.09 > 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 61%. For those who are not zuph and are not wibl, the probability of uvzi is 96%. For those who are not zuph and are wibl, the probability of uvzi is 3%. For those who are zuph and are not wibl, the probability of uvzi is 0%. For those who are zuph and are wibl, the probability of uvzi is 24%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.61 +P(Y=1 | X=0, V3=0) = 0.96 +P(Y=1 | X=0, V3=1) = 0.03 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.24 +0.24 - (0.61*0.24 + 0.39*0.03) = 0.09 +0.09 > 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33354,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 63%. For those who are not zuph, the probability of uvzi is 94%. For those who are zuph, the probability of uvzi is 94%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.94 +0.63*0.94 - 0.37*0.94 = 0.94 +0.94 > 0",collision,nonsense7,1,marginal,P(Y) +33361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 63%. For those who are not zuph, the probability of uvzi is 94%. For those who are zuph, the probability of uvzi is 94%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.94 +P(Y=1 | X=1) = 0.94 +0.63*0.94 - 0.37*0.94 = 0.94 +0.94 > 0",collision,nonsense7,1,marginal,P(Y) +33364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is -0.14.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is -0.14.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 63%. For those who are not zuph and are not wibl, the probability of uvzi is 93%. For those who are not zuph and are wibl, the probability of uvzi is 96%. For those who are zuph and are not wibl, the probability of uvzi is 96%. For those who are zuph and are wibl, the probability of uvzi is 89%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.89 +0.89 - (0.63*0.89 + 0.37*0.96) = -0.03 +-0.03 < 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 63%. For those who are not zuph and are not wibl, the probability of uvzi is 93%. For those who are not zuph and are wibl, the probability of uvzi is 96%. For those who are zuph and are not wibl, the probability of uvzi is 96%. For those who are zuph and are wibl, the probability of uvzi is 89%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.63 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.96 +P(Y=1 | X=1, V3=0) = 0.96 +P(Y=1 | X=1, V3=1) = 0.89 +0.89 - (0.63*0.89 + 0.37*0.96) = -0.03 +-0.03 < 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 85%. For those who are not zuph, the probability of uvzi is 100%. For those who are zuph, the probability of uvzi is 100%.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 1.00 +P(Y=1 | X=1) = 1.00 +0.85*1.00 - 0.15*1.00 = 1.00 +1.00 > 0",collision,nonsense7,1,marginal,P(Y) +33371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 85%. For those who are not zuph, the probability of uvzi is 100%. For those who are zuph, the probability of uvzi is 100%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.85 +P(Y=1 | X=0) = 1.00 +P(Y=1 | X=1) = 1.00 +0.85*1.00 - 0.15*1.00 = 1.00 +1.00 > 0",collision,nonsense7,1,marginal,P(Y) +33376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is -0.01.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. For those who are wibl, the correlation between zuph and uvzi is -0.01.",yes,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense7,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +33378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Uvzi has a direct effect on wibl. The overall probability of zuph is 85%. For those who are not zuph and are not wibl, the probability of uvzi is 100%. For those who are not zuph and are wibl, the probability of uvzi is 100%. For those who are zuph and are not wibl, the probability of uvzi is 100%. For those who are zuph and are wibl, the probability of uvzi is 100%.",no,"Let Y = uvzi; X = zuph; V3 = wibl. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.85 +P(Y=1 | X=0, V3=0) = 1.00 +P(Y=1 | X=0, V3=1) = 1.00 +P(Y=1 | X=1, V3=0) = 1.00 +P(Y=1 | X=1, V3=1) = 1.00 +1.00 - (0.85*1.00 + 0.15*1.00) = -0.00 +0.00 = 0",collision,nonsense7,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +33380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 78%. For those who are not wibl and are zuph, the probability of uvzi is 61%. For those who are wibl and are not zuph, the probability of uvzi is 54%. For those who are wibl and are zuph, the probability of uvzi is 9%. The overall probability of wibl is 33%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.78 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.33 +0.67 * (0.61 - 0.78) + 0.33 * (0.09 - 0.54) = -0.26 +-0.26 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 78%. For those who are not wibl and are zuph, the probability of uvzi is 61%. For those who are wibl and are not zuph, the probability of uvzi is 54%. For those who are wibl and are zuph, the probability of uvzi is 9%. The overall probability of wibl is 33%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.78 +P(Y=1 | V1=0, X=1) = 0.61 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.09 +P(V1=1) = 0.33 +0.67 * (0.61 - 0.78) + 0.33 * (0.09 - 0.54) = -0.20 +-0.20 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 32%. For those who are not zuph, the probability of uvzi is 67%. For those who are zuph, the probability of uvzi is 55%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.55 +0.32*0.55 - 0.68*0.67 = 0.61 +0.61 > 0",confounding,nonsense7,1,marginal,P(Y) +33385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 32%. For those who are not zuph, the probability of uvzi is 67%. For those who are zuph, the probability of uvzi is 55%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.55 +0.32*0.55 - 0.68*0.67 = 0.61 +0.61 > 0",confounding,nonsense7,1,marginal,P(Y) +33386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 32%. The probability of not zuph and uvzi is 46%. The probability of zuph and uvzi is 17%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.17 +0.17/0.32 - 0.46/0.68 = -0.12 +-0.12 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 80%. For those who are not wibl and are zuph, the probability of uvzi is 56%. For those who are wibl and are not zuph, the probability of uvzi is 88%. For those who are wibl and are zuph, the probability of uvzi is 44%. The overall probability of wibl is 77%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.44 +P(V1=1) = 0.77 +0.23 * (0.56 - 0.80) + 0.77 * (0.44 - 0.88) = -0.39 +-0.39 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 80%. For those who are not wibl and are zuph, the probability of uvzi is 56%. For those who are wibl and are not zuph, the probability of uvzi is 88%. For those who are wibl and are zuph, the probability of uvzi is 44%. The overall probability of wibl is 77%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.44 +P(V1=1) = 0.77 +0.23 * (0.56 - 0.80) + 0.77 * (0.44 - 0.88) = -0.42 +-0.42 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 80%. For those who are not wibl and are zuph, the probability of uvzi is 56%. For those who are wibl and are not zuph, the probability of uvzi is 88%. For those who are wibl and are zuph, the probability of uvzi is 44%. The overall probability of wibl is 77%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.56 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.44 +P(V1=1) = 0.77 +0.23 * (0.56 - 0.80) + 0.77 * (0.44 - 0.88) = -0.42 +-0.42 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 43%. For those who are not zuph, the probability of uvzi is 85%. For those who are zuph, the probability of uvzi is 45%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.85 +P(Y=1 | X=1) = 0.45 +0.43*0.45 - 0.57*0.85 = 0.69 +0.69 > 0",confounding,nonsense7,1,marginal,P(Y) +33399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 65%. For those who are not wibl and are zuph, the probability of uvzi is 26%. For those who are wibl and are not zuph, the probability of uvzi is 74%. For those who are wibl and are zuph, the probability of uvzi is 33%. The overall probability of wibl is 8%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.26 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.08 +0.92 * (0.26 - 0.65) + 0.08 * (0.33 - 0.74) = -0.38 +-0.38 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 65%. For those who are not wibl and are zuph, the probability of uvzi is 26%. For those who are wibl and are not zuph, the probability of uvzi is 74%. For those who are wibl and are zuph, the probability of uvzi is 33%. The overall probability of wibl is 8%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.26 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.08 +0.92 * (0.26 - 0.65) + 0.08 * (0.33 - 0.74) = -0.38 +-0.38 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 65%. For those who are not wibl and are zuph, the probability of uvzi is 26%. For those who are wibl and are not zuph, the probability of uvzi is 74%. For those who are wibl and are zuph, the probability of uvzi is 33%. The overall probability of wibl is 8%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.65 +P(Y=1 | V1=0, X=1) = 0.26 +P(Y=1 | V1=1, X=0) = 0.74 +P(Y=1 | V1=1, X=1) = 0.33 +P(V1=1) = 0.08 +0.92 * (0.26 - 0.65) + 0.08 * (0.33 - 0.74) = -0.38 +-0.38 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 73%. For those who are not zuph, the probability of uvzi is 66%. For those who are zuph, the probability of uvzi is 27%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.27 +0.73*0.27 - 0.27*0.66 = 0.37 +0.37 > 0",confounding,nonsense7,1,marginal,P(Y) +33407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 73%. The probability of not zuph and uvzi is 18%. The probability of zuph and uvzi is 19%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.19 +0.19/0.73 - 0.18/0.27 = -0.40 +-0.40 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 27%. For those who are not wibl and are zuph, the probability of uvzi is 76%. For those who are wibl and are not zuph, the probability of uvzi is 61%. For those who are wibl and are zuph, the probability of uvzi is 50%. The overall probability of wibl is 97%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.61 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.97 +0.03 * (0.76 - 0.27) + 0.97 * (0.50 - 0.61) = -0.09 +-0.09 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 27%. For those who are not wibl and are zuph, the probability of uvzi is 76%. For those who are wibl and are not zuph, the probability of uvzi is 61%. For those who are wibl and are zuph, the probability of uvzi is 50%. The overall probability of wibl is 97%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.61 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.97 +0.03 * (0.76 - 0.27) + 0.97 * (0.50 - 0.61) = -0.07 +-0.07 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 27%. For those who are not wibl and are zuph, the probability of uvzi is 76%. For those who are wibl and are not zuph, the probability of uvzi is 61%. For those who are wibl and are zuph, the probability of uvzi is 50%. The overall probability of wibl is 97%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.76 +P(Y=1 | V1=1, X=0) = 0.61 +P(Y=1 | V1=1, X=1) = 0.50 +P(V1=1) = 0.97 +0.03 * (0.76 - 0.27) + 0.97 * (0.50 - 0.61) = -0.07 +-0.07 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 34%. The probability of not zuph and uvzi is 40%. The probability of zuph and uvzi is 17%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.17 +0.17/0.34 - 0.40/0.66 = -0.09 +-0.09 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 94%. For those who are not wibl and are zuph, the probability of uvzi is 80%. For those who are wibl and are not zuph, the probability of uvzi is 92%. For those who are wibl and are zuph, the probability of uvzi is 76%. The overall probability of wibl is 17%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.92 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.17 +0.83 * (0.80 - 0.94) + 0.17 * (0.76 - 0.92) = -0.15 +-0.15 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 94%. For those who are not wibl and are zuph, the probability of uvzi is 80%. For those who are wibl and are not zuph, the probability of uvzi is 92%. For those who are wibl and are zuph, the probability of uvzi is 76%. The overall probability of wibl is 17%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.94 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.92 +P(Y=1 | V1=1, X=1) = 0.76 +P(V1=1) = 0.17 +0.83 * (0.80 - 0.94) + 0.17 * (0.76 - 0.92) = -0.15 +-0.15 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 86%. For those who are not zuph, the probability of uvzi is 93%. For those who are zuph, the probability of uvzi is 79%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.79 +0.86*0.79 - 0.14*0.93 = 0.81 +0.81 > 0",confounding,nonsense7,1,marginal,P(Y) +33425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 86%. For those who are not zuph, the probability of uvzi is 93%. For those who are zuph, the probability of uvzi is 79%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.79 +0.86*0.79 - 0.14*0.93 = 0.81 +0.81 > 0",confounding,nonsense7,1,marginal,P(Y) +33426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 86%. The probability of not zuph and uvzi is 13%. The probability of zuph and uvzi is 68%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.68 +0.68/0.86 - 0.13/0.14 = -0.14 +-0.14 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 86%. The probability of not zuph and uvzi is 13%. The probability of zuph and uvzi is 68%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.68 +0.68/0.86 - 0.13/0.14 = -0.14 +-0.14 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 45%. For those who are not wibl and are zuph, the probability of uvzi is 2%. For those who are wibl and are not zuph, the probability of uvzi is 33%. For those who are wibl and are zuph, the probability of uvzi is 27%. The overall probability of wibl is 61%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.45 +P(Y=1 | V1=0, X=1) = 0.02 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.27 +P(V1=1) = 0.61 +0.39 * (0.02 - 0.45) + 0.61 * (0.27 - 0.33) = -0.21 +-0.21 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 45%. For those who are not wibl and are zuph, the probability of uvzi is 2%. For those who are wibl and are not zuph, the probability of uvzi is 33%. For those who are wibl and are zuph, the probability of uvzi is 27%. The overall probability of wibl is 61%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.45 +P(Y=1 | V1=0, X=1) = 0.02 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.27 +P(V1=1) = 0.61 +0.39 * (0.02 - 0.45) + 0.61 * (0.27 - 0.33) = -0.06 +-0.06 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 45%. For those who are not wibl and are zuph, the probability of uvzi is 2%. For those who are wibl and are not zuph, the probability of uvzi is 33%. For those who are wibl and are zuph, the probability of uvzi is 27%. The overall probability of wibl is 61%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.45 +P(Y=1 | V1=0, X=1) = 0.02 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.27 +P(V1=1) = 0.61 +0.39 * (0.02 - 0.45) + 0.61 * (0.27 - 0.33) = -0.06 +-0.06 < 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. For those who are not zuph, the probability of uvzi is 40%. For those who are zuph, the probability of uvzi is 27%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.27 +0.31*0.27 - 0.69*0.40 = 0.31 +0.31 > 0",confounding,nonsense7,1,marginal,P(Y) +33435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. For those who are not zuph, the probability of uvzi is 40%. For those who are zuph, the probability of uvzi is 27%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.27 +0.31*0.27 - 0.69*0.40 = 0.31 +0.31 > 0",confounding,nonsense7,1,marginal,P(Y) +33436,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. The probability of not zuph and uvzi is 27%. The probability of zuph and uvzi is 8%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.08 +0.08/0.31 - 0.27/0.69 = -0.13 +-0.13 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. The probability of not zuph and uvzi is 27%. The probability of zuph and uvzi is 8%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.08 +0.08/0.31 - 0.27/0.69 = -0.13 +-0.13 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 44%. For those who are not wibl and are zuph, the probability of uvzi is 100%. For those who are wibl and are not zuph, the probability of uvzi is 33%. For those who are wibl and are zuph, the probability of uvzi is 45%. The overall probability of wibl is 83%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 1.00 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.83 +0.17 * (1.00 - 0.44) + 0.83 * (0.45 - 0.33) = 0.19 +0.19 > 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33442,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 44%. For those who are not wibl and are zuph, the probability of uvzi is 100%. For those who are wibl and are not zuph, the probability of uvzi is 33%. For those who are wibl and are zuph, the probability of uvzi is 45%. The overall probability of wibl is 83%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.44 +P(Y=1 | V1=0, X=1) = 1.00 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.45 +P(V1=1) = 0.83 +0.17 * (1.00 - 0.44) + 0.83 * (0.45 - 0.33) = 0.47 +0.47 > 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 20%. For those who are not zuph, the probability of uvzi is 33%. For those who are zuph, the probability of uvzi is 89%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.89 +0.20*0.89 - 0.80*0.33 = 0.39 +0.39 > 0",confounding,nonsense7,1,marginal,P(Y) +33446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 20%. The probability of not zuph and uvzi is 27%. The probability of zuph and uvzi is 17%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.17 +0.17/0.20 - 0.27/0.80 = 0.55 +0.55 > 0",confounding,nonsense7,1,correlation,P(Y | X) +33447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 20%. The probability of not zuph and uvzi is 27%. The probability of zuph and uvzi is 17%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.17 +0.17/0.20 - 0.27/0.80 = 0.55 +0.55 > 0",confounding,nonsense7,1,correlation,P(Y | X) +33448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 11%. For those who are not wibl and are zuph, the probability of uvzi is 40%. For those who are wibl and are not zuph, the probability of uvzi is 93%. For those who are wibl and are zuph, the probability of uvzi is 5%. The overall probability of wibl is 76%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.11 +P(Y=1 | V1=0, X=1) = 0.40 +P(Y=1 | V1=1, X=0) = 0.93 +P(Y=1 | V1=1, X=1) = 0.05 +P(V1=1) = 0.76 +0.24 * (0.40 - 0.11) + 0.76 * (0.05 - 0.93) = -0.60 +-0.60 < 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. For those who are not zuph, the probability of uvzi is 91%. For those who are zuph, the probability of uvzi is 31%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.31 +0.31*0.31 - 0.69*0.91 = 0.54 +0.54 > 0",confounding,nonsense7,1,marginal,P(Y) +33455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. For those who are not zuph, the probability of uvzi is 91%. For those who are zuph, the probability of uvzi is 31%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.31 +0.31*0.31 - 0.69*0.91 = 0.54 +0.54 > 0",confounding,nonsense7,1,marginal,P(Y) +33456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. The probability of not zuph and uvzi is 63%. The probability of zuph and uvzi is 9%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.09 +0.09/0.31 - 0.63/0.69 = -0.60 +-0.60 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 31%. The probability of not zuph and uvzi is 63%. The probability of zuph and uvzi is 9%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.63 +P(Y=1, X=1=1) = 0.09 +0.09/0.31 - 0.63/0.69 = -0.60 +-0.60 < 0",confounding,nonsense7,1,correlation,P(Y | X) +33458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 24%. For those who are not wibl and are zuph, the probability of uvzi is 70%. For those who are wibl and are not zuph, the probability of uvzi is 75%. For those who are wibl and are zuph, the probability of uvzi is 97%. The overall probability of wibl is 85%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.24 +P(Y=1 | V1=0, X=1) = 0.70 +P(Y=1 | V1=1, X=0) = 0.75 +P(Y=1 | V1=1, X=1) = 0.97 +P(V1=1) = 0.85 +0.15 * (0.70 - 0.24) + 0.85 * (0.97 - 0.75) = 0.25 +0.25 > 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 24%. For those who are not wibl and are zuph, the probability of uvzi is 70%. For those who are wibl and are not zuph, the probability of uvzi is 75%. For those who are wibl and are zuph, the probability of uvzi is 97%. The overall probability of wibl is 85%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.24 +P(Y=1 | V1=0, X=1) = 0.70 +P(Y=1 | V1=1, X=0) = 0.75 +P(Y=1 | V1=1, X=1) = 0.97 +P(V1=1) = 0.85 +0.15 * (0.70 - 0.24) + 0.85 * (0.97 - 0.75) = 0.28 +0.28 > 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 17%. For those who are not zuph, the probability of uvzi is 69%. For those who are zuph, the probability of uvzi is 89%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.89 +0.17*0.89 - 0.83*0.69 = 0.72 +0.72 > 0",confounding,nonsense7,1,marginal,P(Y) +33467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. The overall probability of zuph is 17%. The probability of not zuph and uvzi is 57%. The probability of zuph and uvzi is 16%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.57 +P(Y=1, X=1=1) = 0.16 +0.16/0.17 - 0.57/0.83 = 0.21 +0.21 > 0",confounding,nonsense7,1,correlation,P(Y | X) +33469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 18%. For those who are not wibl and are zuph, the probability of uvzi is 81%. For those who are wibl and are not zuph, the probability of uvzi is 3%. For those who are wibl and are zuph, the probability of uvzi is 32%. The overall probability of wibl is 0%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.03 +P(Y=1 | V1=1, X=1) = 0.32 +P(V1=1) = 0.00 +1.00 * (0.81 - 0.18) + 0.00 * (0.32 - 0.03) = 0.62 +0.62 > 0",confounding,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 18%. For those who are not wibl and are zuph, the probability of uvzi is 81%. For those who are wibl and are not zuph, the probability of uvzi is 3%. For those who are wibl and are zuph, the probability of uvzi is 32%. The overall probability of wibl is 0%.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.03 +P(Y=1 | V1=1, X=1) = 0.32 +P(V1=1) = 0.00 +1.00 * (0.81 - 0.18) + 0.00 * (0.32 - 0.03) = 0.62 +0.62 > 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 18%. For those who are not wibl and are zuph, the probability of uvzi is 81%. For those who are wibl and are not zuph, the probability of uvzi is 3%. For those who are wibl and are zuph, the probability of uvzi is 32%. The overall probability of wibl is 0%.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.18 +P(Y=1 | V1=0, X=1) = 0.81 +P(Y=1 | V1=1, X=0) = 0.03 +P(Y=1 | V1=1, X=1) = 0.32 +P(V1=1) = 0.00 +1.00 * (0.81 - 0.18) + 0.00 * (0.32 - 0.03) = 0.62 +0.62 > 0",confounding,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 24%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.24 +0.24 - 0.38 = -0.14 +-0.14 < 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 24%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.24 +0.24 - 0.38 = -0.14 +-0.14 < 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 24%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.24 +0.24 - 0.38 = -0.14 +-0.14 < 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 23%. For those who are not zuph and are wibl, the probability of uvzi is 64%. For those who are zuph and are not wibl, the probability of uvzi is 100%. For those who are zuph and are wibl, the probability of uvzi is 23%. For those who are not zuph, the probability of wibl is 37%. For those who are zuph, the probability of wibl is 99%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.23 +P(Y=1 | X=0, V2=1) = 0.64 +P(Y=1 | X=1, V2=0) = 1.00 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.37 +P(V2=1 | X=1) = 0.99 +0.99 * (0.64 - 0.23)+ 0.37 * (0.23 - 1.00)= 0.25 +0.25 > 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 23%. For those who are not zuph and are wibl, the probability of uvzi is 64%. For those who are zuph and are not wibl, the probability of uvzi is 100%. For those who are zuph and are wibl, the probability of uvzi is 23%. For those who are not zuph, the probability of wibl is 37%. For those who are zuph, the probability of wibl is 99%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.23 +P(Y=1 | X=0, V2=1) = 0.64 +P(Y=1 | X=1, V2=0) = 1.00 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.37 +P(V2=1 | X=1) = 0.99 +0.37 * (0.23 - 1.00) + 0.99 * (0.64 - 0.23) = 0.33 +0.33 > 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 66%. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 24%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.24 +0.66*0.24 - 0.34*0.38 = 0.45 +0.45 > 0",mediation,nonsense7,1,marginal,P(Y) +33489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 66%. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 24%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.24 +0.66*0.24 - 0.34*0.38 = 0.45 +0.45 > 0",mediation,nonsense7,1,marginal,P(Y) +33493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 40%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.40 +0.40 - 0.18 = 0.23 +0.23 > 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 40%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.40 +0.40 - 0.18 = 0.23 +0.23 > 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 40%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.40 +0.40 - 0.18 = 0.23 +0.23 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 40%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.40 +0.40 - 0.18 = 0.23 +0.23 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 43%. For those who are not zuph and are wibl, the probability of uvzi is 5%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 74%. For those who are not zuph, the probability of wibl is 67%. For those who are zuph, the probability of wibl is 40%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.05 +P(Y=1 | X=1, V2=0) = 0.17 +P(Y=1 | X=1, V2=1) = 0.74 +P(V2=1 | X=0) = 0.67 +P(V2=1 | X=1) = 0.40 +0.40 * (0.05 - 0.43)+ 0.67 * (0.74 - 0.17)= 0.10 +0.10 > 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 43%. For those who are not zuph and are wibl, the probability of uvzi is 5%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 74%. For those who are not zuph, the probability of wibl is 67%. For those who are zuph, the probability of wibl is 40%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.05 +P(Y=1 | X=1, V2=0) = 0.17 +P(Y=1 | X=1, V2=1) = 0.74 +P(V2=1 | X=0) = 0.67 +P(V2=1 | X=1) = 0.40 +0.40 * (0.05 - 0.43)+ 0.67 * (0.74 - 0.17)= 0.10 +0.10 > 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 43%. For those who are not zuph and are wibl, the probability of uvzi is 5%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 74%. For those who are not zuph, the probability of wibl is 67%. For those who are zuph, the probability of wibl is 40%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.05 +P(Y=1 | X=1, V2=0) = 0.17 +P(Y=1 | X=1, V2=1) = 0.74 +P(V2=1 | X=0) = 0.67 +P(V2=1 | X=1) = 0.40 +0.67 * (0.74 - 0.17) + 0.40 * (0.05 - 0.43) = 0.38 +0.38 > 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 43%. For those who are not zuph and are wibl, the probability of uvzi is 5%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 74%. For those who are not zuph, the probability of wibl is 67%. For those who are zuph, the probability of wibl is 40%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.05 +P(Y=1 | X=1, V2=0) = 0.17 +P(Y=1 | X=1, V2=1) = 0.74 +P(V2=1 | X=0) = 0.67 +P(V2=1 | X=1) = 0.40 +0.67 * (0.74 - 0.17) + 0.40 * (0.05 - 0.43) = 0.38 +0.38 > 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 4%. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 40%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.40 +0.04*0.40 - 0.96*0.18 = 0.20 +0.20 > 0",mediation,nonsense7,1,marginal,P(Y) +33504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 4%. The probability of not zuph and uvzi is 17%. The probability of zuph and uvzi is 2%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.02 +0.02/0.04 - 0.17/0.96 = 0.23 +0.23 > 0",mediation,nonsense7,1,correlation,P(Y | X) +33505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 4%. The probability of not zuph and uvzi is 17%. The probability of zuph and uvzi is 2%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.04 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.02 +0.02/0.04 - 0.17/0.96 = 0.23 +0.23 > 0",mediation,nonsense7,1,correlation,P(Y | X) +33506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 25%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.25 +0.25 - 0.24 = 0.01 +0.01 > 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 25%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.25 +0.25 - 0.24 = 0.01 +0.01 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 25%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.25 +0.25 - 0.24 = 0.01 +0.01 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 43%. For those who are not zuph and are wibl, the probability of uvzi is 11%. For those who are zuph and are not wibl, the probability of uvzi is 23%. For those who are zuph and are wibl, the probability of uvzi is 33%. For those who are not zuph, the probability of wibl is 60%. For those who are zuph, the probability of wibl is 23%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.23 +P(Y=1 | X=1, V2=1) = 0.33 +P(V2=1 | X=0) = 0.60 +P(V2=1 | X=1) = 0.23 +0.23 * (0.11 - 0.43)+ 0.60 * (0.33 - 0.23)= 0.12 +0.12 > 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 43%. For those who are not zuph and are wibl, the probability of uvzi is 11%. For those who are zuph and are not wibl, the probability of uvzi is 23%. For those who are zuph and are wibl, the probability of uvzi is 33%. For those who are not zuph, the probability of wibl is 60%. For those who are zuph, the probability of wibl is 23%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.11 +P(Y=1 | X=1, V2=0) = 0.23 +P(Y=1 | X=1, V2=1) = 0.33 +P(V2=1 | X=0) = 0.60 +P(V2=1 | X=1) = 0.23 +0.60 * (0.33 - 0.23) + 0.23 * (0.11 - 0.43) = 0.05 +0.05 > 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 25%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.25 +0.93*0.25 - 0.07*0.24 = 0.26 +0.26 > 0",mediation,nonsense7,1,marginal,P(Y) +33517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 25%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.25 +0.93*0.25 - 0.07*0.24 = 0.26 +0.26 > 0",mediation,nonsense7,1,marginal,P(Y) +33518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. The probability of not zuph and uvzi is 2%. The probability of zuph and uvzi is 23%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.23 +0.23/0.93 - 0.02/0.07 = 0.01 +0.01 > 0",mediation,nonsense7,1,correlation,P(Y | X) +33519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. The probability of not zuph and uvzi is 2%. The probability of zuph and uvzi is 23%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.23 +0.23/0.93 - 0.02/0.07 = 0.01 +0.01 > 0",mediation,nonsense7,1,correlation,P(Y | X) +33520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 5%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.05 +0.05 - 0.65 = -0.60 +-0.60 < 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 5%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.05 +0.05 - 0.65 = -0.60 +-0.60 < 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 5%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.05 +0.05 - 0.65 = -0.60 +-0.60 < 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 67%. For those who are not zuph and are wibl, the probability of uvzi is 54%. For those who are zuph and are not wibl, the probability of uvzi is 5%. For those who are zuph and are wibl, the probability of uvzi is 3%. For those who are not zuph, the probability of wibl is 16%. For those who are zuph, the probability of wibl is 20%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.67 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.05 +P(Y=1 | X=1, V2=1) = 0.03 +P(V2=1 | X=0) = 0.16 +P(V2=1 | X=1) = 0.20 +0.20 * (0.54 - 0.67)+ 0.16 * (0.03 - 0.05)= -0.00 +0.00 = 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 67%. For those who are not zuph and are wibl, the probability of uvzi is 54%. For those who are zuph and are not wibl, the probability of uvzi is 5%. For those who are zuph and are wibl, the probability of uvzi is 3%. For those who are not zuph, the probability of wibl is 16%. For those who are zuph, the probability of wibl is 20%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.67 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.05 +P(Y=1 | X=1, V2=1) = 0.03 +P(V2=1 | X=0) = 0.16 +P(V2=1 | X=1) = 0.20 +0.16 * (0.03 - 0.05) + 0.20 * (0.54 - 0.67) = -0.60 +-0.60 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 68%. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 5%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.05 +0.68*0.05 - 0.32*0.65 = 0.24 +0.24 > 0",mediation,nonsense7,1,marginal,P(Y) +33532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 68%. The probability of not zuph and uvzi is 21%. The probability of zuph and uvzi is 3%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.03 +0.03/0.68 - 0.21/0.32 = -0.60 +-0.60 < 0",mediation,nonsense7,1,correlation,P(Y | X) +33533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 68%. The probability of not zuph and uvzi is 21%. The probability of zuph and uvzi is 3%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.03 +0.03/0.68 - 0.21/0.32 = -0.60 +-0.60 < 0",mediation,nonsense7,1,correlation,P(Y | X) +33534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 94%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.94 +0.94 - 0.76 = 0.18 +0.18 > 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 94%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.94 +0.94 - 0.76 = 0.18 +0.18 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 74%. For those who are not zuph and are wibl, the probability of uvzi is 84%. For those who are zuph and are not wibl, the probability of uvzi is 98%. For those who are zuph and are wibl, the probability of uvzi is 69%. For those who are not zuph, the probability of wibl is 28%. For those who are zuph, the probability of wibl is 14%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.74 +P(Y=1 | X=0, V2=1) = 0.84 +P(Y=1 | X=1, V2=0) = 0.98 +P(Y=1 | X=1, V2=1) = 0.69 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.14 +0.14 * (0.84 - 0.74)+ 0.28 * (0.69 - 0.98)= -0.01 +-0.01 < 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 74%. For those who are not zuph and are wibl, the probability of uvzi is 84%. For those who are zuph and are not wibl, the probability of uvzi is 98%. For those who are zuph and are wibl, the probability of uvzi is 69%. For those who are not zuph, the probability of wibl is 28%. For those who are zuph, the probability of wibl is 14%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.74 +P(Y=1 | X=0, V2=1) = 0.84 +P(Y=1 | X=1, V2=0) = 0.98 +P(Y=1 | X=1, V2=1) = 0.69 +P(V2=1 | X=0) = 0.28 +P(V2=1 | X=1) = 0.14 +0.28 * (0.69 - 0.98) + 0.14 * (0.84 - 0.74) = 0.13 +0.13 > 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 94%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.94 +0.93*0.94 - 0.07*0.76 = 0.92 +0.92 > 0",mediation,nonsense7,1,marginal,P(Y) +33545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 94%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.94 +0.93*0.94 - 0.07*0.76 = 0.92 +0.92 > 0",mediation,nonsense7,1,marginal,P(Y) +33548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 91%. For those who are zuph, the probability of uvzi is 85%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.85 +0.85 - 0.91 = -0.06 +-0.06 < 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 91%. For those who are zuph, the probability of uvzi is 85%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.85 +0.85 - 0.91 = -0.06 +-0.06 < 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 73%. For those who are not zuph and are wibl, the probability of uvzi is 92%. For those who are zuph and are not wibl, the probability of uvzi is 86%. For those who are zuph and are wibl, the probability of uvzi is 61%. For those who are not zuph, the probability of wibl is 95%. For those who are zuph, the probability of wibl is 4%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.95 +P(V2=1 | X=1) = 0.04 +0.04 * (0.92 - 0.73)+ 0.95 * (0.61 - 0.86)= -0.17 +-0.17 < 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 73%. For those who are not zuph and are wibl, the probability of uvzi is 92%. For those who are zuph and are not wibl, the probability of uvzi is 86%. For those who are zuph and are wibl, the probability of uvzi is 61%. For those who are not zuph, the probability of wibl is 95%. For those who are zuph, the probability of wibl is 4%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.95 +P(V2=1 | X=1) = 0.04 +0.95 * (0.61 - 0.86) + 0.04 * (0.92 - 0.73) = -0.28 +-0.28 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 73%. For those who are not zuph and are wibl, the probability of uvzi is 92%. For those who are zuph and are not wibl, the probability of uvzi is 86%. For those who are zuph and are wibl, the probability of uvzi is 61%. For those who are not zuph, the probability of wibl is 95%. For those who are zuph, the probability of wibl is 4%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.73 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.86 +P(Y=1 | X=1, V2=1) = 0.61 +P(V2=1 | X=0) = 0.95 +P(V2=1 | X=1) = 0.04 +0.95 * (0.61 - 0.86) + 0.04 * (0.92 - 0.73) = -0.28 +-0.28 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 86%. For those who are not zuph, the probability of uvzi is 91%. For those who are zuph, the probability of uvzi is 85%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.85 +0.86*0.85 - 0.14*0.91 = 0.81 +0.81 > 0",mediation,nonsense7,1,marginal,P(Y) +33562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 85%. For those who are zuph and are not wibl, the probability of uvzi is 84%. For those who are zuph and are wibl, the probability of uvzi is 79%. For those who are not zuph, the probability of wibl is 90%. For those who are zuph, the probability of wibl is 4%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.85 +P(Y=1 | X=1, V2=0) = 0.84 +P(Y=1 | X=1, V2=1) = 0.79 +P(V2=1 | X=0) = 0.90 +P(V2=1 | X=1) = 0.04 +0.90 * (0.79 - 0.84) + 0.04 * (0.85 - 0.59) = -0.03 +-0.03 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 85%. For those who are zuph and are not wibl, the probability of uvzi is 84%. For those who are zuph and are wibl, the probability of uvzi is 79%. For those who are not zuph, the probability of wibl is 90%. For those who are zuph, the probability of wibl is 4%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.85 +P(Y=1 | X=1, V2=0) = 0.84 +P(Y=1 | X=1, V2=1) = 0.79 +P(V2=1 | X=0) = 0.90 +P(V2=1 | X=1) = 0.04 +0.90 * (0.79 - 0.84) + 0.04 * (0.85 - 0.59) = -0.03 +-0.03 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 46%. For those who are not zuph, the probability of uvzi is 82%. For those who are zuph, the probability of uvzi is 84%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.84 +0.46*0.84 - 0.54*0.82 = 0.76 +0.76 > 0",mediation,nonsense7,1,marginal,P(Y) +33575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 46%. The probability of not zuph and uvzi is 45%. The probability of zuph and uvzi is 38%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.38 +0.38/0.46 - 0.45/0.54 = 0.01 +0.01 > 0",mediation,nonsense7,1,correlation,P(Y | X) +33576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 69%. For those who are zuph, the probability of uvzi is 47%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.47 +0.47 - 0.69 = -0.22 +-0.22 < 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33582,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 21%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 42%. For those who are not zuph, the probability of wibl is 71%. For those who are zuph, the probability of wibl is 72%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.42 +P(V2=1 | X=0) = 0.71 +P(V2=1 | X=1) = 0.72 +0.72 * (0.89 - 0.21)+ 0.71 * (0.42 - 0.62)= 0.01 +0.01 > 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 21%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 42%. For those who are not zuph, the probability of wibl is 71%. For those who are zuph, the probability of wibl is 72%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.42 +P(V2=1 | X=0) = 0.71 +P(V2=1 | X=1) = 0.72 +0.71 * (0.42 - 0.62) + 0.72 * (0.89 - 0.21) = -0.22 +-0.22 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 21%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 42%. For those who are not zuph, the probability of wibl is 71%. For those who are zuph, the probability of wibl is 72%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.62 +P(Y=1 | X=1, V2=1) = 0.42 +P(V2=1 | X=0) = 0.71 +P(V2=1 | X=1) = 0.72 +0.71 * (0.42 - 0.62) + 0.72 * (0.89 - 0.21) = -0.22 +-0.22 < 0",mediation,nonsense7,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +33588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. The probability of not zuph and uvzi is 44%. The probability of zuph and uvzi is 17%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.17 +0.17/0.37 - 0.44/0.63 = -0.22 +-0.22 < 0",mediation,nonsense7,1,correlation,P(Y | X) +33589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 37%. The probability of not zuph and uvzi is 44%. The probability of zuph and uvzi is 17%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.17 +0.17/0.37 - 0.44/0.63 = -0.22 +-0.22 < 0",mediation,nonsense7,1,correlation,P(Y | X) +33592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 58%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.58 +0.58 - 0.62 = -0.04 +-0.04 < 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 58%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.58 +0.58 - 0.62 = -0.04 +-0.04 < 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 62%. For those who are not zuph and are wibl, the probability of uvzi is 60%. For those who are zuph and are not wibl, the probability of uvzi is 44%. For those who are zuph and are wibl, the probability of uvzi is 59%. For those who are not zuph, the probability of wibl is 12%. For those who are zuph, the probability of wibl is 90%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.62 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.44 +P(Y=1 | X=1, V2=1) = 0.59 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.90 +0.90 * (0.60 - 0.62)+ 0.12 * (0.59 - 0.44)= -0.02 +-0.02 < 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 62%. For those who are not zuph and are wibl, the probability of uvzi is 60%. For those who are zuph and are not wibl, the probability of uvzi is 44%. For those who are zuph and are wibl, the probability of uvzi is 59%. For those who are not zuph, the probability of wibl is 12%. For those who are zuph, the probability of wibl is 90%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.62 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.44 +P(Y=1 | X=1, V2=1) = 0.59 +P(V2=1 | X=0) = 0.12 +P(V2=1 | X=1) = 0.90 +0.90 * (0.60 - 0.62)+ 0.12 * (0.59 - 0.44)= -0.02 +-0.02 < 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 53%. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 58%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.58 +0.53*0.58 - 0.47*0.62 = 0.56 +0.56 > 0",mediation,nonsense7,1,marginal,P(Y) +33601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 53%. For those who are not zuph, the probability of uvzi is 62%. For those who are zuph, the probability of uvzi is 58%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.58 +0.53*0.58 - 0.47*0.62 = 0.56 +0.56 > 0",mediation,nonsense7,1,marginal,P(Y) +33602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 53%. The probability of not zuph and uvzi is 29%. The probability of zuph and uvzi is 31%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.31 +0.31/0.53 - 0.29/0.47 = -0.04 +-0.04 < 0",mediation,nonsense7,1,correlation,P(Y | X) +33603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 53%. The probability of not zuph and uvzi is 29%. The probability of zuph and uvzi is 31%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.31 +0.31/0.53 - 0.29/0.47 = -0.04 +-0.04 < 0",mediation,nonsense7,1,correlation,P(Y | X) +33606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 15%. For those who are zuph, the probability of uvzi is 56%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.56 +0.56 - 0.15 = 0.41 +0.41 > 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 15%. For those who are zuph, the probability of uvzi is 56%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.56 +0.56 - 0.15 = 0.41 +0.41 > 0",mediation,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33608,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 15%. For those who are zuph, the probability of uvzi is 56%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.56 +0.56 - 0.15 = 0.41 +0.41 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 15%. For those who are zuph, the probability of uvzi is 56%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.56 +0.56 - 0.15 = 0.41 +0.41 > 0",mediation,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 30%. For those who are not zuph and are wibl, the probability of uvzi is 0%. For those who are zuph and are not wibl, the probability of uvzi is 12%. For those who are zuph and are wibl, the probability of uvzi is 85%. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 60%.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.00 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.85 +P(V2=1 | X=0) = 0.50 +P(V2=1 | X=1) = 0.60 +0.60 * (0.00 - 0.30)+ 0.50 * (0.85 - 0.12)= -0.03 +-0.03 < 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. For those who are not zuph and are not wibl, the probability of uvzi is 30%. For those who are not zuph and are wibl, the probability of uvzi is 0%. For those who are zuph and are not wibl, the probability of uvzi is 12%. For those who are zuph and are wibl, the probability of uvzi is 85%. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 60%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.30 +P(Y=1 | X=0, V2=1) = 0.00 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.85 +P(V2=1 | X=0) = 0.50 +P(V2=1 | X=1) = 0.60 +0.60 * (0.00 - 0.30)+ 0.50 * (0.85 - 0.12)= -0.03 +-0.03 < 0",mediation,nonsense7,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +33616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 69%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 38%.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.38 +0.38/0.69 - 0.05/0.31 = 0.41 +0.41 > 0",mediation,nonsense7,1,correlation,P(Y | X) +33619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 93%. For those who are zuph, the probability of wibl is 15%. For those who are not zuph and are not wibl, the probability of uvzi is 62%. For those who are not zuph and are wibl, the probability of uvzi is 68%. For those who are zuph and are not wibl, the probability of uvzi is 59%. For those who are zuph and are wibl, the probability of uvzi is 78%. The overall probability of zuph is 72%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.93 +P(V3=1 | X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.78 +P(X=1) = 0.72 +(0.15 - 0.93)* (0.78 * 0.72) + (0.85 - 0.07) * (0.68 * 0.28) = -0.12 +-0.12 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 93%. For those who are zuph, the probability of wibl is 15%. For those who are not zuph and are not wibl, the probability of uvzi is 62%. For those who are not zuph and are wibl, the probability of uvzi is 68%. For those who are zuph and are not wibl, the probability of uvzi is 59%. For those who are zuph and are wibl, the probability of uvzi is 78%. The overall probability of zuph is 72%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.93 +P(V3=1 | X=1) = 0.15 +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.78 +P(X=1) = 0.72 +(0.15 - 0.93)* (0.78 * 0.72) + (0.85 - 0.07) * (0.68 * 0.28) = -0.12 +-0.12 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 72%. For those who are not zuph, the probability of uvzi is 68%. For those who are zuph, the probability of uvzi is 62%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.62 +0.72*0.62 - 0.28*0.68 = 0.66 +0.66 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 72%. The probability of not zuph and uvzi is 19%. The probability of zuph and uvzi is 45%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.45 +0.45/0.72 - 0.19/0.28 = -0.05 +-0.05 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33633,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 75%. For those who are zuph, the probability of wibl is 48%. For those who are not zuph and are not wibl, the probability of uvzi is 40%. For those who are not zuph and are wibl, the probability of uvzi is 53%. For those who are zuph and are not wibl, the probability of uvzi is 42%. For those who are zuph and are wibl, the probability of uvzi is 49%. The overall probability of zuph is 52%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.48 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.49 +P(X=1) = 0.52 +(0.48 - 0.75)* (0.49 * 0.52) + (0.52 - 0.25) * (0.53 * 0.48) = -0.03 +-0.03 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 40%. For those who are not zuph and are wibl, the probability of uvzi is 53%. For those who are zuph and are not wibl, the probability of uvzi is 42%. For those who are zuph and are wibl, the probability of uvzi is 49%. For those who are not zuph, the probability of wibl is 75%. For those who are zuph, the probability of wibl is 48%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.48 +0.49 * (0.48 - 0.75) + 0.53 * (0.52 - 0.25) = -0.02 +-0.02 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 75%. For those who are zuph, the probability of wibl is 48%. For those who are not zuph and are not wibl, the probability of uvzi is 40%. For those who are not zuph and are wibl, the probability of uvzi is 53%. For those who are zuph and are not wibl, the probability of uvzi is 42%. For those who are zuph and are wibl, the probability of uvzi is 49%. The overall probability of zuph is 52%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.48 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.49 +P(X=1) = 0.52 +0.48 - 0.75 * (0.49 * 0.52 + 0.53 * 0.48)= -0.03 +-0.03 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 75%. For those who are zuph, the probability of wibl is 48%. For those who are not zuph and are not wibl, the probability of uvzi is 40%. For those who are not zuph and are wibl, the probability of uvzi is 53%. For those who are zuph and are not wibl, the probability of uvzi is 42%. For those who are zuph and are wibl, the probability of uvzi is 49%. The overall probability of zuph is 52%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.75 +P(V3=1 | X=1) = 0.48 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.53 +P(Y=1 | X=1, V3=0) = 0.42 +P(Y=1 | X=1, V3=1) = 0.49 +P(X=1) = 0.52 +0.48 - 0.75 * (0.49 * 0.52 + 0.53 * 0.48)= -0.03 +-0.03 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 52%. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 46%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.46 +0.52*0.46 - 0.48*0.50 = 0.47 +0.47 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 52%. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 46%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.46 +0.52*0.46 - 0.48*0.50 = 0.47 +0.47 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 52%. The probability of not zuph and uvzi is 24%. The probability of zuph and uvzi is 24%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.24 +0.24/0.52 - 0.24/0.48 = -0.04 +-0.04 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33643,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 86%. For those who are zuph, the probability of wibl is 46%. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 71%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 69%. The overall probability of zuph is 58%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.46 +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.69 +P(X=1) = 0.58 +(0.46 - 0.86)* (0.69 * 0.58) + (0.54 - 0.14) * (0.71 * 0.42) = -0.20 +-0.20 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 71%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 69%. For those who are not zuph, the probability of wibl is 86%. For those who are zuph, the probability of wibl is 46%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.46 +0.69 * (0.46 - 0.86) + 0.71 * (0.54 - 0.14) = -0.21 +-0.21 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 86%. For those who are zuph, the probability of wibl is 46%. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 71%. For those who are zuph and are not wibl, the probability of uvzi is 17%. For those who are zuph and are wibl, the probability of uvzi is 69%. The overall probability of zuph is 58%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.86 +P(V3=1 | X=1) = 0.46 +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.17 +P(Y=1 | X=1, V3=1) = 0.69 +P(X=1) = 0.58 +0.46 - 0.86 * (0.69 * 0.58 + 0.71 * 0.42)= -0.20 +-0.20 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 58%. For those who are not zuph, the probability of uvzi is 64%. For those who are zuph, the probability of uvzi is 41%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.41 +0.58*0.41 - 0.42*0.64 = 0.51 +0.51 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 58%. For those who are not zuph, the probability of uvzi is 64%. For those who are zuph, the probability of uvzi is 41%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.64 +P(Y=1 | X=1) = 0.41 +0.58*0.41 - 0.42*0.64 = 0.51 +0.51 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 58%. The probability of not zuph and uvzi is 27%. The probability of zuph and uvzi is 24%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.24 +0.24/0.58 - 0.27/0.42 = -0.23 +-0.23 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 19%. For those who are zuph, the probability of wibl is 95%. For those who are not zuph and are not wibl, the probability of uvzi is 48%. For those who are not zuph and are wibl, the probability of uvzi is 55%. For those who are zuph and are not wibl, the probability of uvzi is 48%. For those who are zuph and are wibl, the probability of uvzi is 55%. The overall probability of zuph is 3%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.19 +P(V3=1 | X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.55 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.55 +P(X=1) = 0.03 +(0.95 - 0.19)* (0.55 * 0.03) + (0.05 - 0.81) * (0.55 * 0.97) = 0.05 +0.05 > 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 48%. For those who are not zuph and are wibl, the probability of uvzi is 55%. For those who are zuph and are not wibl, the probability of uvzi is 48%. For those who are zuph and are wibl, the probability of uvzi is 55%. For those who are not zuph, the probability of wibl is 19%. For those who are zuph, the probability of wibl is 95%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.55 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0) = 0.19 +P(V3=1 | X=1) = 0.95 +0.55 * (0.95 - 0.19) + 0.55 * (0.05 - 0.81) = 0.05 +0.05 > 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 19%. For those who are zuph, the probability of wibl is 95%. For those who are not zuph and are not wibl, the probability of uvzi is 48%. For those who are not zuph and are wibl, the probability of uvzi is 55%. For those who are zuph and are not wibl, the probability of uvzi is 48%. For those who are zuph and are wibl, the probability of uvzi is 55%. The overall probability of zuph is 3%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.19 +P(V3=1 | X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.55 +P(Y=1 | X=1, V3=0) = 0.48 +P(Y=1 | X=1, V3=1) = 0.55 +P(X=1) = 0.03 +0.95 - 0.19 * (0.55 * 0.03 + 0.55 * 0.97)= 0.05 +0.05 > 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 3%. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 55%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.55 +0.03*0.55 - 0.97*0.50 = 0.50 +0.50 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 3%. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 55%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.55 +0.03*0.55 - 0.97*0.50 = 0.50 +0.50 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 3%. The probability of not zuph and uvzi is 48%. The probability of zuph and uvzi is 2%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.02 +0.02/0.03 - 0.48/0.97 = 0.05 +0.05 > 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 1%. For those who are zuph, the probability of wibl is 24%. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 88%. For those who are zuph and are not wibl, the probability of uvzi is 57%. For those who are zuph and are wibl, the probability of uvzi is 85%. The overall probability of zuph is 93%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.93 +(0.24 - 0.01)* (0.85 * 0.93) + (0.76 - 0.99) * (0.88 * 0.07) = 0.06 +0.06 > 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 88%. For those who are zuph and are not wibl, the probability of uvzi is 57%. For those who are zuph and are wibl, the probability of uvzi is 85%. For those who are not zuph, the probability of wibl is 1%. For those who are zuph, the probability of wibl is 24%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.24 +0.85 * (0.24 - 0.01) + 0.88 * (0.76 - 0.99) = 0.06 +0.06 > 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 1%. For those who are zuph, the probability of wibl is 24%. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 88%. For those who are zuph and are not wibl, the probability of uvzi is 57%. For those who are zuph and are wibl, the probability of uvzi is 85%. The overall probability of zuph is 93%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.93 +0.24 - 0.01 * (0.85 * 0.93 + 0.88 * 0.07)= 0.06 +0.06 > 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 1%. For those who are zuph, the probability of wibl is 24%. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 88%. For those who are zuph and are not wibl, the probability of uvzi is 57%. For those who are zuph and are wibl, the probability of uvzi is 85%. The overall probability of zuph is 93%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.01 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.88 +P(Y=1 | X=1, V3=0) = 0.57 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.93 +0.24 - 0.01 * (0.85 * 0.93 + 0.88 * 0.07)= 0.06 +0.06 > 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 72%. For those who are zuph, the probability of uvzi is 64%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.64 +0.93*0.64 - 0.07*0.72 = 0.64 +0.64 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 72%. For those who are zuph, the probability of uvzi is 64%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.64 +0.93*0.64 - 0.07*0.72 = 0.64 +0.64 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 93%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 59%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.59 +0.59/0.93 - 0.05/0.07 = -0.09 +-0.09 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 93%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 59%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.59 +0.59/0.93 - 0.05/0.07 = -0.09 +-0.09 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 79%. For those who are zuph and are not wibl, the probability of uvzi is 71%. For those who are zuph and are wibl, the probability of uvzi is 64%. For those who are not zuph, the probability of wibl is 17%. For those who are zuph, the probability of wibl is 95%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.79 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.95 +0.64 * (0.95 - 0.17) + 0.79 * (0.05 - 0.83) = -0.05 +-0.05 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 79%. For those who are zuph and are not wibl, the probability of uvzi is 71%. For those who are zuph and are wibl, the probability of uvzi is 64%. For those who are not zuph, the probability of wibl is 17%. For those who are zuph, the probability of wibl is 95%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.79 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.64 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.95 +0.64 * (0.95 - 0.17) + 0.79 * (0.05 - 0.83) = -0.05 +-0.05 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 17%. For those who are zuph, the probability of wibl is 95%. For those who are not zuph and are not wibl, the probability of uvzi is 72%. For those who are not zuph and are wibl, the probability of uvzi is 79%. For those who are zuph and are not wibl, the probability of uvzi is 71%. For those who are zuph and are wibl, the probability of uvzi is 64%. The overall probability of zuph is 2%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.95 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.79 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.64 +P(X=1) = 0.02 +0.95 - 0.17 * (0.64 * 0.02 + 0.79 * 0.98)= 0.05 +0.05 > 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 2%. For those who are not zuph, the probability of uvzi is 73%. For those who are zuph, the probability of uvzi is 64%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.64 +0.02*0.64 - 0.98*0.73 = 0.73 +0.73 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 2%. The probability of not zuph and uvzi is 71%. The probability of zuph and uvzi is 2%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.71 +P(Y=1, X=1=1) = 0.02 +0.02/0.02 - 0.71/0.98 = -0.09 +-0.09 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 98%. For those who are zuph, the probability of wibl is 20%. For those who are not zuph and are not wibl, the probability of uvzi is 56%. For those who are not zuph and are wibl, the probability of uvzi is 39%. For those who are zuph and are not wibl, the probability of uvzi is 25%. For those who are zuph and are wibl, the probability of uvzi is 50%. The overall probability of zuph is 74%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.20 +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.50 +P(X=1) = 0.74 +(0.20 - 0.98)* (0.50 * 0.74) + (0.80 - 0.02) * (0.39 * 0.26) = -0.10 +-0.10 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 56%. For those who are not zuph and are wibl, the probability of uvzi is 39%. For those who are zuph and are not wibl, the probability of uvzi is 25%. For those who are zuph and are wibl, the probability of uvzi is 50%. For those who are not zuph, the probability of wibl is 98%. For those who are zuph, the probability of wibl is 20%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.50 +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.20 +0.50 * (0.20 - 0.98) + 0.39 * (0.80 - 0.02) = -0.19 +-0.19 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 56%. For those who are not zuph and are wibl, the probability of uvzi is 39%. For those who are zuph and are not wibl, the probability of uvzi is 25%. For those who are zuph and are wibl, the probability of uvzi is 50%. For those who are not zuph, the probability of wibl is 98%. For those who are zuph, the probability of wibl is 20%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.39 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.50 +P(V3=1 | X=0) = 0.98 +P(V3=1 | X=1) = 0.20 +0.50 * (0.20 - 0.98) + 0.39 * (0.80 - 0.02) = -0.19 +-0.19 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 74%. The probability of not zuph and uvzi is 10%. The probability of zuph and uvzi is 22%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.22 +0.22/0.74 - 0.10/0.26 = -0.09 +-0.09 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 75%. For those who are not zuph and are not wibl, the probability of uvzi is 49%. For those who are not zuph and are wibl, the probability of uvzi is 23%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 12%. The overall probability of zuph is 75%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.75 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.12 +P(X=1) = 0.75 +(0.75 - 0.50)* (0.12 * 0.75) + (0.25 - 0.50) * (0.23 * 0.25) = -0.10 +-0.10 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 75%. For those who are not zuph and are not wibl, the probability of uvzi is 49%. For those who are not zuph and are wibl, the probability of uvzi is 23%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 12%. The overall probability of zuph is 75%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.75 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.12 +P(X=1) = 0.75 +(0.75 - 0.50)* (0.12 * 0.75) + (0.25 - 0.50) * (0.23 * 0.25) = -0.10 +-0.10 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 49%. For those who are not zuph and are wibl, the probability of uvzi is 23%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 12%. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 75%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.12 +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.75 +0.12 * (0.75 - 0.50) + 0.23 * (0.25 - 0.50) = -0.11 +-0.11 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 49%. For those who are not zuph and are wibl, the probability of uvzi is 23%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 12%. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 75%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.12 +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.75 +0.12 * (0.75 - 0.50) + 0.23 * (0.25 - 0.50) = -0.11 +-0.11 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 75%. For those who are not zuph and are not wibl, the probability of uvzi is 49%. For those who are not zuph and are wibl, the probability of uvzi is 23%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 12%. The overall probability of zuph is 75%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.75 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.12 +P(X=1) = 0.75 +0.75 - 0.50 * (0.12 * 0.75 + 0.23 * 0.25)= -0.10 +-0.10 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 50%. For those who are zuph, the probability of wibl is 75%. For those who are not zuph and are not wibl, the probability of uvzi is 49%. For those who are not zuph and are wibl, the probability of uvzi is 23%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 12%. The overall probability of zuph is 75%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.75 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.12 +P(X=1) = 0.75 +0.75 - 0.50 * (0.12 * 0.75 + 0.23 * 0.25)= -0.10 +-0.10 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 75%. For those who are not zuph, the probability of uvzi is 36%. For those who are zuph, the probability of uvzi is 23%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.23 +0.75*0.23 - 0.25*0.36 = 0.27 +0.27 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 75%. The probability of not zuph and uvzi is 9%. The probability of zuph and uvzi is 17%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.17 +0.17/0.75 - 0.09/0.25 = -0.13 +-0.13 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 75%. The probability of not zuph and uvzi is 9%. The probability of zuph and uvzi is 17%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.17 +0.17/0.75 - 0.09/0.25 = -0.13 +-0.13 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 20%. For those who are zuph, the probability of wibl is 72%. For those who are not zuph and are not wibl, the probability of uvzi is 70%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 74%. For those who are zuph and are wibl, the probability of uvzi is 78%. The overall probability of zuph is 53%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.78 +P(X=1) = 0.53 +(0.72 - 0.20)* (0.78 * 0.53) + (0.28 - 0.80) * (0.89 * 0.47) = 0.06 +0.06 > 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 70%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 74%. For those who are zuph and are wibl, the probability of uvzi is 78%. For those who are not zuph, the probability of wibl is 20%. For those who are zuph, the probability of wibl is 72%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.72 +0.78 * (0.72 - 0.20) + 0.89 * (0.28 - 0.80) = 0.02 +0.02 > 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 20%. For those who are zuph, the probability of wibl is 72%. For those who are not zuph and are not wibl, the probability of uvzi is 70%. For those who are not zuph and are wibl, the probability of uvzi is 89%. For those who are zuph and are not wibl, the probability of uvzi is 74%. For those who are zuph and are wibl, the probability of uvzi is 78%. The overall probability of zuph is 53%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.20 +P(V3=1 | X=1) = 0.72 +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.89 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.78 +P(X=1) = 0.53 +0.72 - 0.20 * (0.78 * 0.53 + 0.89 * 0.47)= 0.06 +0.06 > 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 53%. The probability of not zuph and uvzi is 35%. The probability of zuph and uvzi is 41%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.41 +0.41/0.53 - 0.35/0.47 = 0.03 +0.03 > 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 43%. For those who are zuph, the probability of wibl is 55%. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 12%. For those who are zuph and are not wibl, the probability of uvzi is 61%. For those who are zuph and are wibl, the probability of uvzi is 11%. The overall probability of zuph is 39%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.11 +P(X=1) = 0.39 +(0.55 - 0.43)* (0.11 * 0.39) + (0.45 - 0.57) * (0.12 * 0.61) = -0.06 +-0.06 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 43%. For those who are zuph, the probability of wibl is 55%. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 12%. For those who are zuph and are not wibl, the probability of uvzi is 61%. For those who are zuph and are wibl, the probability of uvzi is 11%. The overall probability of zuph is 39%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.11 +P(X=1) = 0.39 +(0.55 - 0.43)* (0.11 * 0.39) + (0.45 - 0.57) * (0.12 * 0.61) = -0.06 +-0.06 < 0",frontdoor,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 12%. For those who are zuph and are not wibl, the probability of uvzi is 61%. For those who are zuph and are wibl, the probability of uvzi is 11%. For those who are not zuph, the probability of wibl is 43%. For those who are zuph, the probability of wibl is 55%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.11 +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.55 +0.11 * (0.55 - 0.43) + 0.12 * (0.45 - 0.57) = -0.06 +-0.06 < 0",frontdoor,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 43%. For those who are zuph, the probability of wibl is 55%. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 12%. For those who are zuph and are not wibl, the probability of uvzi is 61%. For those who are zuph and are wibl, the probability of uvzi is 11%. The overall probability of zuph is 39%.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.11 +P(X=1) = 0.39 +0.55 - 0.43 * (0.11 * 0.39 + 0.12 * 0.61)= -0.06 +-0.06 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of wibl is 43%. For those who are zuph, the probability of wibl is 55%. For those who are not zuph and are not wibl, the probability of uvzi is 59%. For those who are not zuph and are wibl, the probability of uvzi is 12%. For those who are zuph and are not wibl, the probability of uvzi is 61%. For those who are zuph and are wibl, the probability of uvzi is 11%. The overall probability of zuph is 39%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.59 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.61 +P(Y=1 | X=1, V3=1) = 0.11 +P(X=1) = 0.39 +0.55 - 0.43 * (0.11 * 0.39 + 0.12 * 0.61)= -0.06 +-0.06 < 0",frontdoor,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 39%. For those who are not zuph, the probability of uvzi is 39%. For those who are zuph, the probability of uvzi is 33%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.39 +P(Y=1 | X=1) = 0.33 +0.39*0.33 - 0.61*0.39 = 0.37 +0.37 > 0",frontdoor,nonsense7,1,marginal,P(Y) +33737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 39%. The probability of not zuph and uvzi is 24%. The probability of zuph and uvzi is 13%.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.13 +0.13/0.39 - 0.24/0.61 = -0.06 +-0.06 < 0",frontdoor,nonsense7,1,correlation,P(Y | X) +33739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 65%. For those who are not zuph, the probability of uvzi is 71%. For those who are zuph, the probability of uvzi is 49%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.49 +0.65*0.49 - 0.35*0.71 = 0.58 +0.58 > 0",IV,nonsense7,1,marginal,P(Y) +33743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 65%. For those who are not zuph, the probability of uvzi is 71%. For those who are zuph, the probability of uvzi is 49%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.49 +0.65*0.49 - 0.35*0.71 = 0.58 +0.58 > 0",IV,nonsense7,1,marginal,P(Y) +33744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 65%. The probability of not zuph and uvzi is 25%. The probability of zuph and uvzi is 32%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.32 +0.32/0.65 - 0.25/0.35 = -0.22 +-0.22 < 0",IV,nonsense7,1,correlation,P(Y | X) +33746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 27%. For those who are wibl, the probability of uvzi is 31%. For those who are not wibl, the probability of zuph is 39%. For those who are wibl, the probability of zuph is 21%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.27 +P(Y=1 | V2=1) = 0.31 +P(X=1 | V2=0) = 0.39 +P(X=1 | V2=1) = 0.21 +(0.31 - 0.27) / (0.21 - 0.39) = -0.19 +-0.19 < 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 25%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 15%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.15 +0.25*0.15 - 0.75*0.35 = 0.30 +0.30 > 0",IV,nonsense7,1,marginal,P(Y) +33751,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 25%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 15%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.15 +0.25*0.15 - 0.75*0.35 = 0.30 +0.30 > 0",IV,nonsense7,1,marginal,P(Y) +33756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 29%. For those who are wibl, the probability of uvzi is 28%. For those who are not wibl, the probability of zuph is 49%. For those who are wibl, the probability of zuph is 45%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.29 +P(Y=1 | V2=1) = 0.28 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.45 +(0.28 - 0.29) / (0.45 - 0.49) = 0.19 +0.19 > 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 29%. For those who are wibl, the probability of uvzi is 28%. For those who are not wibl, the probability of zuph is 49%. For those who are wibl, the probability of zuph is 45%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.29 +P(Y=1 | V2=1) = 0.28 +P(X=1 | V2=0) = 0.49 +P(X=1 | V2=1) = 0.45 +(0.28 - 0.29) / (0.45 - 0.49) = 0.19 +0.19 > 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33763,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 14%. For those who are wibl, the probability of uvzi is 35%. For those who are not wibl, the probability of zuph is 19%. For those who are wibl, the probability of zuph is 85%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.14 +P(Y=1 | V2=1) = 0.35 +P(X=1 | V2=0) = 0.19 +P(X=1 | V2=1) = 0.85 +(0.35 - 0.14) / (0.85 - 0.19) = 0.32 +0.32 > 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 33%. For those who are not zuph, the probability of uvzi is 8%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.08 +P(Y=1 | X=1) = 0.39 +0.33*0.39 - 0.67*0.08 = 0.19 +0.19 > 0",IV,nonsense7,1,marginal,P(Y) +33768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 33%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 13%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.13 +0.13/0.33 - 0.05/0.67 = 0.31 +0.31 > 0",IV,nonsense7,1,correlation,P(Y | X) +33769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 33%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 13%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.13 +0.13/0.33 - 0.05/0.67 = 0.31 +0.31 > 0",IV,nonsense7,1,correlation,P(Y | X) +33770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 38%. For those who are wibl, the probability of uvzi is 38%. For those who are not wibl, the probability of zuph is 51%. For those who are wibl, the probability of zuph is 42%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.38 +P(Y=1 | V2=1) = 0.38 +P(X=1 | V2=0) = 0.51 +P(X=1 | V2=1) = 0.42 +(0.38 - 0.38) / (0.42 - 0.51) = 0.05 +0.05 > 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 38%. For those who are wibl, the probability of uvzi is 38%. For those who are not wibl, the probability of zuph is 51%. For those who are wibl, the probability of zuph is 42%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.38 +P(Y=1 | V2=1) = 0.38 +P(X=1 | V2=0) = 0.51 +P(X=1 | V2=1) = 0.42 +(0.38 - 0.38) / (0.42 - 0.51) = 0.05 +0.05 > 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 48%. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 49%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.49 +0.48*0.49 - 0.52*0.38 = 0.38 +0.38 > 0",IV,nonsense7,1,marginal,P(Y) +33775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 48%. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 49%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.49 +0.48*0.49 - 0.52*0.38 = 0.38 +0.38 > 0",IV,nonsense7,1,marginal,P(Y) +33776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 48%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 24%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.24 +0.24/0.48 - 0.20/0.52 = 0.10 +0.10 > 0",IV,nonsense7,1,correlation,P(Y | X) +33777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 48%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 24%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.24 +0.24/0.48 - 0.20/0.52 = 0.10 +0.10 > 0",IV,nonsense7,1,correlation,P(Y | X) +33778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 55%. For those who are wibl, the probability of uvzi is 62%. For those who are not wibl, the probability of zuph is 44%. For those who are wibl, the probability of zuph is 23%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.55 +P(Y=1 | V2=1) = 0.62 +P(X=1 | V2=0) = 0.44 +P(X=1 | V2=1) = 0.23 +(0.62 - 0.55) / (0.23 - 0.44) = -0.35 +-0.35 < 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 34%. For those who are not zuph, the probability of uvzi is 74%. For those who are zuph, the probability of uvzi is 32%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.32 +0.34*0.32 - 0.66*0.74 = 0.59 +0.59 > 0",IV,nonsense7,1,marginal,P(Y) +33784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 34%. The probability of not zuph and uvzi is 49%. The probability of zuph and uvzi is 11%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.11 +0.11/0.34 - 0.49/0.66 = -0.41 +-0.41 < 0",IV,nonsense7,1,correlation,P(Y | X) +33785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 34%. The probability of not zuph and uvzi is 49%. The probability of zuph and uvzi is 11%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.49 +P(Y=1, X=1=1) = 0.11 +0.11/0.34 - 0.49/0.66 = -0.41 +-0.41 < 0",IV,nonsense7,1,correlation,P(Y | X) +33786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 31%. For those who are wibl, the probability of uvzi is 29%. For those who are not wibl, the probability of zuph is 5%. For those who are wibl, the probability of zuph is 28%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.31 +P(Y=1 | V2=1) = 0.29 +P(X=1 | V2=0) = 0.05 +P(X=1 | V2=1) = 0.28 +(0.29 - 0.31) / (0.28 - 0.05) = -0.06 +-0.06 < 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 31%. For those who are wibl, the probability of uvzi is 29%. For those who are not wibl, the probability of zuph is 5%. For those who are wibl, the probability of zuph is 28%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.31 +P(Y=1 | V2=1) = 0.29 +P(X=1 | V2=0) = 0.05 +P(X=1 | V2=1) = 0.28 +(0.29 - 0.31) / (0.28 - 0.05) = -0.06 +-0.06 < 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 20%. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 25%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.25 +0.20*0.25 - 0.80*0.31 = 0.30 +0.30 > 0",IV,nonsense7,1,marginal,P(Y) +33791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 20%. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 25%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.20 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.25 +0.20*0.25 - 0.80*0.31 = 0.30 +0.30 > 0",IV,nonsense7,1,marginal,P(Y) +33792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 20%. The probability of not zuph and uvzi is 25%. The probability of zuph and uvzi is 5%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.05 +0.05/0.20 - 0.25/0.80 = -0.06 +-0.06 < 0",IV,nonsense7,1,correlation,P(Y | X) +33793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 20%. The probability of not zuph and uvzi is 25%. The probability of zuph and uvzi is 5%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.20 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.05 +0.05/0.20 - 0.25/0.80 = -0.06 +-0.06 < 0",IV,nonsense7,1,correlation,P(Y | X) +33794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 74%. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 34%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.34 +0.74*0.34 - 0.26*0.76 = 0.45 +0.45 > 0",IV,nonsense7,1,marginal,P(Y) +33800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 74%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 25%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.25 +0.25/0.74 - 0.20/0.26 = -0.42 +-0.42 < 0",IV,nonsense7,1,correlation,P(Y | X) +33801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 74%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 25%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.25 +0.25/0.74 - 0.20/0.26 = -0.42 +-0.42 < 0",IV,nonsense7,1,correlation,P(Y | X) +33805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 82%. For those who are wibl, the probability of uvzi is 77%. For those who are not wibl, the probability of zuph is 81%. For those who are wibl, the probability of zuph is 34%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.82 +P(Y=1 | V2=1) = 0.77 +P(X=1 | V2=0) = 0.81 +P(X=1 | V2=1) = 0.34 +(0.77 - 0.82) / (0.34 - 0.81) = 0.11 +0.11 > 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 75%. For those who are not zuph, the probability of uvzi is 75%. For those who are zuph, the probability of uvzi is 84%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.75 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.84 +0.75*0.84 - 0.25*0.75 = 0.81 +0.81 > 0",IV,nonsense7,1,marginal,P(Y) +33808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 75%. The probability of not zuph and uvzi is 19%. The probability of zuph and uvzi is 63%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.75 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.63 +0.63/0.75 - 0.19/0.25 = 0.09 +0.09 > 0",IV,nonsense7,1,correlation,P(Y | X) +33811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 44%. For those who are wibl, the probability of uvzi is 46%. For those who are not wibl, the probability of zuph is 54%. For those who are wibl, the probability of zuph is 43%.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.44 +P(Y=1 | V2=1) = 0.46 +P(X=1 | V2=0) = 0.54 +P(X=1 | V2=1) = 0.43 +(0.46 - 0.44) / (0.43 - 0.54) = -0.14 +-0.14 < 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. For those who are not wibl, the probability of uvzi is 44%. For those who are wibl, the probability of uvzi is 46%. For those who are not wibl, the probability of zuph is 54%. For those who are wibl, the probability of zuph is 43%.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.44 +P(Y=1 | V2=1) = 0.46 +P(X=1 | V2=0) = 0.54 +P(X=1 | V2=1) = 0.43 +(0.46 - 0.44) / (0.43 - 0.54) = -0.14 +-0.14 < 0",IV,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33819,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 61%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.61 +0.61 - 0.18 = 0.43 +0.43 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 61%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.61 +0.61 - 0.18 = 0.43 +0.43 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 61%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.61 +0.61 - 0.18 = 0.43 +0.43 > 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 10%. For those who are not zuph and are wibl, the probability of uvzi is 48%. For those who are zuph and are not wibl, the probability of uvzi is 80%. For those who are zuph and are wibl, the probability of uvzi is 52%. For those who are not zuph and are not vubr, the probability of wibl is 52%. For those who are not zuph and are vubr, the probability of wibl is 3%. For those who are zuph and are not vubr, the probability of wibl is 31%. For those who are zuph and are vubr, the probability of wibl is 64%. The overall probability of vubr is 85%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.03 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.64 +P(V2=1) = 0.85 +0.85 * 0.48 * (0.64 - 0.31)+ 0.15 * 0.48 * (0.03 - 0.52)= 0.32 +0.32 > 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 10%. For those who are not zuph and are wibl, the probability of uvzi is 48%. For those who are zuph and are not wibl, the probability of uvzi is 80%. For those who are zuph and are wibl, the probability of uvzi is 52%. For those who are not zuph and are not vubr, the probability of wibl is 52%. For those who are not zuph and are vubr, the probability of wibl is 3%. For those who are zuph and are not vubr, the probability of wibl is 31%. For those who are zuph and are vubr, the probability of wibl is 64%. The overall probability of vubr is 85%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.80 +P(Y=1 | X=1, V3=1) = 0.52 +P(V3=1 | X=0, V2=0) = 0.52 +P(V3=1 | X=0, V2=1) = 0.03 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.64 +P(V2=1) = 0.85 +0.85 * (0.52 - 0.80) * 0.03 + 0.15 * (0.48 - 0.10) * 0.31 = 0.56 +0.56 > 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 74%. For those who are not zuph, the probability of uvzi is 18%. For those who are zuph, the probability of uvzi is 61%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.61 +0.74*0.61 - 0.26*0.18 = 0.59 +0.59 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 74%. The probability of not zuph and uvzi is 4%. The probability of zuph and uvzi is 47%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.47 +0.47/0.74 - 0.04/0.26 = 0.49 +0.49 > 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 32%. For those who are zuph, the probability of uvzi is 32%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = 0.01 +0.01 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 32%. For those who are zuph, the probability of uvzi is 32%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = 0.01 +0.01 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 32%. For those who are zuph, the probability of uvzi is 32%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.32 - 0.32 = 0.01 +0.01 > 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 28%. For those who are not zuph and are wibl, the probability of uvzi is 45%. For those who are zuph and are not wibl, the probability of uvzi is 40%. For those who are zuph and are wibl, the probability of uvzi is 25%. For those who are not zuph and are not vubr, the probability of wibl is 22%. For those who are not zuph and are vubr, the probability of wibl is 11%. For those who are zuph and are not vubr, the probability of wibl is 56%. For those who are zuph and are vubr, the probability of wibl is 45%. The overall probability of vubr is 6%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.22 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.45 +P(V2=1) = 0.06 +0.06 * 0.45 * (0.45 - 0.56)+ 0.94 * 0.45 * (0.11 - 0.22)= 0.06 +0.06 > 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 28%. For those who are not zuph and are wibl, the probability of uvzi is 45%. For those who are zuph and are not wibl, the probability of uvzi is 40%. For those who are zuph and are wibl, the probability of uvzi is 25%. For those who are not zuph and are not vubr, the probability of wibl is 22%. For those who are not zuph and are vubr, the probability of wibl is 11%. For those who are zuph and are not vubr, the probability of wibl is 56%. For those who are zuph and are vubr, the probability of wibl is 45%. The overall probability of vubr is 6%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.28 +P(Y=1 | X=0, V3=1) = 0.45 +P(Y=1 | X=1, V3=0) = 0.40 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.22 +P(V3=1 | X=0, V2=1) = 0.11 +P(V3=1 | X=1, V2=0) = 0.56 +P(V3=1 | X=1, V2=1) = 0.45 +P(V2=1) = 0.06 +0.06 * (0.25 - 0.40) * 0.11 + 0.94 * (0.45 - 0.28) * 0.56 = 0.06 +0.06 > 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 70%. For those who are not zuph, the probability of uvzi is 32%. For those who are zuph, the probability of uvzi is 32%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.32 +0.70*0.32 - 0.30*0.32 = 0.34 +0.34 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 26%. For those who are zuph, the probability of uvzi is 46%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.46 +0.46 - 0.26 = 0.19 +0.19 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 26%. For those who are zuph, the probability of uvzi is 46%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.46 +0.46 - 0.26 = 0.19 +0.19 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 26%. For those who are zuph, the probability of uvzi is 46%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.46 +0.46 - 0.26 = 0.19 +0.19 > 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 38%. For those who are not zuph and are wibl, the probability of uvzi is 9%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 42%. For those who are not zuph and are not vubr, the probability of wibl is 29%. For those who are not zuph and are vubr, the probability of wibl is 62%. For those who are zuph and are not vubr, the probability of wibl is 92%. For those who are zuph and are vubr, the probability of wibl is 11%. The overall probability of vubr is 16%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.38 +P(Y=1 | X=0, V3=1) = 0.09 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.92 +P(V3=1 | X=1, V2=1) = 0.11 +P(V2=1) = 0.16 +0.16 * 0.09 * (0.11 - 0.92)+ 0.84 * 0.09 * (0.62 - 0.29)= -0.12 +-0.12 < 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 38%. For those who are not zuph and are wibl, the probability of uvzi is 9%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 42%. For those who are not zuph and are not vubr, the probability of wibl is 29%. For those who are not zuph and are vubr, the probability of wibl is 62%. For those who are zuph and are not vubr, the probability of wibl is 92%. For those who are zuph and are vubr, the probability of wibl is 11%. The overall probability of vubr is 16%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.38 +P(Y=1 | X=0, V3=1) = 0.09 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.92 +P(V3=1 | X=1, V2=1) = 0.11 +P(V2=1) = 0.16 +0.16 * 0.09 * (0.11 - 0.92)+ 0.84 * 0.09 * (0.62 - 0.29)= -0.12 +-0.12 < 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 38%. For those who are not zuph and are wibl, the probability of uvzi is 9%. For those who are zuph and are not wibl, the probability of uvzi is 55%. For those who are zuph and are wibl, the probability of uvzi is 42%. For those who are not zuph and are not vubr, the probability of wibl is 29%. For those who are not zuph and are vubr, the probability of wibl is 62%. For those who are zuph and are not vubr, the probability of wibl is 92%. For those who are zuph and are vubr, the probability of wibl is 11%. The overall probability of vubr is 16%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.38 +P(Y=1 | X=0, V3=1) = 0.09 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.62 +P(V3=1 | X=1, V2=0) = 0.92 +P(V3=1 | X=1, V2=1) = 0.11 +P(V2=1) = 0.16 +0.16 * (0.42 - 0.55) * 0.62 + 0.84 * (0.09 - 0.38) * 0.92 = 0.17 +0.17 > 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 56%. For those who are not zuph, the probability of uvzi is 26%. For those who are zuph, the probability of uvzi is 46%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.46 +0.56*0.46 - 0.44*0.26 = 0.33 +0.33 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 56%. For those who are not zuph, the probability of uvzi is 26%. For those who are zuph, the probability of uvzi is 46%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.26 +P(Y=1 | X=1) = 0.46 +0.56*0.46 - 0.44*0.26 = 0.33 +0.33 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33858,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 56%. The probability of not zuph and uvzi is 12%. The probability of zuph and uvzi is 25%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.25 +0.25/0.56 - 0.12/0.44 = 0.17 +0.17 > 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 56%. The probability of not zuph and uvzi is 12%. The probability of zuph and uvzi is 25%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.25 +0.25/0.56 - 0.12/0.44 = 0.17 +0.17 > 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 61%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.61 +0.61 - 0.76 = -0.15 +-0.15 < 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 61%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.61 +0.61 - 0.76 = -0.15 +-0.15 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 62%. For those who are not zuph and are wibl, the probability of uvzi is 75%. For those who are zuph and are not wibl, the probability of uvzi is 50%. For those who are zuph and are wibl, the probability of uvzi is 80%. For those who are not zuph and are not vubr, the probability of wibl is 88%. For those who are not zuph and are vubr, the probability of wibl is 73%. For those who are zuph and are not vubr, the probability of wibl is 38%. For those who are zuph and are vubr, the probability of wibl is 20%. The overall probability of vubr is 27%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.80 +P(V3=1 | X=0, V2=0) = 0.88 +P(V3=1 | X=0, V2=1) = 0.73 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.27 +0.27 * 0.75 * (0.20 - 0.38)+ 0.73 * 0.75 * (0.73 - 0.88)= 0.00 +0.00 = 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 62%. For those who are not zuph and are wibl, the probability of uvzi is 75%. For those who are zuph and are not wibl, the probability of uvzi is 50%. For those who are zuph and are wibl, the probability of uvzi is 80%. For those who are not zuph and are not vubr, the probability of wibl is 88%. For those who are not zuph and are vubr, the probability of wibl is 73%. For those who are zuph and are not vubr, the probability of wibl is 38%. For those who are zuph and are vubr, the probability of wibl is 20%. The overall probability of vubr is 27%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.80 +P(V3=1 | X=0, V2=0) = 0.88 +P(V3=1 | X=0, V2=1) = 0.73 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.20 +P(V2=1) = 0.27 +0.27 * (0.80 - 0.50) * 0.73 + 0.73 * (0.75 - 0.62) * 0.38 = -0.01 +-0.01 < 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 70%. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 61%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.61 +0.70*0.61 - 0.30*0.76 = 0.68 +0.68 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 70%. The probability of not zuph and uvzi is 22%. The probability of zuph and uvzi is 42%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.42 +0.42/0.70 - 0.22/0.30 = -0.13 +-0.13 < 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 70%. The probability of not zuph and uvzi is 22%. The probability of zuph and uvzi is 42%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.42 +0.42/0.70 - 0.22/0.30 = -0.13 +-0.13 < 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 72%. For those who are zuph, the probability of uvzi is 9%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.09 +0.09 - 0.72 = -0.63 +-0.63 < 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 72%. For those who are zuph, the probability of uvzi is 9%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.09 +0.09 - 0.72 = -0.63 +-0.63 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 75%. For those who are not zuph and are wibl, the probability of uvzi is 70%. For those who are zuph and are not wibl, the probability of uvzi is 10%. For those who are zuph and are wibl, the probability of uvzi is 5%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 68%. For those who are zuph and are not vubr, the probability of wibl is 38%. For those who are zuph and are vubr, the probability of wibl is 16%. The overall probability of vubr is 16%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.16 +0.16 * 0.70 * (0.16 - 0.38)+ 0.84 * 0.70 * (0.68 - 0.59)= 0.01 +0.01 > 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 75%. For those who are not zuph and are wibl, the probability of uvzi is 70%. For those who are zuph and are not wibl, the probability of uvzi is 10%. For those who are zuph and are wibl, the probability of uvzi is 5%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 68%. For those who are zuph and are not vubr, the probability of wibl is 38%. For those who are zuph and are vubr, the probability of wibl is 16%. The overall probability of vubr is 16%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.16 +0.16 * 0.70 * (0.16 - 0.38)+ 0.84 * 0.70 * (0.68 - 0.59)= 0.01 +0.01 > 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 75%. For those who are not zuph and are wibl, the probability of uvzi is 70%. For those who are zuph and are not wibl, the probability of uvzi is 10%. For those who are zuph and are wibl, the probability of uvzi is 5%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 68%. For those who are zuph and are not vubr, the probability of wibl is 38%. For those who are zuph and are vubr, the probability of wibl is 16%. The overall probability of vubr is 16%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.16 +0.16 * (0.05 - 0.10) * 0.68 + 0.84 * (0.70 - 0.75) * 0.38 = -0.63 +-0.63 < 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 45%. For those who are not zuph, the probability of uvzi is 72%. For those who are zuph, the probability of uvzi is 9%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.09 +0.45*0.09 - 0.55*0.72 = 0.43 +0.43 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33885,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 45%. For those who are not zuph, the probability of uvzi is 72%. For those who are zuph, the probability of uvzi is 9%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.72 +P(Y=1 | X=1) = 0.09 +0.45*0.09 - 0.55*0.72 = 0.43 +0.43 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 45%. The probability of not zuph and uvzi is 40%. The probability of zuph and uvzi is 4%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.04 +0.04/0.45 - 0.40/0.55 = -0.63 +-0.63 < 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 72%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.72 +0.72 - 0.38 = 0.34 +0.34 > 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 75%. For those who are not zuph and are wibl, the probability of uvzi is 17%. For those who are zuph and are not wibl, the probability of uvzi is 71%. For those who are zuph and are wibl, the probability of uvzi is 78%. For those who are not zuph and are not vubr, the probability of wibl is 62%. For those who are not zuph and are vubr, the probability of wibl is 63%. For those who are zuph and are not vubr, the probability of wibl is 55%. For those who are zuph and are vubr, the probability of wibl is 12%. The overall probability of vubr is 99%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.62 +P(V3=1 | X=0, V2=1) = 0.63 +P(V3=1 | X=1, V2=0) = 0.55 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.99 +0.99 * 0.17 * (0.12 - 0.55)+ 0.01 * 0.17 * (0.63 - 0.62)= 0.29 +0.29 > 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 75%. For those who are not zuph and are wibl, the probability of uvzi is 17%. For those who are zuph and are not wibl, the probability of uvzi is 71%. For those who are zuph and are wibl, the probability of uvzi is 78%. For those who are not zuph and are not vubr, the probability of wibl is 62%. For those who are not zuph and are vubr, the probability of wibl is 63%. For those who are zuph and are not vubr, the probability of wibl is 55%. For those who are zuph and are vubr, the probability of wibl is 12%. The overall probability of vubr is 99%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.62 +P(V3=1 | X=0, V2=1) = 0.63 +P(V3=1 | X=1, V2=0) = 0.55 +P(V3=1 | X=1, V2=1) = 0.12 +P(V2=1) = 0.99 +0.99 * (0.78 - 0.71) * 0.63 + 0.01 * (0.17 - 0.75) * 0.55 = 0.37 +0.37 > 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 44%. For those who are not zuph, the probability of uvzi is 38%. For those who are zuph, the probability of uvzi is 72%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.44 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.72 +0.44*0.72 - 0.56*0.38 = 0.61 +0.61 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 44%. The probability of not zuph and uvzi is 22%. The probability of zuph and uvzi is 31%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.31 +0.31/0.44 - 0.22/0.56 = 0.34 +0.34 > 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 44%. The probability of not zuph and uvzi is 22%. The probability of zuph and uvzi is 31%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.44 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.31 +0.31/0.44 - 0.22/0.56 = 0.34 +0.34 > 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 18%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.18 +0.18 - 0.34 = -0.16 +-0.16 < 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 18%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.18 +0.18 - 0.34 = -0.16 +-0.16 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 34%. For those who are zuph, the probability of uvzi is 18%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.34 +P(Y=1 | X=1) = 0.18 +0.18 - 0.34 = -0.16 +-0.16 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 54%. For those who are not zuph and are wibl, the probability of uvzi is 10%. For those who are zuph and are not wibl, the probability of uvzi is 0%. For those who are zuph and are wibl, the probability of uvzi is 87%. For those who are not zuph and are not vubr, the probability of wibl is 31%. For those who are not zuph and are vubr, the probability of wibl is 45%. For those who are zuph and are not vubr, the probability of wibl is 99%. For those who are zuph and are vubr, the probability of wibl is 6%. The overall probability of vubr is 75%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.10 +P(Y=1 | X=1, V3=0) = 0.00 +P(Y=1 | X=1, V3=1) = 0.87 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.45 +P(V3=1 | X=1, V2=0) = 0.99 +P(V3=1 | X=1, V2=1) = 0.06 +P(V2=1) = 0.75 +0.75 * (0.87 - 0.00) * 0.45 + 0.25 * (0.10 - 0.54) * 0.99 = -0.12 +-0.12 < 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 46%. The probability of not zuph and uvzi is 19%. The probability of zuph and uvzi is 12%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.12 +0.12/0.46 - 0.19/0.54 = -0.10 +-0.10 < 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 18%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.18 +0.18 - 0.65 = -0.47 +-0.47 < 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 18%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.18 +0.18 - 0.65 = -0.47 +-0.47 < 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 18%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.18 +0.18 - 0.65 = -0.47 +-0.47 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 18%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.18 +0.18 - 0.65 = -0.47 +-0.47 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 66%. For those who are not zuph and are wibl, the probability of uvzi is 73%. For those who are zuph and are not wibl, the probability of uvzi is 9%. For those who are zuph and are wibl, the probability of uvzi is 15%. For those who are not zuph and are not vubr, the probability of wibl is 68%. For those who are not zuph and are vubr, the probability of wibl is 24%. For those who are zuph and are not vubr, the probability of wibl is 81%. For those who are zuph and are vubr, the probability of wibl is 34%. The overall probability of vubr is 50%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.66 +P(Y=1 | X=0, V3=1) = 0.73 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0, V2=0) = 0.68 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.81 +P(V3=1 | X=1, V2=1) = 0.34 +P(V2=1) = 0.50 +0.50 * (0.15 - 0.09) * 0.24 + 0.50 * (0.73 - 0.66) * 0.81 = -0.49 +-0.49 < 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 69%. For those who are not zuph, the probability of uvzi is 65%. For those who are zuph, the probability of uvzi is 18%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.18 +0.69*0.18 - 0.31*0.65 = 0.32 +0.32 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 69%. The probability of not zuph and uvzi is 22%. The probability of zuph and uvzi is 9%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.09 +0.09/0.69 - 0.22/0.31 = -0.57 +-0.57 < 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 69%. The probability of not zuph and uvzi is 22%. The probability of zuph and uvzi is 9%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.09 +0.09/0.69 - 0.22/0.31 = -0.57 +-0.57 < 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 59%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.59 +0.59 - 0.76 = -0.17 +-0.17 < 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 74%. For those who are not zuph and are wibl, the probability of uvzi is 63%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 25%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 14%. For those who are zuph and are not vubr, the probability of wibl is 42%. For those who are zuph and are vubr, the probability of wibl is 8%. The overall probability of vubr is 49%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.42 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.49 +0.49 * 0.63 * (0.08 - 0.42)+ 0.51 * 0.63 * (0.14 - 0.59)= 0.00 +0.00 = 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 74%. For those who are not zuph and are wibl, the probability of uvzi is 63%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 25%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 14%. For those who are zuph and are not vubr, the probability of wibl is 42%. For those who are zuph and are vubr, the probability of wibl is 8%. The overall probability of vubr is 49%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.42 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.49 +0.49 * 0.63 * (0.08 - 0.42)+ 0.51 * 0.63 * (0.14 - 0.59)= 0.00 +0.00 = 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 74%. For those who are not zuph and are wibl, the probability of uvzi is 63%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 25%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 14%. For those who are zuph and are not vubr, the probability of wibl is 42%. For those who are zuph and are vubr, the probability of wibl is 8%. The overall probability of vubr is 49%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.42 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.49 +0.49 * (0.25 - 0.62) * 0.14 + 0.51 * (0.63 - 0.74) * 0.42 = -0.20 +-0.20 < 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 74%. For those who are not zuph and are wibl, the probability of uvzi is 63%. For those who are zuph and are not wibl, the probability of uvzi is 62%. For those who are zuph and are wibl, the probability of uvzi is 25%. For those who are not zuph and are not vubr, the probability of wibl is 59%. For those who are not zuph and are vubr, the probability of wibl is 14%. For those who are zuph and are not vubr, the probability of wibl is 42%. For those who are zuph and are vubr, the probability of wibl is 8%. The overall probability of vubr is 49%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.62 +P(Y=1 | X=1, V3=1) = 0.25 +P(V3=1 | X=0, V2=0) = 0.59 +P(V3=1 | X=0, V2=1) = 0.14 +P(V3=1 | X=1, V2=0) = 0.42 +P(V3=1 | X=1, V2=1) = 0.08 +P(V2=1) = 0.49 +0.49 * (0.25 - 0.62) * 0.14 + 0.51 * (0.63 - 0.74) * 0.42 = -0.20 +-0.20 < 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 61%. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 59%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.59 +0.61*0.59 - 0.39*0.76 = 0.65 +0.65 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 61%. For those who are not zuph, the probability of uvzi is 76%. For those who are zuph, the probability of uvzi is 59%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.59 +0.61*0.59 - 0.39*0.76 = 0.65 +0.65 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 29%. For those who are zuph, the probability of uvzi is 35%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.35 +0.35 - 0.29 = 0.06 +0.06 > 0",arrowhead,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph, the probability of uvzi is 29%. For those who are zuph, the probability of uvzi is 35%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.35 +0.35 - 0.29 = 0.06 +0.06 > 0",arrowhead,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 30%. For those who are zuph and are not wibl, the probability of uvzi is 32%. For those who are zuph and are wibl, the probability of uvzi is 60%. For those who are not zuph and are not vubr, the probability of wibl is 45%. For those who are not zuph and are vubr, the probability of wibl is 71%. For those who are zuph and are not vubr, the probability of wibl is 20%. For those who are zuph and are vubr, the probability of wibl is 3%. The overall probability of vubr is 86%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.45 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.20 +P(V3=1 | X=1, V2=1) = 0.03 +P(V2=1) = 0.86 +0.86 * 0.30 * (0.03 - 0.20)+ 0.14 * 0.30 * (0.71 - 0.45)= -0.08 +-0.08 < 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 30%. For those who are zuph and are not wibl, the probability of uvzi is 32%. For those who are zuph and are wibl, the probability of uvzi is 60%. For those who are not zuph and are not vubr, the probability of wibl is 45%. For those who are not zuph and are vubr, the probability of wibl is 71%. For those who are zuph and are not vubr, the probability of wibl is 20%. For those who are zuph and are vubr, the probability of wibl is 3%. The overall probability of vubr is 86%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.45 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.20 +P(V3=1 | X=1, V2=1) = 0.03 +P(V2=1) = 0.86 +0.86 * 0.30 * (0.03 - 0.20)+ 0.14 * 0.30 * (0.71 - 0.45)= -0.08 +-0.08 < 0",arrowhead,nonsense7,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +33952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 30%. For those who are zuph and are not wibl, the probability of uvzi is 32%. For those who are zuph and are wibl, the probability of uvzi is 60%. For those who are not zuph and are not vubr, the probability of wibl is 45%. For those who are not zuph and are vubr, the probability of wibl is 71%. For those who are zuph and are not vubr, the probability of wibl is 20%. For those who are zuph and are vubr, the probability of wibl is 3%. The overall probability of vubr is 86%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.45 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.20 +P(V3=1 | X=1, V2=1) = 0.03 +P(V2=1) = 0.86 +0.86 * (0.60 - 0.32) * 0.71 + 0.14 * (0.30 - 0.22) * 0.20 = 0.28 +0.28 > 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. For those who are not zuph and are not wibl, the probability of uvzi is 22%. For those who are not zuph and are wibl, the probability of uvzi is 30%. For those who are zuph and are not wibl, the probability of uvzi is 32%. For those who are zuph and are wibl, the probability of uvzi is 60%. For those who are not zuph and are not vubr, the probability of wibl is 45%. For those who are not zuph and are vubr, the probability of wibl is 71%. For those who are zuph and are not vubr, the probability of wibl is 20%. For those who are zuph and are vubr, the probability of wibl is 3%. The overall probability of vubr is 86%.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.22 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.32 +P(Y=1 | X=1, V3=1) = 0.60 +P(V3=1 | X=0, V2=0) = 0.45 +P(V3=1 | X=0, V2=1) = 0.71 +P(V3=1 | X=1, V2=0) = 0.20 +P(V3=1 | X=1, V2=1) = 0.03 +P(V2=1) = 0.86 +0.86 * (0.60 - 0.32) * 0.71 + 0.14 * (0.30 - 0.22) * 0.20 = 0.28 +0.28 > 0",arrowhead,nonsense7,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +33955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 94%. For those who are not zuph, the probability of uvzi is 29%. For those who are zuph, the probability of uvzi is 35%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.35 +0.94*0.35 - 0.06*0.29 = 0.36 +0.36 > 0",arrowhead,nonsense7,1,marginal,P(Y) +33956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. The overall probability of zuph is 94%. The probability of not zuph and uvzi is 2%. The probability of zuph and uvzi is 31%.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.31 +0.31/0.94 - 0.02/0.06 = 0.06 +0.06 > 0",arrowhead,nonsense7,1,correlation,P(Y | X) +33959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 78%. For those who are zuph, the probability of uvzi is 79%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.79 +0.79 - 0.78 = 0.01 +0.01 > 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 78%. For those who are zuph, the probability of uvzi is 79%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.79 +0.79 - 0.78 = 0.01 +0.01 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 78%. For those who are zuph, the probability of uvzi is 79%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.79 +0.79 - 0.78 = 0.01 +0.01 > 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +33965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 78%. For those who are zuph, the probability of uvzi is 79%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.79 +0.79 - 0.78 = 0.01 +0.01 > 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +33968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 92%. The probability of not zuph and uvzi is 6%. The probability of zuph and uvzi is 73%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.73 +0.73/0.92 - 0.06/0.08 = 0.01 +0.01 > 0",diamond,nonsense7,1,correlation,P(Y | X) +33969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 92%. The probability of not zuph and uvzi is 6%. The probability of zuph and uvzi is 73%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.73 +0.73/0.92 - 0.06/0.08 = 0.01 +0.01 > 0",diamond,nonsense7,1,correlation,P(Y | X) +33970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 38%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.38 +0.38 - 0.31 = 0.06 +0.06 > 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 38%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.38 +0.38 - 0.31 = 0.06 +0.06 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 38%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.38 +0.38 - 0.31 = 0.06 +0.06 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 38%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.38 +0.38 - 0.31 = 0.06 +0.06 > 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +33979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 81%. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 38%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.38 +0.81*0.38 - 0.19*0.31 = 0.36 +0.36 > 0",diamond,nonsense7,1,marginal,P(Y) +33980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 81%. The probability of not zuph and uvzi is 6%. The probability of zuph and uvzi is 30%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.30 +0.30/0.81 - 0.06/0.19 = 0.06 +0.06 > 0",diamond,nonsense7,1,correlation,P(Y | X) +33981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 81%. The probability of not zuph and uvzi is 6%. The probability of zuph and uvzi is 30%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.30 +0.30/0.81 - 0.06/0.19 = 0.06 +0.06 > 0",diamond,nonsense7,1,correlation,P(Y | X) +33982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +33984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 49%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.49 +0.49 - 0.50 = -0.00 +0.00 = 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 49%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.49 +0.49 - 0.50 = -0.00 +0.00 = 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +33989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 49%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.49 +0.49 - 0.50 = -0.00 +0.00 = 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +33990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 22%. For those who are not zuph, the probability of uvzi is 50%. For those who are zuph, the probability of uvzi is 49%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.49 +0.22*0.49 - 0.78*0.50 = 0.50 +0.50 > 0",diamond,nonsense7,1,marginal,P(Y) +33992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 22%. The probability of not zuph and uvzi is 39%. The probability of zuph and uvzi is 11%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.11 +0.11/0.22 - 0.39/0.78 = -0.00 +0.00 = 0",diamond,nonsense7,1,correlation,P(Y | X) +33993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 22%. The probability of not zuph and uvzi is 39%. The probability of zuph and uvzi is 11%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.39 +P(Y=1, X=1=1) = 0.11 +0.11/0.22 - 0.39/0.78 = -0.00 +0.00 = 0",diamond,nonsense7,1,correlation,P(Y | X) +33998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 86%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.86 +0.86 - 0.60 = 0.26 +0.26 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +33999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 86%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.86 +0.86 - 0.60 = 0.26 +0.26 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 41%. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 86%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.86 +0.41*0.86 - 0.59*0.60 = 0.60 +0.60 > 0",diamond,nonsense7,1,marginal,P(Y) +34004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 41%. The probability of not zuph and uvzi is 35%. The probability of zuph and uvzi is 36%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.36 +0.36/0.41 - 0.35/0.59 = 0.26 +0.26 > 0",diamond,nonsense7,1,correlation,P(Y | X) +34005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 41%. The probability of not zuph and uvzi is 35%. The probability of zuph and uvzi is 36%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.36 +0.36/0.41 - 0.35/0.59 = 0.26 +0.26 > 0",diamond,nonsense7,1,correlation,P(Y | X) +34006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 55%. For those who are zuph, the probability of uvzi is 41%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.41 +0.41 - 0.55 = -0.13 +-0.13 < 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 55%. For those who are zuph, the probability of uvzi is 41%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.41 +0.41 - 0.55 = -0.13 +-0.13 < 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 55%. For those who are zuph, the probability of uvzi is 41%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.41 +0.41 - 0.55 = -0.13 +-0.13 < 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 91%. For those who are not zuph, the probability of uvzi is 55%. For those who are zuph, the probability of uvzi is 41%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.41 +0.91*0.41 - 0.09*0.55 = 0.42 +0.42 > 0",diamond,nonsense7,1,marginal,P(Y) +34015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 91%. For those who are not zuph, the probability of uvzi is 55%. For those who are zuph, the probability of uvzi is 41%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.41 +0.91*0.41 - 0.09*0.55 = 0.42 +0.42 > 0",diamond,nonsense7,1,marginal,P(Y) +34018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.43 - 0.35 = 0.08 +0.08 > 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.43 - 0.35 = 0.08 +0.08 > 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.43 - 0.35 = 0.08 +0.08 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.43 - 0.35 = 0.08 +0.08 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.43 - 0.35 = 0.08 +0.08 > 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.43 - 0.35 = 0.08 +0.08 > 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 21%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.21*0.43 - 0.79*0.35 = 0.42 +0.42 > 0",diamond,nonsense7,1,marginal,P(Y) +34027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 21%. For those who are not zuph, the probability of uvzi is 35%. For those who are zuph, the probability of uvzi is 43%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.43 +0.21*0.43 - 0.79*0.35 = 0.42 +0.42 > 0",diamond,nonsense7,1,marginal,P(Y) +34028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 21%. The probability of not zuph and uvzi is 28%. The probability of zuph and uvzi is 9%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.28 +P(Y=1, X=1=1) = 0.09 +0.09/0.21 - 0.28/0.79 = 0.08 +0.08 > 0",diamond,nonsense7,1,correlation,P(Y | X) +34031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 33%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.33 +0.33 - 0.60 = -0.27 +-0.27 < 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 33%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.33 +0.33 - 0.60 = -0.27 +-0.27 < 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 33%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.33 +0.33 - 0.60 = -0.27 +-0.27 < 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 33%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.33 +0.33 - 0.60 = -0.27 +-0.27 < 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 33%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.33 +0.33 - 0.60 = -0.27 +-0.27 < 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 86%. For those who are not zuph, the probability of uvzi is 60%. For those who are zuph, the probability of uvzi is 33%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.33 +0.86*0.33 - 0.14*0.60 = 0.37 +0.37 > 0",diamond,nonsense7,1,marginal,P(Y) +34043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 25%. For those who are zuph, the probability of uvzi is 20%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.20 +0.20 - 0.25 = -0.05 +-0.05 < 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 86%. For those who are not zuph, the probability of uvzi is 25%. For those who are zuph, the probability of uvzi is 20%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.20 +0.86*0.20 - 0.14*0.25 = 0.21 +0.21 > 0",diamond,nonsense7,1,marginal,P(Y) +34051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 86%. For those who are not zuph, the probability of uvzi is 25%. For those who are zuph, the probability of uvzi is 20%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.25 +P(Y=1 | X=1) = 0.20 +0.86*0.20 - 0.14*0.25 = 0.21 +0.21 > 0",diamond,nonsense7,1,marginal,P(Y) +34053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 86%. The probability of not zuph and uvzi is 3%. The probability of zuph and uvzi is 17%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.17 +0.17/0.86 - 0.03/0.14 = -0.05 +-0.05 < 0",diamond,nonsense7,1,correlation,P(Y | X) +34054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34055,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.17 +-0.17 < 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.17 +-0.17 < 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.17 +-0.17 < 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.17 +-0.17 < 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.31 - 0.47 = -0.17 +-0.17 < 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 33%. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.33*0.31 - 0.67*0.47 = 0.41 +0.41 > 0",diamond,nonsense7,1,marginal,P(Y) +34063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 33%. For those who are not zuph, the probability of uvzi is 47%. For those who are zuph, the probability of uvzi is 31%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.33 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.31 +0.33*0.31 - 0.67*0.47 = 0.41 +0.41 > 0",diamond,nonsense7,1,marginal,P(Y) +34064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 33%. The probability of not zuph and uvzi is 32%. The probability of zuph and uvzi is 10%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.32 +P(Y=1, X=1=1) = 0.10 +0.10/0.33 - 0.32/0.67 = -0.17 +-0.17 < 0",diamond,nonsense7,1,correlation,P(Y | X) +34066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 22%. For those who are zuph, the probability of uvzi is 29%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.29 +0.29 - 0.22 = 0.07 +0.07 > 0",diamond,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 22%. For those who are zuph, the probability of uvzi is 29%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.29 +0.29 - 0.22 = 0.07 +0.07 > 0",diamond,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 22%. For those who are zuph, the probability of uvzi is 29%.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.22 +P(Y=1 | X=1) = 0.29 +0.29 - 0.22 = 0.07 +0.07 > 0",diamond,nonsense7,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +34076,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 33%. The probability of not zuph and uvzi is 15%. The probability of zuph and uvzi is 10%.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.10 +0.10/0.33 - 0.15/0.67 = 0.07 +0.07 > 0",diamond,nonsense7,1,correlation,P(Y | X) +34079,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 87%. For those who are not wibl and are zuph, the probability of uvzi is 44%. For those who are wibl and are not zuph, the probability of uvzi is 88%. For those who are wibl and are zuph, the probability of uvzi is 44%. The overall probability of wibl is 62%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.87 +P(Y=1 | V1=0, X=1) = 0.44 +P(Y=1 | V1=1, X=0) = 0.88 +P(Y=1 | V1=1, X=1) = 0.44 +P(V1=1) = 0.62 +0.38 * (0.44 - 0.87) 0.62 * (0.44 - 0.88) = -0.43 +-0.43 < 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 48%. For those who are not zuph, the probability of uvzi is 88%. For those who are zuph, the probability of uvzi is 44%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.44 +0.48*0.44 - 0.52*0.88 = 0.67 +0.67 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 48%. The probability of not zuph and uvzi is 46%. The probability of zuph and uvzi is 21%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.48 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.21 +0.21/0.48 - 0.46/0.52 = -0.43 +-0.43 < 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 10%. For those who are not wibl and are zuph, the probability of uvzi is 80%. For those who are wibl and are not zuph, the probability of uvzi is 22%. For those who are wibl and are zuph, the probability of uvzi is 78%. The overall probability of wibl is 36%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.10 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.22 +P(Y=1 | V1=1, X=1) = 0.78 +P(V1=1) = 0.36 +0.64 * (0.80 - 0.10) 0.36 * (0.78 - 0.22) = 0.65 +0.65 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34093,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 37%. For those who are not zuph and are vubr, the probability of uvzi is 2%. For those who are zuph and are not vubr, the probability of uvzi is 75%. For those who are zuph and are vubr, the probability of uvzi is 82%. For those who are not zuph, the probability of vubr is 73%. For those who are zuph, the probability of vubr is 58%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.37 +P(Y=1 | X=0, V3=1) = 0.02 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.82 +P(V3=1 | X=0) = 0.73 +P(V3=1 | X=1) = 0.58 +0.58 * (0.82 - 0.75) + 0.73 * (0.02 - 0.37) = 0.63 +0.63 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 55%. For those who are not zuph, the probability of uvzi is 11%. For those who are zuph, the probability of uvzi is 79%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.79 +0.55*0.79 - 0.45*0.11 = 0.50 +0.50 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 55%. For those who are not zuph, the probability of uvzi is 11%. For those who are zuph, the probability of uvzi is 79%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.79 +0.55*0.79 - 0.45*0.11 = 0.50 +0.50 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 55%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 44%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.44 +0.44/0.55 - 0.05/0.45 = 0.68 +0.68 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 55%. The probability of not zuph and uvzi is 5%. The probability of zuph and uvzi is 44%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.05 +P(Y=1, X=1=1) = 0.44 +0.44/0.55 - 0.05/0.45 = 0.68 +0.68 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 47%. For those who are not wibl and are zuph, the probability of uvzi is 60%. For those who are wibl and are not zuph, the probability of uvzi is 25%. For those who are wibl and are zuph, the probability of uvzi is 52%. The overall probability of wibl is 1%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.47 +P(Y=1 | V1=0, X=1) = 0.60 +P(Y=1 | V1=1, X=0) = 0.25 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.01 +0.99 * (0.60 - 0.47) 0.01 * (0.52 - 0.25) = 0.13 +0.13 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34102,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 70%. For those who are not zuph and are vubr, the probability of uvzi is 16%. For those who are zuph and are not vubr, the probability of uvzi is 68%. For those who are zuph and are vubr, the probability of uvzi is 49%. For those who are not zuph, the probability of vubr is 44%. For those who are zuph, the probability of vubr is 42%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.16 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0) = 0.44 +P(V3=1 | X=1) = 0.42 +0.42 * (0.49 - 0.68) + 0.44 * (0.16 - 0.70) = 0.13 +0.13 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 77%. The probability of not zuph and uvzi is 11%. The probability of zuph and uvzi is 46%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.46 +0.46/0.77 - 0.11/0.23 = 0.14 +0.14 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 53%. For those who are not wibl and are zuph, the probability of uvzi is 58%. For those who are wibl and are not zuph, the probability of uvzi is 39%. For those who are wibl and are zuph, the probability of uvzi is 42%. The overall probability of wibl is 7%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.58 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.42 +P(V1=1) = 0.07 +0.93 * (0.58 - 0.53) 0.07 * (0.42 - 0.39) = 0.05 +0.05 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 77%. For those who are not zuph and are vubr, the probability of uvzi is 37%. For those who are zuph and are not vubr, the probability of uvzi is 87%. For those who are zuph and are vubr, the probability of uvzi is 39%. For those who are not zuph, the probability of vubr is 63%. For those who are zuph, the probability of vubr is 63%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.63 +0.63 * (0.39 - 0.87) + 0.63 * (0.37 - 0.77) = 0.05 +0.05 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 77%. For those who are not zuph and are vubr, the probability of uvzi is 37%. For those who are zuph and are not vubr, the probability of uvzi is 87%. For those who are zuph and are vubr, the probability of uvzi is 39%. For those who are not zuph, the probability of vubr is 63%. For those who are zuph, the probability of vubr is 63%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.37 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.63 +0.63 * (0.39 - 0.87) + 0.63 * (0.37 - 0.77) = 0.05 +0.05 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 94%. For those who are not zuph, the probability of uvzi is 52%. For those who are zuph, the probability of uvzi is 57%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.57 +0.94*0.57 - 0.06*0.52 = 0.57 +0.57 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 94%. For those who are not zuph, the probability of uvzi is 52%. For those who are zuph, the probability of uvzi is 57%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.57 +0.94*0.57 - 0.06*0.52 = 0.57 +0.57 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 94%. The probability of not zuph and uvzi is 3%. The probability of zuph and uvzi is 53%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.53 +0.53/0.94 - 0.03/0.06 = 0.05 +0.05 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 94%. The probability of not zuph and uvzi is 3%. The probability of zuph and uvzi is 53%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.53 +0.53/0.94 - 0.03/0.06 = 0.05 +0.05 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 61%. For those who are not wibl and are zuph, the probability of uvzi is 83%. For those who are wibl and are not zuph, the probability of uvzi is 61%. For those who are wibl and are zuph, the probability of uvzi is 83%. The overall probability of wibl is 94%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.61 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 0.61 +P(Y=1 | V1=1, X=1) = 0.83 +P(V1=1) = 0.94 +0.06 * (0.83 - 0.61) 0.94 * (0.83 - 0.61) = 0.22 +0.22 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 58%. For those who are not zuph and are vubr, the probability of uvzi is 78%. For those who are zuph and are not vubr, the probability of uvzi is 82%. For those who are zuph and are vubr, the probability of uvzi is 88%. For those who are not zuph, the probability of vubr is 14%. For those who are zuph, the probability of vubr is 14%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.14 +0.14 * (0.88 - 0.82) + 0.14 * (0.78 - 0.58) = 0.22 +0.22 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 58%. For those who are not zuph and are vubr, the probability of uvzi is 78%. For those who are zuph and are not vubr, the probability of uvzi is 82%. For those who are zuph and are vubr, the probability of uvzi is 88%. For those who are not zuph, the probability of vubr is 14%. For those who are zuph, the probability of vubr is 14%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.58 +P(Y=1 | X=0, V3=1) = 0.78 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.88 +P(V3=1 | X=0) = 0.14 +P(V3=1 | X=1) = 0.14 +0.14 * (0.88 - 0.82) + 0.14 * (0.78 - 0.58) = 0.22 +0.22 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 67%. For those who are not zuph, the probability of uvzi is 61%. For those who are zuph, the probability of uvzi is 83%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.83 +0.67*0.83 - 0.33*0.61 = 0.76 +0.76 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 67%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 56%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.56 +0.56/0.67 - 0.20/0.33 = 0.22 +0.22 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 67%. The probability of not zuph and uvzi is 20%. The probability of zuph and uvzi is 56%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.56 +0.56/0.67 - 0.20/0.33 = 0.22 +0.22 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 63%. For those who are not wibl and are zuph, the probability of uvzi is 23%. For those who are wibl and are not zuph, the probability of uvzi is 41%. For those who are wibl and are zuph, the probability of uvzi is 61%. The overall probability of wibl is 69%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.69 +0.31 * (0.23 - 0.63) 0.69 * (0.61 - 0.41) = 0.01 +0.01 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 63%. For those who are not wibl and are zuph, the probability of uvzi is 23%. For those who are wibl and are not zuph, the probability of uvzi is 41%. For those who are wibl and are zuph, the probability of uvzi is 61%. The overall probability of wibl is 69%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.61 +P(V1=1) = 0.69 +0.31 * (0.23 - 0.63) 0.69 * (0.61 - 0.41) = 0.01 +0.01 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 64%. For those who are not zuph and are vubr, the probability of uvzi is 22%. For those who are zuph and are not vubr, the probability of uvzi is 20%. For those who are zuph and are vubr, the probability of uvzi is 94%. For those who are not zuph, the probability of vubr is 44%. For those who are zuph, the probability of vubr is 9%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.64 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.94 +P(V3=1 | X=0) = 0.44 +P(V3=1 | X=1) = 0.09 +0.09 * (0.94 - 0.20) + 0.44 * (0.22 - 0.64) = -0.33 +-0.33 < 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 64%. For those who are not zuph and are vubr, the probability of uvzi is 22%. For those who are zuph and are not vubr, the probability of uvzi is 20%. For those who are zuph and are vubr, the probability of uvzi is 94%. For those who are not zuph, the probability of vubr is 44%. For those who are zuph, the probability of vubr is 9%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.64 +P(Y=1 | X=0, V3=1) = 0.22 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.94 +P(V3=1 | X=0) = 0.44 +P(V3=1 | X=1) = 0.09 +0.09 * (0.94 - 0.20) + 0.44 * (0.22 - 0.64) = -0.33 +-0.33 < 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 16%. For those who are not zuph, the probability of uvzi is 46%. For those who are zuph, the probability of uvzi is 27%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.27 +0.16*0.27 - 0.84*0.46 = 0.48 +0.48 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 16%. For those who are not zuph, the probability of uvzi is 46%. For those who are zuph, the probability of uvzi is 27%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.27 +0.16*0.27 - 0.84*0.46 = 0.48 +0.48 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 16%. The probability of not zuph and uvzi is 38%. The probability of zuph and uvzi is 4%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.04 +0.04/0.16 - 0.38/0.84 = -0.18 +-0.18 < 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 59%. For those who are not wibl and are zuph, the probability of uvzi is 41%. For those who are wibl and are not zuph, the probability of uvzi is 59%. For those who are wibl and are zuph, the probability of uvzi is 41%. The overall probability of wibl is 70%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.41 +P(Y=1 | V1=1, X=0) = 0.59 +P(Y=1 | V1=1, X=1) = 0.41 +P(V1=1) = 0.70 +0.30 * (0.41 - 0.59) 0.70 * (0.41 - 0.59) = -0.18 +-0.18 < 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 59%. For those who are not wibl and are zuph, the probability of uvzi is 41%. For those who are wibl and are not zuph, the probability of uvzi is 59%. For those who are wibl and are zuph, the probability of uvzi is 41%. The overall probability of wibl is 70%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.41 +P(Y=1 | V1=1, X=0) = 0.59 +P(Y=1 | V1=1, X=1) = 0.41 +P(V1=1) = 0.70 +0.30 * (0.41 - 0.59) 0.70 * (0.41 - 0.59) = -0.18 +-0.18 < 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 62%. For those who are not zuph, the probability of uvzi is 59%. For those who are zuph, the probability of uvzi is 41%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.41 +0.62*0.41 - 0.38*0.59 = 0.48 +0.48 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 74%. For those who are not wibl and are zuph, the probability of uvzi is 34%. For those who are wibl and are not zuph, the probability of uvzi is 53%. For those who are wibl and are zuph, the probability of uvzi is 94%. The overall probability of wibl is 29%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.74 +P(Y=1 | V1=0, X=1) = 0.34 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.94 +P(V1=1) = 0.29 +0.71 * (0.34 - 0.74) 0.29 * (0.94 - 0.53) = -0.16 +-0.16 < 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 51%. For those who are not zuph and are vubr, the probability of uvzi is 85%. For those who are zuph and are not vubr, the probability of uvzi is 99%. For those who are zuph and are vubr, the probability of uvzi is 2%. For those who are not zuph, the probability of vubr is 21%. For those who are zuph, the probability of vubr is 61%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.02 +P(V3=1 | X=0) = 0.21 +P(V3=1 | X=1) = 0.61 +0.61 * (0.02 - 0.99) + 0.21 * (0.85 - 0.51) = -0.32 +-0.32 < 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 51%. For those who are not zuph and are vubr, the probability of uvzi is 85%. For those who are zuph and are not vubr, the probability of uvzi is 99%. For those who are zuph and are vubr, the probability of uvzi is 2%. For those who are not zuph, the probability of vubr is 21%. For those who are zuph, the probability of vubr is 61%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.51 +P(Y=1 | X=0, V3=1) = 0.85 +P(Y=1 | X=1, V3=0) = 0.99 +P(Y=1 | X=1, V3=1) = 0.02 +P(V3=1 | X=0) = 0.21 +P(V3=1 | X=1) = 0.61 +0.61 * (0.02 - 0.99) + 0.21 * (0.85 - 0.51) = -0.32 +-0.32 < 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 70%. For those who are not zuph, the probability of uvzi is 58%. For those who are zuph, the probability of uvzi is 40%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.70 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.40 +0.70*0.40 - 0.30*0.58 = 0.56 +0.56 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 70%. The probability of not zuph and uvzi is 18%. The probability of zuph and uvzi is 28%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.28 +0.28/0.70 - 0.18/0.30 = -0.19 +-0.19 < 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 53%. For those who are not wibl and are zuph, the probability of uvzi is 71%. For those who are wibl and are not zuph, the probability of uvzi is 49%. For those who are wibl and are zuph, the probability of uvzi is 94%. The overall probability of wibl is 65%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.71 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.94 +P(V1=1) = 0.65 +0.35 * (0.71 - 0.53) 0.65 * (0.94 - 0.49) = 0.36 +0.36 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 62%. For those who are not zuph and are vubr, the probability of uvzi is 47%. For those who are zuph and are not vubr, the probability of uvzi is 26%. For those who are zuph and are vubr, the probability of uvzi is 100%. For those who are not zuph, the probability of vubr is 74%. For those who are zuph, the probability of vubr is 86%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.47 +P(Y=1 | X=1, V3=0) = 0.26 +P(Y=1 | X=1, V3=1) = 1.00 +P(V3=1 | X=0) = 0.74 +P(V3=1 | X=1) = 0.86 +0.86 * (1.00 - 0.26) + 0.74 * (0.47 - 0.62) = 0.40 +0.40 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 60%. For those who are not zuph, the probability of uvzi is 51%. For those who are zuph, the probability of uvzi is 89%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.89 +0.60*0.89 - 0.40*0.51 = 0.71 +0.71 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 60%. The probability of not zuph and uvzi is 21%. The probability of zuph and uvzi is 53%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.53 +0.53/0.60 - 0.21/0.40 = 0.38 +0.38 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to vubr. Method 2: We look directly at how zuph correlates with uvzi in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not wibl and are not zuph, the probability of uvzi is 21%. For those who are not wibl and are zuph, the probability of uvzi is 51%. For those who are wibl and are not zuph, the probability of uvzi is 33%. For those who are wibl and are zuph, the probability of uvzi is 67%. The overall probability of wibl is 86%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.21 +P(Y=1 | V1=0, X=1) = 0.51 +P(Y=1 | V1=1, X=0) = 0.33 +P(Y=1 | V1=1, X=1) = 0.67 +P(V1=1) = 0.86 +0.14 * (0.51 - 0.21) 0.86 * (0.67 - 0.33) = 0.33 +0.33 > 0",diamondcut,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34173,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. For those who are not zuph and are not vubr, the probability of uvzi is 52%. For those who are not zuph and are vubr, the probability of uvzi is 6%. For those who are zuph and are not vubr, the probability of uvzi is 91%. For those who are zuph and are vubr, the probability of uvzi is 31%. For those who are not zuph, the probability of vubr is 46%. For those who are zuph, the probability of vubr is 41%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.52 +P(Y=1 | X=0, V3=1) = 0.06 +P(Y=1 | X=1, V3=0) = 0.91 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0) = 0.46 +P(V3=1 | X=1) = 0.41 +0.41 * (0.31 - 0.91) + 0.46 * (0.06 - 0.52) = 0.33 +0.33 > 0",diamondcut,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 46%. For those who are not zuph, the probability of uvzi is 31%. For those who are zuph, the probability of uvzi is 66%.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.66 +0.46*0.66 - 0.54*0.31 = 0.47 +0.47 > 0",diamondcut,nonsense7,1,marginal,P(Y) +34176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. The overall probability of zuph is 46%. The probability of not zuph and uvzi is 17%. The probability of zuph and uvzi is 30%.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.30 +0.30/0.46 - 0.17/0.54 = 0.36 +0.36 > 0",diamondcut,nonsense7,1,correlation,P(Y | X) +34178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to vubr.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 19%. For those who are zuph, the probability of uvzi is 63%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.63 +0.63 - 0.19 = 0.44 +0.44 > 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 46%. For those who are not zuph, the probability of uvzi is 19%. For those who are zuph, the probability of uvzi is 63%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.63 +0.46*0.63 - 0.54*0.19 = 0.40 +0.40 > 0",fork,nonsense7,1,marginal,P(Y) +34185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 46%. For those who are not zuph, the probability of uvzi is 19%. For those who are zuph, the probability of uvzi is 63%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.63 +0.46*0.63 - 0.54*0.19 = 0.40 +0.40 > 0",fork,nonsense7,1,marginal,P(Y) +34187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 46%. The probability of not zuph and uvzi is 11%. The probability of zuph and uvzi is 29%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.29 +0.29/0.46 - 0.11/0.54 = 0.44 +0.44 > 0",fork,nonsense7,1,correlation,P(Y | X) +34188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 61%. For those who are zuph, the probability of uvzi is 89%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.89 +0.89 - 0.61 = 0.28 +0.28 > 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 61%. For those who are zuph, the probability of uvzi is 89%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.89 +0.89 - 0.61 = 0.28 +0.28 > 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 61%. For those who are zuph, the probability of uvzi is 89%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.89 +0.89 - 0.61 = 0.28 +0.28 > 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 29%. The probability of not zuph and uvzi is 43%. The probability of zuph and uvzi is 26%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.29 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.26 +0.26/0.29 - 0.43/0.71 = 0.28 +0.28 > 0",fork,nonsense7,1,correlation,P(Y | X) +34199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34201,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 87%. For those who are zuph, the probability of uvzi is 44%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.44 +0.44 - 0.87 = -0.43 +-0.43 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 87%. For those who are zuph, the probability of uvzi is 44%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.44 +0.44 - 0.87 = -0.43 +-0.43 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. For those who are not zuph, the probability of uvzi is 87%. For those who are zuph, the probability of uvzi is 44%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.44 +0.42*0.44 - 0.58*0.87 = 0.69 +0.69 > 0",fork,nonsense7,1,marginal,P(Y) +34207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. The probability of not zuph and uvzi is 51%. The probability of zuph and uvzi is 18%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.51 +P(Y=1, X=1=1) = 0.18 +0.18/0.42 - 0.51/0.58 = -0.43 +-0.43 < 0",fork,nonsense7,1,correlation,P(Y | X) +34210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 96%. For those who are zuph, the probability of uvzi is 89%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.89 +0.89 - 0.96 = -0.07 +-0.07 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 96%. For those who are zuph, the probability of uvzi is 89%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.89 +0.89 - 0.96 = -0.07 +-0.07 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 96%. For those who are zuph, the probability of uvzi is 89%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.89 +0.89 - 0.96 = -0.07 +-0.07 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 96%. For those who are zuph, the probability of uvzi is 89%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.89 +0.89 - 0.96 = -0.07 +-0.07 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 15%. For those who are not zuph, the probability of uvzi is 96%. For those who are zuph, the probability of uvzi is 89%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.96 +P(Y=1 | X=1) = 0.89 +0.15*0.89 - 0.85*0.96 = 0.95 +0.95 > 0",fork,nonsense7,1,marginal,P(Y) +34216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 15%. The probability of not zuph and uvzi is 82%. The probability of zuph and uvzi is 13%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.82 +P(Y=1, X=1=1) = 0.13 +0.13/0.15 - 0.82/0.85 = -0.07 +-0.07 < 0",fork,nonsense7,1,correlation,P(Y | X) +34217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 15%. The probability of not zuph and uvzi is 82%. The probability of zuph and uvzi is 13%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.15 +P(Y=1, X=0=1) = 0.82 +P(Y=1, X=1=1) = 0.13 +0.13/0.15 - 0.82/0.85 = -0.07 +-0.07 < 0",fork,nonsense7,1,correlation,P(Y | X) +34218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 37%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.39 +0.39 - 0.37 = 0.02 +0.02 > 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 37%. For those who are zuph, the probability of uvzi is 39%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.39 +0.39 - 0.37 = 0.02 +0.02 > 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 37%. For those who are zuph, the probability of uvzi is 39%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.39 +0.39 - 0.37 = 0.02 +0.02 > 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 37%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.39 +0.39 - 0.37 = 0.02 +0.02 > 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 76%. For those who are not zuph, the probability of uvzi is 37%. For those who are zuph, the probability of uvzi is 39%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.39 +0.76*0.39 - 0.24*0.37 = 0.38 +0.38 > 0",fork,nonsense7,1,marginal,P(Y) +34225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 76%. For those who are not zuph, the probability of uvzi is 37%. For those who are zuph, the probability of uvzi is 39%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.76 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.39 +0.76*0.39 - 0.24*0.37 = 0.38 +0.38 > 0",fork,nonsense7,1,marginal,P(Y) +34227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 76%. The probability of not zuph and uvzi is 9%. The probability of zuph and uvzi is 29%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.76 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.29 +0.29/0.76 - 0.09/0.24 = 0.02 +0.02 > 0",fork,nonsense7,1,correlation,P(Y | X) +34228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 23%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.23 +0.23 - 0.24 = -0.01 +-0.01 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 23%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.23 +0.23 - 0.24 = -0.01 +-0.01 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 23%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.23 +0.23 - 0.24 = -0.01 +-0.01 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. For those who are not zuph, the probability of uvzi is 24%. For those who are zuph, the probability of uvzi is 23%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.23 +0.42*0.23 - 0.58*0.24 = 0.24 +0.24 > 0",fork,nonsense7,1,marginal,P(Y) +34236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 42%. The probability of not zuph and uvzi is 14%. The probability of zuph and uvzi is 10%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.10 +0.10/0.42 - 0.14/0.58 = -0.01 +-0.01 < 0",fork,nonsense7,1,correlation,P(Y | X) +34239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 77%. For those who are zuph, the probability of uvzi is 7%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.07 +0.07 - 0.77 = -0.71 +-0.71 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 77%. For those who are zuph, the probability of uvzi is 7%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.07 +0.07 - 0.77 = -0.71 +-0.71 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 77%. For those who are zuph, the probability of uvzi is 7%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.07 +0.07 - 0.77 = -0.71 +-0.71 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 51%. For those who are not zuph, the probability of uvzi is 77%. For those who are zuph, the probability of uvzi is 7%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.07 +0.51*0.07 - 0.49*0.77 = 0.41 +0.41 > 0",fork,nonsense7,1,marginal,P(Y) +34245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 51%. For those who are not zuph, the probability of uvzi is 77%. For those who are zuph, the probability of uvzi is 7%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.07 +0.51*0.07 - 0.49*0.77 = 0.41 +0.41 > 0",fork,nonsense7,1,marginal,P(Y) +34247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 51%. The probability of not zuph and uvzi is 38%. The probability of zuph and uvzi is 3%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.38 +P(Y=1, X=1=1) = 0.03 +0.03/0.51 - 0.38/0.49 = -0.71 +-0.71 < 0",fork,nonsense7,1,correlation,P(Y | X) +34248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 45%. For those who are zuph, the probability of uvzi is 40%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.40 +0.40 - 0.45 = -0.04 +-0.04 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 58%. For those who are not zuph, the probability of uvzi is 45%. For those who are zuph, the probability of uvzi is 40%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.40 +0.58*0.40 - 0.42*0.45 = 0.42 +0.42 > 0",fork,nonsense7,1,marginal,P(Y) +34256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 58%. The probability of not zuph and uvzi is 19%. The probability of zuph and uvzi is 23%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.23 +0.23/0.58 - 0.19/0.42 = -0.04 +-0.04 < 0",fork,nonsense7,1,correlation,P(Y | X) +34257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 58%. The probability of not zuph and uvzi is 19%. The probability of zuph and uvzi is 23%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.23 +0.23/0.58 - 0.19/0.42 = -0.04 +-0.04 < 0",fork,nonsense7,1,correlation,P(Y | X) +34258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look at how zuph correlates with uvzi case by case according to wibl. Method 2: We look directly at how zuph correlates with uvzi in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. Method 1: We look directly at how zuph correlates with uvzi in general. Method 2: We look at this correlation case by case according to wibl.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense7,2,backadj,[backdoor adjustment set for Y given X] +34270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 44%. For those who are zuph, the probability of uvzi is 5%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.05 +0.05 - 0.44 = -0.39 +-0.39 < 0",fork,nonsense7,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 44%. For those who are zuph, the probability of uvzi is 5%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.05 +0.05 - 0.44 = -0.39 +-0.39 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. For those who are not zuph, the probability of uvzi is 44%. For those who are zuph, the probability of uvzi is 5%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.05 +0.05 - 0.44 = -0.39 +-0.39 < 0",fork,nonsense7,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34274,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 44%. For those who are zuph, the probability of uvzi is 5%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.05 +0.93*0.05 - 0.07*0.44 = 0.08 +0.08 > 0",fork,nonsense7,1,marginal,P(Y) +34275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. For those who are not zuph, the probability of uvzi is 44%. For those who are zuph, the probability of uvzi is 5%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.05 +0.93*0.05 - 0.07*0.44 = 0.08 +0.08 > 0",fork,nonsense7,1,marginal,P(Y) +34276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. The probability of not zuph and uvzi is 3%. The probability of zuph and uvzi is 5%.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.05 +0.05/0.93 - 0.03/0.07 = -0.39 +-0.39 < 0",fork,nonsense7,1,correlation,P(Y | X) +34277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. The overall probability of zuph is 93%. The probability of not zuph and uvzi is 3%. The probability of zuph and uvzi is 5%.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.05 +0.05/0.93 - 0.03/0.07 = -0.39 +-0.39 < 0",fork,nonsense7,1,correlation,P(Y | X) +34281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 87%. For those who are pexu, the probability of rukz is 38%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.38 +0.38 - 0.87 = -0.49 +-0.49 < 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 87%. For those who are pexu, the probability of rukz is 38%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.38 +0.38 - 0.87 = -0.49 +-0.49 < 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 87%. For those who are pexu, the probability of rukz is 38%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.38 +0.38 - 0.87 = -0.49 +-0.49 < 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 91%. For those who are not pexu, the probability of rukz is 87%. For those who are pexu, the probability of rukz is 38%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.38 +0.91*0.38 - 0.09*0.87 = 0.42 +0.42 > 0",chain,nonsense8,1,marginal,P(Y) +34287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 91%. For those who are not pexu, the probability of rukz is 87%. For those who are pexu, the probability of rukz is 38%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.87 +P(Y=1 | X=1) = 0.38 +0.91*0.38 - 0.09*0.87 = 0.42 +0.42 > 0",chain,nonsense8,1,marginal,P(Y) +34289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 91%. The probability of not pexu and rukz is 8%. The probability of pexu and rukz is 34%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.34 +0.34/0.91 - 0.08/0.09 = -0.49 +-0.49 < 0",chain,nonsense8,1,correlation,P(Y | X) +34290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 57%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.57 +0.57 - 0.44 = 0.14 +0.14 > 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 57%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.57 +0.57 - 0.44 = 0.14 +0.14 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 57%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.57 +0.57 - 0.44 = 0.14 +0.14 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 95%. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 57%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.57 +0.95*0.57 - 0.05*0.44 = 0.57 +0.57 > 0",chain,nonsense8,1,marginal,P(Y) +34300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 95%. The probability of not pexu and rukz is 2%. The probability of pexu and rukz is 55%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.55 +0.55/0.95 - 0.02/0.05 = 0.14 +0.14 > 0",chain,nonsense8,1,correlation,P(Y | X) +34301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 95%. The probability of not pexu and rukz is 2%. The probability of pexu and rukz is 55%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.55 +0.55/0.95 - 0.02/0.05 = 0.14 +0.14 > 0",chain,nonsense8,1,correlation,P(Y | X) +34302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 52%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.52 - 0.52 = 0.00 +0.00 = 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 52%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.52 - 0.52 = 0.00 +0.00 = 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 52%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.52 - 0.52 = 0.00 +0.00 = 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 52%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.52 - 0.52 = 0.00 +0.00 = 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 53%. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 52%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.53*0.52 - 0.47*0.52 = 0.52 +0.52 > 0",chain,nonsense8,1,marginal,P(Y) +34312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 53%. The probability of not pexu and rukz is 24%. The probability of pexu and rukz is 28%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.28 +0.28/0.53 - 0.24/0.47 = 0.00 +0.00 = 0",chain,nonsense8,1,correlation,P(Y | X) +34313,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 53%. The probability of not pexu and rukz is 24%. The probability of pexu and rukz is 28%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.28 +0.28/0.53 - 0.24/0.47 = 0.00 +0.00 = 0",chain,nonsense8,1,correlation,P(Y | X) +34314,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.88 - 0.50 = 0.38 +0.38 > 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.88 - 0.50 = 0.38 +0.38 > 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.88 - 0.50 = 0.38 +0.38 > 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.88 - 0.50 = 0.38 +0.38 > 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.88 - 0.50 = 0.38 +0.38 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 4%. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.04*0.88 - 0.96*0.50 = 0.52 +0.52 > 0",chain,nonsense8,1,marginal,P(Y) +34323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 4%. For those who are not pexu, the probability of rukz is 50%. For those who are pexu, the probability of rukz is 88%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.04 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.88 +0.04*0.88 - 0.96*0.50 = 0.52 +0.52 > 0",chain,nonsense8,1,marginal,P(Y) +34326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 90%. For those who are pexu, the probability of rukz is 75%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.75 +0.75 - 0.90 = -0.16 +-0.16 < 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 90%. For those who are pexu, the probability of rukz is 75%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.75 +0.75 - 0.90 = -0.16 +-0.16 < 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 62%. The probability of not pexu and rukz is 34%. The probability of pexu and rukz is 46%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.46 +0.46/0.62 - 0.34/0.38 = -0.16 +-0.16 < 0",chain,nonsense8,1,correlation,P(Y | X) +34339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34341,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 64%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.64 +0.64 - 0.70 = -0.06 +-0.06 < 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 64%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.64 +0.64 - 0.70 = -0.06 +-0.06 < 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 64%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.64 +0.64 - 0.70 = -0.06 +-0.06 < 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 1%. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 64%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.01 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.64 +0.01*0.64 - 0.99*0.70 = 0.70 +0.70 > 0",chain,nonsense8,1,marginal,P(Y) +34349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 1%. The probability of not pexu and rukz is 70%. The probability of pexu and rukz is 0%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.01 +P(Y=1, X=0=1) = 0.70 +P(Y=1, X=1=1) = 0.00 +0.00/0.01 - 0.70/0.99 = -0.06 +-0.06 < 0",chain,nonsense8,1,correlation,P(Y | X) +34351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 60%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.60 +0.60 - 0.47 = 0.13 +0.13 > 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 60%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.60 +0.60 - 0.47 = 0.13 +0.13 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 23%. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 60%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.60 +0.23*0.60 - 0.77*0.47 = 0.50 +0.50 > 0",chain,nonsense8,1,marginal,P(Y) +34361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 23%. The probability of not pexu and rukz is 36%. The probability of pexu and rukz is 14%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.23 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.14 +0.14/0.23 - 0.36/0.77 = 0.13 +0.13 > 0",chain,nonsense8,1,correlation,P(Y | X) +34364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.43 - 0.37 = 0.06 +0.06 > 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.43 - 0.37 = 0.06 +0.06 > 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.43 - 0.37 = 0.06 +0.06 > 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.43 - 0.37 = 0.06 +0.06 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.43 - 0.37 = 0.06 +0.06 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 46%. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.46*0.43 - 0.54*0.37 = 0.40 +0.40 > 0",chain,nonsense8,1,marginal,P(Y) +34371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 46%. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.46 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.43 +0.46*0.43 - 0.54*0.37 = 0.40 +0.40 > 0",chain,nonsense8,1,marginal,P(Y) +34372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 46%. The probability of not pexu and rukz is 20%. The probability of pexu and rukz is 20%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.20 +0.20/0.46 - 0.20/0.54 = 0.06 +0.06 > 0",chain,nonsense8,1,correlation,P(Y | X) +34373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 46%. The probability of not pexu and rukz is 20%. The probability of pexu and rukz is 20%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.46 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.20 +0.20/0.46 - 0.20/0.54 = 0.06 +0.06 > 0",chain,nonsense8,1,correlation,P(Y | X) +34374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 46%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.46 +0.46 - 0.36 = 0.10 +0.10 > 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 46%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.46 +0.46 - 0.36 = 0.10 +0.10 > 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 46%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.46 +0.46 - 0.36 = 0.10 +0.10 > 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 46%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.46 +0.46 - 0.36 = 0.10 +0.10 > 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34383,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 52%. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 46%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.52 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.46 +0.52*0.46 - 0.48*0.36 = 0.41 +0.41 > 0",chain,nonsense8,1,marginal,P(Y) +34385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 52%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 24%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.24 +0.24/0.52 - 0.17/0.48 = 0.10 +0.10 > 0",chain,nonsense8,1,correlation,P(Y | X) +34387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 82%. For those who are pexu, the probability of rukz is 44%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.44 +0.44 - 0.82 = -0.38 +-0.38 < 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 82%. For those who are pexu, the probability of rukz is 44%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.44 +0.44 - 0.82 = -0.38 +-0.38 < 0",chain,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 82%. For those who are pexu, the probability of rukz is 44%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.44 +0.44 - 0.82 = -0.38 +-0.38 < 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 82%. For those who are pexu, the probability of rukz is 44%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.44 +0.44 - 0.82 = -0.38 +-0.38 < 0",chain,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 82%. For those who are pexu, the probability of rukz is 44%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.44 +0.44 - 0.82 = -0.38 +-0.38 < 0",chain,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 65%. For those who are not pexu, the probability of rukz is 82%. For those who are pexu, the probability of rukz is 44%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.82 +P(Y=1 | X=1) = 0.44 +0.65*0.44 - 0.35*0.82 = 0.58 +0.58 > 0",chain,nonsense8,1,marginal,P(Y) +34397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. The overall probability of pexu is 65%. The probability of not pexu and rukz is 29%. The probability of pexu and rukz is 29%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.29 +0.29/0.65 - 0.29/0.35 = -0.38 +-0.38 < 0",chain,nonsense8,1,correlation,P(Y | X) +34398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 54%. For those who are not pexu, the probability of rukz is 10%. For those who are pexu, the probability of rukz is 10%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.10 +0.54*0.10 - 0.46*0.10 = 0.10 +0.10 > 0",collision,nonsense8,1,marginal,P(Y) +34401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 54%. For those who are not pexu, the probability of rukz is 10%. For those who are pexu, the probability of rukz is 10%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.54 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.10 +0.54*0.10 - 0.46*0.10 = 0.10 +0.10 > 0",collision,nonsense8,1,marginal,P(Y) +34408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 54%. For those who are not pexu and are not hwax, the probability of rukz is 0%. For those who are not pexu and are hwax, the probability of rukz is 13%. For those who are pexu and are not hwax, the probability of rukz is 14%. For those who are pexu and are hwax, the probability of rukz is 10%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.54 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.14 +P(Y=1 | X=1, V3=1) = 0.10 +0.10 - (0.54*0.10 + 0.46*0.13) = -0.02 +-0.02 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 54%. For those who are not pexu and are not hwax, the probability of rukz is 0%. For those who are not pexu and are hwax, the probability of rukz is 13%. For those who are pexu and are not hwax, the probability of rukz is 14%. For those who are pexu and are hwax, the probability of rukz is 10%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.54 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.13 +P(Y=1 | X=1, V3=0) = 0.14 +P(Y=1 | X=1, V3=1) = 0.10 +0.10 - (0.54*0.10 + 0.46*0.13) = -0.02 +-0.02 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 83%. For those who are not pexu, the probability of rukz is 81%. For those who are pexu, the probability of rukz is 81%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.81 +0.83*0.81 - 0.17*0.81 = 0.81 +0.81 > 0",collision,nonsense8,1,marginal,P(Y) +34414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is 0.25.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 82%. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 47%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.47 +0.82*0.47 - 0.18*0.47 = 0.47 +0.47 > 0",collision,nonsense8,1,marginal,P(Y) +34425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is 0.05.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 82%. For those who are not pexu and are not hwax, the probability of rukz is 50%. For those who are not pexu and are hwax, the probability of rukz is 20%. For those who are pexu and are not hwax, the probability of rukz is 52%. For those who are pexu and are hwax, the probability of rukz is 28%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.82 +P(Y=1 | X=0, V3=0) = 0.50 +P(Y=1 | X=0, V3=1) = 0.20 +P(Y=1 | X=1, V3=0) = 0.52 +P(Y=1 | X=1, V3=1) = 0.28 +0.28 - (0.82*0.28 + 0.18*0.20) = 0.01 +0.01 > 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.02.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 16%. For those who are not pexu and are not hwax, the probability of rukz is 71%. For those who are not pexu and are hwax, the probability of rukz is 80%. For those who are pexu and are not hwax, the probability of rukz is 74%. For those who are pexu and are hwax, the probability of rukz is 78%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.16 +P(Y=1 | X=0, V3=0) = 0.71 +P(Y=1 | X=0, V3=1) = 0.80 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.78 +0.78 - (0.16*0.78 + 0.84*0.80) = -0.02 +-0.02 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 91%. For those who are not pexu, the probability of rukz is 58%. For those who are pexu, the probability of rukz is 58%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.58 +0.91*0.58 - 0.09*0.58 = 0.58 +0.58 > 0",collision,nonsense8,1,marginal,P(Y) +34444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.04.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.04.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 91%. For those who are not pexu and are not hwax, the probability of rukz is 46%. For those who are not pexu and are hwax, the probability of rukz is 82%. For those who are pexu and are not hwax, the probability of rukz is 21%. For those who are pexu and are hwax, the probability of rukz is 74%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.91 +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.91*0.74 + 0.09*0.82) = -0.00 +0.00 = 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 91%. For those who are not pexu and are not hwax, the probability of rukz is 46%. For those who are not pexu and are hwax, the probability of rukz is 82%. For those who are pexu and are not hwax, the probability of rukz is 21%. For those who are pexu and are hwax, the probability of rukz is 74%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.91 +P(Y=1 | X=0, V3=0) = 0.46 +P(Y=1 | X=0, V3=1) = 0.82 +P(Y=1 | X=1, V3=0) = 0.21 +P(Y=1 | X=1, V3=1) = 0.74 +0.74 - (0.91*0.74 + 0.09*0.82) = -0.00 +0.00 = 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 98%. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 57%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.57 +0.98*0.57 - 0.02*0.57 = 0.57 +0.57 > 0",collision,nonsense8,1,marginal,P(Y) +34454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 79%. For those who are not pexu, the probability of rukz is 63%. For those who are pexu, the probability of rukz is 63%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.63 +0.79*0.63 - 0.21*0.63 = 0.63 +0.63 > 0",collision,nonsense8,1,marginal,P(Y) +34461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 79%. For those who are not pexu, the probability of rukz is 63%. For those who are pexu, the probability of rukz is 63%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.63 +0.79*0.63 - 0.21*0.63 = 0.63 +0.63 > 0",collision,nonsense8,1,marginal,P(Y) +34464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.10.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.10.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 79%. For those who are not pexu and are not hwax, the probability of rukz is 79%. For those who are not pexu and are hwax, the probability of rukz is 27%. For those who are pexu and are not hwax, the probability of rukz is 70%. For those who are pexu and are hwax, the probability of rukz is 19%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.79 +P(Y=1 | X=0, V3=0) = 0.79 +P(Y=1 | X=0, V3=1) = 0.27 +P(Y=1 | X=1, V3=0) = 0.70 +P(Y=1 | X=1, V3=1) = 0.19 +0.19 - (0.79*0.19 + 0.21*0.27) = -0.03 +-0.03 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 84%. For those who are not pexu, the probability of rukz is 13%. For those who are pexu, the probability of rukz is 13%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.13 +0.84*0.13 - 0.16*0.13 = 0.13 +0.13 > 0",collision,nonsense8,1,marginal,P(Y) +34474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is 0.27.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is 0.27.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 84%. For those who are not pexu and are not hwax, the probability of rukz is 8%. For those who are not pexu and are hwax, the probability of rukz is 14%. For those who are pexu and are not hwax, the probability of rukz is 4%. For those who are pexu and are hwax, the probability of rukz is 40%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.84 +P(Y=1 | X=0, V3=0) = 0.08 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.40 +0.40 - (0.84*0.40 + 0.16*0.14) = 0.10 +0.10 > 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 84%. For those who are not pexu and are not hwax, the probability of rukz is 8%. For those who are not pexu and are hwax, the probability of rukz is 14%. For those who are pexu and are not hwax, the probability of rukz is 4%. For those who are pexu and are hwax, the probability of rukz is 40%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.84 +P(Y=1 | X=0, V3=0) = 0.08 +P(Y=1 | X=0, V3=1) = 0.14 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.40 +0.40 - (0.84*0.40 + 0.16*0.14) = 0.10 +0.10 > 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 96%. For those who are not pexu, the probability of rukz is 71%. For those who are pexu, the probability of rukz is 71%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.71 +0.96*0.71 - 0.04*0.71 = 0.71 +0.71 > 0",collision,nonsense8,1,marginal,P(Y) +34481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 96%. For those who are not pexu, the probability of rukz is 71%. For those who are pexu, the probability of rukz is 71%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.96 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.71 +0.96*0.71 - 0.04*0.71 = 0.71 +0.71 > 0",collision,nonsense8,1,marginal,P(Y) +34485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.21.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 96%. For those who are not pexu and are not hwax, the probability of rukz is 93%. For those who are not pexu and are hwax, the probability of rukz is 67%. For those who are pexu and are not hwax, the probability of rukz is 92%. For those who are pexu and are hwax, the probability of rukz is 31%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.67 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.31 +0.31 - (0.96*0.31 + 0.04*0.67) = -0.03 +-0.03 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 60%. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 52%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.60*0.52 - 0.40*0.52 = 0.52 +0.52 > 0",collision,nonsense8,1,marginal,P(Y) +34495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.70.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. For those who are hwax, the correlation between pexu and rukz is -0.70.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense8,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +34498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 60%. For those who are not pexu and are not hwax, the probability of rukz is 50%. For those who are not pexu and are hwax, the probability of rukz is 64%. For those who are pexu and are not hwax, the probability of rukz is 74%. For those who are pexu and are hwax, the probability of rukz is 2%.",no,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.60 +P(Y=1 | X=0, V3=0) = 0.50 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.02 +0.02 - (0.60*0.02 + 0.40*0.64) = -0.13 +-0.13 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Rukz has a direct effect on hwax. The overall probability of pexu is 60%. For those who are not pexu and are not hwax, the probability of rukz is 50%. For those who are not pexu and are hwax, the probability of rukz is 64%. For those who are pexu and are not hwax, the probability of rukz is 74%. For those who are pexu and are hwax, the probability of rukz is 2%.",yes,"Let Y = rukz; X = pexu; V3 = hwax. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.60 +P(Y=1 | X=0, V3=0) = 0.50 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.74 +P(Y=1 | X=1, V3=1) = 0.02 +0.02 - (0.60*0.02 + 0.40*0.64) = -0.13 +-0.13 < 0",collision,nonsense8,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +34500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 34%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 86%. For those who are hwax and are pexu, the probability of rukz is 4%. The overall probability of hwax is 38%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.34 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.86 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.38 +0.62 * (0.36 - 0.34) + 0.38 * (0.04 - 0.86) = -0.30 +-0.30 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 34%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 86%. For those who are hwax and are pexu, the probability of rukz is 4%. The overall probability of hwax is 38%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.34 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.86 +P(Y=1 | V1=1, X=1) = 0.04 +P(V1=1) = 0.38 +0.62 * (0.36 - 0.34) + 0.38 * (0.04 - 0.86) = -0.30 +-0.30 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 35%. For those who are not pexu, the probability of rukz is 63%. For those who are pexu, the probability of rukz is 35%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.35 +0.35*0.35 - 0.65*0.63 = 0.43 +0.43 > 0",confounding,nonsense8,1,marginal,P(Y) +34505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 35%. For those who are not pexu, the probability of rukz is 63%. For those who are pexu, the probability of rukz is 35%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.35 +0.35*0.35 - 0.65*0.63 = 0.43 +0.43 > 0",confounding,nonsense8,1,marginal,P(Y) +34507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 35%. The probability of not pexu and rukz is 41%. The probability of pexu and rukz is 12%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.12 +0.12/0.35 - 0.41/0.65 = -0.28 +-0.28 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 59%. For those who are not hwax and are pexu, the probability of rukz is 59%. For those who are hwax and are not pexu, the probability of rukz is 49%. For those who are hwax and are pexu, the probability of rukz is 70%. The overall probability of hwax is 7%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.59 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.70 +P(V1=1) = 0.07 +0.93 * (0.59 - 0.59) + 0.07 * (0.70 - 0.49) = 0.01 +0.01 > 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 59%. For those who are not hwax and are pexu, the probability of rukz is 59%. For those who are hwax and are not pexu, the probability of rukz is 49%. For those who are hwax and are pexu, the probability of rukz is 70%. The overall probability of hwax is 7%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.59 +P(Y=1 | V1=0, X=1) = 0.59 +P(Y=1 | V1=1, X=0) = 0.49 +P(Y=1 | V1=1, X=1) = 0.70 +P(V1=1) = 0.07 +0.93 * (0.59 - 0.59) + 0.07 * (0.70 - 0.49) = 0.01 +0.01 > 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 32%. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 60%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.32 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.60 +0.32*0.60 - 0.68*0.59 = 0.59 +0.59 > 0",confounding,nonsense8,1,marginal,P(Y) +34516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 32%. The probability of not pexu and rukz is 40%. The probability of pexu and rukz is 20%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.32 +P(Y=1, X=0=1) = 0.40 +P(Y=1, X=1=1) = 0.20 +0.20/0.32 - 0.40/0.68 = 0.02 +0.02 > 0",confounding,nonsense8,1,correlation,P(Y | X) +34518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 93%. For those who are not hwax and are pexu, the probability of rukz is 22%. For those who are hwax and are not pexu, the probability of rukz is 50%. For those who are hwax and are pexu, the probability of rukz is 51%. The overall probability of hwax is 9%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.09 +0.91 * (0.22 - 0.93) + 0.09 * (0.51 - 0.50) = -0.64 +-0.64 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 93%. For those who are not hwax and are pexu, the probability of rukz is 22%. For those who are hwax and are not pexu, the probability of rukz is 50%. For those who are hwax and are pexu, the probability of rukz is 51%. The overall probability of hwax is 9%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.09 +0.91 * (0.22 - 0.93) + 0.09 * (0.51 - 0.50) = -0.64 +-0.64 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 93%. For those who are not hwax and are pexu, the probability of rukz is 22%. For those who are hwax and are not pexu, the probability of rukz is 50%. For those who are hwax and are pexu, the probability of rukz is 51%. The overall probability of hwax is 9%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.09 +0.91 * (0.22 - 0.93) + 0.09 * (0.51 - 0.50) = -0.67 +-0.67 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 93%. For those who are not hwax and are pexu, the probability of rukz is 22%. For those who are hwax and are not pexu, the probability of rukz is 50%. For those who are hwax and are pexu, the probability of rukz is 51%. The overall probability of hwax is 9%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.93 +P(Y=1 | V1=0, X=1) = 0.22 +P(Y=1 | V1=1, X=0) = 0.50 +P(Y=1 | V1=1, X=1) = 0.51 +P(V1=1) = 0.09 +0.91 * (0.22 - 0.93) + 0.09 * (0.51 - 0.50) = -0.67 +-0.67 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 45%. For those who are not pexu, the probability of rukz is 88%. For those who are pexu, the probability of rukz is 24%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.24 +0.45*0.24 - 0.55*0.88 = 0.60 +0.60 > 0",confounding,nonsense8,1,marginal,P(Y) +34525,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 45%. For those who are not pexu, the probability of rukz is 88%. For those who are pexu, the probability of rukz is 24%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.45 +P(Y=1 | X=0) = 0.88 +P(Y=1 | X=1) = 0.24 +0.45*0.24 - 0.55*0.88 = 0.60 +0.60 > 0",confounding,nonsense8,1,marginal,P(Y) +34526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 45%. The probability of not pexu and rukz is 48%. The probability of pexu and rukz is 11%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.45 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.11 +0.11/0.45 - 0.48/0.55 = -0.64 +-0.64 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 42%. For those who are not hwax and are pexu, the probability of rukz is 93%. For those who are hwax and are not pexu, the probability of rukz is 46%. For those who are hwax and are pexu, the probability of rukz is 12%. The overall probability of hwax is 36%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.42 +P(Y=1 | V1=0, X=1) = 0.93 +P(Y=1 | V1=1, X=0) = 0.46 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.36 +0.64 * (0.93 - 0.42) + 0.36 * (0.12 - 0.46) = 0.20 +0.20 > 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 67%. For those who are not pexu, the probability of rukz is 45%. For those who are pexu, the probability of rukz is 81%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.81 +0.67*0.81 - 0.33*0.45 = 0.57 +0.57 > 0",confounding,nonsense8,1,marginal,P(Y) +34535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 67%. For those who are not pexu, the probability of rukz is 45%. For those who are pexu, the probability of rukz is 81%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.81 +0.67*0.81 - 0.33*0.45 = 0.57 +0.57 > 0",confounding,nonsense8,1,marginal,P(Y) +34536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 67%. The probability of not pexu and rukz is 15%. The probability of pexu and rukz is 54%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.54 +0.54/0.67 - 0.15/0.33 = 0.36 +0.36 > 0",confounding,nonsense8,1,correlation,P(Y | X) +34537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 67%. The probability of not pexu and rukz is 15%. The probability of pexu and rukz is 54%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.54 +0.54/0.67 - 0.15/0.33 = 0.36 +0.36 > 0",confounding,nonsense8,1,correlation,P(Y | X) +34538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 88%. For those who are not hwax and are pexu, the probability of rukz is 37%. For those who are hwax and are not pexu, the probability of rukz is 18%. For those who are hwax and are pexu, the probability of rukz is 6%. The overall probability of hwax is 55%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.37 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.06 +P(V1=1) = 0.55 +0.45 * (0.37 - 0.88) + 0.55 * (0.06 - 0.18) = -0.30 +-0.30 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 88%. For those who are not hwax and are pexu, the probability of rukz is 37%. For those who are hwax and are not pexu, the probability of rukz is 18%. For those who are hwax and are pexu, the probability of rukz is 6%. The overall probability of hwax is 55%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.37 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.06 +P(V1=1) = 0.55 +0.45 * (0.37 - 0.88) + 0.55 * (0.06 - 0.18) = -0.47 +-0.47 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 88%. For those who are not hwax and are pexu, the probability of rukz is 37%. For those who are hwax and are not pexu, the probability of rukz is 18%. For those who are hwax and are pexu, the probability of rukz is 6%. The overall probability of hwax is 55%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.88 +P(Y=1 | V1=0, X=1) = 0.37 +P(Y=1 | V1=1, X=0) = 0.18 +P(Y=1 | V1=1, X=1) = 0.06 +P(V1=1) = 0.55 +0.45 * (0.37 - 0.88) + 0.55 * (0.06 - 0.18) = -0.47 +-0.47 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 39%. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 33%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.33 +0.39*0.33 - 0.61*0.29 = 0.38 +0.38 > 0",confounding,nonsense8,1,marginal,P(Y) +34545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 39%. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 33%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.33 +0.39*0.33 - 0.61*0.29 = 0.38 +0.38 > 0",confounding,nonsense8,1,marginal,P(Y) +34546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 39%. The probability of not pexu and rukz is 18%. The probability of pexu and rukz is 13%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.13 +0.13/0.39 - 0.18/0.61 = 0.04 +0.04 > 0",confounding,nonsense8,1,correlation,P(Y | X) +34547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 39%. The probability of not pexu and rukz is 18%. The probability of pexu and rukz is 13%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.13 +0.13/0.39 - 0.18/0.61 = 0.04 +0.04 > 0",confounding,nonsense8,1,correlation,P(Y | X) +34552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 91%. For those who are not hwax and are pexu, the probability of rukz is 23%. For those who are hwax and are not pexu, the probability of rukz is 27%. For those who are hwax and are pexu, the probability of rukz is 90%. The overall probability of hwax is 37%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.37 +0.63 * (0.23 - 0.91) + 0.37 * (0.90 - 0.27) = -0.32 +-0.32 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 91%. For those who are not hwax and are pexu, the probability of rukz is 23%. For those who are hwax and are not pexu, the probability of rukz is 27%. For those who are hwax and are pexu, the probability of rukz is 90%. The overall probability of hwax is 37%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.91 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.90 +P(V1=1) = 0.37 +0.63 * (0.23 - 0.91) + 0.37 * (0.90 - 0.27) = -0.32 +-0.32 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 52%. The probability of not pexu and rukz is 29%. The probability of pexu and rukz is 22%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.22 +0.22/0.52 - 0.29/0.48 = -0.18 +-0.18 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 52%. The probability of not pexu and rukz is 29%. The probability of pexu and rukz is 22%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.52 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.22 +0.22/0.52 - 0.29/0.48 = -0.18 +-0.18 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34561,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 85%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 11%. For those who are hwax and are pexu, the probability of rukz is 52%. The overall probability of hwax is 32%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.85 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.32 +0.68 * (0.36 - 0.85) + 0.32 * (0.52 - 0.11) = -0.20 +-0.20 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 85%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 11%. For those who are hwax and are pexu, the probability of rukz is 52%. The overall probability of hwax is 32%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.85 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.32 +0.68 * (0.36 - 0.85) + 0.32 * (0.52 - 0.11) = -0.27 +-0.27 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34563,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 85%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 11%. For those who are hwax and are pexu, the probability of rukz is 52%. The overall probability of hwax is 32%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.85 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.11 +P(Y=1 | V1=1, X=1) = 0.52 +P(V1=1) = 0.32 +0.68 * (0.36 - 0.85) + 0.32 * (0.52 - 0.11) = -0.27 +-0.27 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 79%. For those who are not hwax and are pexu, the probability of rukz is 48%. For those who are hwax and are not pexu, the probability of rukz is 80%. For those who are hwax and are pexu, the probability of rukz is 63%. The overall probability of hwax is 9%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.79 +P(Y=1 | V1=0, X=1) = 0.48 +P(Y=1 | V1=1, X=0) = 0.80 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.09 +0.91 * (0.48 - 0.79) + 0.09 * (0.63 - 0.80) = -0.30 +-0.30 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 79%. For those who are not hwax and are pexu, the probability of rukz is 48%. For those who are hwax and are not pexu, the probability of rukz is 80%. For those who are hwax and are pexu, the probability of rukz is 63%. The overall probability of hwax is 9%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.79 +P(Y=1 | V1=0, X=1) = 0.48 +P(Y=1 | V1=1, X=0) = 0.80 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.09 +0.91 * (0.48 - 0.79) + 0.09 * (0.63 - 0.80) = -0.23 +-0.23 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 9%. For those who are not pexu, the probability of rukz is 79%. For those who are pexu, the probability of rukz is 56%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.56 +0.09*0.56 - 0.91*0.79 = 0.76 +0.76 > 0",confounding,nonsense8,1,marginal,P(Y) +34576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 9%. The probability of not pexu and rukz is 72%. The probability of pexu and rukz is 5%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.72 +P(Y=1, X=1=1) = 0.05 +0.05/0.09 - 0.72/0.91 = -0.23 +-0.23 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 9%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 23%. For those who are hwax and are pexu, the probability of rukz is 10%. The overall probability of hwax is 42%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.09 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.10 +P(V1=1) = 0.42 +0.58 * (0.36 - 0.09) + 0.42 * (0.10 - 0.23) = 0.10 +0.10 > 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34582,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 9%. For those who are not hwax and are pexu, the probability of rukz is 36%. For those who are hwax and are not pexu, the probability of rukz is 23%. For those who are hwax and are pexu, the probability of rukz is 10%. The overall probability of hwax is 42%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.09 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.23 +P(Y=1 | V1=1, X=1) = 0.10 +P(V1=1) = 0.42 +0.58 * (0.36 - 0.09) + 0.42 * (0.10 - 0.23) = 0.01 +0.01 > 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 14%. For those who are not pexu, the probability of rukz is 15%. For those who are pexu, the probability of rukz is 19%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.19 +0.14*0.19 - 0.86*0.15 = 0.16 +0.16 > 0",confounding,nonsense8,1,marginal,P(Y) +34591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 72%. For those who are not hwax and are pexu, the probability of rukz is 80%. For those who are hwax and are not pexu, the probability of rukz is 21%. For those who are hwax and are pexu, the probability of rukz is 12%. The overall probability of hwax is 72%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.72 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.72 +0.28 * (0.80 - 0.72) + 0.72 * (0.12 - 0.21) = -0.04 +-0.04 < 0",confounding,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 72%. For those who are not hwax and are pexu, the probability of rukz is 80%. For those who are hwax and are not pexu, the probability of rukz is 21%. For those who are hwax and are pexu, the probability of rukz is 12%. The overall probability of hwax is 72%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.72 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.72 +0.28 * (0.80 - 0.72) + 0.72 * (0.12 - 0.21) = -0.08 +-0.08 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34593,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 72%. For those who are not hwax and are pexu, the probability of rukz is 80%. For those who are hwax and are not pexu, the probability of rukz is 21%. For those who are hwax and are pexu, the probability of rukz is 12%. The overall probability of hwax is 72%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.72 +P(Y=1 | V1=0, X=1) = 0.80 +P(Y=1 | V1=1, X=0) = 0.21 +P(Y=1 | V1=1, X=1) = 0.12 +P(V1=1) = 0.72 +0.28 * (0.80 - 0.72) + 0.72 * (0.12 - 0.21) = -0.08 +-0.08 < 0",confounding,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34595,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 64%. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 17%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.17 +0.64*0.17 - 0.36*0.54 = 0.33 +0.33 > 0",confounding,nonsense8,1,marginal,P(Y) +34596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 64%. The probability of not pexu and rukz is 19%. The probability of pexu and rukz is 11%.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.11 +0.11/0.64 - 0.19/0.36 = -0.37 +-0.37 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. The overall probability of pexu is 64%. The probability of not pexu and rukz is 19%. The probability of pexu and rukz is 11%.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.11 +0.11/0.64 - 0.19/0.36 = -0.37 +-0.37 < 0",confounding,nonsense8,1,correlation,P(Y | X) +34599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 81%. For those who are pexu, the probability of rukz is 38%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.38 +0.38 - 0.81 = -0.43 +-0.43 < 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 81%. For those who are not pexu and are hwax, the probability of rukz is 54%. For those who are pexu and are not hwax, the probability of rukz is 60%. For those who are pexu and are hwax, the probability of rukz is 6%. For those who are not pexu, the probability of hwax is 0%. For those who are pexu, the probability of hwax is 40%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.81 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.60 +P(Y=1 | X=1, V2=1) = 0.06 +P(V2=1 | X=0) = 0.00 +P(V2=1 | X=1) = 0.40 +0.40 * (0.54 - 0.81)+ 0.00 * (0.06 - 0.60)= -0.11 +-0.11 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 81%. For those who are not pexu and are hwax, the probability of rukz is 54%. For those who are pexu and are not hwax, the probability of rukz is 60%. For those who are pexu and are hwax, the probability of rukz is 6%. For those who are not pexu, the probability of hwax is 0%. For those who are pexu, the probability of hwax is 40%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.81 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.60 +P(Y=1 | X=1, V2=1) = 0.06 +P(V2=1 | X=0) = 0.00 +P(V2=1 | X=1) = 0.40 +0.00 * (0.06 - 0.60) + 0.40 * (0.54 - 0.81) = -0.21 +-0.21 < 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 81%. For those who are not pexu and are hwax, the probability of rukz is 54%. For those who are pexu and are not hwax, the probability of rukz is 60%. For those who are pexu and are hwax, the probability of rukz is 6%. For those who are not pexu, the probability of hwax is 0%. For those who are pexu, the probability of hwax is 40%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.81 +P(Y=1 | X=0, V2=1) = 0.54 +P(Y=1 | X=1, V2=0) = 0.60 +P(Y=1 | X=1, V2=1) = 0.06 +P(V2=1 | X=0) = 0.00 +P(V2=1 | X=1) = 0.40 +0.00 * (0.06 - 0.60) + 0.40 * (0.54 - 0.81) = -0.21 +-0.21 < 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 64%. For those who are not pexu, the probability of rukz is 81%. For those who are pexu, the probability of rukz is 38%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.38 +0.64*0.38 - 0.36*0.81 = 0.56 +0.56 > 0",mediation,nonsense8,1,marginal,P(Y) +34610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 64%. The probability of not pexu and rukz is 29%. The probability of pexu and rukz is 25%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.25 +0.25/0.64 - 0.29/0.36 = -0.43 +-0.43 < 0",mediation,nonsense8,1,correlation,P(Y | X) +34611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 64%. The probability of not pexu and rukz is 29%. The probability of pexu and rukz is 25%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.25 +0.25/0.64 - 0.29/0.36 = -0.43 +-0.43 < 0",mediation,nonsense8,1,correlation,P(Y | X) +34614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 78%. For those who are pexu, the probability of rukz is 57%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.57 +0.57 - 0.78 = -0.20 +-0.20 < 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 78%. For those who are pexu, the probability of rukz is 57%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.57 +0.57 - 0.78 = -0.20 +-0.20 < 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 36%. For those who are not pexu and are hwax, the probability of rukz is 82%. For those who are pexu and are not hwax, the probability of rukz is 65%. For those who are pexu and are hwax, the probability of rukz is 23%. For those who are not pexu, the probability of hwax is 91%. For those who are pexu, the probability of hwax is 18%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.18 +0.18 * (0.82 - 0.36)+ 0.91 * (0.23 - 0.65)= -0.33 +-0.33 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 36%. For those who are not pexu and are hwax, the probability of rukz is 82%. For those who are pexu and are not hwax, the probability of rukz is 65%. For those who are pexu and are hwax, the probability of rukz is 23%. For those who are not pexu, the probability of hwax is 91%. For those who are pexu, the probability of hwax is 18%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.18 +0.18 * (0.82 - 0.36)+ 0.91 * (0.23 - 0.65)= -0.33 +-0.33 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 36%. For those who are not pexu and are hwax, the probability of rukz is 82%. For those who are pexu and are not hwax, the probability of rukz is 65%. For those who are pexu and are hwax, the probability of rukz is 23%. For those who are not pexu, the probability of hwax is 91%. For those who are pexu, the probability of hwax is 18%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.36 +P(Y=1 | X=0, V2=1) = 0.82 +P(Y=1 | X=1, V2=0) = 0.65 +P(Y=1 | X=1, V2=1) = 0.23 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.18 +0.91 * (0.23 - 0.65) + 0.18 * (0.82 - 0.36) = -0.51 +-0.51 < 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34622,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 6%. For those who are not pexu, the probability of rukz is 78%. For those who are pexu, the probability of rukz is 57%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.57 +0.06*0.57 - 0.94*0.78 = 0.73 +0.73 > 0",mediation,nonsense8,1,marginal,P(Y) +34623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 6%. For those who are not pexu, the probability of rukz is 78%. For those who are pexu, the probability of rukz is 57%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.06 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.57 +0.06*0.57 - 0.94*0.78 = 0.73 +0.73 > 0",mediation,nonsense8,1,marginal,P(Y) +34624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 6%. The probability of not pexu and rukz is 73%. The probability of pexu and rukz is 4%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.73 +P(Y=1, X=1=1) = 0.04 +0.04/0.06 - 0.73/0.94 = -0.20 +-0.20 < 0",mediation,nonsense8,1,correlation,P(Y | X) +34625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 6%. The probability of not pexu and rukz is 73%. The probability of pexu and rukz is 4%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.73 +P(Y=1, X=1=1) = 0.04 +0.04/0.06 - 0.73/0.94 = -0.20 +-0.20 < 0",mediation,nonsense8,1,correlation,P(Y | X) +34626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 79%. For those who are pexu, the probability of rukz is 80%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.80 +0.80 - 0.79 = 0.01 +0.01 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 79%. For those who are pexu, the probability of rukz is 80%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.80 +0.80 - 0.79 = 0.01 +0.01 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 79%. For those who are pexu, the probability of rukz is 80%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.80 +0.80 - 0.79 = 0.01 +0.01 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 56%. For those who are not pexu, the probability of rukz is 79%. For those who are pexu, the probability of rukz is 80%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.80 +0.56*0.80 - 0.44*0.79 = 0.67 +0.67 > 0",mediation,nonsense8,1,marginal,P(Y) +34637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 56%. For those who are not pexu, the probability of rukz is 79%. For those who are pexu, the probability of rukz is 80%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.80 +0.56*0.80 - 0.44*0.79 = 0.67 +0.67 > 0",mediation,nonsense8,1,marginal,P(Y) +34639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 56%. The probability of not pexu and rukz is 34%. The probability of pexu and rukz is 45%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.45 +0.45/0.56 - 0.34/0.44 = 0.01 +0.01 > 0",mediation,nonsense8,1,correlation,P(Y | X) +34641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 28%. For those who are pexu, the probability of rukz is 73%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.73 +0.73 - 0.28 = 0.44 +0.44 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 28%. For those who are pexu, the probability of rukz is 73%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.73 +0.73 - 0.28 = 0.44 +0.44 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 28%. For those who are pexu, the probability of rukz is 73%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.73 +0.73 - 0.28 = 0.44 +0.44 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 67%. For those who are not pexu and are hwax, the probability of rukz is 6%. For those who are pexu and are not hwax, the probability of rukz is 67%. For those who are pexu and are hwax, the probability of rukz is 75%. For those who are not pexu, the probability of hwax is 63%. For those who are pexu, the probability of hwax is 69%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.67 +P(Y=1 | X=0, V2=1) = 0.06 +P(Y=1 | X=1, V2=0) = 0.67 +P(Y=1 | X=1, V2=1) = 0.75 +P(V2=1 | X=0) = 0.63 +P(V2=1 | X=1) = 0.69 +0.69 * (0.06 - 0.67)+ 0.63 * (0.75 - 0.67)= -0.04 +-0.04 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 27%. The probability of not pexu and rukz is 21%. The probability of pexu and rukz is 20%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.20 +0.20/0.27 - 0.21/0.73 = 0.44 +0.44 > 0",mediation,nonsense8,1,correlation,P(Y | X) +34653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 27%. The probability of not pexu and rukz is 21%. The probability of pexu and rukz is 20%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.27 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.20 +0.20/0.27 - 0.21/0.73 = 0.44 +0.44 > 0",mediation,nonsense8,1,correlation,P(Y | X) +34654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 62%. For those who are pexu, the probability of rukz is 79%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.79 +0.79 - 0.62 = 0.17 +0.17 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34660,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 72%. For those who are not pexu and are hwax, the probability of rukz is 17%. For those who are pexu and are not hwax, the probability of rukz is 68%. For those who are pexu and are hwax, the probability of rukz is 83%. For those who are not pexu, the probability of hwax is 19%. For those who are pexu, the probability of hwax is 76%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.72 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.68 +P(Y=1 | X=1, V2=1) = 0.83 +P(V2=1 | X=0) = 0.19 +P(V2=1 | X=1) = 0.76 +0.76 * (0.17 - 0.72)+ 0.19 * (0.83 - 0.68)= -0.31 +-0.31 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 72%. For those who are not pexu and are hwax, the probability of rukz is 17%. For those who are pexu and are not hwax, the probability of rukz is 68%. For those who are pexu and are hwax, the probability of rukz is 83%. For those who are not pexu, the probability of hwax is 19%. For those who are pexu, the probability of hwax is 76%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.72 +P(Y=1 | X=0, V2=1) = 0.17 +P(Y=1 | X=1, V2=0) = 0.68 +P(Y=1 | X=1, V2=1) = 0.83 +P(V2=1 | X=0) = 0.19 +P(V2=1 | X=1) = 0.76 +0.19 * (0.83 - 0.68) + 0.76 * (0.17 - 0.72) = 0.09 +0.09 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 5%. For those who are not pexu, the probability of rukz is 62%. For those who are pexu, the probability of rukz is 79%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.79 +0.05*0.79 - 0.95*0.62 = 0.61 +0.61 > 0",mediation,nonsense8,1,marginal,P(Y) +34665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 5%. For those who are not pexu, the probability of rukz is 62%. For those who are pexu, the probability of rukz is 79%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.62 +P(Y=1 | X=1) = 0.79 +0.05*0.79 - 0.95*0.62 = 0.61 +0.61 > 0",mediation,nonsense8,1,marginal,P(Y) +34668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 61%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.61 +0.61 - 0.59 = 0.02 +0.02 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 61%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.61 +0.61 - 0.59 = 0.02 +0.02 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 59%. For those who are not pexu and are hwax, the probability of rukz is 59%. For those who are pexu and are not hwax, the probability of rukz is 94%. For those who are pexu and are hwax, the probability of rukz is 10%. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 40%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.94 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.06 +P(V2=1 | X=1) = 0.40 +0.40 * (0.59 - 0.59)+ 0.06 * (0.10 - 0.94)= 0.00 +0.00 = 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 59%. For those who are not pexu and are hwax, the probability of rukz is 59%. For those who are pexu and are not hwax, the probability of rukz is 94%. For those who are pexu and are hwax, the probability of rukz is 10%. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 40%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.94 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.06 +P(V2=1 | X=1) = 0.40 +0.06 * (0.10 - 0.94) + 0.40 * (0.59 - 0.59) = 0.30 +0.30 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 59%. For those who are not pexu and are hwax, the probability of rukz is 59%. For those who are pexu and are not hwax, the probability of rukz is 94%. For those who are pexu and are hwax, the probability of rukz is 10%. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 40%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.59 +P(Y=1 | X=0, V2=1) = 0.59 +P(Y=1 | X=1, V2=0) = 0.94 +P(Y=1 | X=1, V2=1) = 0.10 +P(V2=1 | X=0) = 0.06 +P(V2=1 | X=1) = 0.40 +0.06 * (0.10 - 0.94) + 0.40 * (0.59 - 0.59) = 0.30 +0.30 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 78%. The probability of not pexu and rukz is 13%. The probability of pexu and rukz is 47%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.47 +0.47/0.78 - 0.13/0.22 = 0.02 +0.02 > 0",mediation,nonsense8,1,correlation,P(Y | X) +34683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 24%. For those who are not pexu and are hwax, the probability of rukz is 78%. For those who are pexu and are not hwax, the probability of rukz is 98%. For those who are pexu and are hwax, the probability of rukz is 20%. For those who are not pexu, the probability of hwax is 24%. For those who are pexu, the probability of hwax is 72%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.24 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.98 +P(Y=1 | X=1, V2=1) = 0.20 +P(V2=1 | X=0) = 0.24 +P(V2=1 | X=1) = 0.72 +0.72 * (0.78 - 0.24)+ 0.24 * (0.20 - 0.98)= 0.26 +0.26 > 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 24%. For those who are not pexu and are hwax, the probability of rukz is 78%. For those who are pexu and are not hwax, the probability of rukz is 98%. For those who are pexu and are hwax, the probability of rukz is 20%. For those who are not pexu, the probability of hwax is 24%. For those who are pexu, the probability of hwax is 72%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.24 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.98 +P(Y=1 | X=1, V2=1) = 0.20 +P(V2=1 | X=0) = 0.24 +P(V2=1 | X=1) = 0.72 +0.72 * (0.78 - 0.24)+ 0.24 * (0.20 - 0.98)= 0.26 +0.26 > 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 24%. For those who are not pexu and are hwax, the probability of rukz is 78%. For those who are pexu and are not hwax, the probability of rukz is 98%. For those who are pexu and are hwax, the probability of rukz is 20%. For those who are not pexu, the probability of hwax is 24%. For those who are pexu, the probability of hwax is 72%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.24 +P(Y=1 | X=0, V2=1) = 0.78 +P(Y=1 | X=1, V2=0) = 0.98 +P(Y=1 | X=1, V2=1) = 0.20 +P(V2=1 | X=0) = 0.24 +P(V2=1 | X=1) = 0.72 +0.24 * (0.20 - 0.98) + 0.72 * (0.78 - 0.24) = 0.43 +0.43 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 83%. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.83*0.42 - 0.17*0.37 = 0.50 +0.50 > 0",mediation,nonsense8,1,marginal,P(Y) +34693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 83%. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.83*0.42 - 0.17*0.37 = 0.50 +0.50 > 0",mediation,nonsense8,1,marginal,P(Y) +34696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 84%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.84 +0.84 - 0.54 = 0.30 +0.30 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 84%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.84 +0.84 - 0.54 = 0.30 +0.30 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 84%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.84 +0.84 - 0.54 = 0.30 +0.30 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 62%. For those who are not pexu and are hwax, the probability of rukz is 33%. For those who are pexu and are not hwax, the probability of rukz is 57%. For those who are pexu and are hwax, the probability of rukz is 89%. For those who are not pexu, the probability of hwax is 29%. For those who are pexu, the probability of hwax is 84%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.62 +P(Y=1 | X=0, V2=1) = 0.33 +P(Y=1 | X=1, V2=0) = 0.57 +P(Y=1 | X=1, V2=1) = 0.89 +P(V2=1 | X=0) = 0.29 +P(V2=1 | X=1) = 0.84 +0.84 * (0.33 - 0.62)+ 0.29 * (0.89 - 0.57)= -0.16 +-0.16 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 62%. For those who are not pexu and are hwax, the probability of rukz is 33%. For those who are pexu and are not hwax, the probability of rukz is 57%. For those who are pexu and are hwax, the probability of rukz is 89%. For those who are not pexu, the probability of hwax is 29%. For those who are pexu, the probability of hwax is 84%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.62 +P(Y=1 | X=0, V2=1) = 0.33 +P(Y=1 | X=1, V2=0) = 0.57 +P(Y=1 | X=1, V2=1) = 0.89 +P(V2=1 | X=0) = 0.29 +P(V2=1 | X=1) = 0.84 +0.84 * (0.33 - 0.62)+ 0.29 * (0.89 - 0.57)= -0.16 +-0.16 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 62%. For those who are not pexu and are hwax, the probability of rukz is 33%. For those who are pexu and are not hwax, the probability of rukz is 57%. For those who are pexu and are hwax, the probability of rukz is 89%. For those who are not pexu, the probability of hwax is 29%. For those who are pexu, the probability of hwax is 84%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.62 +P(Y=1 | X=0, V2=1) = 0.33 +P(Y=1 | X=1, V2=0) = 0.57 +P(Y=1 | X=1, V2=1) = 0.89 +P(V2=1 | X=0) = 0.29 +P(V2=1 | X=1) = 0.84 +0.29 * (0.89 - 0.57) + 0.84 * (0.33 - 0.62) = 0.12 +0.12 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 12%. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 84%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.84 +0.12*0.84 - 0.88*0.54 = 0.54 +0.54 > 0",mediation,nonsense8,1,marginal,P(Y) +34708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 12%. The probability of not pexu and rukz is 47%. The probability of pexu and rukz is 10%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.10 +0.10/0.12 - 0.47/0.88 = 0.30 +0.30 > 0",mediation,nonsense8,1,correlation,P(Y | X) +34710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 63%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.63 +0.63 - 0.59 = 0.04 +0.04 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 63%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.63 +0.63 - 0.59 = 0.04 +0.04 > 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 63%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.63 +0.63 - 0.59 = 0.04 +0.04 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 59%. For those who are pexu, the probability of rukz is 63%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.63 +0.63 - 0.59 = 0.04 +0.04 > 0",mediation,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 45%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 66%. For those who are pexu and are hwax, the probability of rukz is 62%. For those who are not pexu, the probability of hwax is 91%. For those who are pexu, the probability of hwax is 81%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.45 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.66 +P(Y=1 | X=1, V2=1) = 0.62 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.81 +0.81 * (0.60 - 0.45)+ 0.91 * (0.62 - 0.66)= -0.01 +-0.01 < 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34718,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 45%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 66%. For those who are pexu and are hwax, the probability of rukz is 62%. For those who are not pexu, the probability of hwax is 91%. For those who are pexu, the probability of hwax is 81%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.45 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.66 +P(Y=1 | X=1, V2=1) = 0.62 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.81 +0.91 * (0.62 - 0.66) + 0.81 * (0.60 - 0.45) = 0.03 +0.03 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 45%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 66%. For those who are pexu and are hwax, the probability of rukz is 62%. For those who are not pexu, the probability of hwax is 91%. For those who are pexu, the probability of hwax is 81%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.45 +P(Y=1 | X=0, V2=1) = 0.60 +P(Y=1 | X=1, V2=0) = 0.66 +P(Y=1 | X=1, V2=1) = 0.62 +P(V2=1 | X=0) = 0.91 +P(V2=1 | X=1) = 0.81 +0.91 * (0.62 - 0.66) + 0.81 * (0.60 - 0.45) = 0.03 +0.03 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 98%. The probability of not pexu and rukz is 1%. The probability of pexu and rukz is 61%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.61 +0.61/0.98 - 0.01/0.02 = 0.04 +0.04 > 0",mediation,nonsense8,1,correlation,P(Y | X) +34724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 56%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.56 +0.56 - 0.60 = -0.04 +-0.04 < 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 56%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.56 +0.56 - 0.60 = -0.04 +-0.04 < 0",mediation,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 95%. For those who are not pexu and are hwax, the probability of rukz is 31%. For those who are pexu and are not hwax, the probability of rukz is 45%. For those who are pexu and are hwax, the probability of rukz is 77%. For those who are not pexu, the probability of hwax is 55%. For those who are pexu, the probability of hwax is 34%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.31 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.77 +P(V2=1 | X=0) = 0.55 +P(V2=1 | X=1) = 0.34 +0.34 * (0.31 - 0.95)+ 0.55 * (0.77 - 0.45)= 0.13 +0.13 > 0",mediation,nonsense8,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +34732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 95%. For those who are not pexu and are hwax, the probability of rukz is 31%. For those who are pexu and are not hwax, the probability of rukz is 45%. For those who are pexu and are hwax, the probability of rukz is 77%. For those who are not pexu, the probability of hwax is 55%. For those who are pexu, the probability of hwax is 34%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.31 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.77 +P(V2=1 | X=0) = 0.55 +P(V2=1 | X=1) = 0.34 +0.55 * (0.77 - 0.45) + 0.34 * (0.31 - 0.95) = 0.03 +0.03 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. For those who are not pexu and are not hwax, the probability of rukz is 95%. For those who are not pexu and are hwax, the probability of rukz is 31%. For those who are pexu and are not hwax, the probability of rukz is 45%. For those who are pexu and are hwax, the probability of rukz is 77%. For those who are not pexu, the probability of hwax is 55%. For those who are pexu, the probability of hwax is 34%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.95 +P(Y=1 | X=0, V2=1) = 0.31 +P(Y=1 | X=1, V2=0) = 0.45 +P(Y=1 | X=1, V2=1) = 0.77 +P(V2=1 | X=0) = 0.55 +P(V2=1 | X=1) = 0.34 +0.55 * (0.77 - 0.45) + 0.34 * (0.31 - 0.95) = 0.03 +0.03 > 0",mediation,nonsense8,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +34734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 66%. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 56%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.56 +0.66*0.56 - 0.34*0.60 = 0.61 +0.61 > 0",mediation,nonsense8,1,marginal,P(Y) +34735,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 66%. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 56%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.56 +0.66*0.56 - 0.34*0.60 = 0.61 +0.61 > 0",mediation,nonsense8,1,marginal,P(Y) +34736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 66%. The probability of not pexu and rukz is 20%. The probability of pexu and rukz is 37%.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.37 +0.37/0.66 - 0.20/0.34 = -0.04 +-0.04 < 0",mediation,nonsense8,1,correlation,P(Y | X) +34737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 66%. The probability of not pexu and rukz is 20%. The probability of pexu and rukz is 37%.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.37 +0.37/0.66 - 0.20/0.34 = -0.04 +-0.04 < 0",mediation,nonsense8,1,correlation,P(Y | X) +34740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 59%. For those who are not pexu and are not hwax, the probability of rukz is 78%. For those who are not pexu and are hwax, the probability of rukz is 15%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 34%. The overall probability of pexu is 37%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.37 +(0.59 - 0.06)* (0.34 * 0.37) + (0.41 - 0.94) * (0.15 * 0.63) = -0.31 +-0.31 < 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 59%. For those who are not pexu and are not hwax, the probability of rukz is 78%. For those who are not pexu and are hwax, the probability of rukz is 15%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 34%. The overall probability of pexu is 37%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.37 +(0.59 - 0.06)* (0.34 * 0.37) + (0.41 - 0.94) * (0.15 * 0.63) = -0.31 +-0.31 < 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 78%. For those who are not pexu and are hwax, the probability of rukz is 15%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 34%. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 59%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.59 +0.34 * (0.59 - 0.06) + 0.15 * (0.41 - 0.94) = -0.28 +-0.28 < 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 78%. For those who are not pexu and are hwax, the probability of rukz is 15%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 34%. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 59%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.34 +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.59 +0.34 * (0.59 - 0.06) + 0.15 * (0.41 - 0.94) = -0.28 +-0.28 < 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 59%. For those who are not pexu and are not hwax, the probability of rukz is 78%. For those who are not pexu and are hwax, the probability of rukz is 15%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 34%. The overall probability of pexu is 37%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.37 +0.59 - 0.06 * (0.34 * 0.37 + 0.15 * 0.63)= -0.31 +-0.31 < 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 6%. For those who are pexu, the probability of hwax is 59%. For those who are not pexu and are not hwax, the probability of rukz is 78%. For those who are not pexu and are hwax, the probability of rukz is 15%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 34%. The overall probability of pexu is 37%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.78 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.34 +P(X=1) = 0.37 +0.59 - 0.06 * (0.34 * 0.37 + 0.15 * 0.63)= -0.31 +-0.31 < 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 37%. The probability of not pexu and rukz is 47%. The probability of pexu and rukz is 20%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.37 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.20 +0.20/0.37 - 0.47/0.63 = -0.19 +-0.19 < 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 67%. For those who are not pexu and are hwax, the probability of rukz is 64%. For those who are pexu and are not hwax, the probability of rukz is 55%. For those who are pexu and are hwax, the probability of rukz is 70%. For those who are not pexu, the probability of hwax is 73%. For those who are pexu, the probability of hwax is 90%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0) = 0.73 +P(V3=1 | X=1) = 0.90 +0.70 * (0.90 - 0.73) + 0.64 * (0.10 - 0.27) = 0.02 +0.02 > 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 73%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 67%. For those who are not pexu and are hwax, the probability of rukz is 64%. For those who are pexu and are not hwax, the probability of rukz is 55%. For those who are pexu and are hwax, the probability of rukz is 70%. The overall probability of pexu is 34%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.73 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.67 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.55 +P(Y=1 | X=1, V3=1) = 0.70 +P(X=1) = 0.34 +0.90 - 0.73 * (0.70 * 0.34 + 0.64 * 0.66)= 0.01 +0.01 > 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 34%. For those who are not pexu, the probability of rukz is 65%. For those who are pexu, the probability of rukz is 68%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.68 +0.34*0.68 - 0.66*0.65 = 0.65 +0.65 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 34%. For those who are not pexu, the probability of rukz is 65%. For those who are pexu, the probability of rukz is 68%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.34 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.68 +0.34*0.68 - 0.66*0.65 = 0.65 +0.65 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34761,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 34%. The probability of not pexu and rukz is 43%. The probability of pexu and rukz is 23%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.23 +0.23/0.34 - 0.43/0.66 = 0.04 +0.04 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 63%. For those who are pexu, the probability of hwax is 48%. For those who are not pexu and are not hwax, the probability of rukz is 10%. For those who are not pexu and are hwax, the probability of rukz is 58%. For those who are pexu and are not hwax, the probability of rukz is 10%. For those who are pexu and are hwax, the probability of rukz is 85%. The overall probability of pexu is 59%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.48 +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.85 +P(X=1) = 0.59 +(0.48 - 0.63)* (0.85 * 0.59) + (0.52 - 0.37) * (0.58 * 0.41) = -0.10 +-0.10 < 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34766,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 10%. For those who are not pexu and are hwax, the probability of rukz is 58%. For those who are pexu and are not hwax, the probability of rukz is 10%. For those who are pexu and are hwax, the probability of rukz is 85%. For those who are not pexu, the probability of hwax is 63%. For those who are pexu, the probability of hwax is 48%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.48 +0.85 * (0.48 - 0.63) + 0.58 * (0.52 - 0.37) = -0.12 +-0.12 < 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 10%. For those who are not pexu and are hwax, the probability of rukz is 58%. For those who are pexu and are not hwax, the probability of rukz is 10%. For those who are pexu and are hwax, the probability of rukz is 85%. For those who are not pexu, the probability of hwax is 63%. For those who are pexu, the probability of hwax is 48%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.10 +P(Y=1 | X=1, V3=1) = 0.85 +P(V3=1 | X=0) = 0.63 +P(V3=1 | X=1) = 0.48 +0.85 * (0.48 - 0.63) + 0.58 * (0.52 - 0.37) = -0.12 +-0.12 < 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 59%. For those who are not pexu, the probability of rukz is 41%. For those who are pexu, the probability of rukz is 46%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.46 +0.59*0.46 - 0.41*0.41 = 0.45 +0.45 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 59%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 27%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.27 +0.27/0.59 - 0.17/0.41 = 0.05 +0.05 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 52%. For those who are pexu, the probability of hwax is 69%. For those who are not pexu and are not hwax, the probability of rukz is 40%. For those who are not pexu and are hwax, the probability of rukz is 38%. For those who are pexu and are not hwax, the probability of rukz is 37%. For those who are pexu and are hwax, the probability of rukz is 28%. The overall probability of pexu is 33%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.52 +P(V3=1 | X=1) = 0.69 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.28 +P(X=1) = 0.33 +(0.69 - 0.52)* (0.28 * 0.33) + (0.31 - 0.48) * (0.38 * 0.67) = -0.01 +-0.01 < 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 52%. For those who are pexu, the probability of hwax is 69%. For those who are not pexu and are not hwax, the probability of rukz is 40%. For those who are not pexu and are hwax, the probability of rukz is 38%. For those who are pexu and are not hwax, the probability of rukz is 37%. For those who are pexu and are hwax, the probability of rukz is 28%. The overall probability of pexu is 33%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.52 +P(V3=1 | X=1) = 0.69 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.28 +P(X=1) = 0.33 +(0.69 - 0.52)* (0.28 * 0.33) + (0.31 - 0.48) * (0.38 * 0.67) = -0.01 +-0.01 < 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 40%. For those who are not pexu and are hwax, the probability of rukz is 38%. For those who are pexu and are not hwax, the probability of rukz is 37%. For those who are pexu and are hwax, the probability of rukz is 28%. For those who are not pexu, the probability of hwax is 52%. For those who are pexu, the probability of hwax is 69%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.28 +P(V3=1 | X=0) = 0.52 +P(V3=1 | X=1) = 0.69 +0.28 * (0.69 - 0.52) + 0.38 * (0.31 - 0.48) = -0.02 +-0.02 < 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 52%. For those who are pexu, the probability of hwax is 69%. For those who are not pexu and are not hwax, the probability of rukz is 40%. For those who are not pexu and are hwax, the probability of rukz is 38%. For those who are pexu and are not hwax, the probability of rukz is 37%. For those who are pexu and are hwax, the probability of rukz is 28%. The overall probability of pexu is 33%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.52 +P(V3=1 | X=1) = 0.69 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.38 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.28 +P(X=1) = 0.33 +0.69 - 0.52 * (0.28 * 0.33 + 0.38 * 0.67)= -0.01 +-0.01 < 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 33%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 10%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.10 +0.10/0.33 - 0.26/0.67 = -0.08 +-0.08 < 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 33%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 10%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.33 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.10 +0.10/0.33 - 0.26/0.67 = -0.08 +-0.08 < 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 26%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 56%. For those who are not pexu and are hwax, the probability of rukz is 70%. For those who are pexu and are not hwax, the probability of rukz is 56%. For those who are pexu and are hwax, the probability of rukz is 70%. The overall probability of pexu is 71%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.26 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.70 +P(X=1) = 0.71 +(0.90 - 0.26)* (0.70 * 0.71) + (0.10 - 0.74) * (0.70 * 0.29) = 0.09 +0.09 > 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34790,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 56%. For those who are not pexu and are hwax, the probability of rukz is 70%. For those who are pexu and are not hwax, the probability of rukz is 56%. For those who are pexu and are hwax, the probability of rukz is 70%. For those who are not pexu, the probability of hwax is 26%. For those who are pexu, the probability of hwax is 90%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.70 +P(V3=1 | X=0) = 0.26 +P(V3=1 | X=1) = 0.90 +0.70 * (0.90 - 0.26) + 0.70 * (0.10 - 0.74) = 0.09 +0.09 > 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 26%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 56%. For those who are not pexu and are hwax, the probability of rukz is 70%. For those who are pexu and are not hwax, the probability of rukz is 56%. For those who are pexu and are hwax, the probability of rukz is 70%. The overall probability of pexu is 71%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.26 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.56 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.56 +P(Y=1 | X=1, V3=1) = 0.70 +P(X=1) = 0.71 +0.90 - 0.26 * (0.70 * 0.71 + 0.70 * 0.29)= 0.09 +0.09 > 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 71%. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 69%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.69 +0.71*0.69 - 0.29*0.60 = 0.66 +0.66 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 71%. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 69%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.69 +0.71*0.69 - 0.29*0.60 = 0.66 +0.66 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 71%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 49%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.49 +0.49/0.71 - 0.17/0.29 = 0.09 +0.09 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 19%. For those who are not pexu and are hwax, the probability of rukz is 29%. For those who are pexu and are not hwax, the probability of rukz is 20%. For those who are pexu and are hwax, the probability of rukz is 31%. The overall probability of pexu is 62%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.31 +P(X=1) = 0.62 +(0.90 - 0.16)* (0.31 * 0.62) + (0.10 - 0.84) * (0.29 * 0.38) = 0.08 +0.08 > 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 19%. For those who are not pexu and are hwax, the probability of rukz is 29%. For those who are pexu and are not hwax, the probability of rukz is 20%. For those who are pexu and are hwax, the probability of rukz is 31%. The overall probability of pexu is 62%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.31 +P(X=1) = 0.62 +(0.90 - 0.16)* (0.31 * 0.62) + (0.10 - 0.84) * (0.29 * 0.38) = 0.08 +0.08 > 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 19%. For those who are not pexu and are hwax, the probability of rukz is 29%. For those who are pexu and are not hwax, the probability of rukz is 20%. For those who are pexu and are hwax, the probability of rukz is 31%. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 90%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.31 +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.90 +0.31 * (0.90 - 0.16) + 0.29 * (0.10 - 0.84) = 0.08 +0.08 > 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 19%. For those who are not pexu and are hwax, the probability of rukz is 29%. For those who are pexu and are not hwax, the probability of rukz is 20%. For those who are pexu and are hwax, the probability of rukz is 31%. The overall probability of pexu is 62%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.31 +P(X=1) = 0.62 +0.90 - 0.16 * (0.31 * 0.62 + 0.29 * 0.38)= 0.08 +0.08 > 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 90%. For those who are not pexu and are not hwax, the probability of rukz is 19%. For those who are not pexu and are hwax, the probability of rukz is 29%. For those who are pexu and are not hwax, the probability of rukz is 20%. For those who are pexu and are hwax, the probability of rukz is 31%. The overall probability of pexu is 62%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.90 +P(Y=1 | X=0, V3=0) = 0.19 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.31 +P(X=1) = 0.62 +0.90 - 0.16 * (0.31 * 0.62 + 0.29 * 0.38)= 0.08 +0.08 > 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 62%. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 29%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.29 +0.62*0.29 - 0.38*0.21 = 0.26 +0.26 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 93%. For those who are pexu, the probability of hwax is 96%. For those who are not pexu and are not hwax, the probability of rukz is 89%. For those who are not pexu and are hwax, the probability of rukz is 77%. For those who are pexu and are not hwax, the probability of rukz is 92%. For those who are pexu and are hwax, the probability of rukz is 79%. The overall probability of pexu is 68%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.93 +P(V3=1 | X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.89 +P(Y=1 | X=0, V3=1) = 0.77 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.68 +(0.96 - 0.93)* (0.79 * 0.68) + (0.04 - 0.07) * (0.77 * 0.32) = -0.00 +0.00 = 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 93%. For those who are pexu, the probability of hwax is 96%. For those who are not pexu and are not hwax, the probability of rukz is 89%. For those who are not pexu and are hwax, the probability of rukz is 77%. For those who are pexu and are not hwax, the probability of rukz is 92%. For those who are pexu and are hwax, the probability of rukz is 79%. The overall probability of pexu is 68%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.93 +P(V3=1 | X=1) = 0.96 +P(Y=1 | X=0, V3=0) = 0.89 +P(Y=1 | X=0, V3=1) = 0.77 +P(Y=1 | X=1, V3=0) = 0.92 +P(Y=1 | X=1, V3=1) = 0.79 +P(X=1) = 0.68 +0.96 - 0.93 * (0.79 * 0.68 + 0.77 * 0.32)= -0.00 +0.00 = 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. For those who are not pexu, the probability of rukz is 78%. For those who are pexu, the probability of rukz is 79%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.79 +0.68*0.79 - 0.32*0.78 = 0.79 +0.79 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34819,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. For those who are not pexu, the probability of rukz is 78%. For those who are pexu, the probability of rukz is 79%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.79 +0.68*0.79 - 0.32*0.78 = 0.79 +0.79 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. The probability of not pexu and rukz is 25%. The probability of pexu and rukz is 54%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.54 +0.54/0.68 - 0.25/0.32 = 0.01 +0.01 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. The probability of not pexu and rukz is 25%. The probability of pexu and rukz is 54%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.54 +0.54/0.68 - 0.25/0.32 = 0.01 +0.01 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 24%. For those who are not pexu and are not hwax, the probability of rukz is 49%. For those who are not pexu and are hwax, the probability of rukz is 40%. For those who are pexu and are not hwax, the probability of rukz is 54%. For those who are pexu and are hwax, the probability of rukz is 43%. The overall probability of pexu is 8%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.43 +P(X=1) = 0.08 +(0.24 - 0.16)* (0.43 * 0.08) + (0.76 - 0.84) * (0.40 * 0.92) = -0.01 +-0.01 < 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 49%. For those who are not pexu and are hwax, the probability of rukz is 40%. For those who are pexu and are not hwax, the probability of rukz is 54%. For those who are pexu and are hwax, the probability of rukz is 43%. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 24%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.43 +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.24 +0.43 * (0.24 - 0.16) + 0.40 * (0.76 - 0.84) = -0.01 +-0.01 < 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 24%. For those who are not pexu and are not hwax, the probability of rukz is 49%. For those who are not pexu and are hwax, the probability of rukz is 40%. For those who are pexu and are not hwax, the probability of rukz is 54%. For those who are pexu and are hwax, the probability of rukz is 43%. The overall probability of pexu is 8%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.43 +P(X=1) = 0.08 +0.24 - 0.16 * (0.43 * 0.08 + 0.40 * 0.92)= -0.01 +-0.01 < 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 16%. For those who are pexu, the probability of hwax is 24%. For those who are not pexu and are not hwax, the probability of rukz is 49%. For those who are not pexu and are hwax, the probability of rukz is 40%. For those who are pexu and are not hwax, the probability of rukz is 54%. For those who are pexu and are hwax, the probability of rukz is 43%. The overall probability of pexu is 8%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.16 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.49 +P(Y=1 | X=0, V3=1) = 0.40 +P(Y=1 | X=1, V3=0) = 0.54 +P(Y=1 | X=1, V3=1) = 0.43 +P(X=1) = 0.08 +0.24 - 0.16 * (0.43 * 0.08 + 0.40 * 0.92)= -0.01 +-0.01 < 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34830,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 8%. For those who are not pexu, the probability of rukz is 48%. For those who are pexu, the probability of rukz is 51%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.08 +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.51 +0.08*0.51 - 0.92*0.48 = 0.48 +0.48 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 8%. The probability of not pexu and rukz is 44%. The probability of pexu and rukz is 4%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.04 +0.04/0.08 - 0.44/0.92 = 0.03 +0.03 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 8%. The probability of not pexu and rukz is 44%. The probability of pexu and rukz is 4%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.08 +P(Y=1, X=0=1) = 0.44 +P(Y=1, X=1=1) = 0.04 +0.04/0.08 - 0.44/0.92 = 0.03 +0.03 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 61%. For those who are pexu, the probability of hwax is 62%. For those who are not pexu and are not hwax, the probability of rukz is 80%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 76%. For those who are pexu and are hwax, the probability of rukz is 40%. The overall probability of pexu is 39%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.62 +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.40 +P(X=1) = 0.39 +(0.62 - 0.61)* (0.40 * 0.39) + (0.38 - 0.39) * (0.60 * 0.61) = -0.00 +0.00 = 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 80%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 76%. For those who are pexu and are hwax, the probability of rukz is 40%. For those who are not pexu, the probability of hwax is 61%. For those who are pexu, the probability of hwax is 62%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.40 +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.62 +0.40 * (0.62 - 0.61) + 0.60 * (0.38 - 0.39) = -0.00 +0.00 = 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 61%. For those who are pexu, the probability of hwax is 62%. For those who are not pexu and are not hwax, the probability of rukz is 80%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 76%. For those who are pexu and are hwax, the probability of rukz is 40%. The overall probability of pexu is 39%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.61 +P(V3=1 | X=1) = 0.62 +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.76 +P(Y=1 | X=1, V3=1) = 0.40 +P(X=1) = 0.39 +0.62 - 0.61 * (0.40 * 0.39 + 0.60 * 0.61)= -0.00 +0.00 = 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 39%. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 54%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.54 +0.39*0.54 - 0.61*0.68 = 0.63 +0.63 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34843,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 39%. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 54%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.39 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.54 +0.39*0.54 - 0.61*0.68 = 0.63 +0.63 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 39%. The probability of not pexu and rukz is 41%. The probability of pexu and rukz is 21%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.39 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.21 +0.21/0.39 - 0.41/0.61 = -0.14 +-0.14 < 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34848,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 43%. For those who are pexu, the probability of hwax is 92%. For those who are not pexu and are not hwax, the probability of rukz is 0%. For those who are not pexu and are hwax, the probability of rukz is 34%. For those who are pexu and are not hwax, the probability of rukz is 1%. For those who are pexu and are hwax, the probability of rukz is 33%. The overall probability of pexu is 17%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.92 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.01 +P(Y=1 | X=1, V3=1) = 0.33 +P(X=1) = 0.17 +(0.92 - 0.43)* (0.33 * 0.17) + (0.08 - 0.57) * (0.34 * 0.83) = 0.16 +0.16 > 0",frontdoor,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34850,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 0%. For those who are not pexu and are hwax, the probability of rukz is 34%. For those who are pexu and are not hwax, the probability of rukz is 1%. For those who are pexu and are hwax, the probability of rukz is 33%. For those who are not pexu, the probability of hwax is 43%. For those who are pexu, the probability of hwax is 92%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.01 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.92 +0.33 * (0.92 - 0.43) + 0.34 * (0.08 - 0.57) = 0.16 +0.16 > 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34851,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 0%. For those who are not pexu and are hwax, the probability of rukz is 34%. For those who are pexu and are not hwax, the probability of rukz is 1%. For those who are pexu and are hwax, the probability of rukz is 33%. For those who are not pexu, the probability of hwax is 43%. For those who are pexu, the probability of hwax is 92%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.01 +P(Y=1 | X=1, V3=1) = 0.33 +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.92 +0.33 * (0.92 - 0.43) + 0.34 * (0.08 - 0.57) = 0.16 +0.16 > 0",frontdoor,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of hwax is 43%. For those who are pexu, the probability of hwax is 92%. For those who are not pexu and are not hwax, the probability of rukz is 0%. For those who are not pexu and are hwax, the probability of rukz is 34%. For those who are pexu and are not hwax, the probability of rukz is 1%. For those who are pexu and are hwax, the probability of rukz is 33%. The overall probability of pexu is 17%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.43 +P(V3=1 | X=1) = 0.92 +P(Y=1 | X=0, V3=0) = 0.00 +P(Y=1 | X=0, V3=1) = 0.34 +P(Y=1 | X=1, V3=0) = 0.01 +P(Y=1 | X=1, V3=1) = 0.33 +P(X=1) = 0.17 +0.92 - 0.43 * (0.33 * 0.17 + 0.34 * 0.83)= 0.16 +0.16 > 0",frontdoor,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34854,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 17%. For those who are not pexu, the probability of rukz is 15%. For those who are pexu, the probability of rukz is 31%.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.15 +P(Y=1 | X=1) = 0.31 +0.17*0.31 - 0.83*0.15 = 0.17 +0.17 > 0",frontdoor,nonsense8,1,marginal,P(Y) +34856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 17%. The probability of not pexu and rukz is 12%. The probability of pexu and rukz is 5%.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.05 +0.05/0.17 - 0.12/0.83 = 0.16 +0.16 > 0",frontdoor,nonsense8,1,correlation,P(Y | X) +34859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 53%. For those who are hwax, the probability of rukz is 53%. For those who are not hwax, the probability of pexu is 29%. For those who are hwax, the probability of pexu is 64%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.53 +P(Y=1 | V2=1) = 0.53 +P(X=1 | V2=0) = 0.29 +P(X=1 | V2=1) = 0.64 +(0.53 - 0.53) / (0.64 - 0.29) = 0.00 +0.00 = 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 61%. For those who are not pexu, the probability of rukz is 66%. For those who are pexu, the probability of rukz is 48%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.48 +0.61*0.48 - 0.39*0.66 = 0.53 +0.53 > 0",IV,nonsense8,1,marginal,P(Y) +34863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 61%. For those who are not pexu, the probability of rukz is 66%. For those who are pexu, the probability of rukz is 48%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.66 +P(Y=1 | X=1) = 0.48 +0.61*0.48 - 0.39*0.66 = 0.53 +0.53 > 0",IV,nonsense8,1,marginal,P(Y) +34864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 61%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 29%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.29 +0.29/0.61 - 0.26/0.39 = -0.18 +-0.18 < 0",IV,nonsense8,1,correlation,P(Y | X) +34868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 30%. For those who are hwax, the probability of rukz is 34%. For those who are not hwax, the probability of pexu is 27%. For those who are hwax, the probability of pexu is 78%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.30 +P(Y=1 | V2=1) = 0.34 +P(X=1 | V2=0) = 0.27 +P(X=1 | V2=1) = 0.78 +(0.34 - 0.30) / (0.78 - 0.27) = 0.08 +0.08 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 30%. For those who are hwax, the probability of rukz is 34%. For those who are not hwax, the probability of pexu is 27%. For those who are hwax, the probability of pexu is 78%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.30 +P(Y=1 | V2=1) = 0.34 +P(X=1 | V2=0) = 0.27 +P(X=1 | V2=1) = 0.78 +(0.34 - 0.30) / (0.78 - 0.27) = 0.08 +0.08 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 50%. For those who are not pexu, the probability of rukz is 31%. For those who are pexu, the probability of rukz is 40%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.40 +0.50*0.40 - 0.50*0.31 = 0.32 +0.32 > 0",IV,nonsense8,1,marginal,P(Y) +34871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 50%. For those who are not pexu, the probability of rukz is 31%. For those who are pexu, the probability of rukz is 40%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.31 +P(Y=1 | X=1) = 0.40 +0.50*0.40 - 0.50*0.31 = 0.32 +0.32 > 0",IV,nonsense8,1,marginal,P(Y) +34873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 50%. The probability of not pexu and rukz is 16%. The probability of pexu and rukz is 20%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.50 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.20 +0.20/0.50 - 0.16/0.50 = 0.09 +0.09 > 0",IV,nonsense8,1,correlation,P(Y | X) +34875,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 40%. For those who are hwax, the probability of rukz is 39%. For those who are not hwax, the probability of pexu is 24%. For those who are hwax, the probability of pexu is 4%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.40 +P(Y=1 | V2=1) = 0.39 +P(X=1 | V2=0) = 0.24 +P(X=1 | V2=1) = 0.04 +(0.39 - 0.40) / (0.04 - 0.24) = 0.02 +0.02 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 10%. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 21%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.21 +0.10*0.21 - 0.90*0.37 = 0.39 +0.39 > 0",IV,nonsense8,1,marginal,P(Y) +34880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 10%. The probability of not pexu and rukz is 33%. The probability of pexu and rukz is 2%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.02 +0.02/0.10 - 0.33/0.90 = -0.15 +-0.15 < 0",IV,nonsense8,1,correlation,P(Y | X) +34881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 10%. The probability of not pexu and rukz is 33%. The probability of pexu and rukz is 2%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.02 +0.02/0.10 - 0.33/0.90 = -0.15 +-0.15 < 0",IV,nonsense8,1,correlation,P(Y | X) +34882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34884,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 60%. For those who are hwax, the probability of rukz is 61%. For those who are not hwax, the probability of pexu is 43%. For those who are hwax, the probability of pexu is 67%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.60 +P(Y=1 | V2=1) = 0.61 +P(X=1 | V2=0) = 0.43 +P(X=1 | V2=1) = 0.67 +(0.61 - 0.60) / (0.67 - 0.43) = 0.05 +0.05 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 66%. The probability of not pexu and rukz is 22%. The probability of pexu and rukz is 44%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.22 +P(Y=1, X=1=1) = 0.44 +0.44/0.66 - 0.22/0.34 = 0.01 +0.01 > 0",IV,nonsense8,1,correlation,P(Y | X) +34890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 9%. For those who are hwax, the probability of rukz is 40%. For those who are not hwax, the probability of pexu is 14%. For those who are hwax, the probability of pexu is 83%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.09 +P(Y=1 | V2=1) = 0.40 +P(X=1 | V2=0) = 0.14 +P(X=1 | V2=1) = 0.83 +(0.40 - 0.09) / (0.83 - 0.14) = 0.45 +0.45 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 53%. For those who are not pexu, the probability of rukz is 2%. For those who are pexu, the probability of rukz is 48%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.53 +P(Y=1 | X=0) = 0.02 +P(Y=1 | X=1) = 0.48 +0.53*0.48 - 0.47*0.02 = 0.26 +0.26 > 0",IV,nonsense8,1,marginal,P(Y) +34896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 53%. The probability of not pexu and rukz is 1%. The probability of pexu and rukz is 25%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.53 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.25 +0.25/0.53 - 0.01/0.47 = 0.45 +0.45 > 0",IV,nonsense8,1,correlation,P(Y | X) +34898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34899,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 63%. For those who are hwax, the probability of rukz is 64%. For those who are not hwax, the probability of pexu is 28%. For those who are hwax, the probability of pexu is 28%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.63 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.28 +(0.64 - 0.63) / (0.28 - 0.28) = -0.31 +-0.31 < 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 28%. The probability of not pexu and rukz is 60%. The probability of pexu and rukz is 15%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.60 +P(Y=1, X=1=1) = 0.15 +0.15/0.28 - 0.60/0.72 = -0.28 +-0.28 < 0",IV,nonsense8,1,correlation,P(Y | X) +34905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 28%. The probability of not pexu and rukz is 60%. The probability of pexu and rukz is 15%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.60 +P(Y=1, X=1=1) = 0.15 +0.15/0.28 - 0.60/0.72 = -0.28 +-0.28 < 0",IV,nonsense8,1,correlation,P(Y | X) +34909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 39%. For those who are hwax, the probability of rukz is 48%. For those who are not hwax, the probability of pexu is 63%. For those who are hwax, the probability of pexu is 90%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.39 +P(Y=1 | V2=1) = 0.48 +P(X=1 | V2=0) = 0.63 +P(X=1 | V2=1) = 0.90 +(0.48 - 0.39) / (0.90 - 0.63) = 0.31 +0.31 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 67%. For those who are not pexu, the probability of rukz is 20%. For those who are pexu, the probability of rukz is 47%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.47 +0.67*0.47 - 0.33*0.20 = 0.40 +0.40 > 0",IV,nonsense8,1,marginal,P(Y) +34911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 67%. For those who are not pexu, the probability of rukz is 20%. For those who are pexu, the probability of rukz is 47%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.47 +0.67*0.47 - 0.33*0.20 = 0.40 +0.40 > 0",IV,nonsense8,1,marginal,P(Y) +34912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 67%. The probability of not pexu and rukz is 7%. The probability of pexu and rukz is 32%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.32 +0.32/0.67 - 0.07/0.33 = 0.27 +0.27 > 0",IV,nonsense8,1,correlation,P(Y | X) +34914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 55%. For those who are hwax, the probability of rukz is 56%. For those who are not hwax, the probability of pexu is 29%. For those who are hwax, the probability of pexu is 37%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.55 +P(Y=1 | V2=1) = 0.56 +P(X=1 | V2=0) = 0.29 +P(X=1 | V2=1) = 0.37 +(0.56 - 0.55) / (0.37 - 0.29) = 0.09 +0.09 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 72%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.72 +0.35*0.72 - 0.65*0.57 = 0.56 +0.56 > 0",IV,nonsense8,1,marginal,P(Y) +34919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 72%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.72 +0.35*0.72 - 0.65*0.57 = 0.56 +0.56 > 0",IV,nonsense8,1,marginal,P(Y) +34920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. The probability of not pexu and rukz is 37%. The probability of pexu and rukz is 25%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.37 +P(Y=1, X=1=1) = 0.25 +0.25/0.35 - 0.37/0.65 = 0.15 +0.15 > 0",IV,nonsense8,1,correlation,P(Y | X) +34922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34923,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 64%. For those who are hwax, the probability of rukz is 64%. For those who are not hwax, the probability of pexu is 19%. For those who are hwax, the probability of pexu is 48%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.64 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.19 +P(X=1 | V2=1) = 0.48 +(0.64 - 0.64) / (0.48 - 0.19) = -0.01 +-0.01 < 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 64%. For those who are hwax, the probability of rukz is 64%. For those who are not hwax, the probability of pexu is 19%. For those who are hwax, the probability of pexu is 48%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.64 +P(Y=1 | V2=1) = 0.64 +P(X=1 | V2=0) = 0.19 +P(X=1 | V2=1) = 0.48 +(0.64 - 0.64) / (0.48 - 0.19) = -0.01 +-0.01 < 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. The probability of not pexu and rukz is 41%. The probability of pexu and rukz is 20%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.20 +0.20/0.35 - 0.41/0.65 = -0.07 +-0.07 < 0",IV,nonsense8,1,correlation,P(Y | X) +34930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. For those who are not hwax, the probability of rukz is 25%. For those who are hwax, the probability of rukz is 32%. For those who are not hwax, the probability of pexu is 18%. For those who are hwax, the probability of pexu is 71%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.25 +P(Y=1 | V2=1) = 0.32 +P(X=1 | V2=0) = 0.18 +P(X=1 | V2=1) = 0.71 +(0.32 - 0.25) / (0.71 - 0.18) = 0.13 +0.13 > 0",IV,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. For those who are not pexu, the probability of rukz is 23%. For those who are pexu, the probability of rukz is 29%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.29 +0.35*0.29 - 0.65*0.23 = 0.27 +0.27 > 0",IV,nonsense8,1,marginal,P(Y) +34935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. For those who are not pexu, the probability of rukz is 23%. For those who are pexu, the probability of rukz is 29%.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.29 +0.35*0.29 - 0.65*0.23 = 0.27 +0.27 > 0",IV,nonsense8,1,marginal,P(Y) +34937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 35%. The probability of not pexu and rukz is 15%. The probability of pexu and rukz is 10%.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.10 +0.10/0.35 - 0.15/0.65 = 0.06 +0.06 > 0",IV,nonsense8,1,correlation,P(Y | X) +34939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 46%. For those who are pexu, the probability of rukz is 15%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.15 +0.15 - 0.46 = -0.32 +-0.32 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 46%. For those who are pexu, the probability of rukz is 15%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.15 +0.15 - 0.46 = -0.32 +-0.32 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 40%. For those who are not pexu and are hwax, the probability of rukz is 50%. For those who are pexu and are not hwax, the probability of rukz is 59%. For those who are pexu and are hwax, the probability of rukz is 7%. For those who are not pexu and are not kraz, the probability of hwax is 31%. For those who are not pexu and are kraz, the probability of hwax is 57%. For those who are pexu and are not kraz, the probability of hwax is 76%. For those who are pexu and are kraz, the probability of hwax is 87%. The overall probability of kraz is 90%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.07 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.76 +P(V3=1 | X=1, V2=1) = 0.87 +P(V2=1) = 0.90 +0.90 * 0.50 * (0.87 - 0.76)+ 0.10 * 0.50 * (0.57 - 0.31)= 0.03 +0.03 > 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 40%. For those who are not pexu and are hwax, the probability of rukz is 50%. For those who are pexu and are not hwax, the probability of rukz is 59%. For those who are pexu and are hwax, the probability of rukz is 7%. For those who are not pexu and are not kraz, the probability of hwax is 31%. For those who are not pexu and are kraz, the probability of hwax is 57%. For those who are pexu and are not kraz, the probability of hwax is 76%. For those who are pexu and are kraz, the probability of hwax is 87%. The overall probability of kraz is 90%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.50 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.07 +P(V3=1 | X=0, V2=0) = 0.31 +P(V3=1 | X=0, V2=1) = 0.57 +P(V3=1 | X=1, V2=0) = 0.76 +P(V3=1 | X=1, V2=1) = 0.87 +P(V2=1) = 0.90 +0.90 * (0.07 - 0.59) * 0.57 + 0.10 * (0.50 - 0.40) * 0.76 = -0.14 +-0.14 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +34948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. For those who are not pexu, the probability of rukz is 46%. For those who are pexu, the probability of rukz is 15%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.15 +0.68*0.15 - 0.32*0.46 = 0.30 +0.30 > 0",arrowhead,nonsense8,1,marginal,P(Y) +34949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. For those who are not pexu, the probability of rukz is 46%. For those who are pexu, the probability of rukz is 15%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.15 +0.68*0.15 - 0.32*0.46 = 0.30 +0.30 > 0",arrowhead,nonsense8,1,marginal,P(Y) +34950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. The probability of not pexu and rukz is 15%. The probability of pexu and rukz is 10%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.10 +0.10/0.68 - 0.15/0.32 = -0.31 +-0.31 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +34951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 68%. The probability of not pexu and rukz is 15%. The probability of pexu and rukz is 10%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.68 +P(Y=1, X=0=1) = 0.15 +P(Y=1, X=1=1) = 0.10 +0.10/0.68 - 0.15/0.32 = -0.31 +-0.31 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +34952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 65%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.65 +0.65 - 0.69 = -0.04 +-0.04 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 65%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.65 +0.65 - 0.69 = -0.04 +-0.04 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 76%. For those who are not pexu and are hwax, the probability of rukz is 64%. For those who are pexu and are not hwax, the probability of rukz is 73%. For those who are pexu and are hwax, the probability of rukz is 36%. For those who are not pexu and are not kraz, the probability of hwax is 13%. For those who are not pexu and are kraz, the probability of hwax is 73%. For those who are pexu and are not kraz, the probability of hwax is 26%. For those who are pexu and are kraz, the probability of hwax is 23%. The overall probability of kraz is 94%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.36 +P(V3=1 | X=0, V2=0) = 0.13 +P(V3=1 | X=0, V2=1) = 0.73 +P(V3=1 | X=1, V2=0) = 0.26 +P(V3=1 | X=1, V2=1) = 0.23 +P(V2=1) = 0.94 +0.94 * 0.64 * (0.23 - 0.26)+ 0.06 * 0.64 * (0.73 - 0.13)= 0.09 +0.09 > 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 76%. For those who are not pexu and are hwax, the probability of rukz is 64%. For those who are pexu and are not hwax, the probability of rukz is 73%. For those who are pexu and are hwax, the probability of rukz is 36%. For those who are not pexu and are not kraz, the probability of hwax is 13%. For those who are not pexu and are kraz, the probability of hwax is 73%. For those who are pexu and are not kraz, the probability of hwax is 26%. For those who are pexu and are kraz, the probability of hwax is 23%. The overall probability of kraz is 94%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.64 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.36 +P(V3=1 | X=0, V2=0) = 0.13 +P(V3=1 | X=0, V2=1) = 0.73 +P(V3=1 | X=1, V2=0) = 0.26 +P(V3=1 | X=1, V2=1) = 0.23 +P(V2=1) = 0.94 +0.94 * 0.64 * (0.23 - 0.26)+ 0.06 * 0.64 * (0.73 - 0.13)= 0.09 +0.09 > 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 51%. The probability of not pexu and rukz is 33%. The probability of pexu and rukz is 33%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.33 +0.33/0.51 - 0.33/0.49 = -0.02 +-0.02 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +34966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 19%. For those who are pexu, the probability of rukz is 25%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.25 +0.25 - 0.19 = 0.06 +0.06 > 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 19%. For those who are pexu, the probability of rukz is 25%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.25 +0.25 - 0.19 = 0.06 +0.06 > 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 19%. For those who are pexu, the probability of rukz is 25%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.25 +0.25 - 0.19 = 0.06 +0.06 > 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 15%. For those who are not pexu and are hwax, the probability of rukz is 33%. For those who are pexu and are not hwax, the probability of rukz is 24%. For those who are pexu and are hwax, the probability of rukz is 24%. For those who are not pexu and are not kraz, the probability of hwax is 5%. For those who are not pexu and are kraz, the probability of hwax is 77%. For those who are pexu and are not kraz, the probability of hwax is 9%. For those who are pexu and are kraz, the probability of hwax is 7%. The overall probability of kraz is 45%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.05 +P(V3=1 | X=0, V2=1) = 0.77 +P(V3=1 | X=1, V2=0) = 0.09 +P(V3=1 | X=1, V2=1) = 0.07 +P(V2=1) = 0.45 +0.45 * 0.33 * (0.07 - 0.09)+ 0.55 * 0.33 * (0.77 - 0.05)= -0.06 +-0.06 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 15%. For those who are not pexu and are hwax, the probability of rukz is 33%. For those who are pexu and are not hwax, the probability of rukz is 24%. For those who are pexu and are hwax, the probability of rukz is 24%. For those who are not pexu and are not kraz, the probability of hwax is 5%. For those who are not pexu and are kraz, the probability of hwax is 77%. For those who are pexu and are not kraz, the probability of hwax is 9%. For those who are pexu and are kraz, the probability of hwax is 7%. The overall probability of kraz is 45%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.05 +P(V3=1 | X=0, V2=1) = 0.77 +P(V3=1 | X=1, V2=0) = 0.09 +P(V3=1 | X=1, V2=1) = 0.07 +P(V2=1) = 0.45 +0.45 * 0.33 * (0.07 - 0.09)+ 0.55 * 0.33 * (0.77 - 0.05)= -0.06 +-0.06 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +34974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 15%. For those who are not pexu and are hwax, the probability of rukz is 33%. For those who are pexu and are not hwax, the probability of rukz is 24%. For those who are pexu and are hwax, the probability of rukz is 24%. For those who are not pexu and are not kraz, the probability of hwax is 5%. For those who are not pexu and are kraz, the probability of hwax is 77%. For those who are pexu and are not kraz, the probability of hwax is 9%. For those who are pexu and are kraz, the probability of hwax is 7%. The overall probability of kraz is 45%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.15 +P(Y=1 | X=0, V3=1) = 0.33 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0, V2=0) = 0.05 +P(V3=1 | X=0, V2=1) = 0.77 +P(V3=1 | X=1, V2=0) = 0.09 +P(V3=1 | X=1, V2=1) = 0.07 +P(V2=1) = 0.45 +0.45 * (0.24 - 0.24) * 0.77 + 0.55 * (0.33 - 0.15) * 0.09 = 0.06 +0.06 > 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +34977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 5%. For those who are not pexu, the probability of rukz is 19%. For those who are pexu, the probability of rukz is 25%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.25 +0.05*0.25 - 0.95*0.19 = 0.19 +0.19 > 0",arrowhead,nonsense8,1,marginal,P(Y) +34979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 5%. The probability of not pexu and rukz is 21%. The probability of pexu and rukz is 1%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.05 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.01 +0.01/0.05 - 0.21/0.95 = 0.02 +0.02 > 0",arrowhead,nonsense8,1,correlation,P(Y | X) +34980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 75%. For those who are pexu, the probability of rukz is 68%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.68 +0.68 - 0.75 = -0.07 +-0.07 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 75%. For those who are pexu, the probability of rukz is 68%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.68 +0.68 - 0.75 = -0.07 +-0.07 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 75%. For those who are pexu, the probability of rukz is 68%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.68 +0.68 - 0.75 = -0.07 +-0.07 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 76%. For those who are not pexu and are hwax, the probability of rukz is 70%. For those who are pexu and are not hwax, the probability of rukz is 8%. For those who are pexu and are hwax, the probability of rukz is 78%. For those who are not pexu and are not kraz, the probability of hwax is 88%. For those who are not pexu and are kraz, the probability of hwax is 54%. For those who are pexu and are not kraz, the probability of hwax is 5%. For those who are pexu and are kraz, the probability of hwax is 96%. The overall probability of kraz is 84%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.08 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.88 +P(V3=1 | X=0, V2=1) = 0.54 +P(V3=1 | X=1, V2=0) = 0.05 +P(V3=1 | X=1, V2=1) = 0.96 +P(V2=1) = 0.84 +0.84 * (0.78 - 0.08) * 0.54 + 0.16 * (0.70 - 0.76) * 0.05 = -0.21 +-0.21 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +34992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 83%. The probability of not pexu and rukz is 12%. The probability of pexu and rukz is 55%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.55 +0.55/0.83 - 0.12/0.17 = -0.07 +-0.07 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +34993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 83%. The probability of not pexu and rukz is 12%. The probability of pexu and rukz is 55%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.55 +0.55/0.83 - 0.12/0.17 = -0.07 +-0.07 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +34994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +34996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 48%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.48 +0.48 - 0.57 = -0.09 +-0.09 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +34998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 48%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.48 +0.48 - 0.57 = -0.09 +-0.09 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +34999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 48%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.48 +0.48 - 0.57 = -0.09 +-0.09 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 75%. For those who are not pexu and are hwax, the probability of rukz is 21%. For those who are pexu and are not hwax, the probability of rukz is 24%. For those who are pexu and are hwax, the probability of rukz is 73%. For those who are not pexu and are not kraz, the probability of hwax is 18%. For those who are not pexu and are kraz, the probability of hwax is 84%. For those who are pexu and are not kraz, the probability of hwax is 38%. For those who are pexu and are kraz, the probability of hwax is 70%. The overall probability of kraz is 37%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.21 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.84 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.70 +P(V2=1) = 0.37 +0.37 * (0.73 - 0.24) * 0.84 + 0.63 * (0.21 - 0.75) * 0.38 = -0.13 +-0.13 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 75%. For those who are not pexu and are hwax, the probability of rukz is 21%. For those who are pexu and are not hwax, the probability of rukz is 24%. For those who are pexu and are hwax, the probability of rukz is 73%. For those who are not pexu and are not kraz, the probability of hwax is 18%. For those who are not pexu and are kraz, the probability of hwax is 84%. For those who are pexu and are not kraz, the probability of hwax is 38%. For those who are pexu and are kraz, the probability of hwax is 70%. The overall probability of kraz is 37%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.21 +P(Y=1 | X=1, V3=0) = 0.24 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.84 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.70 +P(V2=1) = 0.37 +0.37 * (0.73 - 0.24) * 0.84 + 0.63 * (0.21 - 0.75) * 0.38 = -0.13 +-0.13 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 14%. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 48%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.48 +0.14*0.48 - 0.86*0.57 = 0.55 +0.55 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 14%. For those who are not pexu, the probability of rukz is 57%. For those who are pexu, the probability of rukz is 48%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.48 +0.14*0.48 - 0.86*0.57 = 0.55 +0.55 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 14%. The probability of not pexu and rukz is 45%. The probability of pexu and rukz is 7%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.07 +0.07/0.14 - 0.45/0.86 = -0.04 +-0.04 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +35009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35012,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 73%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.73 +0.73 - 0.47 = 0.26 +0.26 > 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 73%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.73 +0.73 - 0.47 = 0.26 +0.26 > 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 9%. For those who are not pexu and are hwax, the probability of rukz is 87%. For those who are pexu and are not hwax, the probability of rukz is 72%. For those who are pexu and are hwax, the probability of rukz is 75%. For those who are not pexu and are not kraz, the probability of hwax is 4%. For those who are not pexu and are kraz, the probability of hwax is 68%. For those who are pexu and are not kraz, the probability of hwax is 31%. For those who are pexu and are kraz, the probability of hwax is 31%. The overall probability of kraz is 68%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.09 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0, V2=0) = 0.04 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.68 +0.68 * 0.87 * (0.31 - 0.31)+ 0.32 * 0.87 * (0.68 - 0.04)= -0.12 +-0.12 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 9%. For those who are not pexu and are hwax, the probability of rukz is 87%. For those who are pexu and are not hwax, the probability of rukz is 72%. For those who are pexu and are hwax, the probability of rukz is 75%. For those who are not pexu and are not kraz, the probability of hwax is 4%. For those who are not pexu and are kraz, the probability of hwax is 68%. For those who are pexu and are not kraz, the probability of hwax is 31%. For those who are pexu and are kraz, the probability of hwax is 31%. The overall probability of kraz is 68%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.09 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0, V2=0) = 0.04 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.68 +0.68 * 0.87 * (0.31 - 0.31)+ 0.32 * 0.87 * (0.68 - 0.04)= -0.12 +-0.12 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 9%. For those who are not pexu and are hwax, the probability of rukz is 87%. For those who are pexu and are not hwax, the probability of rukz is 72%. For those who are pexu and are hwax, the probability of rukz is 75%. For those who are not pexu and are not kraz, the probability of hwax is 4%. For those who are not pexu and are kraz, the probability of hwax is 68%. For those who are pexu and are not kraz, the probability of hwax is 31%. For those who are pexu and are kraz, the probability of hwax is 31%. The overall probability of kraz is 68%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.09 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.75 +P(V3=1 | X=0, V2=0) = 0.04 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.31 +P(V3=1 | X=1, V2=1) = 0.31 +P(V2=1) = 0.68 +0.68 * (0.75 - 0.72) * 0.68 + 0.32 * (0.87 - 0.09) * 0.31 = 0.26 +0.26 > 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 10%. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 73%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.73 +0.10*0.73 - 0.90*0.47 = 0.49 +0.49 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 10%. For those who are not pexu, the probability of rukz is 47%. For those who are pexu, the probability of rukz is 73%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.73 +0.10*0.73 - 0.90*0.47 = 0.49 +0.49 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 10%. The probability of not pexu and rukz is 41%. The probability of pexu and rukz is 7%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.10 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.07 +0.07/0.10 - 0.41/0.90 = 0.27 +0.27 > 0",arrowhead,nonsense8,1,correlation,P(Y | X) +35025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 48%. For those who are pexu, the probability of rukz is 25%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.25 +0.25 - 0.48 = -0.23 +-0.23 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 48%. For those who are pexu, the probability of rukz is 25%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.25 +0.25 - 0.48 = -0.23 +-0.23 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 48%. For those who are pexu, the probability of rukz is 25%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.25 +0.25 - 0.48 = -0.23 +-0.23 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 42%. For those who are not pexu and are hwax, the probability of rukz is 68%. For those who are pexu and are not hwax, the probability of rukz is 23%. For those who are pexu and are hwax, the probability of rukz is 29%. For those who are not pexu and are not kraz, the probability of hwax is 24%. For those who are not pexu and are kraz, the probability of hwax is 24%. For those who are pexu and are not kraz, the probability of hwax is 52%. For those who are pexu and are kraz, the probability of hwax is 60%. The overall probability of kraz is 67%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.29 +P(V3=1 | X=0, V2=0) = 0.24 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.60 +P(V2=1) = 0.67 +0.67 * (0.29 - 0.23) * 0.24 + 0.33 * (0.68 - 0.42) * 0.52 = -0.26 +-0.26 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 42%. For those who are not pexu and are hwax, the probability of rukz is 68%. For those who are pexu and are not hwax, the probability of rukz is 23%. For those who are pexu and are hwax, the probability of rukz is 29%. For those who are not pexu and are not kraz, the probability of hwax is 24%. For those who are not pexu and are kraz, the probability of hwax is 24%. For those who are pexu and are not kraz, the probability of hwax is 52%. For those who are pexu and are kraz, the probability of hwax is 60%. The overall probability of kraz is 67%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.23 +P(Y=1 | X=1, V3=1) = 0.29 +P(V3=1 | X=0, V2=0) = 0.24 +P(V3=1 | X=0, V2=1) = 0.24 +P(V3=1 | X=1, V2=0) = 0.52 +P(V3=1 | X=1, V2=1) = 0.60 +P(V2=1) = 0.67 +0.67 * (0.29 - 0.23) * 0.24 + 0.33 * (0.68 - 0.42) * 0.52 = -0.26 +-0.26 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 61%. For those who are pexu, the probability of rukz is 46%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.46 +0.46 - 0.61 = -0.15 +-0.15 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 61%. For those who are pexu, the probability of rukz is 46%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.46 +0.46 - 0.61 = -0.15 +-0.15 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 86%. For those who are not pexu and are hwax, the probability of rukz is 11%. For those who are pexu and are not hwax, the probability of rukz is 33%. For those who are pexu and are hwax, the probability of rukz is 55%. For those who are not pexu and are not kraz, the probability of hwax is 34%. For those who are not pexu and are kraz, the probability of hwax is 36%. For those who are pexu and are not kraz, the probability of hwax is 58%. For those who are pexu and are kraz, the probability of hwax is 82%. The overall probability of kraz is 8%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.11 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.34 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.08 +0.08 * 0.11 * (0.82 - 0.58)+ 0.92 * 0.11 * (0.36 - 0.34)= -0.20 +-0.20 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 86%. For those who are not pexu and are hwax, the probability of rukz is 11%. For those who are pexu and are not hwax, the probability of rukz is 33%. For those who are pexu and are hwax, the probability of rukz is 55%. For those who are not pexu and are not kraz, the probability of hwax is 34%. For those who are not pexu and are kraz, the probability of hwax is 36%. For those who are pexu and are not kraz, the probability of hwax is 58%. For those who are pexu and are kraz, the probability of hwax is 82%. The overall probability of kraz is 8%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.11 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.34 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.08 +0.08 * (0.55 - 0.33) * 0.36 + 0.92 * (0.11 - 0.86) * 0.58 = -0.21 +-0.21 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35045,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 86%. For those who are not pexu and are hwax, the probability of rukz is 11%. For those who are pexu and are not hwax, the probability of rukz is 33%. For those who are pexu and are hwax, the probability of rukz is 55%. For those who are not pexu and are not kraz, the probability of hwax is 34%. For those who are not pexu and are kraz, the probability of hwax is 36%. For those who are pexu and are not kraz, the probability of hwax is 58%. For those who are pexu and are kraz, the probability of hwax is 82%. The overall probability of kraz is 8%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.86 +P(Y=1 | X=0, V3=1) = 0.11 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.55 +P(V3=1 | X=0, V2=0) = 0.34 +P(V3=1 | X=0, V2=1) = 0.36 +P(V3=1 | X=1, V2=0) = 0.58 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 0.08 +0.08 * (0.55 - 0.33) * 0.36 + 0.92 * (0.11 - 0.86) * 0.58 = -0.21 +-0.21 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 25%. For those who are not pexu, the probability of rukz is 61%. For those who are pexu, the probability of rukz is 46%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.46 +0.25*0.46 - 0.75*0.61 = 0.52 +0.52 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 25%. For those who are not pexu, the probability of rukz is 61%. For those who are pexu, the probability of rukz is 46%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.46 +0.25*0.46 - 0.75*0.61 = 0.52 +0.52 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 25%. The probability of not pexu and rukz is 46%. The probability of pexu and rukz is 12%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.12 +0.12/0.25 - 0.46/0.75 = -0.14 +-0.14 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +35049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 25%. The probability of not pexu and rukz is 46%. The probability of pexu and rukz is 12%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.12 +0.12/0.25 - 0.46/0.75 = -0.14 +-0.14 < 0",arrowhead,nonsense8,1,correlation,P(Y | X) +35050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 32%. For those who are pexu, the probability of rukz is 60%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.60 +0.60 - 0.32 = 0.28 +0.28 > 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 1%. For those who are not pexu and are hwax, the probability of rukz is 87%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 15%. For those who are not pexu and are not kraz, the probability of hwax is 29%. For those who are not pexu and are kraz, the probability of hwax is 68%. For those who are pexu and are not kraz, the probability of hwax is 27%. For those who are pexu and are kraz, the probability of hwax is 78%. The overall probability of kraz is 11%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.27 +P(V3=1 | X=1, V2=1) = 0.78 +P(V2=1) = 0.11 +0.11 * 0.87 * (0.78 - 0.27)+ 0.89 * 0.87 * (0.68 - 0.29)= -0.01 +-0.01 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 1%. For those who are not pexu and are hwax, the probability of rukz is 87%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 15%. For those who are not pexu and are not kraz, the probability of hwax is 29%. For those who are not pexu and are kraz, the probability of hwax is 68%. For those who are pexu and are not kraz, the probability of hwax is 27%. For those who are pexu and are kraz, the probability of hwax is 78%. The overall probability of kraz is 11%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.27 +P(V3=1 | X=1, V2=1) = 0.78 +P(V2=1) = 0.11 +0.11 * 0.87 * (0.78 - 0.27)+ 0.89 * 0.87 * (0.68 - 0.29)= -0.01 +-0.01 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35058,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 1%. For those who are not pexu and are hwax, the probability of rukz is 87%. For those who are pexu and are not hwax, the probability of rukz is 87%. For those who are pexu and are hwax, the probability of rukz is 15%. For those who are not pexu and are not kraz, the probability of hwax is 29%. For those who are not pexu and are kraz, the probability of hwax is 68%. For those who are pexu and are not kraz, the probability of hwax is 27%. For those who are pexu and are kraz, the probability of hwax is 78%. The overall probability of kraz is 11%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.01 +P(Y=1 | X=0, V3=1) = 0.87 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.15 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.68 +P(V3=1 | X=1, V2=0) = 0.27 +P(V3=1 | X=1, V2=1) = 0.78 +P(V2=1) = 0.11 +0.11 * (0.15 - 0.87) * 0.68 + 0.89 * (0.87 - 0.01) * 0.27 = 0.27 +0.27 > 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 95%. For those who are not pexu, the probability of rukz is 32%. For those who are pexu, the probability of rukz is 60%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.60 +0.95*0.60 - 0.05*0.32 = 0.59 +0.59 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 95%. The probability of not pexu and rukz is 1%. The probability of pexu and rukz is 60%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.60 +0.60/0.95 - 0.01/0.05 = 0.34 +0.34 > 0",arrowhead,nonsense8,1,correlation,P(Y | X) +35063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 95%. The probability of not pexu and rukz is 1%. The probability of pexu and rukz is 60%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.60 +0.60/0.95 - 0.01/0.05 = 0.34 +0.34 > 0",arrowhead,nonsense8,1,correlation,P(Y | X) +35065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 73%. For those who are pexu, the probability of rukz is 60%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.60 +0.60 - 0.73 = -0.13 +-0.13 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 73%. For those who are pexu, the probability of rukz is 60%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.60 +0.60 - 0.73 = -0.13 +-0.13 < 0",arrowhead,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu, the probability of rukz is 73%. For those who are pexu, the probability of rukz is 60%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.60 +0.60 - 0.73 = -0.13 +-0.13 < 0",arrowhead,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35070,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 81%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 82%. For those who are pexu and are hwax, the probability of rukz is 46%. For those who are not pexu and are not kraz, the probability of hwax is 43%. For those who are not pexu and are kraz, the probability of hwax is 2%. For those who are pexu and are not kraz, the probability of hwax is 32%. For those who are pexu and are kraz, the probability of hwax is 99%. The overall probability of kraz is 15%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.02 +P(V3=1 | X=1, V2=0) = 0.32 +P(V3=1 | X=1, V2=1) = 0.99 +P(V2=1) = 0.15 +0.15 * 0.60 * (0.99 - 0.32)+ 0.85 * 0.60 * (0.02 - 0.43)= -0.01 +-0.01 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 81%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 82%. For those who are pexu and are hwax, the probability of rukz is 46%. For those who are not pexu and are not kraz, the probability of hwax is 43%. For those who are not pexu and are kraz, the probability of hwax is 2%. For those who are pexu and are not kraz, the probability of hwax is 32%. For those who are pexu and are kraz, the probability of hwax is 99%. The overall probability of kraz is 15%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.02 +P(V3=1 | X=1, V2=0) = 0.32 +P(V3=1 | X=1, V2=1) = 0.99 +P(V2=1) = 0.15 +0.15 * 0.60 * (0.99 - 0.32)+ 0.85 * 0.60 * (0.02 - 0.43)= -0.01 +-0.01 < 0",arrowhead,nonsense8,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35073,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. For those who are not pexu and are not hwax, the probability of rukz is 81%. For those who are not pexu and are hwax, the probability of rukz is 60%. For those who are pexu and are not hwax, the probability of rukz is 82%. For those who are pexu and are hwax, the probability of rukz is 46%. For those who are not pexu and are not kraz, the probability of hwax is 43%. For those who are not pexu and are kraz, the probability of hwax is 2%. For those who are pexu and are not kraz, the probability of hwax is 32%. For those who are pexu and are kraz, the probability of hwax is 99%. The overall probability of kraz is 15%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.81 +P(Y=1 | X=0, V3=1) = 0.60 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.46 +P(V3=1 | X=0, V2=0) = 0.43 +P(V3=1 | X=0, V2=1) = 0.02 +P(V3=1 | X=1, V2=0) = 0.32 +P(V3=1 | X=1, V2=1) = 0.99 +P(V2=1) = 0.15 +0.15 * (0.46 - 0.82) * 0.02 + 0.85 * (0.60 - 0.81) * 0.32 = -0.11 +-0.11 < 0",arrowhead,nonsense8,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +35074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 90%. For those who are not pexu, the probability of rukz is 73%. For those who are pexu, the probability of rukz is 60%.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.60 +0.90*0.60 - 0.10*0.73 = 0.62 +0.62 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. The overall probability of pexu is 90%. For those who are not pexu, the probability of rukz is 73%. For those who are pexu, the probability of rukz is 60%.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.90 +P(Y=1 | X=0) = 0.73 +P(Y=1 | X=1) = 0.60 +0.90*0.60 - 0.10*0.73 = 0.62 +0.62 > 0",arrowhead,nonsense8,1,marginal,P(Y) +35078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 40%. For those who are pexu, the probability of rukz is 47%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.47 +0.47 - 0.40 = 0.07 +0.07 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 40%. For those who are pexu, the probability of rukz is 47%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.47 +0.47 - 0.40 = 0.07 +0.07 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35085,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 40%. For those who are pexu, the probability of rukz is 47%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.47 +0.47 - 0.40 = 0.07 +0.07 > 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 79%. For those who are not pexu, the probability of rukz is 40%. For those who are pexu, the probability of rukz is 47%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.40 +P(Y=1 | X=1) = 0.47 +0.79*0.47 - 0.21*0.40 = 0.45 +0.45 > 0",diamond,nonsense8,1,marginal,P(Y) +35088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 79%. The probability of not pexu and rukz is 8%. The probability of pexu and rukz is 37%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.79 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.37 +0.37/0.79 - 0.08/0.21 = 0.07 +0.07 > 0",diamond,nonsense8,1,correlation,P(Y | X) +35090,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35093,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.43 +0.43 - 0.51 = -0.08 +-0.08 < 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.43 +0.43 - 0.51 = -0.08 +-0.08 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.43 +0.43 - 0.51 = -0.08 +-0.08 < 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 51%. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 43%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.43 +0.51*0.43 - 0.49*0.51 = 0.41 +0.41 > 0",diamond,nonsense8,1,marginal,P(Y) +35100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 51%. The probability of not pexu and rukz is 25%. The probability of pexu and rukz is 22%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.22 +0.22/0.51 - 0.25/0.49 = -0.08 +-0.08 < 0",diamond,nonsense8,1,correlation,P(Y | X) +35101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 51%. The probability of not pexu and rukz is 25%. The probability of pexu and rukz is 22%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.22 +0.22/0.51 - 0.25/0.49 = -0.08 +-0.08 < 0",diamond,nonsense8,1,correlation,P(Y | X) +35104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.49 - 0.68 = -0.18 +-0.18 < 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.49 - 0.68 = -0.18 +-0.18 < 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.49 - 0.68 = -0.18 +-0.18 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.49 - 0.68 = -0.18 +-0.18 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.49 - 0.68 = -0.18 +-0.18 < 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 5%. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.05*0.49 - 0.95*0.68 = 0.67 +0.67 > 0",diamond,nonsense8,1,marginal,P(Y) +35111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 5%. For those who are not pexu, the probability of rukz is 68%. For those who are pexu, the probability of rukz is 49%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.05 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.49 +0.05*0.49 - 0.95*0.68 = 0.67 +0.67 > 0",diamond,nonsense8,1,marginal,P(Y) +35114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 39%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.39 +0.39 - 0.29 = 0.09 +0.09 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 39%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.39 +0.39 - 0.29 = 0.09 +0.09 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 39%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.39 +0.39 - 0.29 = 0.09 +0.09 > 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35120,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 39%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.39 +0.39 - 0.29 = 0.09 +0.09 > 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 11%. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 39%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.39 +0.11*0.39 - 0.89*0.29 = 0.30 +0.30 > 0",diamond,nonsense8,1,marginal,P(Y) +35123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 11%. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 39%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.11 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.39 +0.11*0.39 - 0.89*0.29 = 0.30 +0.30 > 0",diamond,nonsense8,1,marginal,P(Y) +35124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 11%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 4%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.04 +0.04/0.11 - 0.26/0.89 = 0.09 +0.09 > 0",diamond,nonsense8,1,correlation,P(Y | X) +35125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 11%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 4%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.04 +0.04/0.11 - 0.26/0.89 = 0.09 +0.09 > 0",diamond,nonsense8,1,correlation,P(Y | X) +35126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35128,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 56%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.56 +0.56 - 0.74 = -0.18 +-0.18 < 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 56%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.56 +0.56 - 0.74 = -0.18 +-0.18 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35131,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 56%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.56 +0.56 - 0.74 = -0.18 +-0.18 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 72%. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 56%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.56 +0.72*0.56 - 0.28*0.74 = 0.62 +0.62 > 0",diamond,nonsense8,1,marginal,P(Y) +35136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 72%. The probability of not pexu and rukz is 21%. The probability of pexu and rukz is 41%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.41 +0.41/0.72 - 0.21/0.28 = -0.18 +-0.18 < 0",diamond,nonsense8,1,correlation,P(Y | X) +35145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 38%. For those who are pexu, the probability of rukz is 33%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.33 +0.33 - 0.38 = -0.05 +-0.05 < 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 67%. The probability of not pexu and rukz is 13%. The probability of pexu and rukz is 22%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.22 +0.22/0.67 - 0.13/0.33 = -0.05 +-0.05 < 0",diamond,nonsense8,1,correlation,P(Y | X) +35149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 67%. The probability of not pexu and rukz is 13%. The probability of pexu and rukz is 22%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.22 +0.22/0.67 - 0.13/0.33 = -0.05 +-0.05 < 0",diamond,nonsense8,1,correlation,P(Y | X) +35151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 66%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.66 +0.66 - 0.74 = -0.08 +-0.08 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 66%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.66 +0.66 - 0.74 = -0.08 +-0.08 < 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35156,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 66%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.66 +0.66 - 0.74 = -0.08 +-0.08 < 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 66%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.66 +0.66 - 0.74 = -0.08 +-0.08 < 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 2%. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 66%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.66 +0.02*0.66 - 0.98*0.74 = 0.73 +0.73 > 0",diamond,nonsense8,1,marginal,P(Y) +35159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 2%. For those who are not pexu, the probability of rukz is 74%. For those who are pexu, the probability of rukz is 66%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.66 +0.02*0.66 - 0.98*0.74 = 0.73 +0.73 > 0",diamond,nonsense8,1,marginal,P(Y) +35161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 2%. The probability of not pexu and rukz is 72%. The probability of pexu and rukz is 1%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.02 +P(Y=1, X=0=1) = 0.72 +P(Y=1, X=1=1) = 0.01 +0.01/0.02 - 0.72/0.98 = -0.08 +-0.08 < 0",diamond,nonsense8,1,correlation,P(Y | X) +35162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.42 - 0.37 = 0.06 +0.06 > 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 50%. For those who are not pexu, the probability of rukz is 37%. For those who are pexu, the probability of rukz is 42%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.50 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.42 +0.50*0.42 - 0.50*0.37 = 0.40 +0.40 > 0",diamond,nonsense8,1,marginal,P(Y) +35175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.53 - 0.44 = 0.08 +0.08 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.53 - 0.44 = 0.08 +0.08 > 0",diamond,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.53 - 0.44 = 0.08 +0.08 > 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.53 - 0.44 = 0.08 +0.08 > 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.53 - 0.44 = 0.08 +0.08 > 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 41%. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.41*0.53 - 0.59*0.44 = 0.48 +0.48 > 0",diamond,nonsense8,1,marginal,P(Y) +35183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 41%. For those who are not pexu, the probability of rukz is 44%. For those who are pexu, the probability of rukz is 53%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.44 +P(Y=1 | X=1) = 0.53 +0.41*0.53 - 0.59*0.44 = 0.48 +0.48 > 0",diamond,nonsense8,1,marginal,P(Y) +35184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 41%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 21%.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.21 +0.21/0.41 - 0.26/0.59 = 0.08 +0.08 > 0",diamond,nonsense8,1,correlation,P(Y | X) +35185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 41%. The probability of not pexu and rukz is 26%. The probability of pexu and rukz is 21%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.21 +0.21/0.41 - 0.26/0.59 = 0.08 +0.08 > 0",diamond,nonsense8,1,correlation,P(Y | X) +35186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 48%. For those who are pexu, the probability of rukz is 48%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.48 +0.48 - 0.48 = -0.00 +0.00 = 0",diamond,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu, the probability of rukz is 48%. For those who are pexu, the probability of rukz is 48%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.48 +0.48 - 0.48 = -0.00 +0.00 = 0",diamond,nonsense8,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +35196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 40%. The probability of not pexu and rukz is 29%. The probability of pexu and rukz is 19%.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.40 +P(Y=1, X=0=1) = 0.29 +P(Y=1, X=1=1) = 0.19 +0.19/0.40 - 0.29/0.60 = -0.00 +0.00 = 0",diamond,nonsense8,1,correlation,P(Y | X) +35198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 17%. For those who are not pexu and are kraz, the probability of rukz is 46%. For those who are pexu and are not kraz, the probability of rukz is 71%. For those who are pexu and are kraz, the probability of rukz is 6%. For those who are not pexu, the probability of kraz is 54%. For those who are pexu, the probability of kraz is 74%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.17 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.71 +P(Y=1 | X=1, V3=1) = 0.06 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.74 +0.74 * (0.06 - 0.71) + 0.54 * (0.46 - 0.17) = -0.15 +-0.15 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35204,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 65%. For those who are not pexu, the probability of rukz is 33%. For those who are pexu, the probability of rukz is 23%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.65*0.23 - 0.35*0.33 = 0.31 +0.31 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35205,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 65%. For those who are not pexu, the probability of rukz is 33%. For those who are pexu, the probability of rukz is 23%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.33 +P(Y=1 | X=1) = 0.23 +0.65*0.23 - 0.35*0.33 = 0.31 +0.31 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 65%. The probability of not pexu and rukz is 11%. The probability of pexu and rukz is 15%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.15 +0.15/0.65 - 0.11/0.35 = -0.09 +-0.09 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 65%. The probability of not pexu and rukz is 11%. The probability of pexu and rukz is 15%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.15 +0.15/0.65 - 0.11/0.35 = -0.09 +-0.09 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 28%. For those who are not hwax and are pexu, the probability of rukz is 98%. For those who are hwax and are not pexu, the probability of rukz is 64%. For those who are hwax and are pexu, the probability of rukz is 92%. The overall probability of hwax is 31%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.28 +P(Y=1 | V1=0, X=1) = 0.98 +P(Y=1 | V1=1, X=0) = 0.64 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.31 +0.69 * (0.98 - 0.28) 0.31 * (0.92 - 0.64) = 0.57 +0.57 > 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 28%. For those who are not hwax and are pexu, the probability of rukz is 98%. For those who are hwax and are not pexu, the probability of rukz is 64%. For those who are hwax and are pexu, the probability of rukz is 92%. The overall probability of hwax is 31%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.28 +P(Y=1 | V1=0, X=1) = 0.98 +P(Y=1 | V1=1, X=0) = 0.64 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.31 +0.69 * (0.98 - 0.28) 0.31 * (0.92 - 0.64) = 0.57 +0.57 > 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 14%. For those who are not pexu and are kraz, the probability of rukz is 74%. For those who are pexu and are not kraz, the probability of rukz is 100%. For those who are pexu and are kraz, the probability of rukz is 91%. For those who are not pexu, the probability of kraz is 68%. For those who are pexu, the probability of kraz is 26%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 1.00 +P(Y=1 | X=1, V3=1) = 0.91 +P(V3=1 | X=0) = 0.68 +P(V3=1 | X=1) = 0.26 +0.26 * (0.91 - 1.00) + 0.68 * (0.74 - 0.14) = 0.68 +0.68 > 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 64%. For those who are not pexu, the probability of rukz is 55%. For those who are pexu, the probability of rukz is 98%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.98 +0.64*0.98 - 0.36*0.55 = 0.75 +0.75 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 64%. The probability of not pexu and rukz is 20%. The probability of pexu and rukz is 62%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.62 +0.62/0.64 - 0.20/0.36 = 0.43 +0.43 > 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35219,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 74%. For those who are not hwax and are pexu, the probability of rukz is 21%. For those who are hwax and are not pexu, the probability of rukz is 31%. For those who are hwax and are pexu, the probability of rukz is 65%. The overall probability of hwax is 57%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.74 +P(Y=1 | V1=0, X=1) = 0.21 +P(Y=1 | V1=1, X=0) = 0.31 +P(Y=1 | V1=1, X=1) = 0.65 +P(V1=1) = 0.57 +0.43 * (0.21 - 0.74) 0.57 * (0.65 - 0.31) = -0.04 +-0.04 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 10%. For those who are not pexu and are kraz, the probability of rukz is 94%. For those who are pexu and are not kraz, the probability of rukz is 85%. For those who are pexu and are kraz, the probability of rukz is 1%. For those who are not pexu, the probability of kraz is 45%. For those who are pexu, the probability of kraz is 48%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.94 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.01 +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.48 +0.48 * (0.01 - 0.85) + 0.45 * (0.94 - 0.10) = -0.05 +-0.05 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 10%. For those who are not pexu and are kraz, the probability of rukz is 94%. For those who are pexu and are not kraz, the probability of rukz is 85%. For those who are pexu and are kraz, the probability of rukz is 1%. For those who are not pexu, the probability of kraz is 45%. For those who are pexu, the probability of kraz is 48%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.10 +P(Y=1 | X=0, V3=1) = 0.94 +P(Y=1 | X=1, V3=0) = 0.85 +P(Y=1 | X=1, V3=1) = 0.01 +P(V3=1 | X=0) = 0.45 +P(V3=1 | X=1) = 0.48 +0.48 * (0.01 - 0.85) + 0.45 * (0.94 - 0.10) = -0.05 +-0.05 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 62%. The probability of not pexu and rukz is 18%. The probability of pexu and rukz is 28%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.28 +0.28/0.62 - 0.18/0.38 = -0.03 +-0.03 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 62%. The probability of not pexu and rukz is 18%. The probability of pexu and rukz is 28%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.28 +0.28/0.62 - 0.18/0.38 = -0.03 +-0.03 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 42%. For those who are not hwax and are pexu, the probability of rukz is 43%. For those who are hwax and are not pexu, the probability of rukz is 45%. For those who are hwax and are pexu, the probability of rukz is 29%. The overall probability of hwax is 12%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.42 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.45 +P(Y=1 | V1=1, X=1) = 0.29 +P(V1=1) = 0.12 +0.88 * (0.43 - 0.42) 0.12 * (0.29 - 0.45) = -0.01 +-0.01 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 42%. For those who are not hwax and are pexu, the probability of rukz is 43%. For those who are hwax and are not pexu, the probability of rukz is 45%. For those who are hwax and are pexu, the probability of rukz is 29%. The overall probability of hwax is 12%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.42 +P(Y=1 | V1=0, X=1) = 0.43 +P(Y=1 | V1=1, X=0) = 0.45 +P(Y=1 | V1=1, X=1) = 0.29 +P(V1=1) = 0.12 +0.88 * (0.43 - 0.42) 0.12 * (0.29 - 0.45) = -0.01 +-0.01 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 41%. For those who are not pexu and are kraz, the probability of rukz is 46%. For those who are pexu and are not kraz, the probability of rukz is 44%. For those who are pexu and are kraz, the probability of rukz is 26%. For those who are not pexu, the probability of kraz is 22%. For those who are pexu, the probability of kraz is 11%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.41 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.44 +P(Y=1 | X=1, V3=1) = 0.26 +P(V3=1 | X=0) = 0.22 +P(V3=1 | X=1) = 0.11 +0.11 * (0.26 - 0.44) + 0.22 * (0.46 - 0.41) = -0.00 +0.00 = 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35234,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 59%. For those who are not pexu, the probability of rukz is 42%. For those who are pexu, the probability of rukz is 42%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.42 +0.59*0.42 - 0.41*0.42 = 0.42 +0.42 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 59%. For those who are not pexu, the probability of rukz is 42%. For those who are pexu, the probability of rukz is 42%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.42 +0.59*0.42 - 0.41*0.42 = 0.42 +0.42 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 59%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 25%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.25 +0.25/0.59 - 0.17/0.41 = -0.00 +0.00 = 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 59%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 25%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.59 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.25 +0.25/0.59 - 0.17/0.41 = -0.00 +0.00 = 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35238,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 73%. For those who are not hwax and are pexu, the probability of rukz is 75%. For those who are hwax and are not pexu, the probability of rukz is 69%. For those who are hwax and are pexu, the probability of rukz is 66%. The overall probability of hwax is 44%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.73 +P(Y=1 | V1=0, X=1) = 0.75 +P(Y=1 | V1=1, X=0) = 0.69 +P(Y=1 | V1=1, X=1) = 0.66 +P(V1=1) = 0.44 +0.56 * (0.75 - 0.73) 0.44 * (0.66 - 0.69) = -0.00 +0.00 = 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 76%. For those who are not pexu and are kraz, the probability of rukz is 57%. For those who are pexu and are not kraz, the probability of rukz is 82%. For those who are pexu and are kraz, the probability of rukz is 39%. For those who are not pexu, the probability of kraz is 36%. For those who are pexu, the probability of kraz is 20%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0) = 0.36 +P(V3=1 | X=1) = 0.20 +0.20 * (0.39 - 0.82) + 0.36 * (0.57 - 0.76) = 0.01 +0.01 > 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35243,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 76%. For those who are not pexu and are kraz, the probability of rukz is 57%. For those who are pexu and are not kraz, the probability of rukz is 82%. For those who are pexu and are kraz, the probability of rukz is 39%. For those who are not pexu, the probability of kraz is 36%. For those who are pexu, the probability of kraz is 20%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.57 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.39 +P(V3=1 | X=0) = 0.36 +P(V3=1 | X=1) = 0.20 +0.20 * (0.39 - 0.82) + 0.36 * (0.57 - 0.76) = 0.01 +0.01 > 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 66%. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 73%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.73 +0.66*0.73 - 0.34*0.69 = 0.71 +0.71 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 66%. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 73%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.73 +0.66*0.73 - 0.34*0.69 = 0.71 +0.71 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35250,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 53%. For those who are not hwax and are pexu, the probability of rukz is 85%. For those who are hwax and are not pexu, the probability of rukz is 54%. For those who are hwax and are pexu, the probability of rukz is 82%. The overall probability of hwax is 67%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.85 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.82 +P(V1=1) = 0.67 +0.33 * (0.85 - 0.53) 0.67 * (0.82 - 0.54) = 0.29 +0.29 > 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 53%. For those who are not hwax and are pexu, the probability of rukz is 85%. For those who are hwax and are not pexu, the probability of rukz is 54%. For those who are hwax and are pexu, the probability of rukz is 82%. The overall probability of hwax is 67%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.53 +P(Y=1 | V1=0, X=1) = 0.85 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.82 +P(V1=1) = 0.67 +0.33 * (0.85 - 0.53) 0.67 * (0.82 - 0.54) = 0.29 +0.29 > 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 61%. For those who are not pexu and are kraz, the probability of rukz is 52%. For those who are pexu and are not kraz, the probability of rukz is 49%. For those who are pexu and are kraz, the probability of rukz is 89%. For those who are not pexu, the probability of kraz is 82%. For those who are pexu, the probability of kraz is 85%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.61 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.89 +P(V3=1 | X=0) = 0.82 +P(V3=1 | X=1) = 0.85 +0.85 * (0.89 - 0.49) + 0.82 * (0.52 - 0.61) = 0.30 +0.30 > 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35254,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 69%. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 83%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.83 +0.69*0.83 - 0.31*0.54 = 0.74 +0.74 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 69%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 57%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.57 +0.57/0.69 - 0.17/0.31 = 0.29 +0.29 > 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 74%. For those who are not pexu and are kraz, the probability of rukz is 70%. For those who are pexu and are not kraz, the probability of rukz is 28%. For those who are pexu and are kraz, the probability of rukz is 74%. For those who are not pexu, the probability of kraz is 94%. For those who are pexu, the probability of kraz is 65%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.70 +P(Y=1 | X=1, V3=0) = 0.28 +P(Y=1 | X=1, V3=1) = 0.74 +P(V3=1 | X=0) = 0.94 +P(V3=1 | X=1) = 0.65 +0.65 * (0.74 - 0.28) + 0.94 * (0.70 - 0.74) = -0.14 +-0.14 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 82%. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 58%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.58 +0.82*0.58 - 0.18*0.70 = 0.62 +0.62 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 82%. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 58%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.58 +0.82*0.58 - 0.18*0.70 = 0.62 +0.62 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 82%. The probability of not pexu and rukz is 13%. The probability of pexu and rukz is 47%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.47 +0.47/0.82 - 0.13/0.18 = -0.12 +-0.12 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 82%. The probability of not pexu and rukz is 13%. The probability of pexu and rukz is 47%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.47 +0.47/0.82 - 0.13/0.18 = -0.12 +-0.12 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 43%. For those who are not pexu, the probability of rukz is 60%. For those who are pexu, the probability of rukz is 67%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.67 +0.43*0.67 - 0.57*0.60 = 0.64 +0.64 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 43%. The probability of not pexu and rukz is 34%. The probability of pexu and rukz is 29%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.29 +0.29/0.43 - 0.34/0.57 = 0.07 +0.07 > 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to kraz.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 83%. For those who are not hwax and are pexu, the probability of rukz is 25%. For those who are hwax and are not pexu, the probability of rukz is 82%. For those who are hwax and are pexu, the probability of rukz is 25%. The overall probability of hwax is 48%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.83 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.25 +P(V1=1) = 0.48 +0.52 * (0.25 - 0.83) 0.48 * (0.25 - 0.82) = -0.57 +-0.57 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 83%. For those who are not hwax and are pexu, the probability of rukz is 25%. For those who are hwax and are not pexu, the probability of rukz is 82%. For those who are hwax and are pexu, the probability of rukz is 25%. The overall probability of hwax is 48%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.83 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.82 +P(Y=1 | V1=1, X=1) = 0.25 +P(V1=1) = 0.48 +0.52 * (0.25 - 0.83) 0.48 * (0.25 - 0.82) = -0.57 +-0.57 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 84%. For those who are not pexu and are kraz, the probability of rukz is 71%. For those who are pexu and are not kraz, the probability of rukz is 27%. For those who are pexu and are kraz, the probability of rukz is 11%. For those who are not pexu, the probability of kraz is 11%. For those who are pexu, the probability of kraz is 13%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.84 +P(Y=1 | X=0, V3=1) = 0.71 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.11 +P(V3=1 | X=0) = 0.11 +P(V3=1 | X=1) = 0.13 +0.13 * (0.11 - 0.27) + 0.11 * (0.71 - 0.84) = -0.57 +-0.57 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 30%. The probability of not pexu and rukz is 58%. The probability of pexu and rukz is 7%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.30 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.07 +0.07/0.30 - 0.58/0.70 = -0.58 +-0.58 < 0",diamondcut,nonsense8,1,correlation,P(Y | X) +35290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 63%. For those who are not hwax and are pexu, the probability of rukz is 25%. For those who are hwax and are not pexu, the probability of rukz is 54%. For those who are hwax and are pexu, the probability of rukz is 37%. The overall probability of hwax is 96%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.37 +P(V1=1) = 0.96 +0.04 * (0.25 - 0.63) 0.96 * (0.37 - 0.54) = -0.17 +-0.17 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not hwax and are not pexu, the probability of rukz is 63%. For those who are not hwax and are pexu, the probability of rukz is 25%. For those who are hwax and are not pexu, the probability of rukz is 54%. For those who are hwax and are pexu, the probability of rukz is 37%. The overall probability of hwax is 96%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.25 +P(Y=1 | V1=1, X=0) = 0.54 +P(Y=1 | V1=1, X=1) = 0.37 +P(V1=1) = 0.96 +0.04 * (0.25 - 0.63) 0.96 * (0.37 - 0.54) = -0.17 +-0.17 < 0",diamondcut,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 25%. For those who are not pexu and are kraz, the probability of rukz is 65%. For those who are pexu and are not kraz, the probability of rukz is 73%. For those who are pexu and are kraz, the probability of rukz is 24%. For those who are not pexu, the probability of kraz is 73%. For those who are pexu, the probability of kraz is 74%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.25 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0) = 0.73 +P(V3=1 | X=1) = 0.74 +0.74 * (0.24 - 0.73) + 0.73 * (0.65 - 0.25) = -0.18 +-0.18 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. For those who are not pexu and are not kraz, the probability of rukz is 25%. For those who are not pexu and are kraz, the probability of rukz is 65%. For those who are pexu and are not kraz, the probability of rukz is 73%. For those who are pexu and are kraz, the probability of rukz is 24%. For those who are not pexu, the probability of kraz is 73%. For those who are pexu, the probability of kraz is 74%.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.25 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.73 +P(Y=1 | X=1, V3=1) = 0.24 +P(V3=1 | X=0) = 0.73 +P(V3=1 | X=1) = 0.74 +0.74 * (0.24 - 0.73) + 0.73 * (0.65 - 0.25) = -0.18 +-0.18 < 0",diamondcut,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35295,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. The overall probability of pexu is 29%. For those who are not pexu, the probability of rukz is 54%. For those who are pexu, the probability of rukz is 36%.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.29 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.36 +0.29*0.36 - 0.71*0.54 = 0.49 +0.49 > 0",diamondcut,nonsense8,1,marginal,P(Y) +35299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to kraz. Method 2: We look directly at how pexu correlates with rukz in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 79%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.79 +0.79 - 0.36 = 0.43 +0.43 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 0%. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 79%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.00 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.79 +0.00*0.79 - 1.00*0.36 = 0.36 +0.36 > 0",fork,nonsense8,1,marginal,P(Y) +35305,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 0%. For those who are not pexu, the probability of rukz is 36%. For those who are pexu, the probability of rukz is 79%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.00 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.79 +0.00*0.79 - 1.00*0.36 = 0.36 +0.36 > 0",fork,nonsense8,1,marginal,P(Y) +35306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 0%. The probability of not pexu and rukz is 35%. The probability of pexu and rukz is 0%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.00 +P(Y=1, X=0=1) = 0.35 +P(Y=1, X=1=1) = 0.00 +0.00/0.00 - 0.35/1.00 = 0.43 +0.43 > 0",fork,nonsense8,1,correlation,P(Y | X) +35308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 40%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.40 +0.40 - 0.51 = -0.11 +-0.11 < 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 40%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.40 +0.40 - 0.51 = -0.11 +-0.11 < 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35313,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 40%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.40 +0.40 - 0.51 = -0.11 +-0.11 < 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 76%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.76 +0.76 - 0.51 = 0.24 +0.24 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 76%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.76 +0.76 - 0.51 = 0.24 +0.24 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 15%. For those who are not pexu, the probability of rukz is 51%. For those who are pexu, the probability of rukz is 76%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.15 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.76 +0.15*0.76 - 0.85*0.51 = 0.55 +0.55 > 0",fork,nonsense8,1,marginal,P(Y) +35328,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 41%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.41 +0.41 - 0.69 = -0.28 +-0.28 < 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35334,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 97%. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 41%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.41 +0.97*0.41 - 0.03*0.69 = 0.42 +0.42 > 0",fork,nonsense8,1,marginal,P(Y) +35335,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 97%. For those who are not pexu, the probability of rukz is 69%. For those who are pexu, the probability of rukz is 41%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.41 +0.97*0.41 - 0.03*0.69 = 0.42 +0.42 > 0",fork,nonsense8,1,marginal,P(Y) +35337,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 97%. The probability of not pexu and rukz is 2%. The probability of pexu and rukz is 40%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.40 +0.40/0.97 - 0.02/0.03 = -0.28 +-0.28 < 0",fork,nonsense8,1,correlation,P(Y | X) +35339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 9%. For those who are pexu, the probability of rukz is 18%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.18 +0.18 - 0.09 = 0.09 +0.09 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 9%. For those who are pexu, the probability of rukz is 18%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.18 +0.18 - 0.09 = 0.09 +0.09 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 74%. For those who are not pexu, the probability of rukz is 9%. For those who are pexu, the probability of rukz is 18%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.74 +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.18 +0.74*0.18 - 0.26*0.09 = 0.15 +0.15 > 0",fork,nonsense8,1,marginal,P(Y) +35347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 74%. The probability of not pexu and rukz is 2%. The probability of pexu and rukz is 13%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.13 +0.13/0.74 - 0.02/0.26 = 0.09 +0.09 > 0",fork,nonsense8,1,correlation,P(Y | X) +35348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35350,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 65%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.65 +0.65 - 0.29 = 0.37 +0.37 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 65%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.65 +0.65 - 0.29 = 0.37 +0.37 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 29%. For those who are pexu, the probability of rukz is 65%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.65 +0.65 - 0.29 = 0.37 +0.37 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35356,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 38%. The probability of not pexu and rukz is 18%. The probability of pexu and rukz is 25%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.25 +0.25/0.38 - 0.18/0.62 = 0.37 +0.37 > 0",fork,nonsense8,1,correlation,P(Y | X) +35357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 38%. The probability of not pexu and rukz is 18%. The probability of pexu and rukz is 25%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.25 +0.25/0.38 - 0.18/0.62 = 0.37 +0.37 > 0",fork,nonsense8,1,correlation,P(Y | X) +35358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35360,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 76%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.76 +0.76 - 0.52 = 0.24 +0.24 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35361,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 76%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.76 +0.76 - 0.52 = 0.24 +0.24 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35362,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 76%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.76 +0.76 - 0.52 = 0.24 +0.24 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 76%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.76 +0.76 - 0.52 = 0.24 +0.24 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 61%. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 76%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.76 +0.61*0.76 - 0.39*0.52 = 0.66 +0.66 > 0",fork,nonsense8,1,marginal,P(Y) +35365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 61%. For those who are not pexu, the probability of rukz is 52%. For those who are pexu, the probability of rukz is 76%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.61 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.76 +0.61*0.76 - 0.39*0.52 = 0.66 +0.66 > 0",fork,nonsense8,1,marginal,P(Y) +35367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 61%. The probability of not pexu and rukz is 20%. The probability of pexu and rukz is 46%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.61 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.46 +0.46/0.61 - 0.20/0.39 = 0.24 +0.24 > 0",fork,nonsense8,1,correlation,P(Y | X) +35368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 32%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.32 +0.32 - 0.70 = -0.38 +-0.38 < 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 32%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.32 +0.32 - 0.70 = -0.38 +-0.38 < 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 32%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.32 +0.32 - 0.70 = -0.38 +-0.38 < 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 65%. For those who are not pexu, the probability of rukz is 70%. For those who are pexu, the probability of rukz is 32%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.65 +P(Y=1 | X=0) = 0.70 +P(Y=1 | X=1) = 0.32 +0.65*0.32 - 0.35*0.70 = 0.45 +0.45 > 0",fork,nonsense8,1,marginal,P(Y) +35376,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 65%. The probability of not pexu and rukz is 24%. The probability of pexu and rukz is 21%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.21 +0.21/0.65 - 0.24/0.35 = -0.38 +-0.38 < 0",fork,nonsense8,1,correlation,P(Y | X) +35377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 65%. The probability of not pexu and rukz is 24%. The probability of pexu and rukz is 21%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.65 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.21 +0.21/0.65 - 0.24/0.35 = -0.38 +-0.38 < 0",fork,nonsense8,1,correlation,P(Y | X) +35379,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 67%. For those who are pexu, the probability of rukz is 45%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.45 +0.45 - 0.67 = -0.22 +-0.22 < 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 13%. For those who are not pexu, the probability of rukz is 67%. For those who are pexu, the probability of rukz is 45%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.13 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.45 +0.13*0.45 - 0.87*0.67 = 0.64 +0.64 > 0",fork,nonsense8,1,marginal,P(Y) +35386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 13%. The probability of not pexu and rukz is 58%. The probability of pexu and rukz is 6%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.06 +0.06/0.13 - 0.58/0.87 = -0.22 +-0.22 < 0",fork,nonsense8,1,correlation,P(Y | X) +35387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 13%. The probability of not pexu and rukz is 58%. The probability of pexu and rukz is 6%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.13 +P(Y=1, X=0=1) = 0.58 +P(Y=1, X=1=1) = 0.06 +0.06/0.13 - 0.58/0.87 = -0.22 +-0.22 < 0",fork,nonsense8,1,correlation,P(Y | X) +35390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 56%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.56 +0.56 - 0.21 = 0.35 +0.35 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 56%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.56 +0.56 - 0.21 = 0.35 +0.35 > 0",fork,nonsense8,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 56%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.56 +0.56 - 0.21 = 0.35 +0.35 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 56%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.56 +0.56 - 0.21 = 0.35 +0.35 > 0",fork,nonsense8,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 18%. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 56%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.56 +0.18*0.56 - 0.82*0.21 = 0.27 +0.27 > 0",fork,nonsense8,1,marginal,P(Y) +35395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 18%. For those who are not pexu, the probability of rukz is 21%. For those who are pexu, the probability of rukz is 56%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.18 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.56 +0.18*0.56 - 0.82*0.21 = 0.27 +0.27 > 0",fork,nonsense8,1,marginal,P(Y) +35396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 18%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 10%.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.10 +0.10/0.18 - 0.17/0.82 = 0.35 +0.35 > 0",fork,nonsense8,1,correlation,P(Y | X) +35397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. The overall probability of pexu is 18%. The probability of not pexu and rukz is 17%. The probability of pexu and rukz is 10%.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.18 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.10 +0.10/0.18 - 0.17/0.82 = 0.35 +0.35 > 0",fork,nonsense8,1,correlation,P(Y | X) +35398,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look at how pexu correlates with rukz case by case according to hwax. Method 2: We look directly at how pexu correlates with rukz in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. Method 1: We look directly at how pexu correlates with rukz in general. Method 2: We look at this correlation case by case according to hwax.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense8,2,backadj,[backdoor adjustment set for Y given X] +35400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 56%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.56 +0.56 - 0.51 = 0.05 +0.05 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 56%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.56 +0.56 - 0.51 = 0.05 +0.05 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 56%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.56 +0.56 - 0.51 = 0.05 +0.05 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 94%. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 56%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.94 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.56 +0.94*0.56 - 0.06*0.51 = 0.56 +0.56 > 0",chain,nonsense9,1,marginal,P(Y) +35408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 94%. The probability of not zuph and glimx is 3%. The probability of zuph and glimx is 52%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.94 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.52 +0.52/0.94 - 0.03/0.06 = 0.05 +0.05 > 0",chain,nonsense9,1,correlation,P(Y | X) +35410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 43%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.43 +0.43 - 0.55 = -0.12 +-0.12 < 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 43%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.43 +0.43 - 0.55 = -0.12 +-0.12 < 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 43%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.43 +0.43 - 0.55 = -0.12 +-0.12 < 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 17%. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 43%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.43 +0.17*0.43 - 0.83*0.55 = 0.53 +0.53 > 0",chain,nonsense9,1,marginal,P(Y) +35420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 17%. The probability of not zuph and glimx is 46%. The probability of zuph and glimx is 7%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.07 +0.07/0.17 - 0.46/0.83 = -0.12 +-0.12 < 0",chain,nonsense9,1,correlation,P(Y | X) +35421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 17%. The probability of not zuph and glimx is 46%. The probability of zuph and glimx is 7%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.46 +P(Y=1, X=1=1) = 0.07 +0.07/0.17 - 0.46/0.83 = -0.12 +-0.12 < 0",chain,nonsense9,1,correlation,P(Y | X) +35422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 68%. For those who are zuph, the probability of glimx is 51%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.51 +0.51 - 0.68 = -0.17 +-0.17 < 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 68%. For those who are zuph, the probability of glimx is 51%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.51 +0.51 - 0.68 = -0.17 +-0.17 < 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35426,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 68%. For those who are zuph, the probability of glimx is 51%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.51 +0.51 - 0.68 = -0.17 +-0.17 < 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 87%. The probability of not zuph and glimx is 9%. The probability of zuph and glimx is 45%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.45 +0.45/0.87 - 0.09/0.13 = -0.17 +-0.17 < 0",chain,nonsense9,1,correlation,P(Y | X) +35433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 87%. The probability of not zuph and glimx is 9%. The probability of zuph and glimx is 45%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.45 +0.45/0.87 - 0.09/0.13 = -0.17 +-0.17 < 0",chain,nonsense9,1,correlation,P(Y | X) +35439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.26 +0.26 - 0.20 = 0.06 +0.06 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.26 +0.26 - 0.20 = 0.06 +0.06 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 22%. The probability of not zuph and glimx is 16%. The probability of zuph and glimx is 6%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.06 +0.06/0.22 - 0.16/0.78 = 0.06 +0.06 > 0",chain,nonsense9,1,correlation,P(Y | X) +35446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.17 - 0.58 = -0.40 +-0.40 < 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.17 - 0.58 = -0.40 +-0.40 < 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.17 - 0.58 = -0.40 +-0.40 < 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.17 - 0.58 = -0.40 +-0.40 < 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.17 - 0.58 = -0.40 +-0.40 < 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 47%. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.47*0.17 - 0.53*0.58 = 0.39 +0.39 > 0",chain,nonsense9,1,marginal,P(Y) +35455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 47%. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 17%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.17 +0.47*0.17 - 0.53*0.58 = 0.39 +0.39 > 0",chain,nonsense9,1,marginal,P(Y) +35456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 47%. The probability of not zuph and glimx is 31%. The probability of zuph and glimx is 8%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.08 +0.08/0.47 - 0.31/0.53 = -0.40 +-0.40 < 0",chain,nonsense9,1,correlation,P(Y | X) +35457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 47%. The probability of not zuph and glimx is 31%. The probability of zuph and glimx is 8%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.31 +P(Y=1, X=1=1) = 0.08 +0.08/0.47 - 0.31/0.53 = -0.40 +-0.40 < 0",chain,nonsense9,1,correlation,P(Y | X) +35458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.26 - 0.11 = 0.15 +0.15 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.26 - 0.11 = 0.15 +0.15 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.26 - 0.11 = 0.15 +0.15 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.26 - 0.11 = 0.15 +0.15 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.26 - 0.11 = 0.15 +0.15 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 68%. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.68*0.26 - 0.32*0.11 = 0.21 +0.21 > 0",chain,nonsense9,1,marginal,P(Y) +35467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 68%. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.68 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.26 +0.68*0.26 - 0.32*0.11 = 0.21 +0.21 > 0",chain,nonsense9,1,marginal,P(Y) +35472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.28 - 0.21 = 0.07 +0.07 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.28 - 0.21 = 0.07 +0.07 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.28 - 0.21 = 0.07 +0.07 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.28 - 0.21 = 0.07 +0.07 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.28 - 0.21 = 0.07 +0.07 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 16%. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.16*0.28 - 0.84*0.21 = 0.22 +0.22 > 0",chain,nonsense9,1,marginal,P(Y) +35479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 16%. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 28%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.16 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.28 +0.16*0.28 - 0.84*0.21 = 0.22 +0.22 > 0",chain,nonsense9,1,marginal,P(Y) +35481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 16%. The probability of not zuph and glimx is 18%. The probability of zuph and glimx is 5%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.16 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.05 +0.05/0.16 - 0.18/0.84 = 0.07 +0.07 > 0",chain,nonsense9,1,correlation,P(Y | X) +35482,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35483,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 93%. For those who are zuph, the probability of glimx is 93%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.93 +0.93 - 0.93 = 0.01 +0.01 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 93%. For those who are zuph, the probability of glimx is 93%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.93 +0.93 - 0.93 = 0.01 +0.01 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 93%. For those who are zuph, the probability of glimx is 93%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.93 +0.93 - 0.93 = 0.01 +0.01 > 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 93%. For those who are zuph, the probability of glimx is 93%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.93 +0.93 - 0.93 = 0.01 +0.01 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 55%. For those who are not zuph, the probability of glimx is 93%. For those who are zuph, the probability of glimx is 93%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.93 +P(Y=1 | X=1) = 0.93 +0.55*0.93 - 0.45*0.93 = 0.93 +0.93 > 0",chain,nonsense9,1,marginal,P(Y) +35493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 55%. The probability of not zuph and glimx is 42%. The probability of zuph and glimx is 51%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.51 +0.51/0.55 - 0.42/0.45 = 0.01 +0.01 > 0",chain,nonsense9,1,correlation,P(Y | X) +35498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 28%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.26 +0.26 - 0.28 = -0.01 +-0.01 < 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 28%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.26 +0.26 - 0.28 = -0.01 +-0.01 < 0",chain,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 28%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.26 +0.26 - 0.28 = -0.01 +-0.01 < 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 28%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.26 +0.26 - 0.28 = -0.01 +-0.01 < 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 43%. For those who are not zuph, the probability of glimx is 28%. For those who are zuph, the probability of glimx is 26%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.26 +0.43*0.26 - 0.57*0.28 = 0.27 +0.27 > 0",chain,nonsense9,1,marginal,P(Y) +35503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 43%. For those who are not zuph, the probability of glimx is 28%. For those who are zuph, the probability of glimx is 26%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.28 +P(Y=1 | X=1) = 0.26 +0.43*0.26 - 0.57*0.28 = 0.27 +0.27 > 0",chain,nonsense9,1,marginal,P(Y) +35505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 43%. The probability of not zuph and glimx is 16%. The probability of zuph and glimx is 11%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.11 +0.11/0.43 - 0.16/0.57 = -0.01 +-0.01 < 0",chain,nonsense9,1,correlation,P(Y | X) +35507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 10%. For those who are zuph, the probability of glimx is 10%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.10 +0.10 - 0.10 = 0.01 +0.01 > 0",chain,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 10%. For those who are zuph, the probability of glimx is 10%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.10 +0.10 - 0.10 = 0.01 +0.01 > 0",chain,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 98%. For those who are not zuph, the probability of glimx is 10%. For those who are zuph, the probability of glimx is 10%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.10 +0.98*0.10 - 0.02*0.10 = 0.10 +0.10 > 0",chain,nonsense9,1,marginal,P(Y) +35516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. The overall probability of zuph is 98%. The probability of not zuph and glimx is 0%. The probability of zuph and glimx is 10%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.10 +0.10/0.98 - 0.00/0.02 = 0.01 +0.01 > 0",chain,nonsense9,1,correlation,P(Y | X) +35518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",chain,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 19%. For those who are not zuph, the probability of glimx is 49%. For those who are zuph, the probability of glimx is 49%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.19*0.49 - 0.81*0.49 = 0.49 +0.49 > 0",collision,nonsense9,1,marginal,P(Y) +35521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 19%. For those who are not zuph, the probability of glimx is 49%. For those who are zuph, the probability of glimx is 49%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.19 +P(Y=1 | X=0) = 0.49 +P(Y=1 | X=1) = 0.49 +0.19*0.49 - 0.81*0.49 = 0.49 +0.49 > 0",collision,nonsense9,1,marginal,P(Y) +35524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35528,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 19%. For those who are not zuph and are not jyka, the probability of glimx is 54%. For those who are not zuph and are jyka, the probability of glimx is 42%. For those who are zuph and are not jyka, the probability of glimx is 58%. For those who are zuph and are jyka, the probability of glimx is 45%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.45 +0.45 - (0.19*0.45 + 0.81*0.42) = 0.02 +0.02 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 19%. For those who are not zuph and are not jyka, the probability of glimx is 54%. For those who are not zuph and are jyka, the probability of glimx is 42%. For those who are zuph and are not jyka, the probability of glimx is 58%. For those who are zuph and are jyka, the probability of glimx is 45%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.19 +P(Y=1 | X=0, V3=0) = 0.54 +P(Y=1 | X=0, V3=1) = 0.42 +P(Y=1 | X=1, V3=0) = 0.58 +P(Y=1 | X=1, V3=1) = 0.45 +0.45 - (0.19*0.45 + 0.81*0.42) = 0.02 +0.02 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 9%. For those who are not zuph, the probability of glimx is 24%. For those who are zuph, the probability of glimx is 24%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.24 +0.09*0.24 - 0.91*0.24 = 0.24 +0.24 > 0",collision,nonsense9,1,marginal,P(Y) +35531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 9%. For those who are not zuph, the probability of glimx is 24%. For those who are zuph, the probability of glimx is 24%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.24 +0.09*0.24 - 0.91*0.24 = 0.24 +0.24 > 0",collision,nonsense9,1,marginal,P(Y) +35534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.01.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.01.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 9%. For those who are not zuph and are not jyka, the probability of glimx is 25%. For those who are not zuph and are jyka, the probability of glimx is 15%. For those who are zuph and are not jyka, the probability of glimx is 49%. For those who are zuph and are jyka, the probability of glimx is 14%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.09 +P(Y=1 | X=0, V3=0) = 0.25 +P(Y=1 | X=0, V3=1) = 0.15 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.14 +0.14 - (0.09*0.14 + 0.91*0.15) = -0.01 +-0.01 < 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 55%. For those who are not zuph, the probability of glimx is 52%. For those who are zuph, the probability of glimx is 52%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.55*0.52 - 0.45*0.52 = 0.52 +0.52 > 0",collision,nonsense9,1,marginal,P(Y) +35541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 55%. For those who are not zuph, the probability of glimx is 52%. For those who are zuph, the probability of glimx is 52%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.52 +P(Y=1 | X=1) = 0.52 +0.55*0.52 - 0.45*0.52 = 0.52 +0.52 > 0",collision,nonsense9,1,marginal,P(Y) +35545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.45.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 59%. For those who are not zuph, the probability of glimx is 7%. For those who are zuph, the probability of glimx is 7%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.59 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.07 +0.59*0.07 - 0.41*0.07 = 0.07 +0.07 > 0",collision,nonsense9,1,marginal,P(Y) +35556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.01.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.01.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 59%. For those who are not zuph and are not jyka, the probability of glimx is 5%. For those who are not zuph and are jyka, the probability of glimx is 8%. For those who are zuph and are not jyka, the probability of glimx is 7%. For those who are zuph and are jyka, the probability of glimx is 7%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.59 +P(Y=1 | X=0, V3=0) = 0.05 +P(Y=1 | X=0, V3=1) = 0.08 +P(Y=1 | X=1, V3=0) = 0.07 +P(Y=1 | X=1, V3=1) = 0.07 +0.07 - (0.59*0.07 + 0.41*0.08) = -0.01 +-0.01 < 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 28%. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 51%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.51 +0.28*0.51 - 0.72*0.51 = 0.51 +0.51 > 0",collision,nonsense9,1,marginal,P(Y) +35565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 28%. For those who are not zuph and are not jyka, the probability of glimx is 48%. For those who are not zuph and are jyka, the probability of glimx is 52%. For those who are zuph and are not jyka, the probability of glimx is 49%. For those who are zuph and are jyka, the probability of glimx is 66%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.28 +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.66 +0.66 - (0.28*0.66 + 0.72*0.52) = 0.13 +0.13 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 28%. For those who are not zuph and are not jyka, the probability of glimx is 48%. For those who are not zuph and are jyka, the probability of glimx is 52%. For those who are zuph and are not jyka, the probability of glimx is 49%. For those who are zuph and are jyka, the probability of glimx is 66%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.28 +P(Y=1 | X=0, V3=0) = 0.48 +P(Y=1 | X=0, V3=1) = 0.52 +P(Y=1 | X=1, V3=0) = 0.49 +P(Y=1 | X=1, V3=1) = 0.66 +0.66 - (0.28*0.66 + 0.72*0.52) = 0.13 +0.13 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.04.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.04.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 91%. For those who are not zuph and are not jyka, the probability of glimx is 80%. For those who are not zuph and are jyka, the probability of glimx is 58%. For those who are zuph and are not jyka, the probability of glimx is 78%. For those who are zuph and are jyka, the probability of glimx is 52%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.91 +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.52 +0.52 - (0.91*0.52 + 0.09*0.58) = -0.01 +-0.01 < 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35579,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 91%. For those who are not zuph and are not jyka, the probability of glimx is 80%. For those who are not zuph and are jyka, the probability of glimx is 58%. For those who are zuph and are not jyka, the probability of glimx is 78%. For those who are zuph and are jyka, the probability of glimx is 52%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.91 +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.58 +P(Y=1 | X=1, V3=0) = 0.78 +P(Y=1 | X=1, V3=1) = 0.52 +0.52 - (0.91*0.52 + 0.09*0.58) = -0.01 +-0.01 < 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is 0.02.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is 0.02.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 7%. For those who are not zuph and are not jyka, the probability of glimx is 88%. For those who are not zuph and are jyka, the probability of glimx is 65%. For those who are zuph and are not jyka, the probability of glimx is 81%. For those who are zuph and are jyka, the probability of glimx is 69%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.07 +P(Y=1 | X=0, V3=0) = 0.88 +P(Y=1 | X=0, V3=1) = 0.65 +P(Y=1 | X=1, V3=0) = 0.81 +P(Y=1 | X=1, V3=1) = 0.69 +0.69 - (0.07*0.69 + 0.93*0.65) = 0.04 +0.04 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 87%. For those who are not zuph, the probability of glimx is 45%. For those who are zuph, the probability of glimx is 45%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.45 +0.87*0.45 - 0.13*0.45 = 0.45 +0.45 > 0",collision,nonsense9,1,marginal,P(Y) +35594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35596,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is -0.20.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 87%. For those who are not zuph and are not jyka, the probability of glimx is 18%. For those who are not zuph and are jyka, the probability of glimx is 83%. For those who are zuph and are not jyka, the probability of glimx is 39%. For those who are zuph and are jyka, the probability of glimx is 55%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.87 +P(Y=1 | X=0, V3=0) = 0.18 +P(Y=1 | X=0, V3=1) = 0.83 +P(Y=1 | X=1, V3=0) = 0.39 +P(Y=1 | X=1, V3=1) = 0.55 +0.55 - (0.87*0.55 + 0.13*0.83) = -0.04 +-0.04 < 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 87%. For those who are not zuph, the probability of glimx is 84%. For those who are zuph, the probability of glimx is 84%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.84 +0.87*0.84 - 0.13*0.84 = 0.84 +0.84 > 0",collision,nonsense9,1,marginal,P(Y) +35601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 87%. For those who are not zuph, the probability of glimx is 84%. For those who are zuph, the probability of glimx is 84%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.84 +P(Y=1 | X=1) = 0.84 +0.87*0.84 - 0.13*0.84 = 0.84 +0.84 > 0",collision,nonsense9,1,marginal,P(Y) +35605,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is 0.27.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +no",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 87%. For those who are not zuph and are not jyka, the probability of glimx is 93%. For those who are not zuph and are jyka, the probability of glimx is 74%. For those who are zuph and are not jyka, the probability of glimx is 47%. For those who are zuph and are jyka, the probability of glimx is 96%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.87 +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.74 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.96 +0.96 - (0.87*0.96 + 0.13*0.74) = 0.02 +0.02 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 55%. For those who are not zuph, the probability of glimx is 30%. For those who are zuph, the probability of glimx is 30%.",no,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.30 +0.55*0.30 - 0.45*0.30 = 0.30 +0.30 > 0",collision,nonsense9,1,marginal,P(Y) +35614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35615,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",collision,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35617,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. For those who are jyka, the correlation between zuph and glimx is 0.03.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1] +X and Y do not affect each other. + +0 +yes",collision,nonsense9,2,collider_bias,"E[Y = 1 | do(X = 1), V3 = 1] - E[Y = 1 | do(X = 0), V3 = 1]" +35618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Glimx has a direct effect on jyka. The overall probability of zuph is 55%. For those who are not zuph and are not jyka, the probability of glimx is 62%. For those who are not zuph and are jyka, the probability of glimx is 29%. For those who are zuph and are not jyka, the probability of glimx is 27%. For those who are zuph and are jyka, the probability of glimx is 32%.",yes,"Let Y = glimx; X = zuph; V3 = jyka. +X->V3,Y->V3 +P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1) +P(Y=1 | X=1, V3=1) - (P(X=1) * P(Y=1 | X=1, V3=1) + P(X=0) * P(Y=1 | X=0, V3=1)) +P(X=1) = 0.55 +P(Y=1 | X=0, V3=0) = 0.62 +P(Y=1 | X=0, V3=1) = 0.29 +P(Y=1 | X=1, V3=0) = 0.27 +P(Y=1 | X=1, V3=1) = 0.32 +0.32 - (0.55*0.32 + 0.45*0.29) = 0.01 +0.01 > 0",collision,nonsense9,1,exp_away,"P(Y = 1 | X = 1, V3 = 1] - P(Y = 1 | V3 = 1)" +35620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 63%. For those who are not jyka and are zuph, the probability of glimx is 73%. For those who are jyka and are not zuph, the probability of glimx is 56%. For those who are jyka and are zuph, the probability of glimx is 100%. The overall probability of jyka is 2%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.56 +P(Y=1 | V1=1, X=1) = 1.00 +P(V1=1) = 0.02 +0.98 * (0.73 - 0.63) + 0.02 * (1.00 - 0.56) = 0.10 +0.10 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 63%. For those who are not jyka and are zuph, the probability of glimx is 73%. For those who are jyka and are not zuph, the probability of glimx is 56%. For those who are jyka and are zuph, the probability of glimx is 100%. The overall probability of jyka is 2%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.56 +P(Y=1 | V1=1, X=1) = 1.00 +P(V1=1) = 0.02 +0.98 * (0.73 - 0.63) + 0.02 * (1.00 - 0.56) = 0.10 +0.10 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35622,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 63%. For those who are not jyka and are zuph, the probability of glimx is 73%. For those who are jyka and are not zuph, the probability of glimx is 56%. For those who are jyka and are zuph, the probability of glimx is 100%. The overall probability of jyka is 2%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.56 +P(Y=1 | V1=1, X=1) = 1.00 +P(V1=1) = 0.02 +0.98 * (0.73 - 0.63) + 0.02 * (1.00 - 0.56) = 0.11 +0.11 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 63%. For those who are not jyka and are zuph, the probability of glimx is 73%. For those who are jyka and are not zuph, the probability of glimx is 56%. For those who are jyka and are zuph, the probability of glimx is 100%. The overall probability of jyka is 2%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.63 +P(Y=1 | V1=0, X=1) = 0.73 +P(Y=1 | V1=1, X=0) = 0.56 +P(Y=1 | V1=1, X=1) = 1.00 +P(V1=1) = 0.02 +0.98 * (0.73 - 0.63) + 0.02 * (1.00 - 0.56) = 0.11 +0.11 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 63%. For those who are zuph, the probability of glimx is 74%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.74 +0.82*0.74 - 0.18*0.63 = 0.72 +0.72 > 0",confounding,nonsense9,1,marginal,P(Y) +35625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 63%. For those who are zuph, the probability of glimx is 74%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.63 +P(Y=1 | X=1) = 0.74 +0.82*0.74 - 0.18*0.63 = 0.72 +0.72 > 0",confounding,nonsense9,1,marginal,P(Y) +35626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 82%. The probability of not zuph and glimx is 12%. The probability of zuph and glimx is 60%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.60 +0.60/0.82 - 0.12/0.18 = 0.10 +0.10 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 68%. For those who are not jyka and are zuph, the probability of glimx is 23%. For those who are jyka and are not zuph, the probability of glimx is 52%. For those who are jyka and are zuph, the probability of glimx is 55%. The overall probability of jyka is 25%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.55 +P(V1=1) = 0.25 +0.75 * (0.23 - 0.68) + 0.25 * (0.55 - 0.52) = -0.33 +-0.33 < 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 68%. For those who are not jyka and are zuph, the probability of glimx is 23%. For those who are jyka and are not zuph, the probability of glimx is 52%. For those who are jyka and are zuph, the probability of glimx is 55%. The overall probability of jyka is 25%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.68 +P(Y=1 | V1=0, X=1) = 0.23 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.55 +P(V1=1) = 0.25 +0.75 * (0.23 - 0.68) + 0.25 * (0.55 - 0.52) = -0.33 +-0.33 < 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 86%. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 28%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.28 +0.86*0.28 - 0.14*0.55 = 0.36 +0.36 > 0",confounding,nonsense9,1,marginal,P(Y) +35635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 86%. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 28%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.86 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.28 +0.86*0.28 - 0.14*0.55 = 0.36 +0.36 > 0",confounding,nonsense9,1,marginal,P(Y) +35636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 86%. The probability of not zuph and glimx is 7%. The probability of zuph and glimx is 25%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.86 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.25 +0.25/0.86 - 0.07/0.14 = -0.27 +-0.27 < 0",confounding,nonsense9,1,correlation,P(Y | X) +35638,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 0%. For those who are not jyka and are zuph, the probability of glimx is 24%. For those who are jyka and are not zuph, the probability of glimx is 39%. For those who are jyka and are zuph, the probability of glimx is 95%. The overall probability of jyka is 4%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.00 +P(Y=1 | V1=0, X=1) = 0.24 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.95 +P(V1=1) = 0.04 +0.96 * (0.24 - 0.00) + 0.04 * (0.95 - 0.39) = 0.25 +0.25 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 0%. For those who are not jyka and are zuph, the probability of glimx is 24%. For those who are jyka and are not zuph, the probability of glimx is 39%. For those who are jyka and are zuph, the probability of glimx is 95%. The overall probability of jyka is 4%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.00 +P(Y=1 | V1=0, X=1) = 0.24 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.95 +P(V1=1) = 0.04 +0.96 * (0.24 - 0.00) + 0.04 * (0.95 - 0.39) = 0.25 +0.25 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 0%. For those who are not jyka and are zuph, the probability of glimx is 24%. For those who are jyka and are not zuph, the probability of glimx is 39%. For those who are jyka and are zuph, the probability of glimx is 95%. The overall probability of jyka is 4%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.00 +P(Y=1 | V1=0, X=1) = 0.24 +P(Y=1 | V1=1, X=0) = 0.39 +P(Y=1 | V1=1, X=1) = 0.95 +P(V1=1) = 0.04 +0.96 * (0.24 - 0.00) + 0.04 * (0.95 - 0.39) = 0.28 +0.28 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 6%. The probability of not zuph and glimx is 2%. The probability of zuph and glimx is 2%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.06 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.02 +0.02/0.06 - 0.02/0.94 = 0.32 +0.32 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 95%. For those who are not jyka and are zuph, the probability of glimx is 100%. For those who are jyka and are not zuph, the probability of glimx is 32%. For those who are jyka and are zuph, the probability of glimx is 62%. The overall probability of jyka is 55%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 1.00 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.55 +0.45 * (1.00 - 0.95) + 0.55 * (0.62 - 0.32) = 0.19 +0.19 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 95%. For those who are not jyka and are zuph, the probability of glimx is 100%. For those who are jyka and are not zuph, the probability of glimx is 32%. For those who are jyka and are zuph, the probability of glimx is 62%. The overall probability of jyka is 55%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 1.00 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.55 +0.45 * (1.00 - 0.95) + 0.55 * (0.62 - 0.32) = 0.19 +0.19 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 95%. For those who are not jyka and are zuph, the probability of glimx is 100%. For those who are jyka and are not zuph, the probability of glimx is 32%. For those who are jyka and are zuph, the probability of glimx is 62%. The overall probability of jyka is 55%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.95 +P(Y=1 | V1=0, X=1) = 1.00 +P(Y=1 | V1=1, X=0) = 0.32 +P(Y=1 | V1=1, X=1) = 0.62 +P(V1=1) = 0.55 +0.45 * (1.00 - 0.95) + 0.55 * (0.62 - 0.32) = 0.18 +0.18 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 45%. For those who are zuph, the probability of glimx is 81%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.81 +0.82*0.81 - 0.18*0.45 = 0.76 +0.76 > 0",confounding,nonsense9,1,marginal,P(Y) +35655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 45%. For those who are zuph, the probability of glimx is 81%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.45 +P(Y=1 | X=1) = 0.81 +0.82*0.81 - 0.18*0.45 = 0.76 +0.76 > 0",confounding,nonsense9,1,marginal,P(Y) +35658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 20%. For those who are not jyka and are zuph, the probability of glimx is 35%. For those who are jyka and are not zuph, the probability of glimx is 55%. For those who are jyka and are zuph, the probability of glimx is 20%. The overall probability of jyka is 20%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.20 +P(Y=1 | V1=0, X=1) = 0.35 +P(Y=1 | V1=1, X=0) = 0.55 +P(Y=1 | V1=1, X=1) = 0.20 +P(V1=1) = 0.20 +0.80 * (0.35 - 0.20) + 0.20 * (0.20 - 0.55) = 0.01 +0.01 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 48%. For those who are not zuph, the probability of glimx is 24%. For those who are zuph, the probability of glimx is 31%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.24 +P(Y=1 | X=1) = 0.31 +0.48*0.31 - 0.52*0.24 = 0.29 +0.29 > 0",confounding,nonsense9,1,marginal,P(Y) +35668,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35670,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 96%. For those who are not jyka and are zuph, the probability of glimx is 47%. For those who are jyka and are not zuph, the probability of glimx is 99%. For those who are jyka and are zuph, the probability of glimx is 53%. The overall probability of jyka is 63%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.47 +P(Y=1 | V1=1, X=0) = 0.99 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.63 +0.37 * (0.47 - 0.96) + 0.63 * (0.53 - 0.99) = -0.47 +-0.47 < 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 96%. For those who are not jyka and are zuph, the probability of glimx is 47%. For those who are jyka and are not zuph, the probability of glimx is 99%. For those who are jyka and are zuph, the probability of glimx is 53%. The overall probability of jyka is 63%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.47 +P(Y=1 | V1=1, X=0) = 0.99 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.63 +0.37 * (0.47 - 0.96) + 0.63 * (0.53 - 0.99) = -0.47 +-0.47 < 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 96%. For those who are not jyka and are zuph, the probability of glimx is 47%. For those who are jyka and are not zuph, the probability of glimx is 99%. For those who are jyka and are zuph, the probability of glimx is 53%. The overall probability of jyka is 63%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.47 +P(Y=1 | V1=1, X=0) = 0.99 +P(Y=1 | V1=1, X=1) = 0.53 +P(V1=1) = 0.63 +0.37 * (0.47 - 0.96) + 0.63 * (0.53 - 0.99) = -0.47 +-0.47 < 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 58%. For those who are not zuph, the probability of glimx is 98%. For those who are zuph, the probability of glimx is 50%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.98 +P(Y=1 | X=1) = 0.50 +0.58*0.50 - 0.42*0.98 = 0.71 +0.71 > 0",confounding,nonsense9,1,marginal,P(Y) +35675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 58%. For those who are not zuph, the probability of glimx is 98%. For those who are zuph, the probability of glimx is 50%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.58 +P(Y=1 | X=0) = 0.98 +P(Y=1 | X=1) = 0.50 +0.58*0.50 - 0.42*0.98 = 0.71 +0.71 > 0",confounding,nonsense9,1,marginal,P(Y) +35676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 58%. The probability of not zuph and glimx is 42%. The probability of zuph and glimx is 29%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.29 +0.29/0.58 - 0.42/0.42 = -0.49 +-0.49 < 0",confounding,nonsense9,1,correlation,P(Y | X) +35677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 58%. The probability of not zuph and glimx is 42%. The probability of zuph and glimx is 29%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.58 +P(Y=1, X=0=1) = 0.42 +P(Y=1, X=1=1) = 0.29 +0.29/0.58 - 0.42/0.42 = -0.49 +-0.49 < 0",confounding,nonsense9,1,correlation,P(Y | X) +35678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",no,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 13%. For those who are not jyka and are zuph, the probability of glimx is 2%. For those who are jyka and are not zuph, the probability of glimx is 16%. For those who are jyka and are zuph, the probability of glimx is 68%. The overall probability of jyka is 58%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.13 +P(Y=1 | V1=0, X=1) = 0.02 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.58 +0.42 * (0.02 - 0.13) + 0.58 * (0.68 - 0.16) = 0.25 +0.25 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 13%. For those who are not jyka and are zuph, the probability of glimx is 2%. For those who are jyka and are not zuph, the probability of glimx is 16%. For those who are jyka and are zuph, the probability of glimx is 68%. The overall probability of jyka is 58%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.13 +P(Y=1 | V1=0, X=1) = 0.02 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.58 +0.42 * (0.02 - 0.13) + 0.58 * (0.68 - 0.16) = 0.29 +0.29 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 13%. For those who are not jyka and are zuph, the probability of glimx is 2%. For those who are jyka and are not zuph, the probability of glimx is 16%. For those who are jyka and are zuph, the probability of glimx is 68%. The overall probability of jyka is 58%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.13 +P(Y=1 | V1=0, X=1) = 0.02 +P(Y=1 | V1=1, X=0) = 0.16 +P(Y=1 | V1=1, X=1) = 0.68 +P(V1=1) = 0.58 +0.42 * (0.02 - 0.13) + 0.58 * (0.68 - 0.16) = 0.29 +0.29 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 92%. For those who are not zuph, the probability of glimx is 13%. For those who are zuph, the probability of glimx is 43%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.92 +P(Y=1 | X=0) = 0.13 +P(Y=1 | X=1) = 0.43 +0.92*0.43 - 0.08*0.13 = 0.38 +0.38 > 0",confounding,nonsense9,1,marginal,P(Y) +35686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 92%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 40%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.40 +0.40/0.92 - 0.01/0.08 = 0.31 +0.31 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 92%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 40%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.92 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.40 +0.40/0.92 - 0.01/0.08 = 0.31 +0.31 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 87%. For those who are not zuph, the probability of glimx is 7%. For those who are zuph, the probability of glimx is 36%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.87 +P(Y=1 | X=0) = 0.07 +P(Y=1 | X=1) = 0.36 +0.87*0.36 - 0.13*0.07 = 0.32 +0.32 > 0",confounding,nonsense9,1,marginal,P(Y) +35696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 87%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 31%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.87 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.31 +0.31/0.87 - 0.01/0.13 = 0.29 +0.29 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 27%. For those who are not jyka and are zuph, the probability of glimx is 36%. For those who are jyka and are not zuph, the probability of glimx is 29%. For those who are jyka and are zuph, the probability of glimx is 67%. The overall probability of jyka is 33%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.29 +P(Y=1 | V1=1, X=1) = 0.67 +P(V1=1) = 0.33 +0.67 * (0.36 - 0.27) + 0.33 * (0.67 - 0.29) = 0.19 +0.19 > 0",confounding,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 27%. For those who are not jyka and are zuph, the probability of glimx is 36%. For those who are jyka and are not zuph, the probability of glimx is 29%. For those who are jyka and are zuph, the probability of glimx is 67%. The overall probability of jyka is 33%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.29 +P(Y=1 | V1=1, X=1) = 0.67 +P(V1=1) = 0.33 +0.67 * (0.36 - 0.27) + 0.33 * (0.67 - 0.29) = 0.10 +0.10 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 27%. For those who are not jyka and are zuph, the probability of glimx is 36%. For those who are jyka and are not zuph, the probability of glimx is 29%. For those who are jyka and are zuph, the probability of glimx is 67%. The overall probability of jyka is 33%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.27 +P(Y=1 | V1=0, X=1) = 0.36 +P(Y=1 | V1=1, X=0) = 0.29 +P(Y=1 | V1=1, X=1) = 0.67 +P(V1=1) = 0.33 +0.67 * (0.36 - 0.27) + 0.33 * (0.67 - 0.29) = 0.10 +0.10 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 38%. The probability of not zuph and glimx is 17%. The probability of zuph and glimx is 14%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.14 +0.14/0.38 - 0.17/0.62 = 0.09 +0.09 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 38%. The probability of not zuph and glimx is 17%. The probability of zuph and glimx is 14%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.14 +0.14/0.38 - 0.17/0.62 = 0.09 +0.09 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",confounding,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 74%. For those who are not jyka and are zuph, the probability of glimx is 11%. For those who are jyka and are not zuph, the probability of glimx is 6%. For those who are jyka and are zuph, the probability of glimx is 58%. The overall probability of jyka is 97%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.74 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.06 +P(Y=1 | V1=1, X=1) = 0.58 +P(V1=1) = 0.97 +0.03 * (0.11 - 0.74) + 0.97 * (0.58 - 0.06) = 0.51 +0.51 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 74%. For those who are not jyka and are zuph, the probability of glimx is 11%. For those who are jyka and are not zuph, the probability of glimx is 6%. For those who are jyka and are zuph, the probability of glimx is 58%. The overall probability of jyka is 97%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V1=v} P(V1=v|X=1)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.74 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.06 +P(Y=1 | V1=1, X=1) = 0.58 +P(V1=1) = 0.97 +0.03 * (0.11 - 0.74) + 0.97 * (0.58 - 0.06) = 0.51 +0.51 > 0",confounding,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 72%. For those who are not zuph, the probability of glimx is 11%. For those who are zuph, the probability of glimx is 57%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.11 +P(Y=1 | X=1) = 0.57 +0.72*0.57 - 0.28*0.11 = 0.43 +0.43 > 0",confounding,nonsense9,1,marginal,P(Y) +35716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 72%. The probability of not zuph and glimx is 3%. The probability of zuph and glimx is 41%.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.41 +0.41/0.72 - 0.03/0.28 = 0.46 +0.46 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. The overall probability of zuph is 72%. The probability of not zuph and glimx is 3%. The probability of zuph and glimx is 41%.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.41 +0.41/0.72 - 0.03/0.28 = 0.46 +0.46 > 0",confounding,nonsense9,1,correlation,P(Y | X) +35720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 27%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.27 +0.27 - 0.32 = -0.06 +-0.06 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 27%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.27 +0.27 - 0.32 = -0.06 +-0.06 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 21%. For those who are not zuph and are jyka, the probability of glimx is 89%. For those who are zuph and are not jyka, the probability of glimx is 51%. For those who are zuph and are jyka, the probability of glimx is 25%. For those who are not zuph, the probability of jyka is 16%. For those who are zuph, the probability of jyka is 96%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.51 +P(Y=1 | X=1, V2=1) = 0.25 +P(V2=1 | X=0) = 0.16 +P(V2=1 | X=1) = 0.96 +0.16 * (0.25 - 0.51) + 0.96 * (0.89 - 0.21) = 0.14 +0.14 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 21%. For those who are not zuph and are jyka, the probability of glimx is 89%. For those who are zuph and are not jyka, the probability of glimx is 51%. For those who are zuph and are jyka, the probability of glimx is 25%. For those who are not zuph, the probability of jyka is 16%. For those who are zuph, the probability of jyka is 96%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.21 +P(Y=1 | X=0, V2=1) = 0.89 +P(Y=1 | X=1, V2=0) = 0.51 +P(Y=1 | X=1, V2=1) = 0.25 +P(V2=1 | X=0) = 0.16 +P(V2=1 | X=1) = 0.96 +0.16 * (0.25 - 0.51) + 0.96 * (0.89 - 0.21) = 0.14 +0.14 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 74%. The probability of not zuph and glimx is 8%. The probability of zuph and glimx is 20%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.20 +0.20/0.74 - 0.08/0.26 = -0.06 +-0.06 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 81%. For those who are zuph, the probability of glimx is 35%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.35 +0.35 - 0.81 = -0.46 +-0.46 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 86%. For those who are not zuph and are jyka, the probability of glimx is 30%. For those who are zuph and are not jyka, the probability of glimx is 39%. For those who are zuph and are jyka, the probability of glimx is 21%. For those who are not zuph, the probability of jyka is 10%. For those who are zuph, the probability of jyka is 24%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.86 +P(Y=1 | X=0, V2=1) = 0.30 +P(Y=1 | X=1, V2=0) = 0.39 +P(Y=1 | X=1, V2=1) = 0.21 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.24 +0.24 * (0.30 - 0.86)+ 0.10 * (0.21 - 0.39)= -0.08 +-0.08 < 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 86%. For those who are not zuph and are jyka, the probability of glimx is 30%. For those who are zuph and are not jyka, the probability of glimx is 39%. For those who are zuph and are jyka, the probability of glimx is 21%. For those who are not zuph, the probability of jyka is 10%. For those who are zuph, the probability of jyka is 24%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.86 +P(Y=1 | X=0, V2=1) = 0.30 +P(Y=1 | X=1, V2=0) = 0.39 +P(Y=1 | X=1, V2=1) = 0.21 +P(V2=1 | X=0) = 0.10 +P(V2=1 | X=1) = 0.24 +0.10 * (0.21 - 0.39) + 0.24 * (0.30 - 0.86) = -0.43 +-0.43 < 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35742,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 99%. For those who are not zuph, the probability of glimx is 81%. For those who are zuph, the probability of glimx is 35%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.35 +0.99*0.35 - 0.01*0.81 = 0.35 +0.35 > 0",mediation,nonsense9,1,marginal,P(Y) +35743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 99%. For those who are not zuph, the probability of glimx is 81%. For those who are zuph, the probability of glimx is 35%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.81 +P(Y=1 | X=1) = 0.35 +0.99*0.35 - 0.01*0.81 = 0.35 +0.35 > 0",mediation,nonsense9,1,marginal,P(Y) +35746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 42%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.42 +0.42 - 0.20 = 0.22 +0.22 > 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 42%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.42 +0.42 - 0.20 = 0.22 +0.22 > 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 42%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.42 +0.42 - 0.20 = 0.22 +0.22 > 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 5%. For those who are zuph and are jyka, the probability of glimx is 53%. For those who are not zuph, the probability of jyka is 49%. For those who are zuph, the probability of jyka is 77%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.05 +P(Y=1 | X=1, V2=1) = 0.53 +P(V2=1 | X=0) = 0.49 +P(V2=1 | X=1) = 0.77 +0.77 * (0.40 - 0.01)+ 0.49 * (0.53 - 0.05)= 0.11 +0.11 > 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 5%. For those who are zuph and are jyka, the probability of glimx is 53%. For those who are not zuph, the probability of jyka is 49%. For those who are zuph, the probability of jyka is 77%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.05 +P(Y=1 | X=1, V2=1) = 0.53 +P(V2=1 | X=0) = 0.49 +P(V2=1 | X=1) = 0.77 +0.77 * (0.40 - 0.01)+ 0.49 * (0.53 - 0.05)= 0.11 +0.11 > 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 5%. For those who are zuph and are jyka, the probability of glimx is 53%. For those who are not zuph, the probability of jyka is 49%. For those who are zuph, the probability of jyka is 77%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.05 +P(Y=1 | X=1, V2=1) = 0.53 +P(V2=1 | X=0) = 0.49 +P(V2=1 | X=1) = 0.77 +0.49 * (0.53 - 0.05) + 0.77 * (0.40 - 0.01) = 0.08 +0.08 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 5%. For those who are zuph and are jyka, the probability of glimx is 53%. For those who are not zuph, the probability of jyka is 49%. For those who are zuph, the probability of jyka is 77%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.05 +P(Y=1 | X=1, V2=1) = 0.53 +P(V2=1 | X=0) = 0.49 +P(V2=1 | X=1) = 0.77 +0.49 * (0.53 - 0.05) + 0.77 * (0.40 - 0.01) = 0.08 +0.08 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 97%. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 42%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.42 +0.97*0.42 - 0.03*0.20 = 0.41 +0.41 > 0",mediation,nonsense9,1,marginal,P(Y) +35757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 97%. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 42%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.97 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.42 +0.97*0.42 - 0.03*0.20 = 0.41 +0.41 > 0",mediation,nonsense9,1,marginal,P(Y) +35758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 97%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 40%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.97 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.40 +0.40/0.97 - 0.01/0.03 = 0.22 +0.22 > 0",mediation,nonsense9,1,correlation,P(Y | X) +35760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 17%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.17 +0.17 - 0.38 = -0.21 +-0.21 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 17%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.17 +0.17 - 0.38 = -0.21 +-0.21 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 49%. For those who are not zuph and are jyka, the probability of glimx is 9%. For those who are zuph and are not jyka, the probability of glimx is 41%. For those who are zuph and are jyka, the probability of glimx is 9%. For those who are not zuph, the probability of jyka is 27%. For those who are zuph, the probability of jyka is 74%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.49 +P(Y=1 | X=0, V2=1) = 0.09 +P(Y=1 | X=1, V2=0) = 0.41 +P(Y=1 | X=1, V2=1) = 0.09 +P(V2=1 | X=0) = 0.27 +P(V2=1 | X=1) = 0.74 +0.27 * (0.09 - 0.41) + 0.74 * (0.09 - 0.49) = -0.07 +-0.07 < 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 31%. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 17%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.17 +0.31*0.17 - 0.69*0.38 = 0.31 +0.31 > 0",mediation,nonsense9,1,marginal,P(Y) +35771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 31%. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 17%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.17 +0.31*0.17 - 0.69*0.38 = 0.31 +0.31 > 0",mediation,nonsense9,1,marginal,P(Y) +35773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 31%. The probability of not zuph and glimx is 26%. The probability of zuph and glimx is 5%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.26 +P(Y=1, X=1=1) = 0.05 +0.05/0.31 - 0.26/0.69 = -0.21 +-0.21 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 29%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.29 +0.29 - 0.37 = -0.07 +-0.07 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 29%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.29 +0.29 - 0.37 = -0.07 +-0.07 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 29%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.29 +0.29 - 0.37 = -0.07 +-0.07 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 29%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.29 +0.29 - 0.37 = -0.07 +-0.07 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 28%. For those who are not zuph and are jyka, the probability of glimx is 38%. For those who are zuph and are not jyka, the probability of glimx is 22%. For those who are zuph and are jyka, the probability of glimx is 33%. For those who are not zuph, the probability of jyka is 88%. For those who are zuph, the probability of jyka is 66%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.28 +P(Y=1 | X=0, V2=1) = 0.38 +P(Y=1 | X=1, V2=0) = 0.22 +P(Y=1 | X=1, V2=1) = 0.33 +P(V2=1 | X=0) = 0.88 +P(V2=1 | X=1) = 0.66 +0.66 * (0.38 - 0.28)+ 0.88 * (0.33 - 0.22)= -0.02 +-0.02 < 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 28%. For those who are not zuph and are jyka, the probability of glimx is 38%. For those who are zuph and are not jyka, the probability of glimx is 22%. For those who are zuph and are jyka, the probability of glimx is 33%. For those who are not zuph, the probability of jyka is 88%. For those who are zuph, the probability of jyka is 66%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.28 +P(Y=1 | X=0, V2=1) = 0.38 +P(Y=1 | X=1, V2=0) = 0.22 +P(Y=1 | X=1, V2=1) = 0.33 +P(V2=1 | X=0) = 0.88 +P(V2=1 | X=1) = 0.66 +0.88 * (0.33 - 0.22) + 0.66 * (0.38 - 0.28) = -0.05 +-0.05 < 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 29%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.29 +0.82*0.29 - 0.18*0.37 = 0.31 +0.31 > 0",mediation,nonsense9,1,marginal,P(Y) +35786,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 82%. The probability of not zuph and glimx is 7%. The probability of zuph and glimx is 24%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.24 +0.24/0.82 - 0.07/0.18 = -0.07 +-0.07 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 25%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.25 +0.25 - 0.43 = -0.17 +-0.17 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35792,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 25%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.25 +0.25 - 0.43 = -0.17 +-0.17 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 25%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.25 +0.25 - 0.43 = -0.17 +-0.17 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 43%. For those who are not zuph and are jyka, the probability of glimx is 15%. For those who are zuph and are not jyka, the probability of glimx is 28%. For those who are zuph and are jyka, the probability of glimx is 17%. For those who are not zuph, the probability of jyka is 2%. For those who are zuph, the probability of jyka is 28%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.15 +P(Y=1 | X=1, V2=0) = 0.28 +P(Y=1 | X=1, V2=1) = 0.17 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.28 +0.28 * (0.15 - 0.43)+ 0.02 * (0.17 - 0.28)= -0.08 +-0.08 < 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 43%. For those who are not zuph and are jyka, the probability of glimx is 15%. For those who are zuph and are not jyka, the probability of glimx is 28%. For those who are zuph and are jyka, the probability of glimx is 17%. For those who are not zuph, the probability of jyka is 2%. For those who are zuph, the probability of jyka is 28%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.43 +P(Y=1 | X=0, V2=1) = 0.15 +P(Y=1 | X=1, V2=0) = 0.28 +P(Y=1 | X=1, V2=1) = 0.17 +P(V2=1 | X=0) = 0.02 +P(V2=1 | X=1) = 0.28 +0.28 * (0.15 - 0.43)+ 0.02 * (0.17 - 0.28)= -0.08 +-0.08 < 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 14%. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 25%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.25 +0.14*0.25 - 0.86*0.43 = 0.39 +0.39 > 0",mediation,nonsense9,1,marginal,P(Y) +35799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 14%. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 25%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.14 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.25 +0.14*0.25 - 0.86*0.43 = 0.39 +0.39 > 0",mediation,nonsense9,1,marginal,P(Y) +35800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 14%. The probability of not zuph and glimx is 36%. The probability of zuph and glimx is 4%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.04 +0.04/0.14 - 0.36/0.86 = -0.17 +-0.17 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 14%. The probability of not zuph and glimx is 36%. The probability of zuph and glimx is 4%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.14 +P(Y=1, X=0=1) = 0.36 +P(Y=1, X=1=1) = 0.04 +0.04/0.14 - 0.36/0.86 = -0.17 +-0.17 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35802,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 31%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.31 +0.31 - 0.37 = -0.06 +-0.06 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 31%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.31 +0.31 - 0.37 = -0.06 +-0.06 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35808,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 28%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 12%. For those who are zuph and are jyka, the probability of glimx is 35%. For those who are not zuph, the probability of jyka is 70%. For those who are zuph, the probability of jyka is 81%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.28 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.35 +P(V2=1 | X=0) = 0.70 +P(V2=1 | X=1) = 0.81 +0.81 * (0.40 - 0.28)+ 0.70 * (0.35 - 0.12)= 0.01 +0.01 > 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 28%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 12%. For those who are zuph and are jyka, the probability of glimx is 35%. For those who are not zuph, the probability of jyka is 70%. For those who are zuph, the probability of jyka is 81%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.28 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.35 +P(V2=1 | X=0) = 0.70 +P(V2=1 | X=1) = 0.81 +0.81 * (0.40 - 0.28)+ 0.70 * (0.35 - 0.12)= 0.01 +0.01 > 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 28%. For those who are not zuph and are jyka, the probability of glimx is 40%. For those who are zuph and are not jyka, the probability of glimx is 12%. For those who are zuph and are jyka, the probability of glimx is 35%. For those who are not zuph, the probability of jyka is 70%. For those who are zuph, the probability of jyka is 81%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.28 +P(Y=1 | X=0, V2=1) = 0.40 +P(Y=1 | X=1, V2=0) = 0.12 +P(Y=1 | X=1, V2=1) = 0.35 +P(V2=1 | X=0) = 0.70 +P(V2=1 | X=1) = 0.81 +0.70 * (0.35 - 0.12) + 0.81 * (0.40 - 0.28) = -0.09 +-0.09 < 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 77%. For those who are not zuph, the probability of glimx is 37%. For those who are zuph, the probability of glimx is 31%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.37 +P(Y=1 | X=1) = 0.31 +0.77*0.31 - 0.23*0.37 = 0.32 +0.32 > 0",mediation,nonsense9,1,marginal,P(Y) +35814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 77%. The probability of not zuph and glimx is 8%. The probability of zuph and glimx is 24%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.24 +0.24/0.77 - 0.08/0.23 = -0.06 +-0.06 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35815,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 77%. The probability of not zuph and glimx is 8%. The probability of zuph and glimx is 24%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.08 +P(Y=1, X=1=1) = 0.24 +0.24/0.77 - 0.08/0.23 = -0.06 +-0.06 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35820,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 48%. For those who are zuph, the probability of glimx is 49%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.49 +0.49 - 0.48 = 0.02 +0.02 > 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 48%. For those who are zuph, the probability of glimx is 49%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.48 +P(Y=1 | X=1) = 0.49 +0.49 - 0.48 = 0.02 +0.02 > 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35822,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 92%. For those who are zuph and are not jyka, the probability of glimx is 48%. For those who are zuph and are jyka, the probability of glimx is 64%. For those who are not zuph, the probability of jyka is 51%. For those who are zuph, the probability of jyka is 9%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.48 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.09 +0.09 * (0.92 - 0.01)+ 0.51 * (0.64 - 0.48)= -0.38 +-0.38 < 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 92%. For those who are zuph and are not jyka, the probability of glimx is 48%. For those who are zuph and are jyka, the probability of glimx is 64%. For those who are not zuph, the probability of jyka is 51%. For those who are zuph, the probability of jyka is 9%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.48 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.09 +0.09 * (0.92 - 0.01)+ 0.51 * (0.64 - 0.48)= -0.38 +-0.38 < 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 92%. For those who are zuph and are not jyka, the probability of glimx is 48%. For those who are zuph and are jyka, the probability of glimx is 64%. For those who are not zuph, the probability of jyka is 51%. For those who are zuph, the probability of jyka is 9%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.48 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.09 +0.51 * (0.64 - 0.48) + 0.09 * (0.92 - 0.01) = 0.09 +0.09 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 1%. For those who are not zuph and are jyka, the probability of glimx is 92%. For those who are zuph and are not jyka, the probability of glimx is 48%. For those who are zuph and are jyka, the probability of glimx is 64%. For those who are not zuph, the probability of jyka is 51%. For those who are zuph, the probability of jyka is 9%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.01 +P(Y=1 | X=0, V2=1) = 0.92 +P(Y=1 | X=1, V2=0) = 0.48 +P(Y=1 | X=1, V2=1) = 0.64 +P(V2=1 | X=0) = 0.51 +P(V2=1 | X=1) = 0.09 +0.51 * (0.64 - 0.48) + 0.09 * (0.92 - 0.01) = 0.09 +0.09 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 95%. The probability of not zuph and glimx is 2%. The probability of zuph and glimx is 47%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.47 +0.47/0.95 - 0.02/0.05 = 0.02 +0.02 > 0",mediation,nonsense9,1,correlation,P(Y | X) +35831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 59%. For those who are zuph, the probability of glimx is 41%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.41 +0.41 - 0.59 = -0.18 +-0.18 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 59%. For those who are zuph, the probability of glimx is 41%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.41 +0.41 - 0.59 = -0.18 +-0.18 < 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35834,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 59%. For those who are zuph, the probability of glimx is 41%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.41 +0.41 - 0.59 = -0.18 +-0.18 < 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 50%. For those who are not zuph and are jyka, the probability of glimx is 94%. For those who are zuph and are not jyka, the probability of glimx is 25%. For those who are zuph and are jyka, the probability of glimx is 69%. For those who are not zuph, the probability of jyka is 20%. For those who are zuph, the probability of jyka is 36%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.50 +P(Y=1 | X=0, V2=1) = 0.94 +P(Y=1 | X=1, V2=0) = 0.25 +P(Y=1 | X=1, V2=1) = 0.69 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.36 +0.36 * (0.94 - 0.50)+ 0.20 * (0.69 - 0.25)= 0.07 +0.07 > 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35837,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 50%. For those who are not zuph and are jyka, the probability of glimx is 94%. For those who are zuph and are not jyka, the probability of glimx is 25%. For those who are zuph and are jyka, the probability of glimx is 69%. For those who are not zuph, the probability of jyka is 20%. For those who are zuph, the probability of jyka is 36%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=0, V2=1} - Y_{X=0, V2=0}] +\sum_{V2 = v} P(Y=1|X =0,V2 = v)*[P(V2 = v | X = 1) − P(V2 = v | X = 0)] +P(Y=1 | X=0, V2=0) = 0.50 +P(Y=1 | X=0, V2=1) = 0.94 +P(Y=1 | X=1, V2=0) = 0.25 +P(Y=1 | X=1, V2=1) = 0.69 +P(V2=1 | X=0) = 0.20 +P(V2=1 | X=1) = 0.36 +0.36 * (0.94 - 0.50)+ 0.20 * (0.69 - 0.25)= 0.07 +0.07 > 0",mediation,nonsense9,3,nie,"E[Y_{X=0, V2=1} - Y_{X=0, V2=0}]" +35840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 99%. For those who are not zuph, the probability of glimx is 59%. For those who are zuph, the probability of glimx is 41%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.41 +0.99*0.41 - 0.01*0.59 = 0.41 +0.41 > 0",mediation,nonsense9,1,marginal,P(Y) +35841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 99%. For those who are not zuph, the probability of glimx is 59%. For those who are zuph, the probability of glimx is 41%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.99 +P(Y=1 | X=0) = 0.59 +P(Y=1 | X=1) = 0.41 +0.99*0.41 - 0.01*0.59 = 0.41 +0.41 > 0",mediation,nonsense9,1,marginal,P(Y) +35842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 99%. The probability of not zuph and glimx is 0%. The probability of zuph and glimx is 41%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.99 +P(Y=1, X=0=1) = 0.00 +P(Y=1, X=1=1) = 0.41 +0.41/0.99 - 0.00/0.01 = -0.18 +-0.18 < 0",mediation,nonsense9,1,correlation,P(Y | X) +35844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 68%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.68 +0.68 - 0.32 = 0.37 +0.37 > 0",mediation,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 68%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.68 +0.68 - 0.32 = 0.37 +0.37 > 0",mediation,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 20%. For those who are zuph and are not jyka, the probability of glimx is 13%. For those who are zuph and are jyka, the probability of glimx is 78%. For those who are not zuph, the probability of jyka is 41%. For those who are zuph, the probability of jyka is 85%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.40 +P(Y=1 | X=0, V2=1) = 0.20 +P(Y=1 | X=1, V2=0) = 0.13 +P(Y=1 | X=1, V2=1) = 0.78 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.85 +0.41 * (0.78 - 0.13) + 0.85 * (0.20 - 0.40) = 0.08 +0.08 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35853,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 20%. For those who are zuph and are not jyka, the probability of glimx is 13%. For those who are zuph and are jyka, the probability of glimx is 78%. For those who are not zuph, the probability of jyka is 41%. For those who are zuph, the probability of jyka is 85%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +E[Y_{X=1, V2=0} - Y_{X=0, V2=0}] +\sum_{V2=v} P(V2=v|X=0)*[P(Y=1|X=1,V2=v) - P(Y=1|X=0, V2=v)] +P(Y=1 | X=0, V2=0) = 0.40 +P(Y=1 | X=0, V2=1) = 0.20 +P(Y=1 | X=1, V2=0) = 0.13 +P(Y=1 | X=1, V2=1) = 0.78 +P(V2=1 | X=0) = 0.41 +P(V2=1 | X=1) = 0.85 +0.41 * (0.78 - 0.13) + 0.85 * (0.20 - 0.40) = 0.08 +0.08 > 0",mediation,nonsense9,3,nde,"E[Y_{X=1, V2=0} - Y_{X=0, V2=0}]" +35856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 57%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 39%.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.39 +0.39/0.57 - 0.14/0.43 = 0.37 +0.37 > 0",mediation,nonsense9,1,correlation,P(Y | X) +35857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 57%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 39%.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.57 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.39 +0.39/0.57 - 0.14/0.43 = 0.37 +0.37 > 0",mediation,nonsense9,1,correlation,P(Y | X) +35859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",mediation,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 46%. For those who are zuph, the probability of jyka is 40%. For those who are not zuph and are not jyka, the probability of glimx is 14%. For those who are not zuph and are jyka, the probability of glimx is 23%. For those who are zuph and are not jyka, the probability of glimx is 20%. For those who are zuph and are jyka, the probability of glimx is 21%. The overall probability of zuph is 25%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.46 +P(V3=1 | X=1) = 0.40 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.21 +P(X=1) = 0.25 +(0.40 - 0.46)* (0.21 * 0.25) + (0.60 - 0.54) * (0.23 * 0.75) = -0.00 +0.00 = 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35861,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 46%. For those who are zuph, the probability of jyka is 40%. For those who are not zuph and are not jyka, the probability of glimx is 14%. For those who are not zuph and are jyka, the probability of glimx is 23%. For those who are zuph and are not jyka, the probability of glimx is 20%. For those who are zuph and are jyka, the probability of glimx is 21%. The overall probability of zuph is 25%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.46 +P(V3=1 | X=1) = 0.40 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.21 +P(X=1) = 0.25 +(0.40 - 0.46)* (0.21 * 0.25) + (0.60 - 0.54) * (0.23 * 0.75) = -0.00 +0.00 = 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 14%. For those who are not zuph and are jyka, the probability of glimx is 23%. For those who are zuph and are not jyka, the probability of glimx is 20%. For those who are zuph and are jyka, the probability of glimx is 21%. For those who are not zuph, the probability of jyka is 46%. For those who are zuph, the probability of jyka is 40%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0) = 0.46 +P(V3=1 | X=1) = 0.40 +0.21 * (0.40 - 0.46) + 0.23 * (0.60 - 0.54) = -0.00 +0.00 = 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 14%. For those who are not zuph and are jyka, the probability of glimx is 23%. For those who are zuph and are not jyka, the probability of glimx is 20%. For those who are zuph and are jyka, the probability of glimx is 21%. For those who are not zuph, the probability of jyka is 46%. For those who are zuph, the probability of jyka is 40%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.21 +P(V3=1 | X=0) = 0.46 +P(V3=1 | X=1) = 0.40 +0.21 * (0.40 - 0.46) + 0.23 * (0.60 - 0.54) = -0.00 +0.00 = 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 46%. For those who are zuph, the probability of jyka is 40%. For those who are not zuph and are not jyka, the probability of glimx is 14%. For those who are not zuph and are jyka, the probability of glimx is 23%. For those who are zuph and are not jyka, the probability of glimx is 20%. For those who are zuph and are jyka, the probability of glimx is 21%. The overall probability of zuph is 25%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.46 +P(V3=1 | X=1) = 0.40 +P(Y=1 | X=0, V3=0) = 0.14 +P(Y=1 | X=0, V3=1) = 0.23 +P(Y=1 | X=1, V3=0) = 0.20 +P(Y=1 | X=1, V3=1) = 0.21 +P(X=1) = 0.25 +0.40 - 0.46 * (0.21 * 0.25 + 0.23 * 0.75)= -0.00 +0.00 = 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 25%. For those who are not zuph, the probability of glimx is 18%. For those who are zuph, the probability of glimx is 20%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.25 +P(Y=1 | X=0) = 0.18 +P(Y=1 | X=1) = 0.20 +0.25*0.20 - 0.75*0.18 = 0.19 +0.19 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 25%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 5%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.25 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.05 +0.05/0.25 - 0.14/0.75 = 0.02 +0.02 > 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 24%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 32%. For those who are zuph and are not jyka, the probability of glimx is 30%. For those who are zuph and are jyka, the probability of glimx is 38%. The overall probability of zuph is 38%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.38 +P(X=1) = 0.38 +(0.51 - 0.24)* (0.38 * 0.38) + (0.49 - 0.76) * (0.32 * 0.62) = -0.01 +-0.01 < 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 24%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 32%. For those who are zuph and are not jyka, the probability of glimx is 30%. For those who are zuph and are jyka, the probability of glimx is 38%. The overall probability of zuph is 38%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.38 +P(X=1) = 0.38 +(0.51 - 0.24)* (0.38 * 0.38) + (0.49 - 0.76) * (0.32 * 0.62) = -0.01 +-0.01 < 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35875,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 32%. For those who are zuph and are not jyka, the probability of glimx is 30%. For those who are zuph and are jyka, the probability of glimx is 38%. For those who are not zuph, the probability of jyka is 24%. For those who are zuph, the probability of jyka is 51%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.38 +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.51 +0.38 * (0.51 - 0.24) + 0.32 * (0.49 - 0.76) = 0.02 +0.02 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 24%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 32%. For those who are zuph and are not jyka, the probability of glimx is 30%. For those who are zuph and are jyka, the probability of glimx is 38%. The overall probability of zuph is 38%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.38 +P(X=1) = 0.38 +0.51 - 0.24 * (0.38 * 0.38 + 0.32 * 0.62)= -0.01 +-0.01 < 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35877,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 24%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 40%. For those who are not zuph and are jyka, the probability of glimx is 32%. For those who are zuph and are not jyka, the probability of glimx is 30%. For those who are zuph and are jyka, the probability of glimx is 38%. The overall probability of zuph is 38%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.24 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.40 +P(Y=1 | X=0, V3=1) = 0.32 +P(Y=1 | X=1, V3=0) = 0.30 +P(Y=1 | X=1, V3=1) = 0.38 +P(X=1) = 0.38 +0.51 - 0.24 * (0.38 * 0.38 + 0.32 * 0.62)= -0.01 +-0.01 < 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35878,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 38%. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 34%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.34 +0.38*0.34 - 0.62*0.38 = 0.35 +0.35 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35879,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 38%. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 34%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.38 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.34 +0.38*0.34 - 0.62*0.38 = 0.35 +0.35 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 38%. The probability of not zuph and glimx is 23%. The probability of zuph and glimx is 13%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.38 +P(Y=1, X=0=1) = 0.23 +P(Y=1, X=1=1) = 0.13 +0.13/0.38 - 0.23/0.62 = -0.04 +-0.04 < 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 34%. For those who are not zuph and are jyka, the probability of glimx is 51%. For those who are zuph and are not jyka, the probability of glimx is 25%. For those who are zuph and are jyka, the probability of glimx is 42%. For those who are not zuph, the probability of jyka is 6%. For those who are zuph, the probability of jyka is 57%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.42 +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.57 +0.42 * (0.57 - 0.06) + 0.51 * (0.43 - 0.94) = 0.09 +0.09 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 6%. For those who are zuph, the probability of jyka is 57%. For those who are not zuph and are not jyka, the probability of glimx is 34%. For those who are not zuph and are jyka, the probability of glimx is 51%. For those who are zuph and are not jyka, the probability of glimx is 25%. For those who are zuph and are jyka, the probability of glimx is 42%. The overall probability of zuph is 72%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.42 +P(X=1) = 0.72 +0.57 - 0.06 * (0.42 * 0.72 + 0.51 * 0.28)= 0.09 +0.09 > 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 6%. For those who are zuph, the probability of jyka is 57%. For those who are not zuph and are not jyka, the probability of glimx is 34%. For those who are not zuph and are jyka, the probability of glimx is 51%. For those who are zuph and are not jyka, the probability of glimx is 25%. For those who are zuph and are jyka, the probability of glimx is 42%. The overall probability of zuph is 72%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.06 +P(V3=1 | X=1) = 0.57 +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.25 +P(Y=1 | X=1, V3=1) = 0.42 +P(X=1) = 0.72 +0.57 - 0.06 * (0.42 * 0.72 + 0.51 * 0.28)= 0.09 +0.09 > 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 72%. For those who are not zuph, the probability of glimx is 35%. For those who are zuph, the probability of glimx is 34%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.34 +0.72*0.34 - 0.28*0.35 = 0.35 +0.35 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 72%. The probability of not zuph and glimx is 10%. The probability of zuph and glimx is 25%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.25 +0.25/0.72 - 0.10/0.28 = -0.00 +0.00 = 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 72%. The probability of not zuph and glimx is 10%. The probability of zuph and glimx is 25%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.25 +0.25/0.72 - 0.10/0.28 = -0.00 +0.00 = 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 17%. For those who are zuph, the probability of jyka is 64%. For those who are not zuph and are not jyka, the probability of glimx is 76%. For those who are not zuph and are jyka, the probability of glimx is 68%. For those who are zuph and are not jyka, the probability of glimx is 68%. For those who are zuph and are jyka, the probability of glimx is 42%. The overall probability of zuph is 60%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.64 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.42 +P(X=1) = 0.60 +(0.64 - 0.17)* (0.42 * 0.60) + (0.36 - 0.83) * (0.68 * 0.40) = -0.09 +-0.09 < 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 17%. For those who are zuph, the probability of jyka is 64%. For those who are not zuph and are not jyka, the probability of glimx is 76%. For those who are not zuph and are jyka, the probability of glimx is 68%. For those who are zuph and are not jyka, the probability of glimx is 68%. For those who are zuph and are jyka, the probability of glimx is 42%. The overall probability of zuph is 60%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.64 +P(Y=1 | X=0, V3=0) = 0.76 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.68 +P(Y=1 | X=1, V3=1) = 0.42 +P(X=1) = 0.60 +0.64 - 0.17 * (0.42 * 0.60 + 0.68 * 0.40)= -0.09 +-0.09 < 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35902,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. For those who are not zuph, the probability of glimx is 74%. For those who are zuph, the probability of glimx is 52%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.52 +0.60*0.52 - 0.40*0.74 = 0.63 +0.63 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. For those who are not zuph, the probability of glimx is 74%. For those who are zuph, the probability of glimx is 52%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.74 +P(Y=1 | X=1) = 0.52 +0.60*0.52 - 0.40*0.74 = 0.63 +0.63 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. The probability of not zuph and glimx is 30%. The probability of zuph and glimx is 31%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.31 +0.31/0.60 - 0.30/0.40 = -0.23 +-0.23 < 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. The probability of not zuph and glimx is 30%. The probability of zuph and glimx is 31%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.31 +0.31/0.60 - 0.30/0.40 = -0.23 +-0.23 < 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35907,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 39%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 87%. For those who are not zuph and are jyka, the probability of glimx is 36%. For those who are zuph and are not jyka, the probability of glimx is 82%. For those who are zuph and are jyka, the probability of glimx is 41%. The overall probability of zuph is 69%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.69 +(0.51 - 0.39)* (0.41 * 0.69) + (0.49 - 0.61) * (0.36 * 0.31) = -0.05 +-0.05 < 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 87%. For those who are not zuph and are jyka, the probability of glimx is 36%. For those who are zuph and are not jyka, the probability of glimx is 82%. For those who are zuph and are jyka, the probability of glimx is 41%. For those who are not zuph, the probability of jyka is 39%. For those who are zuph, the probability of jyka is 51%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.41 +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.51 +0.41 * (0.51 - 0.39) + 0.36 * (0.49 - 0.61) = -0.05 +-0.05 < 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 39%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 87%. For those who are not zuph and are jyka, the probability of glimx is 36%. For those who are zuph and are not jyka, the probability of glimx is 82%. For those who are zuph and are jyka, the probability of glimx is 41%. The overall probability of zuph is 69%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.69 +0.51 - 0.39 * (0.41 * 0.69 + 0.36 * 0.31)= -0.05 +-0.05 < 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 39%. For those who are zuph, the probability of jyka is 51%. For those who are not zuph and are not jyka, the probability of glimx is 87%. For those who are not zuph and are jyka, the probability of glimx is 36%. For those who are zuph and are not jyka, the probability of glimx is 82%. For those who are zuph and are jyka, the probability of glimx is 41%. The overall probability of zuph is 69%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.39 +P(V3=1 | X=1) = 0.51 +P(Y=1 | X=0, V3=0) = 0.87 +P(Y=1 | X=0, V3=1) = 0.36 +P(Y=1 | X=1, V3=0) = 0.82 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.69 +0.51 - 0.39 * (0.41 * 0.69 + 0.36 * 0.31)= -0.05 +-0.05 < 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. For those who are not zuph, the probability of glimx is 67%. For those who are zuph, the probability of glimx is 61%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.67 +P(Y=1 | X=1) = 0.61 +0.69*0.61 - 0.31*0.67 = 0.63 +0.63 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35916,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 43%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.43 +0.43/0.69 - 0.21/0.31 = -0.05 +-0.05 < 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 43%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.43 +0.43/0.69 - 0.21/0.31 = -0.05 +-0.05 < 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 71%. For those who are zuph, the probability of jyka is 6%. For those who are not zuph and are not jyka, the probability of glimx is 53%. For those who are not zuph and are jyka, the probability of glimx is 44%. For those who are zuph and are not jyka, the probability of glimx is 88%. For those who are zuph and are jyka, the probability of glimx is 41%. The overall probability of zuph is 36%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.06 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.36 +(0.06 - 0.71)* (0.41 * 0.36) + (0.94 - 0.29) * (0.44 * 0.64) = 0.15 +0.15 > 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35923,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 53%. For those who are not zuph and are jyka, the probability of glimx is 44%. For those who are zuph and are not jyka, the probability of glimx is 88%. For those who are zuph and are jyka, the probability of glimx is 41%. For those who are not zuph, the probability of jyka is 71%. For those who are zuph, the probability of jyka is 6%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.41 +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.06 +0.41 * (0.06 - 0.71) + 0.44 * (0.94 - 0.29) = 0.30 +0.30 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 71%. For those who are zuph, the probability of jyka is 6%. For those who are not zuph and are not jyka, the probability of glimx is 53%. For those who are not zuph and are jyka, the probability of glimx is 44%. For those who are zuph and are not jyka, the probability of glimx is 88%. For those who are zuph and are jyka, the probability of glimx is 41%. The overall probability of zuph is 36%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.71 +P(V3=1 | X=1) = 0.06 +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.44 +P(Y=1 | X=1, V3=0) = 0.88 +P(Y=1 | X=1, V3=1) = 0.41 +P(X=1) = 0.36 +0.06 - 0.71 * (0.41 * 0.36 + 0.44 * 0.64)= 0.15 +0.15 > 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 36%. For those who are not zuph, the probability of glimx is 47%. For those who are zuph, the probability of glimx is 85%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.85 +0.36*0.85 - 0.64*0.47 = 0.55 +0.55 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 36%. For those who are not zuph, the probability of glimx is 47%. For those who are zuph, the probability of glimx is 85%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.36 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.85 +0.36*0.85 - 0.64*0.47 = 0.55 +0.55 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 36%. The probability of not zuph and glimx is 30%. The probability of zuph and glimx is 31%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.36 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.31 +0.31/0.36 - 0.30/0.64 = 0.38 +0.38 > 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 50%. For those who are zuph, the probability of jyka is 93%. For those who are not zuph and are not jyka, the probability of glimx is 75%. For those who are not zuph and are jyka, the probability of glimx is 72%. For those who are zuph and are not jyka, the probability of glimx is 50%. For those who are zuph and are jyka, the probability of glimx is 30%. The overall probability of zuph is 96%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.93 +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.96 +(0.93 - 0.50)* (0.30 * 0.96) + (0.07 - 0.50) * (0.72 * 0.04) = -0.08 +-0.08 < 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 50%. For those who are zuph, the probability of jyka is 93%. For those who are not zuph and are not jyka, the probability of glimx is 75%. For those who are not zuph and are jyka, the probability of glimx is 72%. For those who are zuph and are not jyka, the probability of glimx is 50%. For those who are zuph and are jyka, the probability of glimx is 30%. The overall probability of zuph is 96%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.50 +P(V3=1 | X=1) = 0.93 +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.72 +P(Y=1 | X=1, V3=0) = 0.50 +P(Y=1 | X=1, V3=1) = 0.30 +P(X=1) = 0.96 +0.93 - 0.50 * (0.30 * 0.96 + 0.72 * 0.04)= -0.08 +-0.08 < 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 8%. For those who are zuph, the probability of jyka is 24%. For those who are not zuph and are not jyka, the probability of glimx is 35%. For those who are not zuph and are jyka, the probability of glimx is 54%. For those who are zuph and are not jyka, the probability of glimx is 35%. For those who are zuph and are jyka, the probability of glimx is 54%. The overall probability of zuph is 11%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.11 +(0.24 - 0.08)* (0.54 * 0.11) + (0.76 - 0.92) * (0.54 * 0.89) = 0.03 +0.03 > 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 35%. For those who are not zuph and are jyka, the probability of glimx is 54%. For those who are zuph and are not jyka, the probability of glimx is 35%. For those who are zuph and are jyka, the probability of glimx is 54%. For those who are not zuph, the probability of jyka is 8%. For those who are zuph, the probability of jyka is 24%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.24 +0.54 * (0.24 - 0.08) + 0.54 * (0.76 - 0.92) = 0.03 +0.03 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 35%. For those who are not zuph and are jyka, the probability of glimx is 54%. For those who are zuph and are not jyka, the probability of glimx is 35%. For those who are zuph and are jyka, the probability of glimx is 54%. For those who are not zuph, the probability of jyka is 8%. For those who are zuph, the probability of jyka is 24%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.24 +0.54 * (0.24 - 0.08) + 0.54 * (0.76 - 0.92) = 0.03 +0.03 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 8%. For those who are zuph, the probability of jyka is 24%. For those who are not zuph and are not jyka, the probability of glimx is 35%. For those who are not zuph and are jyka, the probability of glimx is 54%. For those who are zuph and are not jyka, the probability of glimx is 35%. For those who are zuph and are jyka, the probability of glimx is 54%. The overall probability of zuph is 11%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.08 +P(V3=1 | X=1) = 0.24 +P(Y=1 | X=0, V3=0) = 0.35 +P(Y=1 | X=0, V3=1) = 0.54 +P(Y=1 | X=1, V3=0) = 0.35 +P(Y=1 | X=1, V3=1) = 0.54 +P(X=1) = 0.11 +0.24 - 0.08 * (0.54 * 0.11 + 0.54 * 0.89)= 0.03 +0.03 > 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35952,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 11%. The probability of not zuph and glimx is 33%. The probability of zuph and glimx is 4%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.11 +P(Y=1, X=0=1) = 0.33 +P(Y=1, X=1=1) = 0.04 +0.04/0.11 - 0.33/0.89 = 0.03 +0.03 > 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 81%. For those who are zuph, the probability of jyka is 18%. For those who are not zuph and are not jyka, the probability of glimx is 75%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 75%. For those who are zuph and are jyka, the probability of glimx is 19%. The overall probability of zuph is 62%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.81 +P(V3=1 | X=1) = 0.18 +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.19 +P(X=1) = 0.62 +(0.18 - 0.81)* (0.19 * 0.62) + (0.82 - 0.19) * (0.18 * 0.38) = 0.35 +0.35 > 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 75%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 75%. For those who are zuph and are jyka, the probability of glimx is 19%. For those who are not zuph, the probability of jyka is 81%. For those who are zuph, the probability of jyka is 18%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0) = 0.81 +P(V3=1 | X=1) = 0.18 +0.19 * (0.18 - 0.81) + 0.18 * (0.82 - 0.19) = 0.35 +0.35 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35959,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 75%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 75%. For those who are zuph and are jyka, the probability of glimx is 19%. For those who are not zuph, the probability of jyka is 81%. For those who are zuph, the probability of jyka is 18%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.75 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.75 +P(Y=1 | X=1, V3=1) = 0.19 +P(V3=1 | X=0) = 0.81 +P(V3=1 | X=1) = 0.18 +0.19 * (0.18 - 0.81) + 0.18 * (0.82 - 0.19) = 0.35 +0.35 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 62%. For those who are not zuph, the probability of glimx is 29%. For those who are zuph, the probability of glimx is 64%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.64 +0.62*0.64 - 0.38*0.29 = 0.51 +0.51 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 62%. For those who are not zuph, the probability of glimx is 29%. For those who are zuph, the probability of glimx is 64%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.64 +0.62*0.64 - 0.38*0.29 = 0.51 +0.51 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 62%. The probability of not zuph and glimx is 11%. The probability of zuph and glimx is 40%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.11 +P(Y=1, X=1=1) = 0.40 +0.40/0.62 - 0.11/0.38 = 0.35 +0.35 > 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",frontdoor,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 89%. For those who are zuph, the probability of jyka is 17%. For those who are not zuph and are not jyka, the probability of glimx is 72%. For those who are not zuph and are jyka, the probability of glimx is 59%. For those who are zuph and are not jyka, the probability of glimx is 84%. For those who are zuph and are jyka, the probability of glimx is 62%. The overall probability of zuph is 28%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.89 +P(V3=1 | X=1) = 0.17 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.28 +(0.17 - 0.89)* (0.62 * 0.28) + (0.83 - 0.11) * (0.59 * 0.72) = 0.11 +0.11 > 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 89%. For those who are zuph, the probability of jyka is 17%. For those who are not zuph and are not jyka, the probability of glimx is 72%. For those who are not zuph and are jyka, the probability of glimx is 59%. For those who are zuph and are not jyka, the probability of glimx is 84%. For those who are zuph and are jyka, the probability of glimx is 62%. The overall probability of zuph is 28%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.89 +P(V3=1 | X=1) = 0.17 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.28 +(0.17 - 0.89)* (0.62 * 0.28) + (0.83 - 0.11) * (0.59 * 0.72) = 0.11 +0.11 > 0",frontdoor,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 72%. For those who are not zuph and are jyka, the probability of glimx is 59%. For those who are zuph and are not jyka, the probability of glimx is 84%. For those who are zuph and are jyka, the probability of glimx is 62%. For those who are not zuph, the probability of jyka is 89%. For those who are zuph, the probability of jyka is 17%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.89 +P(V3=1 | X=1) = 0.17 +0.62 * (0.17 - 0.89) + 0.59 * (0.83 - 0.11) = 0.16 +0.16 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 72%. For those who are not zuph and are jyka, the probability of glimx is 59%. For those who are zuph and are not jyka, the probability of glimx is 84%. For those who are zuph and are jyka, the probability of glimx is 62%. For those who are not zuph, the probability of jyka is 89%. For those who are zuph, the probability of jyka is 17%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v}P(Y=1|X=1,V3=v)*[P(V3=v|X=1)-P(V3=v|X=0)] +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.62 +P(V3=1 | X=0) = 0.89 +P(V3=1 | X=1) = 0.17 +0.62 * (0.17 - 0.89) + 0.59 * (0.83 - 0.11) = 0.16 +0.16 > 0",frontdoor,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +35973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of jyka is 89%. For those who are zuph, the probability of jyka is 17%. For those who are not zuph and are not jyka, the probability of glimx is 72%. For those who are not zuph and are jyka, the probability of glimx is 59%. For those who are zuph and are not jyka, the probability of glimx is 84%. For those who are zuph and are jyka, the probability of glimx is 62%. The overall probability of zuph is 28%.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3 = v} [P(V3 = v|X = 1) - P(V3 = v|X = 0)] * [\sum_{X = h} P(Y = 1|X = h,V3 = v)*P(X = h)] +P(V3=1 | X=0) = 0.89 +P(V3=1 | X=1) = 0.17 +P(Y=1 | X=0, V3=0) = 0.72 +P(Y=1 | X=0, V3=1) = 0.59 +P(Y=1 | X=1, V3=0) = 0.84 +P(Y=1 | X=1, V3=1) = 0.62 +P(X=1) = 0.28 +0.17 - 0.89 * (0.62 * 0.28 + 0.59 * 0.72)= 0.11 +0.11 > 0",frontdoor,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +35974,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 28%. For those who are not zuph, the probability of glimx is 60%. For those who are zuph, the probability of glimx is 81%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.28 +P(Y=1 | X=0) = 0.60 +P(Y=1 | X=1) = 0.81 +0.28*0.81 - 0.72*0.60 = 0.65 +0.65 > 0",frontdoor,nonsense9,1,marginal,P(Y) +35976,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 28%. The probability of not zuph and glimx is 43%. The probability of zuph and glimx is 23%.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.28 +P(Y=1, X=0=1) = 0.43 +P(Y=1, X=1=1) = 0.23 +0.23/0.28 - 0.43/0.72 = 0.21 +0.21 > 0",frontdoor,nonsense9,1,correlation,P(Y | X) +35983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 35%. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 33%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.35 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.33 +0.35*0.33 - 0.65*0.21 = 0.28 +0.28 > 0",IV,nonsense9,1,marginal,P(Y) +35984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 35%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 12%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.35 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.12 +0.12/0.35 - 0.14/0.65 = 0.12 +0.12 > 0",IV,nonsense9,1,correlation,P(Y | X) +35986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 57%. For those who are jyka, the probability of glimx is 56%. For those who are not jyka, the probability of zuph is 46%. For those who are jyka, the probability of zuph is 52%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.57 +P(Y=1 | V2=1) = 0.56 +P(X=1 | V2=0) = 0.46 +P(X=1 | V2=1) = 0.52 +(0.56 - 0.57) / (0.52 - 0.46) = -0.26 +-0.26 < 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +35990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 48%. For those who are not zuph, the probability of glimx is 69%. For those who are zuph, the probability of glimx is 43%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.43 +0.48*0.43 - 0.52*0.69 = 0.57 +0.57 > 0",IV,nonsense9,1,marginal,P(Y) +35991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 48%. For those who are not zuph, the probability of glimx is 69%. For those who are zuph, the probability of glimx is 43%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.48 +P(Y=1 | X=0) = 0.69 +P(Y=1 | X=1) = 0.43 +0.48*0.43 - 0.52*0.69 = 0.57 +0.57 > 0",IV,nonsense9,1,marginal,P(Y) +35994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +35996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 74%. For those who are jyka, the probability of glimx is 46%. For those who are not jyka, the probability of zuph is 83%. For those who are jyka, the probability of zuph is 15%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.74 +P(Y=1 | V2=1) = 0.46 +P(X=1 | V2=0) = 0.83 +P(X=1 | V2=1) = 0.15 +(0.46 - 0.74) / (0.15 - 0.83) = 0.42 +0.42 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 54%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 43%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.43 +0.43/0.54 - 0.21/0.46 = 0.34 +0.34 > 0",IV,nonsense9,1,correlation,P(Y | X) +36001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 54%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 43%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.54 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.43 +0.43/0.54 - 0.21/0.46 = 0.34 +0.34 > 0",IV,nonsense9,1,correlation,P(Y | X) +36002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 42%. For those who are not zuph, the probability of glimx is 78%. For those who are zuph, the probability of glimx is 32%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.42 +P(Y=1 | X=0) = 0.78 +P(Y=1 | X=1) = 0.32 +0.42*0.32 - 0.58*0.78 = 0.49 +0.49 > 0",IV,nonsense9,1,marginal,P(Y) +36008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 42%. The probability of not zuph and glimx is 45%. The probability of zuph and glimx is 13%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.13 +0.13/0.42 - 0.45/0.58 = -0.46 +-0.46 < 0",IV,nonsense9,1,correlation,P(Y | X) +36009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 42%. The probability of not zuph and glimx is 45%. The probability of zuph and glimx is 13%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.42 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.13 +0.13/0.42 - 0.45/0.58 = -0.46 +-0.46 < 0",IV,nonsense9,1,correlation,P(Y | X) +36010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36012,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 42%. For those who are jyka, the probability of glimx is 45%. For those who are not jyka, the probability of zuph is 56%. For those who are jyka, the probability of zuph is 72%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.42 +P(Y=1 | V2=1) = 0.45 +P(X=1 | V2=0) = 0.56 +P(X=1 | V2=1) = 0.72 +(0.45 - 0.42) / (0.72 - 0.56) = 0.18 +0.18 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36013,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 42%. For those who are jyka, the probability of glimx is 45%. For those who are not jyka, the probability of zuph is 56%. For those who are jyka, the probability of zuph is 72%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.42 +P(Y=1 | V2=1) = 0.45 +P(X=1 | V2=0) = 0.56 +P(X=1 | V2=1) = 0.72 +(0.45 - 0.42) / (0.72 - 0.56) = 0.18 +0.18 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 56%. For those who are not zuph, the probability of glimx is 29%. For those who are zuph, the probability of glimx is 59%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.59 +0.56*0.59 - 0.44*0.29 = 0.43 +0.43 > 0",IV,nonsense9,1,marginal,P(Y) +36015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 56%. For those who are not zuph, the probability of glimx is 29%. For those who are zuph, the probability of glimx is 59%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.56 +P(Y=1 | X=0) = 0.29 +P(Y=1 | X=1) = 0.59 +0.56*0.59 - 0.44*0.29 = 0.43 +0.43 > 0",IV,nonsense9,1,marginal,P(Y) +36016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 56%. The probability of not zuph and glimx is 13%. The probability of zuph and glimx is 33%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.33 +0.33/0.56 - 0.13/0.44 = 0.29 +0.29 > 0",IV,nonsense9,1,correlation,P(Y | X) +36017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 56%. The probability of not zuph and glimx is 13%. The probability of zuph and glimx is 33%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.56 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.33 +0.33/0.56 - 0.13/0.44 = 0.29 +0.29 > 0",IV,nonsense9,1,correlation,P(Y | X) +36019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 46%. For those who are jyka, the probability of glimx is 47%. For those who are not jyka, the probability of zuph is 72%. For those who are jyka, the probability of zuph is 69%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.46 +P(Y=1 | V2=1) = 0.47 +P(X=1 | V2=0) = 0.72 +P(X=1 | V2=1) = 0.69 +(0.47 - 0.46) / (0.69 - 0.72) = -0.21 +-0.21 < 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36021,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 46%. For those who are jyka, the probability of glimx is 47%. For those who are not jyka, the probability of zuph is 72%. For those who are jyka, the probability of zuph is 69%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.46 +P(Y=1 | V2=1) = 0.47 +P(X=1 | V2=0) = 0.72 +P(X=1 | V2=1) = 0.69 +(0.47 - 0.46) / (0.69 - 0.72) = -0.21 +-0.21 < 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 70%. The probability of not zuph and glimx is 18%. The probability of zuph and glimx is 29%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.70 +P(Y=1, X=0=1) = 0.18 +P(Y=1, X=1=1) = 0.29 +0.29/0.70 - 0.18/0.30 = -0.18 +-0.18 < 0",IV,nonsense9,1,correlation,P(Y | X) +36028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 54%. For those who are jyka, the probability of glimx is 54%. For those who are not jyka, the probability of zuph is 56%. For those who are jyka, the probability of zuph is 65%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.54 +P(X=1 | V2=0) = 0.56 +P(X=1 | V2=1) = 0.65 +(0.54 - 0.54) / (0.65 - 0.56) = 0.02 +0.02 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 54%. For those who are jyka, the probability of glimx is 54%. For those who are not jyka, the probability of zuph is 56%. For those who are jyka, the probability of zuph is 65%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.54 +P(Y=1 | V2=1) = 0.54 +P(X=1 | V2=0) = 0.56 +P(X=1 | V2=1) = 0.65 +(0.54 - 0.54) / (0.65 - 0.56) = 0.02 +0.02 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36030,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. For those who are not zuph, the probability of glimx is 61%. For those who are zuph, the probability of glimx is 44%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.44 +0.60*0.44 - 0.40*0.61 = 0.54 +0.54 > 0",IV,nonsense9,1,marginal,P(Y) +36031,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. For those who are not zuph, the probability of glimx is 61%. For those who are zuph, the probability of glimx is 44%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.60 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.44 +0.60*0.44 - 0.40*0.61 = 0.54 +0.54 > 0",IV,nonsense9,1,marginal,P(Y) +36033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 60%. The probability of not zuph and glimx is 25%. The probability of zuph and glimx is 26%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.60 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.26 +0.26/0.60 - 0.25/0.40 = -0.17 +-0.17 < 0",IV,nonsense9,1,correlation,P(Y | X) +36034,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 73%. For those who are jyka, the probability of glimx is 73%. For those who are not jyka, the probability of zuph is 62%. For those who are jyka, the probability of zuph is 70%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.73 +P(Y=1 | V2=1) = 0.73 +P(X=1 | V2=0) = 0.62 +P(X=1 | V2=1) = 0.70 +(0.73 - 0.73) / (0.70 - 0.62) = -0.07 +-0.07 < 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 63%. For those who are not zuph, the probability of glimx is 75%. For those who are zuph, the probability of glimx is 73%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.63 +P(Y=1 | X=0) = 0.75 +P(Y=1 | X=1) = 0.73 +0.63*0.73 - 0.37*0.75 = 0.73 +0.73 > 0",IV,nonsense9,1,marginal,P(Y) +36042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36044,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 66%. For those who are jyka, the probability of glimx is 63%. For those who are not jyka, the probability of zuph is 69%. For those who are jyka, the probability of zuph is 44%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.66 +P(Y=1 | V2=1) = 0.63 +P(X=1 | V2=0) = 0.69 +P(X=1 | V2=1) = 0.44 +(0.63 - 0.66) / (0.44 - 0.69) = 0.12 +0.12 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36045,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 66%. For those who are jyka, the probability of glimx is 63%. For those who are not jyka, the probability of zuph is 69%. For those who are jyka, the probability of zuph is 44%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.66 +P(Y=1 | V2=1) = 0.63 +P(X=1 | V2=0) = 0.69 +P(X=1 | V2=1) = 0.44 +(0.63 - 0.66) / (0.44 - 0.69) = 0.12 +0.12 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. For those who are not zuph, the probability of glimx is 68%. For those who are zuph, the probability of glimx is 77%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.77 +0.69*0.77 - 0.31*0.68 = 0.66 +0.66 > 0",IV,nonsense9,1,marginal,P(Y) +36047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. For those who are not zuph, the probability of glimx is 68%. For those who are zuph, the probability of glimx is 77%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.69 +P(Y=1 | X=0) = 0.68 +P(Y=1 | X=1) = 0.77 +0.69*0.77 - 0.31*0.68 = 0.66 +0.66 > 0",IV,nonsense9,1,marginal,P(Y) +36048,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 53%.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.53 +0.53/0.69 - 0.21/0.31 = 0.10 +0.10 > 0",IV,nonsense9,1,correlation,P(Y | X) +36049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 69%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 53%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.69 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.53 +0.53/0.69 - 0.21/0.31 = 0.10 +0.10 > 0",IV,nonsense9,1,correlation,P(Y | X) +36053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. For those who are not jyka, the probability of glimx is 18%. For those who are jyka, the probability of glimx is 19%. For those who are not jyka, the probability of zuph is 28%. For those who are jyka, the probability of zuph is 31%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +[P(Y=1|V2=1)-P(Y=1|V2=0)]/[P(X=1|V2=1)-P(X=1|V2=0)] +P(Y=1 | V2=0) = 0.18 +P(Y=1 | V2=1) = 0.19 +P(X=1 | V2=0) = 0.28 +P(X=1 | V2=1) = 0.31 +(0.19 - 0.18) / (0.31 - 0.28) = 0.33 +0.33 > 0",IV,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36054,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 31%. For those who are not zuph, the probability of glimx is 9%. For those who are zuph, the probability of glimx is 41%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.31 +P(Y=1 | X=0) = 0.09 +P(Y=1 | X=1) = 0.41 +0.31*0.41 - 0.69*0.09 = 0.19 +0.19 > 0",IV,nonsense9,1,marginal,P(Y) +36057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 31%. The probability of not zuph and glimx is 6%. The probability of zuph and glimx is 13%.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.31 +P(Y=1, X=0=1) = 0.06 +P(Y=1, X=1=1) = 0.13 +0.13/0.31 - 0.06/0.69 = 0.32 +0.32 > 0",IV,nonsense9,1,correlation,P(Y | X) +36059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",IV,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 42%. For those who are zuph, the probability of glimx is 73%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.73 +0.73 - 0.42 = 0.31 +0.31 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36061,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 42%. For those who are zuph, the probability of glimx is 73%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.73 +0.73 - 0.42 = 0.31 +0.31 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 42%. For those who are zuph, the probability of glimx is 73%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.73 +0.73 - 0.42 = 0.31 +0.31 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 42%. For those who are zuph, the probability of glimx is 73%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.73 +0.73 - 0.42 = 0.31 +0.31 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 45%. For those who are not zuph and are jyka, the probability of glimx is 46%. For those who are zuph and are not jyka, the probability of glimx is 79%. For those who are zuph and are jyka, the probability of glimx is 69%. For those who are not zuph and are not zory, the probability of jyka is 83%. For those who are not zuph and are zory, the probability of jyka is 55%. For those who are zuph and are not zory, the probability of jyka is 41%. For those who are zuph and are zory, the probability of jyka is 47%. The overall probability of zory is 31%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0, V2=0) = 0.83 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.47 +P(V2=1) = 0.31 +0.31 * 0.46 * (0.47 - 0.41)+ 0.69 * 0.46 * (0.55 - 0.83)= 0.00 +0.00 = 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36066,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 45%. For those who are not zuph and are jyka, the probability of glimx is 46%. For those who are zuph and are not jyka, the probability of glimx is 79%. For those who are zuph and are jyka, the probability of glimx is 69%. For those who are not zuph and are not zory, the probability of jyka is 83%. For those who are not zuph and are zory, the probability of jyka is 55%. For those who are zuph and are not zory, the probability of jyka is 41%. For those who are zuph and are zory, the probability of jyka is 47%. The overall probability of zory is 31%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0, V2=0) = 0.83 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.47 +P(V2=1) = 0.31 +0.31 * (0.69 - 0.79) * 0.55 + 0.69 * (0.46 - 0.45) * 0.41 = 0.28 +0.28 > 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 45%. For those who are not zuph and are jyka, the probability of glimx is 46%. For those who are zuph and are not jyka, the probability of glimx is 79%. For those who are zuph and are jyka, the probability of glimx is 69%. For those who are not zuph and are not zory, the probability of jyka is 83%. For those who are not zuph and are zory, the probability of jyka is 55%. For those who are zuph and are not zory, the probability of jyka is 41%. For those who are zuph and are zory, the probability of jyka is 47%. The overall probability of zory is 31%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.45 +P(Y=1 | X=0, V3=1) = 0.46 +P(Y=1 | X=1, V3=0) = 0.79 +P(Y=1 | X=1, V3=1) = 0.69 +P(V3=1 | X=0, V2=0) = 0.83 +P(V3=1 | X=0, V2=1) = 0.55 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.47 +P(V2=1) = 0.31 +0.31 * (0.69 - 0.79) * 0.55 + 0.69 * (0.46 - 0.45) * 0.41 = 0.28 +0.28 > 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36069,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 91%. For those who are not zuph, the probability of glimx is 42%. For those who are zuph, the probability of glimx is 73%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.91 +P(Y=1 | X=0) = 0.42 +P(Y=1 | X=1) = 0.73 +0.91*0.73 - 0.09*0.42 = 0.70 +0.70 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36070,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 91%. The probability of not zuph and glimx is 4%. The probability of zuph and glimx is 68%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.68 +0.68/0.91 - 0.04/0.09 = 0.29 +0.29 > 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36071,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 91%. The probability of not zuph and glimx is 4%. The probability of zuph and glimx is 68%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.91 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.68 +0.68/0.91 - 0.04/0.09 = 0.29 +0.29 > 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36075,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 53%. For those who are zuph, the probability of glimx is 8%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.08 +0.08 - 0.53 = -0.45 +-0.45 < 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36077,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 53%. For those who are zuph, the probability of glimx is 8%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.08 +0.08 - 0.53 = -0.45 +-0.45 < 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 53%. For those who are not zuph and are jyka, the probability of glimx is 51%. For those who are zuph and are not jyka, the probability of glimx is 4%. For those who are zuph and are jyka, the probability of glimx is 48%. For those who are not zuph and are not zory, the probability of jyka is 15%. For those who are not zuph and are zory, the probability of jyka is 72%. For those who are zuph and are not zory, the probability of jyka is 16%. For those who are zuph and are zory, the probability of jyka is 9%. The overall probability of zory is 90%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.15 +P(V3=1 | X=0, V2=1) = 0.72 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.90 +0.90 * 0.51 * (0.09 - 0.16)+ 0.10 * 0.51 * (0.72 - 0.15)= 0.03 +0.03 > 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 53%. For those who are not zuph and are jyka, the probability of glimx is 51%. For those who are zuph and are not jyka, the probability of glimx is 4%. For those who are zuph and are jyka, the probability of glimx is 48%. For those who are not zuph and are not zory, the probability of jyka is 15%. For those who are not zuph and are zory, the probability of jyka is 72%. For those who are zuph and are not zory, the probability of jyka is 16%. For those who are zuph and are zory, the probability of jyka is 9%. The overall probability of zory is 90%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.15 +P(V3=1 | X=0, V2=1) = 0.72 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.90 +0.90 * (0.48 - 0.04) * 0.72 + 0.10 * (0.51 - 0.53) * 0.16 = -0.21 +-0.21 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36081,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 53%. For those who are not zuph and are jyka, the probability of glimx is 51%. For those who are zuph and are not jyka, the probability of glimx is 4%. For those who are zuph and are jyka, the probability of glimx is 48%. For those who are not zuph and are not zory, the probability of jyka is 15%. For those who are not zuph and are zory, the probability of jyka is 72%. For those who are zuph and are not zory, the probability of jyka is 16%. For those who are zuph and are zory, the probability of jyka is 9%. The overall probability of zory is 90%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.53 +P(Y=1 | X=0, V3=1) = 0.51 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.48 +P(V3=1 | X=0, V2=0) = 0.15 +P(V3=1 | X=0, V2=1) = 0.72 +P(V3=1 | X=1, V2=0) = 0.16 +P(V3=1 | X=1, V2=1) = 0.09 +P(V2=1) = 0.90 +0.90 * (0.48 - 0.04) * 0.72 + 0.10 * (0.51 - 0.53) * 0.16 = -0.21 +-0.21 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36082,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 21%. For those who are not zuph, the probability of glimx is 53%. For those who are zuph, the probability of glimx is 8%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.21 +P(Y=1 | X=0) = 0.53 +P(Y=1 | X=1) = 0.08 +0.21*0.08 - 0.79*0.53 = 0.48 +0.48 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 21%. The probability of not zuph and glimx is 41%. The probability of zuph and glimx is 2%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.21 +P(Y=1, X=0=1) = 0.41 +P(Y=1, X=1=1) = 0.02 +0.02/0.21 - 0.41/0.79 = -0.44 +-0.44 < 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36086,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36087,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36088,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 30%. For those who are zuph, the probability of glimx is 48%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.48 +0.48 - 0.30 = 0.18 +0.18 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36089,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 30%. For those who are zuph, the probability of glimx is 48%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.48 +0.48 - 0.30 = 0.18 +0.18 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 30%. For those who are zuph, the probability of glimx is 48%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.48 +0.48 - 0.30 = 0.18 +0.18 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36092,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 74%. For those who are not zuph and are jyka, the probability of glimx is 17%. For those who are zuph and are not jyka, the probability of glimx is 72%. For those who are zuph and are jyka, the probability of glimx is 14%. For those who are not zuph and are not zory, the probability of jyka is 92%. For those who are not zuph and are zory, the probability of jyka is 15%. For those who are zuph and are not zory, the probability of jyka is 38%. For those who are zuph and are zory, the probability of jyka is 66%. The overall probability of zory is 13%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.15 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.66 +P(V2=1) = 0.13 +0.13 * 0.17 * (0.66 - 0.38)+ 0.87 * 0.17 * (0.15 - 0.92)= 0.15 +0.15 > 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 74%. For those who are not zuph and are jyka, the probability of glimx is 17%. For those who are zuph and are not jyka, the probability of glimx is 72%. For those who are zuph and are jyka, the probability of glimx is 14%. For those who are not zuph and are not zory, the probability of jyka is 92%. For those who are not zuph and are zory, the probability of jyka is 15%. For those who are zuph and are not zory, the probability of jyka is 38%. For those who are zuph and are zory, the probability of jyka is 66%. The overall probability of zory is 13%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.17 +P(Y=1 | X=1, V3=0) = 0.72 +P(Y=1 | X=1, V3=1) = 0.14 +P(V3=1 | X=0, V2=0) = 0.92 +P(V3=1 | X=0, V2=1) = 0.15 +P(V3=1 | X=1, V2=0) = 0.38 +P(V3=1 | X=1, V2=1) = 0.66 +P(V2=1) = 0.13 +0.13 * (0.14 - 0.72) * 0.15 + 0.87 * (0.17 - 0.74) * 0.38 = -0.06 +-0.06 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 2%. For those who are not zuph, the probability of glimx is 30%. For those who are zuph, the probability of glimx is 48%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.30 +P(Y=1 | X=1) = 0.48 +0.02*0.48 - 0.98*0.30 = 0.30 +0.30 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36100,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36102,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 90%. For those who are zuph, the probability of glimx is 42%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.42 +0.42 - 0.90 = -0.48 +-0.48 < 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 90%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.42 +0.42 - 0.90 = -0.48 +-0.48 < 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 90%. For those who are zuph, the probability of glimx is 42%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.42 +0.42 - 0.90 = -0.48 +-0.48 < 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 91%. For those who are not zuph and are jyka, the probability of glimx is 68%. For those who are zuph and are not jyka, the probability of glimx is 36%. For those who are zuph and are jyka, the probability of glimx is 57%. For those who are not zuph and are not zory, the probability of jyka is 18%. For those who are not zuph and are zory, the probability of jyka is 10%. For those who are zuph and are not zory, the probability of jyka is 44%. For those who are zuph and are zory, the probability of jyka is 30%. The overall probability of zory is 77%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.57 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.10 +P(V3=1 | X=1, V2=0) = 0.44 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.77 +0.77 * 0.68 * (0.30 - 0.44)+ 0.23 * 0.68 * (0.10 - 0.18)= -0.03 +-0.03 < 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36108,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 91%. For those who are not zuph and are jyka, the probability of glimx is 68%. For those who are zuph and are not jyka, the probability of glimx is 36%. For those who are zuph and are jyka, the probability of glimx is 57%. For those who are not zuph and are not zory, the probability of jyka is 18%. For those who are not zuph and are zory, the probability of jyka is 10%. For those who are zuph and are not zory, the probability of jyka is 44%. For those who are zuph and are zory, the probability of jyka is 30%. The overall probability of zory is 77%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.57 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.10 +P(V3=1 | X=1, V2=0) = 0.44 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.77 +0.77 * (0.57 - 0.36) * 0.10 + 0.23 * (0.68 - 0.91) * 0.44 = -0.51 +-0.51 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36109,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 91%. For those who are not zuph and are jyka, the probability of glimx is 68%. For those who are zuph and are not jyka, the probability of glimx is 36%. For those who are zuph and are jyka, the probability of glimx is 57%. For those who are not zuph and are not zory, the probability of jyka is 18%. For those who are not zuph and are zory, the probability of jyka is 10%. For those who are zuph and are not zory, the probability of jyka is 44%. For those who are zuph and are zory, the probability of jyka is 30%. The overall probability of zory is 77%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.91 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.36 +P(Y=1 | X=1, V3=1) = 0.57 +P(V3=1 | X=0, V2=0) = 0.18 +P(V3=1 | X=0, V2=1) = 0.10 +P(V3=1 | X=1, V2=0) = 0.44 +P(V3=1 | X=1, V2=1) = 0.30 +P(V2=1) = 0.77 +0.77 * (0.57 - 0.36) * 0.10 + 0.23 * (0.68 - 0.91) * 0.44 = -0.51 +-0.51 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36110,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 47%. For those who are not zuph, the probability of glimx is 90%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.47 +P(Y=1 | X=0) = 0.90 +P(Y=1 | X=1) = 0.42 +0.47*0.42 - 0.53*0.90 = 0.66 +0.66 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36113,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 47%. The probability of not zuph and glimx is 47%. The probability of zuph and glimx is 20%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.47 +P(Y=1, X=0=1) = 0.47 +P(Y=1, X=1=1) = 0.20 +0.20/0.47 - 0.47/0.53 = -0.45 +-0.45 < 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36116,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 55%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.55 +0.55 - 0.21 = 0.33 +0.33 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 55%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.55 +0.55 - 0.21 = 0.33 +0.33 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36118,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 55%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.55 +0.55 - 0.21 = 0.33 +0.33 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 21%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 37%. For those who are zuph and are jyka, the probability of glimx is 78%. For those who are not zuph and are not zory, the probability of jyka is 28%. For those who are not zuph and are zory, the probability of jyka is 69%. For those who are zuph and are not zory, the probability of jyka is 41%. For those who are zuph and are zory, the probability of jyka is 47%. The overall probability of zory is 18%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.69 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.47 +P(V2=1) = 0.18 +0.18 * 0.18 * (0.47 - 0.41)+ 0.82 * 0.18 * (0.69 - 0.28)= -0.01 +-0.01 < 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 21%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 37%. For those who are zuph and are jyka, the probability of glimx is 78%. For those who are not zuph and are not zory, the probability of jyka is 28%. For those who are not zuph and are zory, the probability of jyka is 69%. For those who are zuph and are not zory, the probability of jyka is 41%. For those who are zuph and are zory, the probability of jyka is 47%. The overall probability of zory is 18%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.69 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.47 +P(V2=1) = 0.18 +0.18 * (0.78 - 0.37) * 0.69 + 0.82 * (0.18 - 0.21) * 0.41 = 0.31 +0.31 > 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 21%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 37%. For those who are zuph and are jyka, the probability of glimx is 78%. For those who are not zuph and are not zory, the probability of jyka is 28%. For those who are not zuph and are zory, the probability of jyka is 69%. For those who are zuph and are not zory, the probability of jyka is 41%. For those who are zuph and are zory, the probability of jyka is 47%. The overall probability of zory is 18%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.37 +P(Y=1 | X=1, V3=1) = 0.78 +P(V3=1 | X=0, V2=0) = 0.28 +P(V3=1 | X=0, V2=1) = 0.69 +P(V3=1 | X=1, V2=0) = 0.41 +P(V3=1 | X=1, V2=1) = 0.47 +P(V2=1) = 0.18 +0.18 * (0.78 - 0.37) * 0.69 + 0.82 * (0.18 - 0.21) * 0.41 = 0.31 +0.31 > 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 93%. For those who are not zuph, the probability of glimx is 21%. For those who are zuph, the probability of glimx is 55%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.93 +P(Y=1 | X=0) = 0.21 +P(Y=1 | X=1) = 0.55 +0.93*0.55 - 0.07*0.21 = 0.52 +0.52 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 93%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 51%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.93 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.51 +0.51/0.93 - 0.01/0.07 = 0.34 +0.34 > 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 61%. For those who are zuph, the probability of glimx is 66%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.66 +0.66 - 0.61 = 0.05 +0.05 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36134,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 13%. For those who are not zuph and are jyka, the probability of glimx is 62%. For those who are zuph and are not jyka, the probability of glimx is 51%. For those who are zuph and are jyka, the probability of glimx is 71%. For those who are not zuph and are not zory, the probability of jyka is 96%. For those who are not zuph and are zory, the probability of jyka is 41%. For those who are zuph and are not zory, the probability of jyka is 71%. For those who are zuph and are zory, the probability of jyka is 77%. The overall probability of zory is 47%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.13 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.96 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.77 +P(V2=1) = 0.47 +0.47 * 0.62 * (0.77 - 0.71)+ 0.53 * 0.62 * (0.41 - 0.96)= 0.00 +0.00 = 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 13%. For those who are not zuph and are jyka, the probability of glimx is 62%. For those who are zuph and are not jyka, the probability of glimx is 51%. For those who are zuph and are jyka, the probability of glimx is 71%. For those who are not zuph and are not zory, the probability of jyka is 96%. For those who are not zuph and are zory, the probability of jyka is 41%. For those who are zuph and are not zory, the probability of jyka is 71%. For those who are zuph and are zory, the probability of jyka is 77%. The overall probability of zory is 47%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.13 +P(Y=1 | X=0, V3=1) = 0.62 +P(Y=1 | X=1, V3=0) = 0.51 +P(Y=1 | X=1, V3=1) = 0.71 +P(V3=1 | X=0, V2=0) = 0.96 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.71 +P(V3=1 | X=1, V2=1) = 0.77 +P(V2=1) = 0.47 +0.47 * 0.62 * (0.77 - 0.71)+ 0.53 * 0.62 * (0.41 - 0.96)= 0.00 +0.00 = 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 71%. For those who are not zuph, the probability of glimx is 61%. For those who are zuph, the probability of glimx is 66%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.71 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.66 +0.71*0.66 - 0.29*0.61 = 0.65 +0.65 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36141,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 71%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 46%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.71 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.46 +0.46/0.71 - 0.14/0.29 = 0.18 +0.18 > 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 47%. For those who are zuph, the probability of glimx is 45%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.45 +0.45 - 0.47 = -0.01 +-0.01 < 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 47%. For those who are zuph, the probability of glimx is 45%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.45 +0.45 - 0.47 = -0.01 +-0.01 < 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 42%. For those who are not zuph and are jyka, the probability of glimx is 75%. For those who are zuph and are not jyka, the probability of glimx is 33%. For those who are zuph and are jyka, the probability of glimx is 49%. For those who are not zuph and are not zory, the probability of jyka is 75%. For those who are not zuph and are zory, the probability of jyka is 30%. For those who are zuph and are not zory, the probability of jyka is 63%. For those who are zuph and are zory, the probability of jyka is 16%. The overall probability of zory is 40%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.75 +P(V3=1 | X=0, V2=1) = 0.30 +P(V3=1 | X=1, V2=0) = 0.63 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.40 +0.40 * 0.75 * (0.16 - 0.63)+ 0.60 * 0.75 * (0.30 - 0.75)= -0.04 +-0.04 < 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 42%. For those who are not zuph and are jyka, the probability of glimx is 75%. For those who are zuph and are not jyka, the probability of glimx is 33%. For those who are zuph and are jyka, the probability of glimx is 49%. For those who are not zuph and are not zory, the probability of jyka is 75%. For those who are not zuph and are zory, the probability of jyka is 30%. For those who are zuph and are not zory, the probability of jyka is 63%. For those who are zuph and are zory, the probability of jyka is 16%. The overall probability of zory is 40%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.42 +P(Y=1 | X=0, V3=1) = 0.75 +P(Y=1 | X=1, V3=0) = 0.33 +P(Y=1 | X=1, V3=1) = 0.49 +P(V3=1 | X=0, V2=0) = 0.75 +P(V3=1 | X=0, V2=1) = 0.30 +P(V3=1 | X=1, V2=0) = 0.63 +P(V3=1 | X=1, V2=1) = 0.16 +P(V2=1) = 0.40 +0.40 * 0.75 * (0.16 - 0.63)+ 0.60 * 0.75 * (0.30 - 0.75)= -0.04 +-0.04 < 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36153,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 67%. For those who are not zuph, the probability of glimx is 47%. For those who are zuph, the probability of glimx is 45%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.67 +P(Y=1 | X=0) = 0.47 +P(Y=1 | X=1) = 0.45 +0.67*0.45 - 0.33*0.47 = 0.45 +0.45 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36154,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 67%. The probability of not zuph and glimx is 20%. The probability of zuph and glimx is 27%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.67 +P(Y=1, X=0=1) = 0.20 +P(Y=1, X=1=1) = 0.27 +0.27/0.67 - 0.20/0.33 = -0.21 +-0.21 < 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 5%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.05 +0.05 - 0.54 = -0.49 +-0.49 < 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36161,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 5%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.05 +0.05 - 0.54 = -0.49 +-0.49 < 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36162,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 74%. For those who are not zuph and are jyka, the probability of glimx is 25%. For those who are zuph and are not jyka, the probability of glimx is 4%. For those who are zuph and are jyka, the probability of glimx is 5%. For those who are not zuph and are not zory, the probability of jyka is 26%. For those who are not zuph and are zory, the probability of jyka is 41%. For those who are zuph and are not zory, the probability of jyka is 39%. For those who are zuph and are zory, the probability of jyka is 82%. The overall probability of zory is 100%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.25 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.26 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 1.00 +1.00 * 0.25 * (0.82 - 0.39)+ 0.00 * 0.25 * (0.41 - 0.26)= -0.20 +-0.20 < 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 74%. For those who are not zuph and are jyka, the probability of glimx is 25%. For those who are zuph and are not jyka, the probability of glimx is 4%. For those who are zuph and are jyka, the probability of glimx is 5%. For those who are not zuph and are not zory, the probability of jyka is 26%. For those who are not zuph and are zory, the probability of jyka is 41%. For those who are zuph and are not zory, the probability of jyka is 39%. For those who are zuph and are zory, the probability of jyka is 82%. The overall probability of zory is 100%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.74 +P(Y=1 | X=0, V3=1) = 0.25 +P(Y=1 | X=1, V3=0) = 0.04 +P(Y=1 | X=1, V3=1) = 0.05 +P(V3=1 | X=0, V2=0) = 0.26 +P(V3=1 | X=0, V2=1) = 0.41 +P(V3=1 | X=1, V2=0) = 0.39 +P(V3=1 | X=1, V2=1) = 0.82 +P(V2=1) = 1.00 +1.00 * 0.25 * (0.82 - 0.39)+ 0.00 * 0.25 * (0.41 - 0.26)= -0.20 +-0.20 < 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 9%. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 5%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.05 +0.09*0.05 - 0.91*0.54 = 0.47 +0.47 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 9%. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 5%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.09 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.05 +0.09*0.05 - 0.91*0.54 = 0.47 +0.47 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 9%. The probability of not zuph and glimx is 48%. The probability of zuph and glimx is 0%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.00 +0.00/0.09 - 0.48/0.91 = -0.49 +-0.49 < 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 9%. The probability of not zuph and glimx is 48%. The probability of zuph and glimx is 0%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.09 +P(Y=1, X=0=1) = 0.48 +P(Y=1, X=1=1) = 0.00 +0.00/0.09 - 0.48/0.91 = -0.49 +-0.49 < 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36170,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 91%. For those who are zuph, the probability of glimx is 33%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.33 +0.33 - 0.91 = -0.58 +-0.58 < 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 93%. For those who are not zuph and are jyka, the probability of glimx is 91%. For those who are zuph and are not jyka, the probability of glimx is 47%. For those who are zuph and are jyka, the probability of glimx is 23%. For those who are not zuph and are not zory, the probability of jyka is 60%. For those who are not zuph and are zory, the probability of jyka is 70%. For those who are zuph and are not zory, the probability of jyka is 22%. For those who are zuph and are zory, the probability of jyka is 65%. The overall probability of zory is 95%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.60 +P(V3=1 | X=0, V2=1) = 0.70 +P(V3=1 | X=1, V2=0) = 0.22 +P(V3=1 | X=1, V2=1) = 0.65 +P(V2=1) = 0.95 +0.95 * (0.23 - 0.47) * 0.70 + 0.05 * (0.91 - 0.93) * 0.22 = -0.60 +-0.60 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 93%. For those who are not zuph and are jyka, the probability of glimx is 91%. For those who are zuph and are not jyka, the probability of glimx is 47%. For those who are zuph and are jyka, the probability of glimx is 23%. For those who are not zuph and are not zory, the probability of jyka is 60%. For those who are not zuph and are zory, the probability of jyka is 70%. For those who are zuph and are not zory, the probability of jyka is 22%. For those who are zuph and are zory, the probability of jyka is 65%. The overall probability of zory is 95%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.93 +P(Y=1 | X=0, V3=1) = 0.91 +P(Y=1 | X=1, V3=0) = 0.47 +P(Y=1 | X=1, V3=1) = 0.23 +P(V3=1 | X=0, V2=0) = 0.60 +P(V3=1 | X=0, V2=1) = 0.70 +P(V3=1 | X=1, V2=0) = 0.22 +P(V3=1 | X=1, V2=1) = 0.65 +P(V2=1) = 0.95 +0.95 * (0.23 - 0.47) * 0.70 + 0.05 * (0.91 - 0.93) * 0.22 = -0.60 +-0.60 < 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 3%. For those who are not zuph, the probability of glimx is 91%. For those who are zuph, the probability of glimx is 33%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.33 +0.03*0.33 - 0.97*0.91 = 0.89 +0.89 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 3%. For those who are not zuph, the probability of glimx is 91%. For those who are zuph, the probability of glimx is 33%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.03 +P(Y=1 | X=0) = 0.91 +P(Y=1 | X=1) = 0.33 +0.03*0.33 - 0.97*0.91 = 0.89 +0.89 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 3%. The probability of not zuph and glimx is 89%. The probability of zuph and glimx is 1%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.03 +P(Y=1, X=0=1) = 0.89 +P(Y=1, X=1=1) = 0.01 +0.01/0.03 - 0.89/0.97 = -0.59 +-0.59 < 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36184,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",arrowhead,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.42 +0.42 - 0.19 = 0.23 +0.23 > 0",arrowhead,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 42%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.42 +0.42 - 0.19 = 0.23 +0.23 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.42 +0.42 - 0.19 = 0.23 +0.23 > 0",arrowhead,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 50%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 59%. For those who are zuph and are jyka, the probability of glimx is 7%. For those who are not zuph and are not zory, the probability of jyka is 29%. For those who are not zuph and are zory, the probability of jyka is 95%. For those who are zuph and are not zory, the probability of jyka is 10%. For those who are zuph and are zory, the probability of jyka is 76%. The overall probability of zory is 75%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=0, V3=1} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k} P(Y=1|X=0,V3=v)*[P(V3=v|X=1,V2=k)-P(V3=v|X=0,V2=k)]*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.50 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.07 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.95 +P(V3=1 | X=1, V2=0) = 0.10 +P(V3=1 | X=1, V2=1) = 0.76 +P(V2=1) = 0.75 +0.75 * 0.18 * (0.76 - 0.10)+ 0.25 * 0.18 * (0.95 - 0.29)= 0.03 +0.03 > 0",arrowhead,nonsense9,3,nie,"E[Y_{X=0, V3=1} - Y_{X=0, V3=0}]" +36192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. For those who are not zuph and are not jyka, the probability of glimx is 50%. For those who are not zuph and are jyka, the probability of glimx is 18%. For those who are zuph and are not jyka, the probability of glimx is 59%. For those who are zuph and are jyka, the probability of glimx is 7%. For those who are not zuph and are not zory, the probability of jyka is 29%. For those who are not zuph and are zory, the probability of jyka is 95%. For those who are zuph and are not zory, the probability of jyka is 10%. For those who are zuph and are zory, the probability of jyka is 76%. The overall probability of zory is 75%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +E[Y_{X=1, V3=0} - Y_{X=0, V3=0}] +\sum_{V3=v} [\sum_{V2=k}[P(Y=1|X=1,V3=v)-P(Y=1|X=0,V3=v)]*P(V3=v|X=0,V2=k)*P(V2=k)] +P(Y=1 | X=0, V3=0) = 0.50 +P(Y=1 | X=0, V3=1) = 0.18 +P(Y=1 | X=1, V3=0) = 0.59 +P(Y=1 | X=1, V3=1) = 0.07 +P(V3=1 | X=0, V2=0) = 0.29 +P(V3=1 | X=0, V2=1) = 0.95 +P(V3=1 | X=1, V2=0) = 0.10 +P(V3=1 | X=1, V2=1) = 0.76 +P(V2=1) = 0.75 +0.75 * (0.07 - 0.59) * 0.95 + 0.25 * (0.18 - 0.50) * 0.10 = 0.14 +0.14 > 0",arrowhead,nonsense9,3,nde,"E[Y_{X=1, V3=0} - Y_{X=0, V3=0}]" +36195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 62%. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.62 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.42 +0.62*0.42 - 0.38*0.19 = 0.31 +0.31 > 0",arrowhead,nonsense9,1,marginal,P(Y) +36196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 62%. The probability of not zuph and glimx is 10%. The probability of zuph and glimx is 17%.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.17 +0.17/0.62 - 0.10/0.38 = 0.03 +0.03 > 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. The overall probability of zuph is 62%. The probability of not zuph and glimx is 10%. The probability of zuph and glimx is 17%.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.62 +P(Y=1, X=0=1) = 0.10 +P(Y=1, X=1=1) = 0.17 +0.17/0.62 - 0.10/0.38 = 0.03 +0.03 > 0",arrowhead,nonsense9,1,correlation,P(Y | X) +36200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 33%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.33 +0.33 - 0.58 = -0.25 +-0.25 < 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 33%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.33 +0.33 - 0.58 = -0.25 +-0.25 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 33%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.33 +0.33 - 0.58 = -0.25 +-0.25 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 22%. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 33%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.22 +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.33 +0.22*0.33 - 0.78*0.58 = 0.53 +0.53 > 0",diamond,nonsense9,1,marginal,P(Y) +36209,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 22%. The probability of not zuph and glimx is 45%. The probability of zuph and glimx is 7%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.22 +P(Y=1, X=0=1) = 0.45 +P(Y=1, X=1=1) = 0.07 +0.07/0.22 - 0.45/0.78 = -0.25 +-0.25 < 0",diamond,nonsense9,1,correlation,P(Y | X) +36210,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 54%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.54 +0.54 - 0.58 = -0.04 +-0.04 < 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 54%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.54 +0.54 - 0.58 = -0.04 +-0.04 < 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 54%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.54 +0.54 - 0.58 = -0.04 +-0.04 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 58%. For those who are zuph, the probability of glimx is 54%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.58 +P(Y=1 | X=1) = 0.54 +0.54 - 0.58 = -0.04 +-0.04 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.19 - 0.32 = -0.13 +-0.13 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 73%. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.73*0.19 - 0.27*0.32 = 0.22 +0.22 > 0",diamond,nonsense9,1,marginal,P(Y) +36231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 73%. For those who are not zuph, the probability of glimx is 32%. For those who are zuph, the probability of glimx is 19%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.73 +P(Y=1 | X=0) = 0.32 +P(Y=1 | X=1) = 0.19 +0.73*0.19 - 0.27*0.32 = 0.22 +0.22 > 0",diamond,nonsense9,1,marginal,P(Y) +36232,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 73%. The probability of not zuph and glimx is 9%. The probability of zuph and glimx is 14%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.73 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.14 +0.14/0.73 - 0.09/0.27 = -0.13 +-0.13 < 0",diamond,nonsense9,1,correlation,P(Y | X) +36235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 76%. For those who are zuph, the probability of glimx is 25%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.25 +0.25 - 0.76 = -0.51 +-0.51 < 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 76%. For those who are zuph, the probability of glimx is 25%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.25 +0.25 - 0.76 = -0.51 +-0.51 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 76%. For those who are zuph, the probability of glimx is 25%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.25 +0.25 - 0.76 = -0.51 +-0.51 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 76%. For those who are zuph, the probability of glimx is 25%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.25 +0.25 - 0.76 = -0.51 +-0.51 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 72%. For those who are not zuph, the probability of glimx is 76%. For those who are zuph, the probability of glimx is 25%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.76 +P(Y=1 | X=1) = 0.25 +0.72*0.25 - 0.28*0.76 = 0.41 +0.41 > 0",diamond,nonsense9,1,marginal,P(Y) +36244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 72%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 18%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.18 +0.18/0.72 - 0.21/0.28 = -0.51 +-0.51 < 0",diamond,nonsense9,1,correlation,P(Y | X) +36245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 72%. The probability of not zuph and glimx is 21%. The probability of zuph and glimx is 18%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.21 +P(Y=1, X=1=1) = 0.18 +0.18/0.72 - 0.21/0.28 = -0.51 +-0.51 < 0",diamond,nonsense9,1,correlation,P(Y | X) +36246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 27%. For those who are zuph, the probability of glimx is 47%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.47 +0.47 - 0.27 = 0.20 +0.20 > 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 27%. For those who are zuph, the probability of glimx is 47%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.47 +0.47 - 0.27 = 0.20 +0.20 > 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36251,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 27%. For those who are zuph, the probability of glimx is 47%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.47 +0.47 - 0.27 = 0.20 +0.20 > 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36255,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 12%. For those who are not zuph, the probability of glimx is 27%. For those who are zuph, the probability of glimx is 47%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.12 +P(Y=1 | X=0) = 0.27 +P(Y=1 | X=1) = 0.47 +0.12*0.47 - 0.88*0.27 = 0.29 +0.29 > 0",diamond,nonsense9,1,marginal,P(Y) +36256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 12%. The probability of not zuph and glimx is 24%. The probability of zuph and glimx is 6%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.06 +0.06/0.12 - 0.24/0.88 = 0.20 +0.20 > 0",diamond,nonsense9,1,correlation,P(Y | X) +36257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 12%. The probability of not zuph and glimx is 24%. The probability of zuph and glimx is 6%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.12 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.06 +0.06/0.12 - 0.24/0.88 = 0.20 +0.20 > 0",diamond,nonsense9,1,correlation,P(Y | X) +36258,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36260,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 40%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.40 - 0.38 = 0.01 +0.01 > 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 40%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.40 - 0.38 = 0.01 +0.01 > 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 40%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.40 - 0.38 = 0.01 +0.01 > 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 40%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.40 - 0.38 = 0.01 +0.01 > 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 81%. For those who are not zuph, the probability of glimx is 38%. For those who are zuph, the probability of glimx is 40%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.38 +P(Y=1 | X=1) = 0.40 +0.81*0.40 - 0.19*0.38 = 0.39 +0.39 > 0",diamond,nonsense9,1,marginal,P(Y) +36268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 81%. The probability of not zuph and glimx is 7%. The probability of zuph and glimx is 32%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.32 +0.32/0.81 - 0.07/0.19 = 0.01 +0.01 > 0",diamond,nonsense9,1,correlation,P(Y | X) +36269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 81%. The probability of not zuph and glimx is 7%. The probability of zuph and glimx is 32%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.32 +0.32/0.81 - 0.07/0.19 = 0.01 +0.01 > 0",diamond,nonsense9,1,correlation,P(Y | X) +36270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36271,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36274,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 71%. For those who are zuph, the probability of glimx is 44%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.44 +0.44 - 0.71 = -0.27 +-0.27 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 71%. For those who are zuph, the probability of glimx is 44%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.44 +0.44 - 0.71 = -0.27 +-0.27 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36278,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 64%. For those who are not zuph, the probability of glimx is 71%. For those who are zuph, the probability of glimx is 44%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.44 +0.64*0.44 - 0.36*0.71 = 0.52 +0.52 > 0",diamond,nonsense9,1,marginal,P(Y) +36279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 64%. For those who are not zuph, the probability of glimx is 71%. For those who are zuph, the probability of glimx is 44%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.64 +P(Y=1 | X=0) = 0.71 +P(Y=1 | X=1) = 0.44 +0.64*0.44 - 0.36*0.71 = 0.52 +0.52 > 0",diamond,nonsense9,1,marginal,P(Y) +36280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 64%. The probability of not zuph and glimx is 25%. The probability of zuph and glimx is 28%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.28 +0.28/0.64 - 0.25/0.36 = -0.27 +-0.27 < 0",diamond,nonsense9,1,correlation,P(Y | X) +36281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 64%. The probability of not zuph and glimx is 25%. The probability of zuph and glimx is 28%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.64 +P(Y=1, X=0=1) = 0.25 +P(Y=1, X=1=1) = 0.28 +0.28/0.64 - 0.25/0.36 = -0.27 +-0.27 < 0",diamond,nonsense9,1,correlation,P(Y | X) +36282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36283,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 67%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.67 +0.67 - 0.55 = 0.12 +0.12 > 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 51%. For those who are not zuph, the probability of glimx is 55%. For those who are zuph, the probability of glimx is 67%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.51 +P(Y=1 | X=0) = 0.55 +P(Y=1 | X=1) = 0.67 +0.51*0.67 - 0.49*0.55 = 0.57 +0.57 > 0",diamond,nonsense9,1,marginal,P(Y) +36292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 51%. The probability of not zuph and glimx is 27%. The probability of zuph and glimx is 34%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.51 +P(Y=1, X=0=1) = 0.27 +P(Y=1, X=1=1) = 0.34 +0.34/0.51 - 0.27/0.49 = 0.12 +0.12 > 0",diamond,nonsense9,1,correlation,P(Y | X) +36294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 6%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.06 +0.06 - 0.20 = -0.14 +-0.14 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 6%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.06 +0.06 - 0.20 = -0.14 +-0.14 < 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36300,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 6%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.06 +0.06 - 0.20 = -0.14 +-0.14 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 6%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.06 +0.06 - 0.20 = -0.14 +-0.14 < 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36302,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 84%. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 6%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.06 +0.84*0.06 - 0.16*0.20 = 0.08 +0.08 > 0",diamond,nonsense9,1,marginal,P(Y) +36303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 84%. For those who are not zuph, the probability of glimx is 20%. For those who are zuph, the probability of glimx is 6%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.20 +P(Y=1 | X=1) = 0.06 +0.84*0.06 - 0.16*0.20 = 0.08 +0.08 > 0",diamond,nonsense9,1,marginal,P(Y) +36307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",yes,"nan +nan +nan +nan +nan +nan +nan",diamond,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.43 - 0.19 = 0.24 +0.24 > 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.43 - 0.19 = 0.24 +0.24 > 0",diamond,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.43 - 0.19 = 0.24 +0.24 > 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.43 - 0.19 = 0.24 +0.24 > 0",diamond,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.43 - 0.19 = 0.24 +0.24 > 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36313,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.43 - 0.19 = 0.24 +0.24 > 0",diamond,nonsense9,3,nie,"E[Y_{X=0, V2=1, V3=1} - Y_{X=0, V2=0, V3=0}]" +36315,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 84%. For those who are not zuph, the probability of glimx is 19%. For those who are zuph, the probability of glimx is 43%.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.84 +P(Y=1 | X=0) = 0.19 +P(Y=1 | X=1) = 0.43 +0.84*0.43 - 0.16*0.19 = 0.41 +0.41 > 0",diamond,nonsense9,1,marginal,P(Y) +36317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 84%. The probability of not zuph and glimx is 3%. The probability of zuph and glimx is 36%.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.84 +P(Y=1, X=0=1) = 0.03 +P(Y=1, X=1=1) = 0.36 +0.36/0.84 - 0.03/0.16 = 0.24 +0.24 > 0",diamond,nonsense9,1,correlation,P(Y | X) +36320,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 67%. For those who are not jyka and are zuph, the probability of glimx is 11%. For those who are jyka and are not zuph, the probability of glimx is 60%. For those who are jyka and are zuph, the probability of glimx is 13%. The overall probability of jyka is 12%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.67 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.60 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.12 +0.88 * (0.11 - 0.67) 0.12 * (0.13 - 0.60) = -0.55 +-0.55 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36321,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 67%. For those who are not jyka and are zuph, the probability of glimx is 11%. For those who are jyka and are not zuph, the probability of glimx is 60%. For those who are jyka and are zuph, the probability of glimx is 13%. The overall probability of jyka is 12%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.67 +P(Y=1 | V1=0, X=1) = 0.11 +P(Y=1 | V1=1, X=0) = 0.60 +P(Y=1 | V1=1, X=1) = 0.13 +P(V1=1) = 0.12 +0.88 * (0.11 - 0.67) 0.12 * (0.13 - 0.60) = -0.55 +-0.55 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 77%. For those who are not zuph and are zory, the probability of glimx is 5%. For those who are zuph and are not zory, the probability of glimx is 8%. For those who are zuph and are zory, the probability of glimx is 29%. For those who are not zuph, the probability of zory is 17%. For those who are zuph, the probability of zory is 14%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.05 +P(Y=1 | X=1, V3=0) = 0.08 +P(Y=1 | X=1, V3=1) = 0.29 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.14 +0.14 * (0.29 - 0.08) + 0.17 * (0.05 - 0.77) = -0.55 +-0.55 < 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 77%. For those who are not zuph and are zory, the probability of glimx is 5%. For those who are zuph and are not zory, the probability of glimx is 8%. For those who are zuph and are zory, the probability of glimx is 29%. For those who are not zuph, the probability of zory is 17%. For those who are zuph, the probability of zory is 14%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.77 +P(Y=1 | X=0, V3=1) = 0.05 +P(Y=1 | X=1, V3=0) = 0.08 +P(Y=1 | X=1, V3=1) = 0.29 +P(V3=1 | X=0) = 0.17 +P(V3=1 | X=1) = 0.14 +0.14 * (0.29 - 0.08) + 0.17 * (0.05 - 0.77) = -0.55 +-0.55 < 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 65%. For those who are zuph, the probability of glimx is 11%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.11 +0.82*0.11 - 0.18*0.65 = 0.21 +0.21 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 82%. For those who are not zuph, the probability of glimx is 65%. For those who are zuph, the probability of glimx is 11%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.82 +P(Y=1 | X=0) = 0.65 +P(Y=1 | X=1) = 0.11 +0.82*0.11 - 0.18*0.65 = 0.21 +0.21 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 82%. The probability of not zuph and glimx is 12%. The probability of zuph and glimx is 9%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.82 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.09 +0.09/0.82 - 0.12/0.18 = -0.54 +-0.54 < 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36329,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36330,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 96%. For those who are not jyka and are zuph, the probability of glimx is 83%. For those who are jyka and are not zuph, the probability of glimx is 96%. For those who are jyka and are zuph, the probability of glimx is 83%. The overall probability of jyka is 57%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 0.96 +P(Y=1 | V1=1, X=1) = 0.83 +P(V1=1) = 0.57 +0.43 * (0.83 - 0.96) 0.57 * (0.83 - 0.96) = -0.13 +-0.13 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36331,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 96%. For those who are not jyka and are zuph, the probability of glimx is 83%. For those who are jyka and are not zuph, the probability of glimx is 96%. For those who are jyka and are zuph, the probability of glimx is 83%. The overall probability of jyka is 57%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.96 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 0.96 +P(Y=1 | V1=1, X=1) = 0.83 +P(V1=1) = 0.57 +0.43 * (0.83 - 0.96) 0.57 * (0.83 - 0.96) = -0.13 +-0.13 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 80%. For those who are not zuph and are zory, the probability of glimx is 97%. For those who are zuph and are not zory, the probability of glimx is 87%. For those who are zuph and are zory, the probability of glimx is 83%. For those who are not zuph, the probability of zory is 97%. For those who are zuph, the probability of zory is 97%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.97 +0.97 * (0.83 - 0.87) + 0.97 * (0.97 - 0.80) = -0.13 +-0.13 < 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36333,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 80%. For those who are not zuph and are zory, the probability of glimx is 97%. For those who are zuph and are not zory, the probability of glimx is 87%. For those who are zuph and are zory, the probability of glimx is 83%. For those who are not zuph, the probability of zory is 97%. For those who are zuph, the probability of zory is 97%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.80 +P(Y=1 | X=0, V3=1) = 0.97 +P(Y=1 | X=1, V3=0) = 0.87 +P(Y=1 | X=1, V3=1) = 0.83 +P(V3=1 | X=0) = 0.97 +P(V3=1 | X=1) = 0.97 +0.97 * (0.83 - 0.87) + 0.97 * (0.97 - 0.80) = -0.13 +-0.13 < 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 34%. The probability of not zuph and glimx is 64%. The probability of zuph and glimx is 28%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.34 +P(Y=1, X=0=1) = 0.64 +P(Y=1, X=1=1) = 0.28 +0.28/0.34 - 0.64/0.66 = -0.13 +-0.13 < 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 34%. For those who are not zuph and are zory, the probability of glimx is 63%. For those who are zuph and are not zory, the probability of glimx is 94%. For those who are zuph and are zory, the probability of glimx is 94%. For those who are not zuph, the probability of zory is 93%. For those who are zuph, the probability of zory is 68%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.34 +P(Y=1 | X=0, V3=1) = 0.63 +P(Y=1 | X=1, V3=0) = 0.94 +P(Y=1 | X=1, V3=1) = 0.94 +P(V3=1 | X=0) = 0.93 +P(V3=1 | X=1) = 0.68 +0.68 * (0.94 - 0.94) + 0.93 * (0.63 - 0.34) = 0.40 +0.40 > 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 77%. For those who are not zuph, the probability of glimx is 61%. For those who are zuph, the probability of glimx is 94%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.77 +P(Y=1 | X=0) = 0.61 +P(Y=1 | X=1) = 0.94 +0.77*0.94 - 0.23*0.61 = 0.85 +0.85 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36346,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 77%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 72%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.72 +0.72/0.77 - 0.14/0.23 = 0.33 +0.33 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 77%. The probability of not zuph and glimx is 14%. The probability of zuph and glimx is 72%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.77 +P(Y=1, X=0=1) = 0.14 +P(Y=1, X=1=1) = 0.72 +0.72/0.77 - 0.14/0.23 = 0.33 +0.33 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36348,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36350,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 26%. For those who are not jyka and are zuph, the probability of glimx is 20%. For those who are jyka and are not zuph, the probability of glimx is 41%. For those who are jyka and are zuph, the probability of glimx is 14%. The overall probability of jyka is 69%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.26 +P(Y=1 | V1=0, X=1) = 0.20 +P(Y=1 | V1=1, X=0) = 0.41 +P(Y=1 | V1=1, X=1) = 0.14 +P(V1=1) = 0.69 +0.31 * (0.20 - 0.26) 0.69 * (0.14 - 0.41) = -0.20 +-0.20 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 21%. For those who are not zuph and are zory, the probability of glimx is 68%. For those who are zuph and are not zory, the probability of glimx is 22%. For those who are zuph and are zory, the probability of glimx is 2%. For those who are not zuph, the probability of zory is 31%. For those who are zuph, the probability of zory is 34%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.21 +P(Y=1 | X=0, V3=1) = 0.68 +P(Y=1 | X=1, V3=0) = 0.22 +P(Y=1 | X=1, V3=1) = 0.02 +P(V3=1 | X=0) = 0.31 +P(V3=1 | X=1) = 0.34 +0.34 * (0.02 - 0.22) + 0.31 * (0.68 - 0.21) = -0.22 +-0.22 < 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36355,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 55%. For those who are not zuph, the probability of glimx is 35%. For those who are zuph, the probability of glimx is 15%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.55 +P(Y=1 | X=0) = 0.35 +P(Y=1 | X=1) = 0.15 +0.55*0.15 - 0.45*0.35 = 0.25 +0.25 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 55%. The probability of not zuph and glimx is 16%. The probability of zuph and glimx is 8%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.55 +P(Y=1, X=0=1) = 0.16 +P(Y=1, X=1=1) = 0.08 +0.08/0.55 - 0.16/0.45 = -0.20 +-0.20 < 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36359,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36363,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 70%. For those who are not zuph and are zory, the probability of glimx is 30%. For those who are zuph and are not zory, the probability of glimx is 63%. For those who are zuph and are zory, the probability of glimx is 84%. For those who are not zuph, the probability of zory is 72%. For those who are zuph, the probability of zory is 49%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.70 +P(Y=1 | X=0, V3=1) = 0.30 +P(Y=1 | X=1, V3=0) = 0.63 +P(Y=1 | X=1, V3=1) = 0.84 +P(V3=1 | X=0) = 0.72 +P(V3=1 | X=1) = 0.49 +0.49 * (0.84 - 0.63) + 0.72 * (0.30 - 0.70) = 0.23 +0.23 > 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 79%. For those who are not zuph, the probability of glimx is 41%. For those who are zuph, the probability of glimx is 73%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.73 +0.79*0.73 - 0.21*0.41 = 0.69 +0.69 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 79%. For those who are not zuph, the probability of glimx is 41%. For those who are zuph, the probability of glimx is 73%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.79 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.73 +0.79*0.73 - 0.21*0.41 = 0.69 +0.69 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36367,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 79%. The probability of not zuph and glimx is 9%. The probability of zuph and glimx is 58%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.79 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.58 +0.58/0.79 - 0.09/0.21 = 0.32 +0.32 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36371,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 10%. For those who are not jyka and are zuph, the probability of glimx is 83%. For those who are jyka and are not zuph, the probability of glimx is 10%. For those who are jyka and are zuph, the probability of glimx is 81%. The overall probability of jyka is 8%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.10 +P(Y=1 | V1=0, X=1) = 0.83 +P(Y=1 | V1=1, X=0) = 0.10 +P(Y=1 | V1=1, X=1) = 0.81 +P(V1=1) = 0.08 +0.92 * (0.83 - 0.10) 0.08 * (0.81 - 0.10) = 0.72 +0.72 > 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36373,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 7%. For those who are not zuph and are zory, the probability of glimx is 12%. For those who are zuph and are not zory, the probability of glimx is 69%. For those who are zuph and are zory, the probability of glimx is 91%. For those who are not zuph, the probability of zory is 60%. For those who are zuph, the probability of zory is 63%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.07 +P(Y=1 | X=0, V3=1) = 0.12 +P(Y=1 | X=1, V3=0) = 0.69 +P(Y=1 | X=1, V3=1) = 0.91 +P(V3=1 | X=0) = 0.60 +P(V3=1 | X=1) = 0.63 +0.63 * (0.91 - 0.69) + 0.60 * (0.12 - 0.07) = 0.73 +0.73 > 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 83%. For those who are not zuph, the probability of glimx is 10%. For those who are zuph, the probability of glimx is 83%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.83 +0.83*0.83 - 0.17*0.10 = 0.70 +0.70 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36375,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 83%. For those who are not zuph, the probability of glimx is 10%. For those who are zuph, the probability of glimx is 83%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.83 +P(Y=1 | X=0) = 0.10 +P(Y=1 | X=1) = 0.83 +0.83*0.83 - 0.17*0.10 = 0.70 +0.70 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36377,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 83%. The probability of not zuph and glimx is 2%. The probability of zuph and glimx is 69%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.83 +P(Y=1, X=0=1) = 0.02 +P(Y=1, X=1=1) = 0.69 +0.69/0.83 - 0.02/0.17 = 0.73 +0.73 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36380,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 41%. For those who are not jyka and are zuph, the probability of glimx is 98%. For those who are jyka and are not zuph, the probability of glimx is 42%. For those who are jyka and are zuph, the probability of glimx is 92%. The overall probability of jyka is 9%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.41 +P(Y=1 | V1=0, X=1) = 0.98 +P(Y=1 | V1=1, X=0) = 0.42 +P(Y=1 | V1=1, X=1) = 0.92 +P(V1=1) = 0.09 +0.91 * (0.98 - 0.41) 0.09 * (0.92 - 0.42) = 0.57 +0.57 > 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36384,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 17%. For those who are not zuph, the probability of glimx is 41%. For those who are zuph, the probability of glimx is 98%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.98 +0.17*0.98 - 0.83*0.41 = 0.51 +0.51 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 17%. For those who are not zuph, the probability of glimx is 41%. For those who are zuph, the probability of glimx is 98%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.17 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.98 +0.17*0.98 - 0.83*0.41 = 0.51 +0.51 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 17%. The probability of not zuph and glimx is 34%. The probability of zuph and glimx is 17%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.17 +P(Y=1, X=0=1) = 0.34 +P(Y=1, X=1=1) = 0.17 +0.17/0.17 - 0.34/0.83 = 0.57 +0.57 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 80%. For those who are not jyka and are zuph, the probability of glimx is 65%. For those who are jyka and are not zuph, the probability of glimx is 27%. For those who are jyka and are zuph, the probability of glimx is 26%. The overall probability of jyka is 26%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.26 +P(V1=1) = 0.26 +0.74 * (0.65 - 0.80) 0.26 * (0.26 - 0.27) = -0.11 +-0.11 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36391,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 80%. For those who are not jyka and are zuph, the probability of glimx is 65%. For those who are jyka and are not zuph, the probability of glimx is 27%. For those who are jyka and are zuph, the probability of glimx is 26%. The overall probability of jyka is 26%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.80 +P(Y=1 | V1=0, X=1) = 0.65 +P(Y=1 | V1=1, X=0) = 0.27 +P(Y=1 | V1=1, X=1) = 0.26 +P(V1=1) = 0.26 +0.74 * (0.65 - 0.80) 0.26 * (0.26 - 0.27) = -0.11 +-0.11 < 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36393,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 3%. For those who are not zuph and are zory, the probability of glimx is 90%. For those who are zuph and are not zory, the probability of glimx is 9%. For those who are zuph and are zory, the probability of glimx is 72%. For those who are not zuph, the probability of zory is 72%. For those who are zuph, the probability of zory is 72%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.03 +P(Y=1 | X=0, V3=1) = 0.90 +P(Y=1 | X=1, V3=0) = 0.09 +P(Y=1 | X=1, V3=1) = 0.72 +P(V3=1 | X=0) = 0.72 +P(V3=1 | X=1) = 0.72 +0.72 * (0.72 - 0.09) + 0.72 * (0.90 - 0.03) = -0.11 +-0.11 < 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 89%. The probability of not zuph and glimx is 7%. The probability of zuph and glimx is 49%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.49 +0.49/0.89 - 0.07/0.11 = -0.11 +-0.11 < 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 89%. The probability of not zuph and glimx is 7%. The probability of zuph and glimx is 49%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.89 +P(Y=1, X=0=1) = 0.07 +P(Y=1, X=1=1) = 0.49 +0.49/0.89 - 0.07/0.11 = -0.11 +-0.11 < 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to zory. Method 2: We look directly at how zuph correlates with glimx in general.",yes,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 50%. For those who are not jyka and are zuph, the probability of glimx is 69%. For those who are jyka and are not zuph, the probability of glimx is 53%. For those who are jyka and are zuph, the probability of glimx is 63%. The overall probability of jyka is 6%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.50 +P(Y=1 | V1=0, X=1) = 0.69 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.06 +0.94 * (0.69 - 0.50) 0.06 * (0.63 - 0.53) = 0.19 +0.19 > 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 50%. For those who are not jyka and are zuph, the probability of glimx is 69%. For those who are jyka and are not zuph, the probability of glimx is 53%. For those who are jyka and are zuph, the probability of glimx is 63%. The overall probability of jyka is 6%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.50 +P(Y=1 | V1=0, X=1) = 0.69 +P(Y=1 | V1=1, X=0) = 0.53 +P(Y=1 | V1=1, X=1) = 0.63 +P(V1=1) = 0.06 +0.94 * (0.69 - 0.50) 0.06 * (0.63 - 0.53) = 0.19 +0.19 > 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 63%. For those who are not zuph and are zory, the probability of glimx is 48%. For those who are zuph and are not zory, the probability of glimx is 45%. For those who are zuph and are zory, the probability of glimx is 73%. For those who are not zuph, the probability of zory is 84%. For those who are zuph, the probability of zory is 85%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.85 +0.85 * (0.73 - 0.45) + 0.84 * (0.48 - 0.63) = 0.19 +0.19 > 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 63%. For those who are not zuph and are zory, the probability of glimx is 48%. For those who are zuph and are not zory, the probability of glimx is 45%. For those who are zuph and are zory, the probability of glimx is 73%. For those who are not zuph, the probability of zory is 84%. For those who are zuph, the probability of zory is 85%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.63 +P(Y=1 | X=0, V3=1) = 0.48 +P(Y=1 | X=1, V3=0) = 0.45 +P(Y=1 | X=1, V3=1) = 0.73 +P(V3=1 | X=0) = 0.84 +P(V3=1 | X=1) = 0.85 +0.85 * (0.73 - 0.45) + 0.84 * (0.48 - 0.63) = 0.19 +0.19 > 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 41%. For those who are not zuph, the probability of glimx is 50%. For those who are zuph, the probability of glimx is 69%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.41 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.69 +0.41*0.69 - 0.59*0.50 = 0.58 +0.58 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36406,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 41%. The probability of not zuph and glimx is 30%. The probability of zuph and glimx is 28%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.41 +P(Y=1, X=0=1) = 0.30 +P(Y=1, X=1=1) = 0.28 +0.28/0.41 - 0.30/0.59 = 0.19 +0.19 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36408,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not jyka and are not zuph, the probability of glimx is 39%. For those who are not jyka and are zuph, the probability of glimx is 57%. For those who are jyka and are not zuph, the probability of glimx is 52%. For those who are jyka and are zuph, the probability of glimx is 58%. The overall probability of jyka is 50%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +\sum_{V1=v} P(V1=v)*[P(Y=1|V1=v,X=1) - P(Y=1|V1=v, X=0)] +P(Y=1 | V1=0, X=0) = 0.39 +P(Y=1 | V1=0, X=1) = 0.57 +P(Y=1 | V1=1, X=0) = 0.52 +P(Y=1 | V1=1, X=1) = 0.58 +P(V1=1) = 0.50 +0.50 * (0.57 - 0.39) 0.50 * (0.58 - 0.52) = 0.12 +0.12 > 0",diamondcut,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. For those who are not zuph and are not zory, the probability of glimx is 82%. For those who are not zuph and are zory, the probability of glimx is 8%. For those who are zuph and are not zory, the probability of glimx is 60%. For those who are zuph and are zory, the probability of glimx is 54%. For those who are not zuph, the probability of zory is 54%. For those who are zuph, the probability of zory is 47%.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +\sum_{V3=v} P(V3=v|X=1)*[P(Y=1|X=1,V3=v) - P(Y=1|X=0,V3=v)] +P(Y=1 | X=0, V3=0) = 0.82 +P(Y=1 | X=0, V3=1) = 0.08 +P(Y=1 | X=1, V3=0) = 0.60 +P(Y=1 | X=1, V3=1) = 0.54 +P(V3=1 | X=0) = 0.54 +P(V3=1 | X=1) = 0.47 +0.47 * (0.54 - 0.60) + 0.54 * (0.08 - 0.82) = 0.11 +0.11 > 0",diamondcut,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 72%. For those who are not zuph, the probability of glimx is 41%. For those who are zuph, the probability of glimx is 57%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.72 +P(Y=1 | X=0) = 0.41 +P(Y=1 | X=1) = 0.57 +0.72*0.57 - 0.28*0.41 = 0.54 +0.54 > 0",diamondcut,nonsense9,1,marginal,P(Y) +36416,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. The overall probability of zuph is 72%. The probability of not zuph and glimx is 12%. The probability of zuph and glimx is 41%.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.72 +P(Y=1, X=0=1) = 0.12 +P(Y=1, X=1=1) = 0.41 +0.41/0.72 - 0.12/0.28 = 0.16 +0.16 > 0",diamondcut,nonsense9,1,correlation,P(Y | X) +36418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to zory.",no,"nan +nan +nan +nan +nan +nan +nan",diamondcut,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36421,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 26%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.26 +0.26 - 0.43 = -0.16 +-0.16 < 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36423,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 26%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.26 +0.26 - 0.43 = -0.16 +-0.16 < 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 43%. For those who are not zuph, the probability of glimx is 43%. For those who are zuph, the probability of glimx is 26%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.43 +P(Y=1 | X=0) = 0.43 +P(Y=1 | X=1) = 0.26 +0.43*0.26 - 0.57*0.43 = 0.36 +0.36 > 0",fork,nonsense9,1,marginal,P(Y) +36427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 43%. The probability of not zuph and glimx is 24%. The probability of zuph and glimx is 11%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.43 +P(Y=1, X=0=1) = 0.24 +P(Y=1, X=1=1) = 0.11 +0.11/0.43 - 0.24/0.57 = -0.16 +-0.16 < 0",fork,nonsense9,1,correlation,P(Y | X) +36428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 50%. For those who are zuph, the probability of glimx is 63%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.63 +0.63 - 0.50 = 0.13 +0.13 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 50%. For those who are zuph, the probability of glimx is 63%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.63 +0.63 - 0.50 = 0.13 +0.13 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 50%. For those who are zuph, the probability of glimx is 63%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.63 +0.63 - 0.50 = 0.13 +0.13 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 50%. For those who are zuph, the probability of glimx is 63%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.63 +0.63 - 0.50 = 0.13 +0.13 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 81%. For those who are not zuph, the probability of glimx is 50%. For those who are zuph, the probability of glimx is 63%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.81 +P(Y=1 | X=0) = 0.50 +P(Y=1 | X=1) = 0.63 +0.81*0.63 - 0.19*0.50 = 0.61 +0.61 > 0",fork,nonsense9,1,marginal,P(Y) +36437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 81%. The probability of not zuph and glimx is 9%. The probability of zuph and glimx is 52%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.81 +P(Y=1, X=0=1) = 0.09 +P(Y=1, X=1=1) = 0.52 +0.52/0.81 - 0.09/0.19 = 0.13 +0.13 > 0",fork,nonsense9,1,correlation,P(Y | X) +36438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 36%. For those who are zuph, the probability of glimx is 74%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.74 +0.74 - 0.36 = 0.38 +0.38 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 2%. For those who are not zuph, the probability of glimx is 36%. For those who are zuph, the probability of glimx is 74%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.02 +P(Y=1 | X=0) = 0.36 +P(Y=1 | X=1) = 0.74 +0.02*0.74 - 0.98*0.36 = 0.37 +0.37 > 0",fork,nonsense9,1,marginal,P(Y) +36450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 57%. For those who are zuph, the probability of glimx is 54%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 57%. For those who are zuph, the probability of glimx is 54%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 57%. For those who are zuph, the probability of glimx is 54%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 57%. For those who are zuph, the probability of glimx is 54%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.54 - 0.57 = -0.03 +-0.03 < 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 66%. For those who are not zuph, the probability of glimx is 57%. For those who are zuph, the probability of glimx is 54%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.66*0.54 - 0.34*0.57 = 0.55 +0.55 > 0",fork,nonsense9,1,marginal,P(Y) +36455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 66%. For those who are not zuph, the probability of glimx is 57%. For those who are zuph, the probability of glimx is 54%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.66 +P(Y=1 | X=0) = 0.57 +P(Y=1 | X=1) = 0.54 +0.66*0.54 - 0.34*0.57 = 0.55 +0.55 > 0",fork,nonsense9,1,marginal,P(Y) +36456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 66%. The probability of not zuph and glimx is 19%. The probability of zuph and glimx is 36%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.36 +0.36/0.66 - 0.19/0.34 = -0.03 +-0.03 < 0",fork,nonsense9,1,correlation,P(Y | X) +36457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 66%. The probability of not zuph and glimx is 19%. The probability of zuph and glimx is 36%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.66 +P(Y=1, X=0=1) = 0.19 +P(Y=1, X=1=1) = 0.36 +0.36/0.66 - 0.19/0.34 = -0.03 +-0.03 < 0",fork,nonsense9,1,correlation,P(Y | X) +36461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 23%. For those who are zuph, the probability of glimx is 30%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.30 +0.30 - 0.23 = 0.07 +0.07 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 23%. For those who are zuph, the probability of glimx is 30%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.30 +0.30 - 0.23 = 0.07 +0.07 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 23%. For those who are not zuph, the probability of glimx is 23%. For those who are zuph, the probability of glimx is 30%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.23 +P(Y=1 | X=0) = 0.23 +P(Y=1 | X=1) = 0.30 +0.23*0.30 - 0.77*0.23 = 0.24 +0.24 > 0",fork,nonsense9,1,marginal,P(Y) +36468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36471,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 46%. For those who are zuph, the probability of glimx is 70%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.70 +0.70 - 0.46 = 0.24 +0.24 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 46%. For those who are zuph, the probability of glimx is 70%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.70 +0.70 - 0.46 = 0.24 +0.24 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 46%. For those who are zuph, the probability of glimx is 70%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.70 +0.70 - 0.46 = 0.24 +0.24 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 98%. For those who are not zuph, the probability of glimx is 46%. For those who are zuph, the probability of glimx is 70%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.98 +P(Y=1 | X=0) = 0.46 +P(Y=1 | X=1) = 0.70 +0.98*0.70 - 0.02*0.46 = 0.70 +0.70 > 0",fork,nonsense9,1,marginal,P(Y) +36476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 98%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 69%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.69 +0.69/0.98 - 0.01/0.02 = 0.24 +0.24 > 0",fork,nonsense9,1,correlation,P(Y | X) +36477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 98%. The probability of not zuph and glimx is 1%. The probability of zuph and glimx is 69%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.98 +P(Y=1, X=0=1) = 0.01 +P(Y=1, X=1=1) = 0.69 +0.69/0.98 - 0.01/0.02 = 0.24 +0.24 > 0",fork,nonsense9,1,correlation,P(Y | X) +36478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 77%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.42 +0.42 - 0.77 = -0.35 +-0.35 < 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 78%. For those who are not zuph, the probability of glimx is 77%. For those who are zuph, the probability of glimx is 42%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.42 +0.78*0.42 - 0.22*0.77 = 0.50 +0.50 > 0",fork,nonsense9,1,marginal,P(Y) +36485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 78%. For those who are not zuph, the probability of glimx is 77%. For those who are zuph, the probability of glimx is 42%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.78 +P(Y=1 | X=0) = 0.77 +P(Y=1 | X=1) = 0.42 +0.78*0.42 - 0.22*0.77 = 0.50 +0.50 > 0",fork,nonsense9,1,marginal,P(Y) +36486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 78%. The probability of not zuph and glimx is 17%. The probability of zuph and glimx is 33%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.33 +0.33/0.78 - 0.17/0.22 = -0.35 +-0.35 < 0",fork,nonsense9,1,correlation,P(Y | X) +36487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 78%. The probability of not zuph and glimx is 17%. The probability of zuph and glimx is 33%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.78 +P(Y=1, X=0=1) = 0.17 +P(Y=1, X=1=1) = 0.33 +0.33/0.78 - 0.17/0.22 = -0.35 +-0.35 < 0",fork,nonsense9,1,correlation,P(Y | X) +36491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 94%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.94 +0.94 - 0.51 = 0.43 +0.43 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 94%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.94 +0.94 - 0.51 = 0.43 +0.43 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 51%. For those who are zuph, the probability of glimx is 94%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.51 +P(Y=1 | X=1) = 0.94 +0.94 - 0.51 = 0.43 +0.43 > 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 74%. The probability of not zuph and glimx is 13%. The probability of zuph and glimx is 69%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.69 +0.69/0.74 - 0.13/0.26 = 0.43 +0.43 > 0",fork,nonsense9,1,correlation,P(Y | X) +36497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 74%. The probability of not zuph and glimx is 13%. The probability of zuph and glimx is 69%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.74 +P(Y=1, X=0=1) = 0.13 +P(Y=1, X=1=1) = 0.69 +0.69/0.74 - 0.13/0.26 = 0.43 +0.43 > 0",fork,nonsense9,1,correlation,P(Y | X) +36498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 73%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.73 +0.73 - 0.54 = 0.18 +0.18 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 73%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y | do(X = 1)] - E[Y | do(X = 0)] +P(Y|X) +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.73 +0.73 - 0.54 = 0.18 +0.18 > 0",fork,nonsense9,2,ate,E[Y | do(X = 1)] - E[Y | do(X = 0)] +36504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 10%. For those who are not zuph, the probability of glimx is 54%. For those who are zuph, the probability of glimx is 73%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.10 +P(Y=1 | X=0) = 0.54 +P(Y=1 | X=1) = 0.73 +0.10*0.73 - 0.90*0.54 = 0.56 +0.56 > 0",fork,nonsense9,1,marginal,P(Y) +36512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 79%. For those who are zuph, the probability of glimx is 49%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.49 +0.49 - 0.79 = -0.30 +-0.30 < 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. For those who are not zuph, the probability of glimx is 79%. For those who are zuph, the probability of glimx is 49%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +E[Y_{X = 1} - Y_{X = 0} | X = 1] +P(Y=1|X=1) - P(Y=1|X=0) +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.49 +0.49 - 0.79 = -0.30 +-0.30 < 0",fork,nonsense9,3,ett,E[Y_{X = 1} - Y_{X = 0} | X = 1] +36514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 95%. For those who are not zuph, the probability of glimx is 79%. For those who are zuph, the probability of glimx is 49%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.49 +0.95*0.49 - 0.05*0.79 = 0.50 +0.50 > 0",fork,nonsense9,1,marginal,P(Y) +36515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 95%. For those who are not zuph, the probability of glimx is 79%. For those who are zuph, the probability of glimx is 49%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y) +P(Y | X=1)*P(X=1) + P(Y | X=0)*P(X=0) +P(X=1) = 0.95 +P(Y=1 | X=0) = 0.79 +P(Y=1 | X=1) = 0.49 +0.95*0.49 - 0.05*0.79 = 0.50 +0.50 > 0",fork,nonsense9,1,marginal,P(Y) +36516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 95%. The probability of not zuph and glimx is 4%. The probability of zuph and glimx is 46%.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.46 +0.46/0.95 - 0.04/0.05 = -0.30 +-0.30 < 0",fork,nonsense9,1,correlation,P(Y | X) +36517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. The overall probability of zuph is 95%. The probability of not zuph and glimx is 4%. The probability of zuph and glimx is 46%.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +P(Y | X) +P(X = 1, Y = 1)/P(X = 1) - P(X = 0, Y = 1)/P(X = 0) +P(X=1=1) = 0.95 +P(Y=1, X=0=1) = 0.04 +P(Y=1, X=1=1) = 0.46 +0.46/0.95 - 0.04/0.05 = -0.30 +-0.30 < 0",fork,nonsense9,1,correlation,P(Y | X) +36518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look at how zuph correlates with glimx case by case according to jyka. Method 2: We look directly at how zuph correlates with glimx in general.",no,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. Method 1: We look directly at how zuph correlates with glimx in general. Method 2: We look at this correlation case by case according to jyka.",yes,"nan +nan +nan +nan +nan +nan +nan",fork,nonsense9,2,backadj,[backdoor adjustment set for Y given X] +36526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that alarm set by husband causes alarm not set by wife. alarm set by husband and alarm set by wife causes ringing alarm.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,alarm,3,det-counterfactual,Y_{X=1} = 1 | +36529,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that alarm set by husband causes alarm set by wife. alarm set by husband or alarm set by wife causes ringing alarm.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,alarm,3,det-counterfactual,Y_{X=0} = 0 | +36530,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that alarm set by husband causes alarm set by wife. alarm set by husband or alarm set by wife causes ringing alarm.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,alarm,3,det-counterfactual,Y_{X=1} = 1 | +36532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that alarm set by husband causes alarm set by wife. alarm set by husband and alarm set by wife causes ringing alarm.",no,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,alarm,3,det-counterfactual,Y_{X=0} = 1 | +36534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Husband has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that alarm set by husband causes alarm set by wife. alarm set by husband and alarm set by wife causes ringing alarm.",yes,"Let X = husband; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,alarm,3,det-counterfactual,Y_{X=1} = 1 | +36537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. We know that blowing out the candle or candle with wax causes dark room. We observed the candle is out of wax.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,candle,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +36540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. We know that blowing out the candle or candle with wax causes dark room. We observed the candle has wax.",yes,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,candle,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +36541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. We know that blowing out the candle or candle with wax causes dark room. We observed the candle has wax.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,candle,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. We know that blowing out the candle or candle with wax causes dark room. We observed the candle has wax.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,candle,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The man in the room has a direct effect on room. The candle has a direct effect on room. We know that blowing out the candle and candle with wax causes dark room. We observed the candle has wax.",no,"Let V2 = the candle; X = the man in the room; Y = room. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,candle,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager signing the termination letter and director signing the termination letter. manager signing the termination letter or director signing the termination letter causes employee being fired. We observed the CEO decides to fire the employee.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +0",diamondcut,firing_employee,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +36563,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager signing the termination letter and director signing the termination letter. manager signing the termination letter and director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +36567,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager signing the termination letter and director signing the termination letter. manager signing the termination letter and director signing the termination letter causes employee being fired. We observed the CEO decides to fire the employee.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +36570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager not signing the termination letter and director signing the termination letter. manager signing the termination letter or director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",yes,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +36571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager not signing the termination letter and director signing the termination letter. manager signing the termination letter or director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +36576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager not signing the termination letter and director signing the termination letter. manager signing the termination letter and director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +0",diamondcut,firing_employee,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +36582,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and manager. Manager has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes manager not signing the termination letter and director signing the termination letter. manager signing the termination letter and director signing the termination letter causes employee being fired. We observed the CEO decides to fire the employee.",no,"Let V1 = CEO; V3 = director; X = manager; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +36584,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private not shooting. the corporal shooting or the private shooting causes the prisoner's death.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 1 | +36585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private not shooting. the corporal shooting or the private shooting causes the prisoner's death.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 0 | +36586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private not shooting. the corporal shooting or the private shooting causes the prisoner's death.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,firing_squad,3,det-counterfactual,Y_{X=1} = 1 | +36588,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private shooting. the corporal shooting or the private shooting causes the prisoner's death.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 1 | +36591,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private shooting. the corporal shooting or the private shooting causes the prisoner's death.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,firing_squad,3,det-counterfactual,Y_{X=1} = 0 | +36597,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private not shooting. the corporal shooting and the private shooting causes the prisoner's death.",yes,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 0 | +36598,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The captain has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that the captain's order to execute the prisoner causes the corporal shooting and the private not shooting. the corporal shooting and the private shooting causes the prisoner's death.",no,"Let X = the captain; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,firing_squad,3,det-counterfactual,Y_{X=1} = 1 | +36603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that rainy season causes rain and sprinkler on. rain and sprinkler on causes wet ground.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 0 | +36604,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that rainy season causes rain and sprinkler off. rain and sprinkler on causes wet ground.",no,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,floor_wet,3,det-counterfactual,Y_{X=0} = 1 | +36610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Season has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that rainy season causes rain and sprinkler on. rain or sprinkler on causes wet ground.",yes,"Let X = season; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +1",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 1 | +36621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. We know that the camper lighting a match and the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,forest_fire,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36623,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. We know that the camper lighting a match and the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. We know that the camper lighting a match or the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker doesn't light a match.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,forest_fire,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +36626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. We know that the camper lighting a match or the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker doesn't light a match.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +36630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. We know that the camper lighting a match or the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",yes,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +36631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: The camper has a direct effect on the forest. The smoker has a direct effect on the forest. We know that the camper lighting a match or the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",no,"Let V2 = the smoker; X = the camper; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that waking up late or heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,getting_late,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +36636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that waking up late or heavy traffic causes arriving to school on time. We observed there is heavy traffic on the road.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,getting_late,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +36640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that waking up late and heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,getting_late,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +36641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that waking up late and heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,getting_late,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +36642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that waking up late and heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",no,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,getting_late,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +36645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Alice waking up has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that waking up late and heavy traffic causes arriving to school on time. We observed there is heavy traffic on the road.",yes,"Let V2 = traffic; X = Alice waking up; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,getting_late,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment or going to the beach causes tanned skin. We observed the person does not go to the beach.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,getting_tanned,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +36650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment or going to the beach causes tanned skin. We observed the person does not go to the beach.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,getting_tanned,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +36653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment or going to the beach causes tanned skin. We observed the person goes to the beach.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,getting_tanned,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment or going to the beach causes tanned skin. We observed the person goes to the beach.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,getting_tanned,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +36655,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment or going to the beach causes tanned skin. We observed the person goes to the beach.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,getting_tanned,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment and going to the beach causes tanned skin. We observed the person goes to the beach.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,getting_tanned,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on skin. Going to the beach has a direct effect on skin. We know that tanning salon treatment and going to the beach causes tanned skin. We observed the person goes to the beach.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = skin. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,getting_tanned,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin happiness. taking the elevator or penguin happiness causes penguin death.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,penguin,3,det-counterfactual,Y_{X=1} = 1 | +36673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin saddness. taking the elevator and penguin happiness causes penguin death.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,penguin,3,det-counterfactual,Y_{X=0} = 0 | +36674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin saddness. taking the elevator and penguin happiness causes penguin death.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,penguin,3,det-counterfactual,Y_{X=1} = 1 | +36675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin saddness. taking the elevator and penguin happiness causes penguin death.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,penguin,3,det-counterfactual,Y_{X=1} = 0 | +36676,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin happiness. taking the elevator and penguin happiness causes penguin death.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,penguin,3,det-counterfactual,Y_{X=0} = 1 | +36677,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin happiness. taking the elevator and penguin happiness causes penguin death.",yes,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,penguin,3,det-counterfactual,Y_{X=0} = 0 | +36679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and penguin survival. Penguin mood has a direct effect on penguin survival. We know that taking the elevator causes penguin happiness. taking the elevator and penguin happiness causes penguin death.",no,"Let X = my decision; V2 = penguin mood; Y = penguin survival. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,penguin,3,det-counterfactual,Y_{X=1} = 0 | +36681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that vaccination causes having smallpox and severe vaccination reaction. having smallpox and severe vaccination reaction causes smallpox survival.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 0 | +36686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that vaccination causes having smallpox and no vaccine reaction. having smallpox and severe vaccination reaction causes smallpox survival.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,vaccine_kills,3,det-counterfactual,Y_{X=1} = 1 | +36689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that vaccination causes having smallpox and severe vaccination reaction. having smallpox or severe vaccination reaction causes smallpox survival.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 0 | +36692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that vaccination causes having smallpox and no vaccine reaction. having smallpox or severe vaccination reaction causes smallpox survival.",yes,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 1 | +36695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vaccination status has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that vaccination causes having smallpox and no vaccine reaction. having smallpox or severe vaccination reaction causes smallpox survival.",no,"Let X = vaccination status; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,vaccine_kills,3,det-counterfactual,Y_{X=1} = 0 | +36697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that taking medication causes low blood pressure. taking medication or high blood pressure causes healthy heart.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +36699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that taking medication causes low blood pressure. taking medication or high blood pressure causes healthy heart.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,blood_pressure,3,det-counterfactual,Y_{X=1} = 0 | +36703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that taking medication causes low blood pressure. taking medication and high blood pressure causes healthy heart.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,blood_pressure,3,det-counterfactual,Y_{X=1} = 0 | +36705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that taking medication causes high blood pressure. taking medication or high blood pressure causes healthy heart.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +36707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that taking medication causes high blood pressure. taking medication or high blood pressure causes healthy heart.",no,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,blood_pressure,3,det-counterfactual,Y_{X=1} = 0 | +36709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Medication has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that taking medication causes high blood pressure. taking medication and high blood pressure causes healthy heart.",yes,"Let X = medication; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +36720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active or taking of all assigned drugs causes low cholesterol. We observed the patient is assigned the treatment and confounder inactive.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,cholesterol,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +36728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes low cholesterol. We observed the patient is not assigned the drug treatment and confounder inactive.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,cholesterol,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +36729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes low cholesterol. We observed the patient is not assigned the drug treatment and confounder inactive.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,cholesterol,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +36750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. We know that confounder active and assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes low cholesterol. We observed the patient is not assigned the drug treatment and confounder active.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,cholesterol,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +36759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. We know that confounder active and assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes low cholesterol. We observed the patient is assigned the treatment and confounder active.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,cholesterol,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +36772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and cholesterol level. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on cholesterol level. Unobserved confounders is unobserved. We know that confounder active and assignment of drug treatment causes taking of all assigned drugs. confounder active or taking of all assigned drugs causes low cholesterol. We observed the patient is assigned the treatment and confounder active.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = cholesterol level. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,cholesterol,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +36777,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes low skill level, and we know that high skill level causes low salary.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,college_salary,3,det-counterfactual,Y_{X=0} = 0 | +36780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes low skill level, and we know that high skill level causes high salary.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,college_salary,3,det-counterfactual,Y_{X=0} = 1 | +36781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes low skill level, and we know that high skill level causes high salary.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,college_salary,3,det-counterfactual,Y_{X=0} = 0 | +36782,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes low skill level, and we know that high skill level causes high salary.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,college_salary,3,det-counterfactual,Y_{X=1} = 1 | +36783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes low skill level, and we know that high skill level causes high salary.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,college_salary,3,det-counterfactual,Y_{X=1} = 0 | +36785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes high skill level, and we know that high skill level causes low salary.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,college_salary,3,det-counterfactual,Y_{X=0} = 0 | +36789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes high skill level, and we know that high skill level causes high salary.",yes,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,college_salary,3,det-counterfactual,Y_{X=0} = 0 | +36791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on salary. We know that college degree or higher causes high skill level, and we know that high skill level causes high salary.",no,"Let X = education level; V2 = skill; Y = salary. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,college_salary,3,det-counterfactual,Y_{X=1} = 0 | +36824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active or close to a college causes college degree or higher. confounder active or college degree or higher causes high salary. We observed the person lives far from a college and confounder inactive.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +36831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active or close to a college causes college degree or higher. confounder active or college degree or higher causes high salary. We observed the person lives far from a college and confounder active.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,college_wage,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +36832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active or close to a college causes college degree or higher. confounder active or college degree or higher causes high salary. We observed the person lives close to a college and confounder inactive.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +36844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on education level and salary. Proximity to a college has a direct effect on education level. Education level has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes college degree or higher. confounder active and college degree or higher causes high salary. We observed the person lives far from a college and confounder active.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = education level; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +36856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes lack of studying. encouragement or studying hard causes high exam score.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,encouagement_program,3,det-counterfactual,Y_{X=0} = 1 | +36858,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes lack of studying. encouragement or studying hard causes high exam score.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,encouagement_program,3,det-counterfactual,Y_{X=1} = 1 | +36860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes studying hard. encouragement and studying hard causes high exam score.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,encouagement_program,3,det-counterfactual,Y_{X=0} = 1 | +36862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes studying hard. encouragement and studying hard causes high exam score.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,encouagement_program,3,det-counterfactual,Y_{X=1} = 1 | +36864,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes studying hard. encouragement or studying hard causes high exam score.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,encouagement_program,3,det-counterfactual,Y_{X=0} = 1 | +36865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes studying hard. encouragement or studying hard causes high exam score.",yes,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,encouagement_program,3,det-counterfactual,Y_{X=0} = 0 | +36867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes studying hard. encouragement or studying hard causes high exam score.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,encouagement_program,3,det-counterfactual,Y_{X=1} = 0 | +36870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Encouragement level has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that encouragement causes lack of studying. encouragement and studying hard causes high exam score.",no,"Let X = encouragement level; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,encouagement_program,3,det-counterfactual,Y_{X=1} = 1 | +36872,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes non-competitive department. male gender and competitive department causes admission acceptance.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,gender_admission,3,det-counterfactual,Y_{X=0} = 1 | +36874,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes non-competitive department. male gender and competitive department causes admission acceptance.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,gender_admission,3,det-counterfactual,Y_{X=1} = 1 | +36876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes non-competitive department. male gender or competitive department causes admission acceptance.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,gender_admission,3,det-counterfactual,Y_{X=0} = 1 | +36880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes competitive department. male gender or competitive department causes admission acceptance.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,gender_admission,3,det-counterfactual,Y_{X=0} = 1 | +36881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes competitive department. male gender or competitive department causes admission acceptance.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,gender_admission,3,det-counterfactual,Y_{X=0} = 0 | +36886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes competitive department. male gender and competitive department causes admission acceptance.",yes,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,gender_admission,3,det-counterfactual,Y_{X=1} = 1 | +36887,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. We know that male gender causes competitive department. male gender and competitive department causes admission acceptance.",no,"Let X = gender; V2 = department competitiveness; Y = admission status. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,gender_admission,3,det-counterfactual,Y_{X=1} = 0 | +36893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. We know that male gender and in-state residency causes competitive department. male gender or in-state residency or competitive department causes admission acceptance. We observed the resident is in-state.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. We know that male gender and in-state residency causes competitive department. male gender or in-state residency or competitive department causes admission acceptance. We observed the resident is in-state.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. We know that male gender or in-state residency causes competitive department. male gender and in-state residency and competitive department causes admission acceptance. We observed the resident is in-state.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. We know that male gender and in-state residency causes competitive department. male gender and in-state residency and competitive department causes admission acceptance. We observed the resident is in-state.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. We know that male gender or in-state residency causes competitive department. male gender or in-state residency or competitive department causes admission acceptance. We observed the residency is out-of-state.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +36914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and admission status. Residency status has a direct effect on department competitiveness and admission status. Department competitiveness has a direct effect on admission status. Residency status is unobserved. We know that male gender or in-state residency causes competitive department. male gender or in-state residency or competitive department causes admission acceptance. We observed the residency is out-of-state.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = admission status. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +36931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender and high skill level causes white-collar job. male gender or high skill level or white-collar job causes high salary. We observed the person has a low skill level.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,gender_pay,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +36934,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender and high skill level causes white-collar job. male gender or high skill level or white-collar job causes high salary. We observed the person has a high skill level.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,gender_pay,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +36937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender and high skill level causes white-collar job. male gender and high skill level and white-collar job causes high salary. We observed the person has a low skill level.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,gender_pay,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +36941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender and high skill level causes white-collar job. male gender and high skill level and white-collar job causes high salary. We observed the person has a high skill level.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,gender_pay,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender and high skill level causes white-collar job. male gender and high skill level and white-collar job causes high salary. We observed the person has a high skill level.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,gender_pay,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +36943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender and high skill level causes white-collar job. male gender and high skill level and white-collar job causes high salary. We observed the person has a high skill level.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,gender_pay,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +36948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender or high skill level causes white-collar job. male gender or high skill level or white-collar job causes high salary. We observed the person has a high skill level.",yes,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,gender_pay,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +36949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that male gender or high skill level causes white-collar job. male gender or high skill level or white-collar job causes high salary. We observed the person has a high skill level.",no,"Let V2 = skill; X = gender; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +0",arrowhead,gender_pay,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +36958,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that intelligent parents and confounder active causes high parental social status. intelligent parents or confounder active or high parental social status causes intelligent child. We observed confounder active.",yes,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +36970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Parents' intelligence has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that intelligent parents or confounder active causes high parental social status. intelligent parents and confounder active and high parental social status causes intelligent child. We observed confounder inactive.",no,"Let V2 = other unobserved factors; X = parents' intelligence; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +36984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. We know that smoking causes being lazy. smoking or being hard-working causes college admission.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 1 | +36987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. We know that smoking causes being lazy. smoking or being hard-working causes college admission.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,neg_mediation,3,det-counterfactual,Y_{X=1} = 0 | +36988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. We know that smoking causes being hard-working. smoking and being hard-working causes college admission.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 1 | +36993,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. We know that smoking causes being lazy. smoking and being hard-working causes college admission.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 0 | +36997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. We know that smoking causes being hard-working. smoking or being hard-working causes college admission.",yes,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 0 | +36999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and college admission. Effort has a direct effect on college admission. We know that smoking causes being hard-working. smoking or being hard-working causes college admission.",no,"Let X = smoking; V2 = effort; Y = college admission. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,neg_mediation,3,det-counterfactual,Y_{X=1} = 0 | +37008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that obesity and smoker causes having diabetes. obesity or smoker or having diabetes causes long lifespan. We observed the person is a nonsmoker.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that obesity and smoker causes having diabetes. obesity or smoker or having diabetes causes long lifespan. We observed the person is a nonsmoker.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that obesity and smoker causes having diabetes. obesity or smoker or having diabetes causes long lifespan. We observed the person is a smoker.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that obesity and smoker causes having diabetes. obesity or smoker or having diabetes causes long lifespan. We observed the person is a smoker.",no,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that obesity or smoker causes having diabetes. obesity and smoker and having diabetes causes long lifespan. We observed the person is a nonsmoker.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Obesity has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that obesity or smoker causes having diabetes. obesity or smoker or having diabetes causes long lifespan. We observed the person is a nonsmoker.",yes,"Let V2 = smoking; X = obesity; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes vitamin C deficiency, and we know that sufficient vitamin C causes scurvy.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,orange_scurvy,3,det-counterfactual,Y_{X=0} = 1 | +37033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes vitamin C deficiency, and we know that sufficient vitamin C causes scurvy.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,orange_scurvy,3,det-counterfactual,Y_{X=0} = 0 | +37036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes vitamin C deficiency, and we know that sufficient vitamin C causes no scurvy.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,orange_scurvy,3,det-counterfactual,Y_{X=0} = 1 | +37040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes sufficient vitamin C, and we know that sufficient vitamin C causes scurvy.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,orange_scurvy,3,det-counterfactual,Y_{X=0} = 1 | +37041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes sufficient vitamin C, and we know that sufficient vitamin C causes scurvy.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,orange_scurvy,3,det-counterfactual,Y_{X=0} = 0 | +37042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes sufficient vitamin C, and we know that sufficient vitamin C causes scurvy.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 1 | +37046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes sufficient vitamin C, and we know that sufficient vitamin C causes no scurvy.",no,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 1 | +37047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on scurvy. We know that citrus intake causes sufficient vitamin C, and we know that sufficient vitamin C causes no scurvy.",yes,"Let X = eating citrus; V2 = vitmain C; Y = scurvy. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 0 | +37057,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand and increased yield per acre causes increased supply. increased demand and increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is low.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,price,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +37059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand and increased yield per acre causes increased supply. increased demand and increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is low.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,price,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=0" +37062,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand and increased yield per acre causes increased supply. increased demand and increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is high.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,price,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +37094,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand and increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is high.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,price,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +37101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand or increased supply causes increased price. We observed the farm has a reduced yield per acre and the demand is high.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,price,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +37104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand or increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is low.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,price,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +37105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand or increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is low.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,price,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +37106,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and price. Yield per acre has a direct effect on supply. Supply has a direct effect on price. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand or increased supply causes increased price. We observed the farm has an increased yield per acre and the demand is low.",yes,"Let V2 = yield per acre; V1 = demand; X = supply; Y = price. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,price,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +37112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that male gender causes receives treatment. male gender or receives treatment causes recovery. We observed the patient is not male.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,simpson_drug,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +37115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that male gender causes receives treatment. male gender or receives treatment causes recovery. We observed the patient is not male.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +37123,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that male gender causes receives treatment. male gender and receives treatment causes recovery. We observed the patient is not male.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +37127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that male gender causes receives treatment. male gender and receives treatment causes recovery. We observed the patient is male.",no,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +37138,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that male gender causes receives no treatment. male gender or receives treatment causes recovery. We observed the patient is not male.",yes,"Let V1 = gender; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +37150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. We know that old age causes high hospital bill. old age and high hospital bill causes recovery. We observed the patient is old.",yes,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +37171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. We know that old age causes low hospital bill. old age or high hospital bill causes recovery. We observed the patient is young.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +37175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and recovery. Hospital costs has a direct effect on recovery. We know that old age causes low hospital bill. old age or high hospital bill causes recovery. We observed the patient is old.",no,"Let V1 = age; X = hospital costs; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +37178,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that large kidney stone causes receives no treatment. large kidney stone or receives treatment causes recovery. We observed the patient has a small kidney stone.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +37186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that large kidney stone causes receives no treatment. large kidney stone and receives treatment causes recovery. We observed the patient has a small kidney stone.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +37189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that large kidney stone causes receives no treatment. large kidney stone and receives treatment causes recovery. We observed the patient has a large kidney stone.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +37190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that large kidney stone causes receives no treatment. large kidney stone and receives treatment causes recovery. We observed the patient has a large kidney stone.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +37197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that large kidney stone causes receives treatment. large kidney stone or receives treatment causes recovery. We observed the patient has a large kidney stone.",no,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +37198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and recovery. Treatment has a direct effect on recovery. We know that large kidney stone causes receives treatment. large kidney stone or receives treatment causes recovery. We observed the patient has a large kidney stone.",yes,"Let V1 = kidney stone size; X = treatment; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +37224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. We know that pre-conditions causes getting the vaccine. pre-conditions or getting the vaccine causes recovering from the disease. We observed the person has no pre-conditions.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +37229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. We know that pre-conditions causes getting the vaccine. pre-conditions or getting the vaccine causes recovering from the disease. We observed the person has pre-conditions.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +37236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. We know that pre-conditions causes vaccine refusal. pre-conditions and getting the vaccine causes recovering from the disease. We observed the person has pre-conditions.",no,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +37237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and disease. Vaccination has a direct effect on disease. We know that pre-conditions causes vaccine refusal. pre-conditions and getting the vaccine causes recovering from the disease. We observed the person has pre-conditions.",yes,"Let V1 = pre-conditions; X = vaccination; Y = disease. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +37253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. We know that smoking mother and good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes high infant mortality. We observed the person has good health.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37270,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and infant mortality. Health condition has a direct effect on infant's birth weight and infant mortality. Infant's birth weight has a direct effect on infant mortality. Health condition is unobserved. We know that smoking mother or good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes high infant mortality. We observed the person has good health.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = infant mortality. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female or high tar deposit causes lung cancer. We observed the person is non-female.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +37276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female or high tar deposit causes lung cancer. We observed the person is female.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +37281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes absence of tar deposit. female or high tar deposit causes lung cancer. We observed the person is non-female.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +37285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes absence of tar deposit. female or high tar deposit causes lung cancer. We observed the person is female.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +37288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes absence of tar deposit. female and high tar deposit causes lung cancer. We observed the person is non-female.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +37291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes absence of tar deposit. female and high tar deposit causes lung cancer. We observed the person is non-female.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +37298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female and high tar deposit causes lung cancer. We observed the person is non-female.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +37303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and lung cancer. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female and high tar deposit causes lung cancer. We observed the person is female.",no,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = lung cancer. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +37308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that smoking gene or high pollution causes smoking. smoking gene or high pollution or smoking causes lung cancer. We observed the person lives in a place with high pollution.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that smoking gene or high pollution causes smoking. smoking gene or high pollution or smoking causes lung cancer. We observed the person lives in a place with high pollution.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +0",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37317,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that smoking gene or high pollution causes smoking. smoking gene and high pollution and smoking causes lung cancer. We observed the person lives in a place with high pollution.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that smoking gene and high pollution causes smoking. smoking gene or high pollution or smoking causes lung cancer. We observed the person lives in a place with high pollution.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37326,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that smoking gene and high pollution causes smoking. smoking gene or high pollution or smoking causes lung cancer. We observed the person lives in a place with high pollution.",yes,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37332,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gene has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that smoking gene and high pollution causes smoking. smoking gene and high pollution and smoking causes lung cancer. We observed the person lives in a place with high pollution.",no,"Let V2 = pollution; X = gene; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that smoking causes absence of tar deposit, and we know that high tar deposit causes lung cancer.",yes,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 1 | +37340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that smoking causes absence of tar deposit, and we know that high tar deposit causes absence of lung cancer.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 1 | +37349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that smoking causes high tar deposit, and we know that high tar deposit causes absence of lung cancer.",no,"Let X = smoking; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 0 | +37364,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. We know that confounder active and high cigarette tax causes smoking mother. confounder active or smoking mother causes normal infant birth weight. We observed the cigarette tax is high and confounder active.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +37386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active or smoking mother causes normal infant birth weight. We observed the cigarette tax is low and confounder inactive.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +37397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active or smoking mother causes normal infant birth weight. We observed the cigarette tax is high and confounder active.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +37399,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and infant's birth weight. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on infant's birth weight. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active or smoking mother causes normal infant birth weight. We observed the cigarette tax is high and confounder active.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = infant's birth weight. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +37417,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty and global water company causes clean water. high poverty and clean water causes cholera contraction. We observed the person is served by a local water company and the region has low poverty.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +37420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty and global water company causes clean water. high poverty and clean water causes cholera contraction. We observed the person is served by a local water company and the region has high poverty.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +37429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty and global water company causes clean water. high poverty and clean water causes cholera contraction. We observed the person is served by a global water company and the region has high poverty.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +37433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty or global water company causes clean water. high poverty or clean water causes cholera contraction. We observed the person is served by a local water company and the region has low poverty.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +37437,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty or global water company causes clean water. high poverty or clean water causes cholera contraction. We observed the person is served by a local water company and the region has high poverty.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +37457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty and global water company causes clean water. high poverty or clean water causes cholera contraction. We observed the person is served by a global water company and the region has low poverty.",yes,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +37464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty or global water company causes clean water. high poverty and clean water causes cholera contraction. We observed the person is served by a local water company and the region has low poverty.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +37471,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on water quality and cholera. Water company has a direct effect on water quality. Water quality has a direct effect on cholera. Poverty is unobserved. We know that high poverty or global water company causes clean water. high poverty and clean water causes cholera contraction. We observed the person is served by a local water company and the region has high poverty.",no,"Let V2 = water company; V1 = poverty; X = water quality; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,water_cholera,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +37484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm not set by wife. drinking coffee and alarm set by wife causes ringing alarm.",no,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,alarm,3,det-counterfactual,Y_{X=0} = 1 | +37485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm not set by wife. drinking coffee and alarm set by wife causes ringing alarm.",yes,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,alarm,3,det-counterfactual,Y_{X=0} = 0 | +37486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm not set by wife. drinking coffee and alarm set by wife causes ringing alarm.",no,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,alarm,3,det-counterfactual,Y_{X=1} = 1 | +37491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm set by wife. drinking coffee or alarm set by wife causes ringing alarm.",no,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,alarm,3,det-counterfactual,Y_{X=1} = 0 | +37492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm set by wife. drinking coffee and alarm set by wife causes ringing alarm.",no,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,alarm,3,det-counterfactual,Y_{X=0} = 1 | +37493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm set by wife. drinking coffee and alarm set by wife causes ringing alarm.",yes,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,alarm,3,det-counterfactual,Y_{X=0} = 0 | +37494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Drinking coffee has a direct effect on wife and alarm clock. Wife has a direct effect on alarm clock. We know that drinking coffee causes alarm set by wife. drinking coffee and alarm set by wife causes ringing alarm.",yes,"Let X = drinking coffee; V2 = wife; Y = alarm clock. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,alarm,3,det-counterfactual,Y_{X=1} = 1 | +37498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food or candle with wax causes dark room. We observed the candle is out of wax.",yes,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,candle,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +37499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food or candle with wax causes dark room. We observed the candle is out of wax.",no,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,candle,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +37502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food or candle with wax causes dark room. We observed the candle has wax.",yes,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,candle,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food or candle with wax causes dark room. We observed the candle has wax.",no,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,candle,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37507,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food and candle with wax causes dark room. We observed the candle is out of wax.",yes,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,candle,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +37509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food and candle with wax causes dark room. We observed the candle has wax.",yes,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,candle,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on room. The candle has a direct effect on room. We know that liking spicy food and candle with wax causes dark room. We observed the candle has wax.",no,"Let V2 = the candle; X = liking spicy food; Y = room. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,candle,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and having visited England. Having visited England has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes having visited England and director signing the termination letter. having visited England or director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",yes,"Let V1 = CEO; V3 = director; X = having visited England; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,firing_employee,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +37516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and having visited England. Having visited England has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes having visited England and director signing the termination letter. having visited England or director signing the termination letter causes employee being fired. We observed the CEO decides to fire the employee.",yes,"Let V1 = CEO; V3 = director; X = having visited England; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,firing_employee,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +37522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and having visited England. Having visited England has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes having visited England and director signing the termination letter. having visited England and director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",no,"Let V1 = CEO; V3 = director; X = having visited England; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +37523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and having visited England. Having visited England has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes having visited England and director signing the termination letter. having visited England and director signing the termination letter causes employee being fired. We observed the CEO decides to retain the employee.",yes,"Let V1 = CEO; V3 = director; X = having visited England; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +37543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: CEO has a direct effect on director and having visited England. Having visited England has a direct effect on employee. Director has a direct effect on employee. We know that CEO's decision to fire the employee causes not having visited England and director signing the termination letter. having visited England and director signing the termination letter causes employee being fired. We observed the CEO decides to fire the employee.",yes,"Let V1 = CEO; V3 = director; X = having visited England; Y = employee. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,firing_employee,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +37544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that having a sister causes the corporal shooting and the private not shooting. the corporal shooting or the private shooting causes the prisoner's death.",yes,"Let X = having a sister; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 1 | +37552,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that having a sister causes the corporal shooting and the private shooting. the corporal shooting and the private shooting causes the prisoner's death.",no,"Let X = having a sister; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 1 | +37554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that having a sister causes the corporal shooting and the private shooting. the corporal shooting and the private shooting causes the prisoner's death.",yes,"Let X = having a sister; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,firing_squad,3,det-counterfactual,Y_{X=1} = 1 | +37556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that having a sister causes the corporal shooting and the private not shooting. the corporal shooting and the private shooting causes the prisoner's death.",no,"Let X = having a sister; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 1 | +37557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on the private and the corporal. The corporal has a direct effect on prisoner. The private has a direct effect on prisoner. We know that having a sister causes the corporal shooting and the private not shooting. the corporal shooting and the private shooting causes the prisoner's death.",yes,"Let X = having a sister; V3 = the private; V2 = the corporal; Y = prisoner. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,firing_squad,3,det-counterfactual,Y_{X=0} = 0 | +37562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler on. rain and sprinkler on causes wet ground.",yes,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 1 | +37565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler off. rain and sprinkler on causes wet ground.",yes,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,floor_wet,3,det-counterfactual,Y_{X=0} = 0 | +37566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler off. rain and sprinkler on causes wet ground.",no,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 1 | +37568,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler on. rain or sprinkler on causes wet ground.",no,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,floor_wet,3,det-counterfactual,Y_{X=0} = 1 | +37569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler on. rain or sprinkler on causes wet ground.",yes,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,floor_wet,3,det-counterfactual,Y_{X=0} = 0 | +37571,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler on. rain or sprinkler on causes wet ground.",no,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 0 | +37572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler off. rain or sprinkler on causes wet ground.",yes,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,floor_wet,3,det-counterfactual,Y_{X=0} = 1 | +37574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler off. rain or sprinkler on causes wet ground.",yes,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 1 | +37575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Full moon has a direct effect on sprinkler and weather. Weather has a direct effect on ground. Sprinkler has a direct effect on ground. We know that full moon causes rain and sprinkler off. rain or sprinkler on causes wet ground.",no,"Let X = full moon; V3 = sprinkler; V2 = weather; Y = ground. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,floor_wet,3,det-counterfactual,Y_{X=1} = 0 | +37576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on the forest. The smoker has a direct effect on the forest. We know that liking spicy food and the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker doesn't light a match.",no,"Let V2 = the smoker; X = liking spicy food; Y = the forest. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,forest_fire,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37578,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on the forest. The smoker has a direct effect on the forest. We know that liking spicy food and the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker doesn't light a match.",no,"Let V2 = the smoker; X = liking spicy food; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +37581,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on the forest. The smoker has a direct effect on the forest. We know that liking spicy food and the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",yes,"Let V2 = the smoker; X = liking spicy food; Y = the forest. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,forest_fire,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37583,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on the forest. The smoker has a direct effect on the forest. We know that liking spicy food and the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",no,"Let V2 = the smoker; X = liking spicy food; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37585,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on the forest. The smoker has a direct effect on the forest. We know that liking spicy food or the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker doesn't light a match.",yes,"Let V2 = the smoker; X = liking spicy food; Y = the forest. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,forest_fire,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on the forest. The smoker has a direct effect on the forest. We know that liking spicy food or the chain-smoker lighting a match causes the forest on fire. We observed the chain-smoker lights a match.",yes,"Let V2 = the smoker; X = liking spicy food; Y = the forest. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,forest_fire,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Solar eclipse has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that solar eclipse or heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",no,"Let V2 = traffic; X = solar eclipse; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,getting_late,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Solar eclipse has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that solar eclipse and heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",no,"Let V2 = traffic; X = solar eclipse; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,getting_late,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Solar eclipse has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that solar eclipse and heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",yes,"Let V2 = traffic; X = solar eclipse; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,getting_late,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Solar eclipse has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that solar eclipse and heavy traffic causes arriving to school on time. We observed there is no traffic on the road.",yes,"Let V2 = traffic; X = solar eclipse; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,getting_late,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +37606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Solar eclipse has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that solar eclipse and heavy traffic causes arriving to school on time. We observed there is heavy traffic on the road.",yes,"Let V2 = traffic; X = solar eclipse; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,getting_late,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Solar eclipse has a direct effect on Alice arriving to school. Traffic has a direct effect on Alice arriving to school. We know that solar eclipse and heavy traffic causes arriving to school on time. We observed there is heavy traffic on the road.",no,"Let V2 = traffic; X = solar eclipse; Y = Alice arriving to school. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,getting_late,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on foot size. Going to the beach has a direct effect on foot size. We know that tanning salon treatment or going to the beach causes large feet. We observed the person does not go to the beach.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = foot size. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,getting_tanned,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +37612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on foot size. Going to the beach has a direct effect on foot size. We know that tanning salon treatment or going to the beach causes large feet. We observed the person goes to the beach.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = foot size. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,getting_tanned,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on foot size. Going to the beach has a direct effect on foot size. We know that tanning salon treatment and going to the beach causes large feet. We observed the person does not go to the beach.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = foot size. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,getting_tanned,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +37620,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on foot size. Going to the beach has a direct effect on foot size. We know that tanning salon treatment and going to the beach causes large feet. We observed the person goes to the beach.",no,"Let V2 = going to the beach; X = tanning salon treatment; Y = foot size. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,getting_tanned,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tanning salon treatment has a direct effect on foot size. Going to the beach has a direct effect on foot size. We know that tanning salon treatment and going to the beach causes large feet. We observed the person goes to the beach.",yes,"Let V2 = going to the beach; X = tanning salon treatment; Y = foot size. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,getting_tanned,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37627,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and foot size. Penguin mood has a direct effect on foot size. We know that taking the elevator causes penguin happiness. taking the elevator or penguin happiness causes large feet.",no,"Let X = my decision; V2 = penguin mood; Y = foot size. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,penguin,3,det-counterfactual,Y_{X=1} = 0 | +37628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and foot size. Penguin mood has a direct effect on foot size. We know that taking the elevator causes penguin saddness. taking the elevator or penguin happiness causes large feet.",yes,"Let X = my decision; V2 = penguin mood; Y = foot size. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,penguin,3,det-counterfactual,Y_{X=0} = 1 | +37629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and foot size. Penguin mood has a direct effect on foot size. We know that taking the elevator causes penguin saddness. taking the elevator or penguin happiness causes large feet.",no,"Let X = my decision; V2 = penguin mood; Y = foot size. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,penguin,3,det-counterfactual,Y_{X=0} = 0 | +37630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and foot size. Penguin mood has a direct effect on foot size. We know that taking the elevator causes penguin saddness. taking the elevator or penguin happiness causes large feet.",yes,"Let X = my decision; V2 = penguin mood; Y = foot size. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,penguin,3,det-counterfactual,Y_{X=1} = 1 | +37632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: My decision has a direct effect on penguin mood and foot size. Penguin mood has a direct effect on foot size. We know that taking the elevator causes penguin saddness. taking the elevator and penguin happiness causes large feet.",no,"Let X = my decision; V2 = penguin mood; Y = foot size. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,penguin,3,det-counterfactual,Y_{X=0} = 1 | +37640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and severe vaccination reaction. having smallpox and severe vaccination reaction causes smallpox survival.",no,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 1 | +37643,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and severe vaccination reaction. having smallpox and severe vaccination reaction causes smallpox survival.",no,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,vaccine_kills,3,det-counterfactual,Y_{X=1} = 0 | +37644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and no vaccine reaction. having smallpox and severe vaccination reaction causes smallpox survival.",no,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 1 | +37647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and no vaccine reaction. having smallpox and severe vaccination reaction causes smallpox survival.",yes,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,vaccine_kills,3,det-counterfactual,Y_{X=1} = 0 | +37648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and severe vaccination reaction. having smallpox or severe vaccination reaction causes smallpox survival.",no,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 1 | +37649,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and severe vaccination reaction. having smallpox or severe vaccination reaction causes smallpox survival.",yes,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 0 | +37652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a brother has a direct effect on vaccination reaction and getting smallpox. Getting smallpox has a direct effect on smallpox survival. Vaccination reaction has a direct effect on smallpox survival. We know that having a brother causes having smallpox and no vaccine reaction. having smallpox or severe vaccination reaction causes smallpox survival.",yes,"Let X = having a brother; V3 = vaccination reaction; V2 = getting smallpox; Y = smallpox survival. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,vaccine_kills,3,det-counterfactual,Y_{X=0} = 1 | +37657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that having a sister causes low blood pressure. having a sister or high blood pressure causes healthy heart.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +37661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that having a sister causes low blood pressure. having a sister and high blood pressure causes healthy heart.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +37665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that having a sister causes high blood pressure. having a sister or high blood pressure causes healthy heart.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +37667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that having a sister causes high blood pressure. having a sister or high blood pressure causes healthy heart.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,blood_pressure,3,det-counterfactual,Y_{X=1} = 0 | +37669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that having a sister causes high blood pressure. having a sister and high blood pressure causes healthy heart.",yes,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,blood_pressure,3,det-counterfactual,Y_{X=0} = 0 | +37671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having a sister has a direct effect on blood pressure and heart condition. Blood pressure has a direct effect on heart condition. We know that having a sister causes high blood pressure. having a sister and high blood pressure causes healthy heart.",no,"Let X = having a sister; V2 = blood pressure; Y = heart condition. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,blood_pressure,3,det-counterfactual,Y_{X=1} = 0 | +37687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and freckles. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on freckles. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active or taking of all assigned drugs causes freckles. We observed the patient is assigned the treatment and confounder active.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,cholesterol,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +37693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and freckles. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on freckles. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes freckles. We observed the patient is not assigned the drug treatment and confounder active.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,cholesterol,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +37695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and freckles. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on freckles. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes freckles. We observed the patient is not assigned the drug treatment and confounder active.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,cholesterol,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +37698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and freckles. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on freckles. Unobserved confounders is unobserved. We know that confounder active or assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes freckles. We observed the patient is assigned the treatment and confounder inactive.",no,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,cholesterol,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +37709,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and freckles. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on freckles. Unobserved confounders is unobserved. We know that confounder active and assignment of drug treatment causes taking of all assigned drugs. confounder active and taking of all assigned drugs causes freckles. We observed the patient is not assigned the drug treatment and confounder active.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,cholesterol,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +37722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drug taken and freckles. Treatment assignment has a direct effect on drug taken. Drug taken has a direct effect on freckles. Unobserved confounders is unobserved. We know that confounder active and assignment of drug treatment causes taking of all assigned drugs. confounder active or taking of all assigned drugs causes freckles. We observed the patient is not assigned the drug treatment and confounder inactive.",yes,"Let V2 = treatment assignment; V1 = unobserved confounders; X = drug taken; Y = freckles. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,cholesterol,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +37736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on black hair. We know that college degree or higher causes low skill level, and we know that high skill level causes blond hair.",no,"Let X = education level; V2 = skill; Y = black hair. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,college_salary,3,det-counterfactual,Y_{X=0} = 1 | +37740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on black hair. We know that college degree or higher causes low skill level, and we know that high skill level causes black hair.",yes,"Let X = education level; V2 = skill; Y = black hair. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,college_salary,3,det-counterfactual,Y_{X=0} = 1 | +37741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on black hair. We know that college degree or higher causes low skill level, and we know that high skill level causes black hair.",no,"Let X = education level; V2 = skill; Y = black hair. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,college_salary,3,det-counterfactual,Y_{X=0} = 0 | +37750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Education level has a direct effect on skill. Skill has a direct effect on black hair. We know that college degree or higher causes high skill level, and we know that high skill level causes black hair.",yes,"Let X = education level; V2 = skill; Y = black hair. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,college_salary,3,det-counterfactual,Y_{X=1} = 1 | +37754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active or drinking coffee causes high salary. We observed the person lives far from a college and confounder inactive.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,college_wage,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +37756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active or drinking coffee causes high salary. We observed the person lives far from a college and confounder active.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +37787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active or close to a college causes drinking coffee. confounder active or drinking coffee causes high salary. We observed the person lives far from a college and confounder inactive.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,college_wage,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +37800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active and drinking coffee causes high salary. We observed the person lives far from a college and confounder inactive.",no,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +37805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active and drinking coffee causes high salary. We observed the person lives far from a college and confounder active.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +37806,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active and drinking coffee causes high salary. We observed the person lives far from a college and confounder active.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,college_wage,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +37811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active and drinking coffee causes high salary. We observed the person lives close to a college and confounder inactive.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,college_wage,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=0" +37813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on drinking coffee and salary. Proximity to a college has a direct effect on drinking coffee. Drinking coffee has a direct effect on salary. Unobserved confounders is unobserved. We know that confounder active and close to a college causes drinking coffee. confounder active and drinking coffee causes high salary. We observed the person lives close to a college and confounder active.",yes,"Let V2 = proximity to a college; V1 = unobserved confounders; X = drinking coffee; Y = salary. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,college_wage,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +37819,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to swim has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that being able to swim causes lack of studying. being able to swim or studying hard causes high exam score.",no,"Let X = ability to swim; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,encouagement_program,3,det-counterfactual,Y_{X=1} = 0 | +37821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to swim has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that being able to swim causes studying hard. being able to swim and studying hard causes high exam score.",yes,"Let X = ability to swim; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,encouagement_program,3,det-counterfactual,Y_{X=0} = 0 | +37824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to swim has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that being able to swim causes studying hard. being able to swim or studying hard causes high exam score.",no,"Let X = ability to swim; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,encouagement_program,3,det-counterfactual,Y_{X=0} = 1 | +37831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to swim has a direct effect on studying habit and exam score. Studying habit has a direct effect on exam score. We know that being able to swim causes lack of studying. being able to swim and studying hard causes high exam score.",yes,"Let X = ability to swim; V2 = studying habit; Y = exam score. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,encouagement_program,3,det-counterfactual,Y_{X=1} = 0 | +37832,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and peanut allergy. Department competitiveness has a direct effect on peanut allergy. We know that male gender causes non-competitive department. male gender and competitive department causes being allergic to peanuts.",no,"Let X = gender; V2 = department competitiveness; Y = peanut allergy. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,gender_admission,3,det-counterfactual,Y_{X=0} = 1 | +37833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and peanut allergy. Department competitiveness has a direct effect on peanut allergy. We know that male gender causes non-competitive department. male gender and competitive department causes being allergic to peanuts.",yes,"Let X = gender; V2 = department competitiveness; Y = peanut allergy. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,gender_admission,3,det-counterfactual,Y_{X=0} = 0 | +37838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and peanut allergy. Department competitiveness has a direct effect on peanut allergy. We know that male gender causes non-competitive department. male gender or competitive department causes being allergic to peanuts.",yes,"Let X = gender; V2 = department competitiveness; Y = peanut allergy. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,gender_admission,3,det-counterfactual,Y_{X=1} = 1 | +37839,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and peanut allergy. Department competitiveness has a direct effect on peanut allergy. We know that male gender causes non-competitive department. male gender or competitive department causes being allergic to peanuts.",no,"Let X = gender; V2 = department competitiveness; Y = peanut allergy. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,gender_admission,3,det-counterfactual,Y_{X=1} = 0 | +37842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and peanut allergy. Department competitiveness has a direct effect on peanut allergy. We know that male gender causes competitive department. male gender or competitive department causes being allergic to peanuts.",yes,"Let X = gender; V2 = department competitiveness; Y = peanut allergy. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,gender_admission,3,det-counterfactual,Y_{X=1} = 1 | +37852,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and brown eyes. Residency status has a direct effect on department competitiveness and brown eyes. Department competitiveness has a direct effect on brown eyes. Residency status is unobserved. We know that male gender and in-state residency causes competitive department. male gender or in-state residency or competitive department causes brown eyes. We observed the resident is in-state.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = brown eyes. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +1",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and brown eyes. Residency status has a direct effect on department competitiveness and brown eyes. Department competitiveness has a direct effect on brown eyes. Residency status is unobserved. We know that male gender or in-state residency causes competitive department. male gender and in-state residency and competitive department causes brown eyes. We observed the resident is in-state.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = brown eyes. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +0",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37865,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and brown eyes. Residency status has a direct effect on department competitiveness and brown eyes. Department competitiveness has a direct effect on brown eyes. Residency status is unobserved. We know that male gender and in-state residency causes competitive department. male gender and in-state residency and competitive department causes brown eyes. We observed the residency is out-of-state.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = brown eyes. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and brown eyes. Residency status has a direct effect on department competitiveness and brown eyes. Department competitiveness has a direct effect on brown eyes. Residency status is unobserved. We know that male gender and in-state residency causes competitive department. male gender and in-state residency and competitive department causes brown eyes. We observed the resident is in-state.",no,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = brown eyes. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and brown eyes. Residency status has a direct effect on department competitiveness and brown eyes. Department competitiveness has a direct effect on brown eyes. Residency status is unobserved. We know that male gender or in-state residency causes competitive department. male gender or in-state residency or competitive department causes brown eyes. We observed the residency is out-of-state.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = brown eyes. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +37876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on department competitiveness and brown eyes. Residency status has a direct effect on department competitiveness and brown eyes. Department competitiveness has a direct effect on brown eyes. Residency status is unobserved. We know that male gender or in-state residency causes competitive department. male gender or in-state residency or competitive department causes brown eyes. We observed the resident is in-state.",yes,"Let V2 = residency status; X = gender; V3 = department competitiveness; Y = brown eyes. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,gender_admission_state,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that having visited England or high skill level causes white-collar job. having visited England and high skill level and white-collar job causes high salary. We observed the person has a low skill level.",no,"Let V2 = skill; X = having visited England; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,gender_pay,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that having visited England and high skill level causes white-collar job. having visited England and high skill level and white-collar job causes high salary. We observed the person has a high skill level.",no,"Let V2 = skill; X = having visited England; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,gender_pay,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that having visited England and high skill level causes white-collar job. having visited England and high skill level and white-collar job causes high salary. We observed the person has a high skill level.",no,"Let V2 = skill; X = having visited England; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,gender_pay,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37906,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Having visited England has a direct effect on occupation and salary. Skill has a direct effect on occupation and salary. Occupation has a direct effect on salary. Skill is unobserved. We know that having visited England or high skill level causes white-collar job. having visited England or high skill level or white-collar job causes high salary. We observed the person has a low skill level.",yes,"Let V2 = skill; X = having visited England; V3 = occupation; Y = salary. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,gender_pay,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +37912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food and confounder active causes high parental social status. liking spicy food or confounder active or high parental social status causes intelligent child. We observed confounder inactive.",no,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food and confounder active causes high parental social status. liking spicy food or confounder active or high parental social status causes intelligent child. We observed confounder inactive.",yes,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +1",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +37917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food and confounder active causes high parental social status. liking spicy food or confounder active or high parental social status causes intelligent child. We observed confounder active.",no,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food or confounder active causes high parental social status. liking spicy food or confounder active or high parental social status causes intelligent child. We observed confounder active.",yes,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food or confounder active causes high parental social status. liking spicy food or confounder active or high parental social status causes intelligent child. We observed confounder active.",yes,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food or confounder active causes high parental social status. liking spicy food and confounder active and high parental social status causes intelligent child. We observed confounder inactive.",no,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37930,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food or confounder active causes high parental social status. liking spicy food and confounder active and high parental social status causes intelligent child. We observed confounder inactive.",no,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +37936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food and confounder active causes high parental social status. liking spicy food and confounder active and high parental social status causes intelligent child. We observed confounder inactive.",no,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +37941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food and confounder active causes high parental social status. liking spicy food and confounder active and high parental social status causes intelligent child. We observed confounder active.",yes,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Liking spicy food has a direct effect on parents' social status and child's intelligence. Other unobserved factors has a direct effect on parents' social status and child's intelligence. Parents' social status has a direct effect on child's intelligence. Other unobserved factors is unobserved. We know that liking spicy food and confounder active causes high parental social status. liking spicy food and confounder active and high parental social status causes intelligent child. We observed confounder active.",yes,"Let V2 = other unobserved factors; X = liking spicy food; V3 = parents' social status; Y = child's intelligence. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nature_vs_nurture,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and lactose intolerance. Effort has a direct effect on lactose intolerance. We know that smoking causes being lazy. smoking or being hard-working causes being lactose intolerant.",no,"Let X = smoking; V2 = effort; Y = lactose intolerance. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 0 | +37947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and lactose intolerance. Effort has a direct effect on lactose intolerance. We know that smoking causes being lazy. smoking or being hard-working causes being lactose intolerant.",no,"Let X = smoking; V2 = effort; Y = lactose intolerance. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,neg_mediation,3,det-counterfactual,Y_{X=1} = 0 | +37950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and lactose intolerance. Effort has a direct effect on lactose intolerance. We know that smoking causes being hard-working. smoking and being hard-working causes being lactose intolerant.",yes,"Let X = smoking; V2 = effort; Y = lactose intolerance. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,neg_mediation,3,det-counterfactual,Y_{X=1} = 1 | +37953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and lactose intolerance. Effort has a direct effect on lactose intolerance. We know that smoking causes being lazy. smoking and being hard-working causes being lactose intolerant.",yes,"Let X = smoking; V2 = effort; Y = lactose intolerance. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 0 | +37954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and lactose intolerance. Effort has a direct effect on lactose intolerance. We know that smoking causes being lazy. smoking and being hard-working causes being lactose intolerant.",no,"Let X = smoking; V2 = effort; Y = lactose intolerance. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,neg_mediation,3,det-counterfactual,Y_{X=1} = 1 | +37957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Smoking has a direct effect on effort and lactose intolerance. Effort has a direct effect on lactose intolerance. We know that smoking causes being hard-working. smoking or being hard-working causes being lactose intolerant.",yes,"Let X = smoking; V2 = effort; Y = lactose intolerance. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,neg_mediation,3,det-counterfactual,Y_{X=0} = 0 | +37964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that speaking english and smoker causes having diabetes. speaking english and smoker and having diabetes causes long lifespan. We observed the person is a smoker.",no,"Let V2 = smoking; X = ability to speak english; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +37970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that speaking english and smoker causes having diabetes. speaking english or smoker or having diabetes causes long lifespan. We observed the person is a nonsmoker.",yes,"Let V2 = smoking; X = ability to speak english; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +1",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +37973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that speaking english and smoker causes having diabetes. speaking english or smoker or having diabetes causes long lifespan. We observed the person is a smoker.",no,"Let V2 = smoking; X = ability to speak english; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +37987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that speaking english or smoker causes having diabetes. speaking english or smoker or having diabetes causes long lifespan. We observed the person is a nonsmoker.",no,"Let V2 = smoking; X = ability to speak english; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +0",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +37990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that speaking english or smoker causes having diabetes. speaking english or smoker or having diabetes causes long lifespan. We observed the person is a smoker.",yes,"Let V2 = smoking; X = ability to speak english; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +37991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Ability to speak english has a direct effect on diabetes and lifespan. Smoking has a direct effect on diabetes and lifespan. Diabetes has a direct effect on lifespan. Smoking is unobserved. We know that speaking english or smoker causes having diabetes. speaking english or smoker or having diabetes causes long lifespan. We observed the person is a smoker.",no,"Let V2 = smoking; X = ability to speak english; V3 = diabetes; Y = lifespan. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,obesity_mortality,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +37994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. We know that citrus intake causes vitamin C deficiency, and we know that sufficient vitamin C causes curly hair.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 1 | +37995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. We know that citrus intake causes vitamin C deficiency, and we know that sufficient vitamin C causes curly hair.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 0 | +37998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. We know that citrus intake causes vitamin C deficiency, and we know that sufficient vitamin C causes straight hair.",yes,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 1 | +38006,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Eating citrus has a direct effect on vitmain C. Vitmain C has a direct effect on curly hair. We know that citrus intake causes sufficient vitamin C, and we know that sufficient vitamin C causes straight hair.",no,"Let X = eating citrus; V2 = vitmain C; Y = curly hair. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,orange_scurvy,3,det-counterfactual,Y_{X=1} = 1 | +38027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and rainfall. Yield per acre has a direct effect on supply. Supply has a direct effect on rainfall. Demand is unobserved. We know that increased demand and increased yield per acre causes increased supply. increased demand or increased supply causes high rainfall. We observed the farm has a reduced yield per acre and the demand is low.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = rainfall. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,price,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +38042,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and rainfall. Yield per acre has a direct effect on supply. Supply has a direct effect on rainfall. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand and increased supply causes high rainfall. We observed the farm has a reduced yield per acre and the demand is low.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = rainfall. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,price,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and rainfall. Yield per acre has a direct effect on supply. Supply has a direct effect on rainfall. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand or increased supply causes high rainfall. We observed the farm has a reduced yield per acre and the demand is low.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = rainfall. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,price,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +38063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Demand has a direct effect on supply and rainfall. Yield per acre has a direct effect on supply. Supply has a direct effect on rainfall. Demand is unobserved. We know that increased demand or increased yield per acre causes increased supply. increased demand or increased supply causes high rainfall. We observed the farm has a reduced yield per acre and the demand is high.",no,"Let V2 = yield per acre; V1 = demand; X = supply; Y = rainfall. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,price,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +38078,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes having a brother. male gender or having a brother causes recovery. We observed the patient is male.",yes,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38091,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes not having a brother. male gender and having a brother causes recovery. We observed the patient is not male.",yes,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes not having a brother. male gender and having a brother causes recovery. We observed the patient is male.",no,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38096,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes not having a brother. male gender or having a brother causes recovery. We observed the patient is not male.",no,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,simpson_drug,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes not having a brother. male gender or having a brother causes recovery. We observed the patient is not male.",yes,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,simpson_drug,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38098,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes not having a brother. male gender or having a brother causes recovery. We observed the patient is not male.",yes,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on having a brother and recovery. Having a brother has a direct effect on recovery. We know that male gender causes not having a brother. male gender or having a brother causes recovery. We observed the patient is male.",no,"Let V1 = gender; X = having a brother; Y = recovery. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,simpson_drug,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38104,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes high hospital bill. old age and high hospital bill causes freckles. We observed the patient is young.",no,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,simpson_hospital,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes high hospital bill. old age and high hospital bill causes freckles. We observed the patient is young.",yes,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,simpson_hospital,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes low hospital bill. old age and high hospital bill causes freckles. We observed the patient is young.",yes,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38119,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes low hospital bill. old age and high hospital bill causes freckles. We observed the patient is old.",no,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes high hospital bill. old age or high hospital bill causes freckles. We observed the patient is young.",yes,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38126,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes high hospital bill. old age or high hospital bill causes freckles. We observed the patient is old.",yes,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes low hospital bill. old age or high hospital bill causes freckles. We observed the patient is old.",yes,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,simpson_hospital,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes low hospital bill. old age or high hospital bill causes freckles. We observed the patient is old.",no,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,simpson_hospital,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38135,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Age has a direct effect on hospital costs and freckles. Hospital costs has a direct effect on freckles. We know that old age causes low hospital bill. old age or high hospital bill causes freckles. We observed the patient is old.",no,"Let V1 = age; X = hospital costs; Y = freckles. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,simpson_hospital,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and lip thickness. Treatment has a direct effect on lip thickness. We know that large kidney stone causes receives no treatment. large kidney stone or receives treatment causes thick lips. We observed the patient has a large kidney stone.",yes,"Let V1 = kidney stone size; X = treatment; Y = lip thickness. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38143,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and lip thickness. Treatment has a direct effect on lip thickness. We know that large kidney stone causes receives no treatment. large kidney stone or receives treatment causes thick lips. We observed the patient has a large kidney stone.",no,"Let V1 = kidney stone size; X = treatment; Y = lip thickness. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and lip thickness. Treatment has a direct effect on lip thickness. We know that large kidney stone causes receives no treatment. large kidney stone and receives treatment causes thick lips. We observed the patient has a small kidney stone.",no,"Let V1 = kidney stone size; X = treatment; Y = lip thickness. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and lip thickness. Treatment has a direct effect on lip thickness. We know that large kidney stone causes receives no treatment. large kidney stone and receives treatment causes thick lips. We observed the patient has a small kidney stone.",yes,"Let V1 = kidney stone size; X = treatment; Y = lip thickness. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and lip thickness. Treatment has a direct effect on lip thickness. We know that large kidney stone causes receives treatment. large kidney stone or receives treatment causes thick lips. We observed the patient has a large kidney stone.",no,"Let V1 = kidney stone size; X = treatment; Y = lip thickness. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kidney stone size has a direct effect on treatment and lip thickness. Treatment has a direct effect on lip thickness. We know that large kidney stone causes receives treatment. large kidney stone and receives treatment causes thick lips. We observed the patient has a large kidney stone.",no,"Let V1 = kidney stone size; X = treatment; Y = lip thickness. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,simpson_kidneystone,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38179,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes getting the vaccine. pre-conditions and getting the vaccine causes being lactose intolerant. We observed the person has no pre-conditions.",yes,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes getting the vaccine. pre-conditions and getting the vaccine causes being lactose intolerant. We observed the person has pre-conditions.",yes,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38185,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes getting the vaccine. pre-conditions or getting the vaccine causes being lactose intolerant. We observed the person has no pre-conditions.",yes,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38186,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes getting the vaccine. pre-conditions or getting the vaccine causes being lactose intolerant. We observed the person has no pre-conditions.",yes,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38188,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes getting the vaccine. pre-conditions or getting the vaccine causes being lactose intolerant. We observed the person has pre-conditions.",yes,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes getting the vaccine. pre-conditions or getting the vaccine causes being lactose intolerant. We observed the person has pre-conditions.",no,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes vaccine refusal. pre-conditions and getting the vaccine causes being lactose intolerant. We observed the person has no pre-conditions.",no,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pre-conditions has a direct effect on vaccination and lactose intolerance. Vaccination has a direct effect on lactose intolerance. We know that pre-conditions causes vaccine refusal. pre-conditions and getting the vaccine causes being lactose intolerant. We observed the person has pre-conditions.",no,"Let V1 = pre-conditions; X = vaccination; Y = lactose intolerance. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,simpson_vaccine,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother or good health causes normal infant birth weight. smoking mother and good health and normal infant birth weight causes freckles. We observed the person has poor health.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother and good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes freckles. We observed the person has good health.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +38215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother and good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes freckles. We observed the person has good health.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother and good health causes normal infant birth weight. smoking mother and good health and normal infant birth weight causes freckles. We observed the person has poor health.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother and good health causes normal infant birth weight. smoking mother and good health and normal infant birth weight causes freckles. We observed the person has good health.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother and good health causes normal infant birth weight. smoking mother and good health and normal infant birth weight causes freckles. We observed the person has good health.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +38226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother or good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes freckles. We observed the person has poor health.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother or good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes freckles. We observed the person has poor health.",no,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +0",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother or good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes freckles. We observed the person has good health.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Maternal smoking status has a direct effect on infant's birth weight and freckles. Health condition has a direct effect on infant's birth weight and freckles. Infant's birth weight has a direct effect on freckles. Health condition is unobserved. We know that smoking mother or good health causes normal infant birth weight. smoking mother or good health or normal infant birth weight causes freckles. We observed the person has good health.",yes,"Let V2 = health condition; X = maternal smoking status; V3 = infant's birth weight; Y = freckles. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,smoke_birthWeight,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and peanut allergy. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on peanut allergy. Gender is unobserved. We know that female causes smoking. smoking causes absence of tar deposit. female or high tar deposit causes being allergic to peanuts. We observed the person is female.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = peanut allergy. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 1 +1",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and peanut allergy. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on peanut allergy. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female and high tar deposit causes being allergic to peanuts. We observed the person is non-female.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = peanut allergy. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and peanut allergy. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on peanut allergy. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female and high tar deposit causes being allergic to peanuts. We observed the person is female.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = peanut allergy. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gender has a direct effect on smoking and peanut allergy. Smoking has a direct effect on tar deposit. Tar deposit has a direct effect on peanut allergy. Gender is unobserved. We know that female causes smoking. smoking causes high tar deposit. female and high tar deposit causes being allergic to peanuts. We observed the person is female.",yes,"Let V1 = gender; X = smoking; V3 = tar deposit; Y = peanut allergy. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,smoking_frontdoor,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that listening to jazz or high pollution causes smoking. listening to jazz or high pollution or smoking causes lung cancer. We observed the person lives in a place with low pollution.",yes,"Let V2 = pollution; X = listening to jazz; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38272,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that listening to jazz or high pollution causes smoking. listening to jazz and high pollution and smoking causes lung cancer. We observed the person lives in a place with low pollution.",no,"Let V2 = pollution; X = listening to jazz; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that listening to jazz and high pollution causes smoking. listening to jazz or high pollution or smoking causes lung cancer. We observed the person lives in a place with low pollution.",yes,"Let V2 = pollution; X = listening to jazz; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +1",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that listening to jazz and high pollution causes smoking. listening to jazz or high pollution or smoking causes lung cancer. We observed the person lives in a place with high pollution.",no,"Let V2 = pollution; X = listening to jazz; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that listening to jazz and high pollution causes smoking. listening to jazz and high pollution and smoking causes lung cancer. We observed the person lives in a place with low pollution.",no,"Let V2 = pollution; X = listening to jazz; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +0",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38294,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on smoking and lung cancer. Pollution has a direct effect on smoking and lung cancer. Smoking has a direct effect on lung cancer. Pollution is unobserved. We know that listening to jazz and high pollution causes smoking. listening to jazz and high pollution and smoking causes lung cancer. We observed the person lives in a place with high pollution.",yes,"Let V2 = pollution; X = listening to jazz; V3 = smoking; Y = lung cancer. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,smoking_gene_cancer,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes absence of tar deposit, and we know that high tar deposit causes lung cancer.",no,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 0 | +38299,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes absence of tar deposit, and we know that high tar deposit causes lung cancer.",yes,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=1} = 0 | +38301,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes absence of tar deposit, and we know that high tar deposit causes absence of lung cancer.",yes,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 0 | +38303,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes absence of tar deposit, and we know that high tar deposit causes absence of lung cancer.",no,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=1} = 0 | +38304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes high tar deposit, and we know that high tar deposit causes lung cancer.",no,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 1 | +38306,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes high tar deposit, and we know that high tar deposit causes lung cancer.",yes,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=1} = 1 | +38308,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes high tar deposit, and we know that high tar deposit causes absence of lung cancer.",yes,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=0} = 1 | +38310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes high tar deposit, and we know that high tar deposit causes absence of lung cancer.",no,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=1} = 1 | +38311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Listening to jazz has a direct effect on tar deposit. Tar deposit has a direct effect on lung cancer. We know that listening to jazz causes high tar deposit, and we know that high tar deposit causes absence of lung cancer.",yes,"Let X = listening to jazz; V2 = tar deposit; Y = lung cancer. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,smoking_tar_cancer,3,det-counterfactual,Y_{X=1} = 0 | +38325,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active and high cigarette tax causes smoking mother. confounder active or smoking mother causes brown eyes. We observed the cigarette tax is high and confounder active.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +38327,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active and high cigarette tax causes smoking mother. confounder active or smoking mother causes brown eyes. We observed the cigarette tax is high and confounder active.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +38339,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active and high cigarette tax causes smoking mother. confounder active and smoking mother causes brown eyes. We observed the cigarette tax is high and confounder inactive.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=0" +38340,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active and high cigarette tax causes smoking mother. confounder active and smoking mother causes brown eyes. We observed the cigarette tax is high and confounder active.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +38353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active or smoking mother causes brown eyes. We observed the cigarette tax is high and confounder inactive.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +38369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active and smoking mother causes brown eyes. We observed the cigarette tax is high and confounder inactive.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +38370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active and smoking mother causes brown eyes. We observed the cigarette tax is high and confounder inactive.",no,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +38374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Unobserved confounders has a direct effect on maternal smoking status and brown eyes. Cigarette tax has a direct effect on maternal smoking status. Maternal smoking status has a direct effect on brown eyes. Unobserved confounders is unobserved. We know that confounder active or high cigarette tax causes smoking mother. confounder active and smoking mother causes brown eyes. We observed the cigarette tax is high and confounder active.",yes,"Let V2 = cigarette tax; V1 = unobserved confounders; X = maternal smoking status; Y = brown eyes. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,tax_smoke_birthWeight,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +38392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on liking spicy food and cholera. Water company has a direct effect on liking spicy food. Liking spicy food has a direct effect on cholera. Poverty is unobserved. We know that high poverty or global water company causes liking spicy food. high poverty or liking spicy food causes cholera contraction. We observed the person is served by a local water company and the region has low poverty.",no,"Let V2 = water company; V1 = poverty; X = liking spicy food; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +38411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on liking spicy food and cholera. Water company has a direct effect on liking spicy food. Liking spicy food has a direct effect on cholera. Poverty is unobserved. We know that high poverty and global water company causes liking spicy food. high poverty or liking spicy food causes cholera contraction. We observed the person is served by a local water company and the region has low poverty.",no,"Let V2 = water company; V1 = poverty; X = liking spicy food; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,water_cholera,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +38420,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on liking spicy food and cholera. Water company has a direct effect on liking spicy food. Liking spicy food has a direct effect on cholera. Poverty is unobserved. We know that high poverty and global water company causes liking spicy food. high poverty or liking spicy food causes cholera contraction. We observed the person is served by a global water company and the region has high poverty.",yes,"Let V2 = water company; V1 = poverty; X = liking spicy food; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +38433,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Poverty has a direct effect on liking spicy food and cholera. Water company has a direct effect on liking spicy food. Liking spicy food has a direct effect on cholera. Poverty is unobserved. We know that high poverty or global water company causes liking spicy food. high poverty and liking spicy food causes cholera contraction. We observed the person is served by a global water company and the region has low poverty.",yes,"Let V2 = water company; V1 = poverty; X = liking spicy food; Y = cholera. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,water_cholera,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +38440,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes not xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes not xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38442,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes not xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes not xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38444,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes not zuph, and we know that zuph causes not xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38445,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes not zuph, and we know that zuph causes not xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38448,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes zuph, and we know that zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38452,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes not zuph, and we know that zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38453,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes not zuph, and we know that zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. We know that rixq causes not zuph, and we know that zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes rixq. zuph or rixq causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes rixq. zuph or rixq causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes rixq. zuph or rixq causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes rixq. zuph and rixq causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38465,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes rixq. zuph and rixq causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes rixq. zuph and rixq causes xevu. We observed an individual is zuph.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes not rixq. zuph or rixq causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes not rixq. zuph or rixq causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes not rixq. zuph or rixq causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes not rixq. zuph or rixq causes xevu. We observed an individual is zuph.",yes,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes not rixq. zuph or rixq causes xevu. We observed an individual is zuph.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on rixq and xevu. Rixq has a direct effect on xevu. We know that zuph causes not rixq. zuph and rixq causes xevu. We observed an individual is zuph.",no,"Let V1 = zuph; X = rixq; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes not zuph. rixq or zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes not zuph. rixq or zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes zuph. rixq or zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes zuph. rixq or zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes zuph. rixq or zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes zuph. rixq and zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes zuph. rixq and zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes zuph. rixq and zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38500,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes not zuph. rixq and zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes not zuph. rixq and zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes not zuph. rixq and zuph causes xevu.",no,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38503,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. We know that rixq causes not zuph. rixq and zuph causes xevu.",yes,"Let X = rixq; V2 = zuph; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38505,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes not zuph. swoy or zuph causes xevu. We observed an individual is not swoy.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38511,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes not zuph. swoy or zuph causes xevu. We observed an individual is swoy.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 0 +0",frontdoor,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes not zuph. swoy and zuph causes xevu. We observed an individual is not swoy.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38516,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes not zuph. swoy and zuph causes xevu. We observed an individual is swoy.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes not zuph. swoy and zuph causes xevu. We observed an individual is swoy.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy or zuph causes xevu. We observed an individual is not swoy.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy or zuph causes xevu. We observed an individual is not swoy.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +1",frontdoor,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy or zuph causes xevu. We observed an individual is not swoy.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy and zuph causes xevu. We observed an individual is not swoy.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy and zuph causes xevu. We observed an individual is swoy.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy and zuph causes xevu. We observed an individual is swoy.",yes,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38535,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Rixq has a direct effect on zuph. Zuph has a direct effect on xevu. Swoy is unobserved. We know that swoy causes rixq. rixq causes zuph. swoy and zuph causes xevu. We observed an individual is swoy.",no,"Let V1 = swoy; X = rixq; V3 = zuph; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38538,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy or rixq causes xevu. We observed an individual is not zuph and an individual is not swoy.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense0,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy or rixq causes xevu. We observed an individual is not zuph and an individual is swoy.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +38548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy or rixq causes xevu. We observed an individual is zuph and an individual is swoy.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +38553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy and zuph causes rixq. swoy or rixq causes xevu. We observed an individual is not zuph and an individual is not swoy.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +38554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy and zuph causes rixq. swoy or rixq causes xevu. We observed an individual is not zuph and an individual is not swoy.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense0,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38556,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy and zuph causes rixq. swoy or rixq causes xevu. We observed an individual is not zuph and an individual is swoy.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +38565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy and zuph causes rixq. swoy or rixq causes xevu. We observed an individual is zuph and an individual is swoy.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +38570,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy and rixq causes xevu. We observed an individual is not zuph and an individual is not swoy.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense0,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38572,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy and rixq causes xevu. We observed an individual is not zuph and an individual is swoy.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +38575,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy and rixq causes xevu. We observed an individual is not zuph and an individual is swoy.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense0,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +38576,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy or zuph causes rixq. swoy and rixq causes xevu. We observed an individual is zuph and an individual is not swoy.",no,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +38589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoy has a direct effect on rixq and xevu. Zuph has a direct effect on rixq. Rixq has a direct effect on xevu. Swoy is unobserved. We know that swoy and zuph causes rixq. swoy and rixq causes xevu. We observed an individual is not zuph and an individual is swoy.",yes,"Let V2 = zuph; V1 = swoy; X = rixq; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,nonsense0,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +38600,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq or swoy or zuph causes xevu. We observed an individual is not swoy.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38602,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq or swoy or zuph causes xevu. We observed an individual is not swoy.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38603,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq or swoy or zuph causes xevu. We observed an individual is not swoy.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +0",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq or swoy or zuph causes xevu. We observed an individual is swoy.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38609,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq and swoy and zuph causes xevu. We observed an individual is not swoy.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38610,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq and swoy and zuph causes xevu. We observed an individual is not swoy.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq and swoy and zuph causes xevu. We observed an individual is not swoy.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +1",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38612,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq or swoy causes zuph. rixq and swoy and zuph causes xevu. We observed an individual is swoy.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +0",arrowhead,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38619,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq and swoy causes zuph. rixq and swoy and zuph causes xevu. We observed an individual is not swoy.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +1",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38622,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq and swoy causes zuph. rixq and swoy and zuph causes xevu. We observed an individual is swoy.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38624,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq and swoy causes zuph. rixq or swoy or zuph causes xevu. We observed an individual is not swoy.",no,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38630,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on zuph and xevu. Swoy has a direct effect on zuph and xevu. Zuph has a direct effect on xevu. Swoy is unobserved. We know that rixq and swoy causes zuph. rixq or swoy or zuph causes xevu. We observed an individual is swoy.",yes,"Let V2 = swoy; X = rixq; V3 = zuph; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and swoy. zuph and swoy causes xevu.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and swoy. zuph and swoy causes xevu.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38635,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and swoy. zuph and swoy causes xevu.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph and swoy causes xevu.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38637,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph and swoy causes xevu.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38639,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph and swoy causes xevu.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and swoy. zuph or swoy causes xevu.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and swoy. zuph or swoy causes xevu.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph or swoy causes xevu.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | +38645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph or swoy causes xevu.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | +38646,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph or swoy causes xevu.",yes,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | +38647,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on swoy and zuph. Zuph has a direct effect on xevu. Swoy has a direct effect on xevu. We know that rixq causes zuph and not swoy. zuph or swoy causes xevu.",no,"Let X = rixq; V3 = swoy; V2 = zuph; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | +38650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq or swoy causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38651,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq or swoy causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38653,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq or swoy causes xevu. We observed an individual is zuph.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq or swoy causes xevu. We observed an individual is zuph.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq and swoy causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq and swoy causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes not rixq and swoy. rixq and swoy causes xevu. We observed an individual is zuph.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes rixq and swoy. rixq or swoy causes xevu. We observed an individual is not zuph.",yes,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes rixq and swoy. rixq or swoy causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes rixq and swoy. rixq or swoy causes xevu. We observed an individual is zuph.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes rixq and swoy. rixq and swoy causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38674,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on swoy and rixq. Rixq has a direct effect on xevu. Swoy has a direct effect on xevu. We know that zuph causes rixq and swoy. rixq and swoy causes xevu. We observed an individual is not zuph.",no,"Let V1 = zuph; V3 = swoy; X = rixq; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq or zuph causes xevu. We observed an individual is not zuph.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq or zuph causes xevu. We observed an individual is not zuph.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq or zuph causes xevu. We observed an individual is not zuph.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq or zuph causes xevu. We observed an individual is zuph.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq or zuph causes xevu. We observed an individual is zuph.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38687,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq or zuph causes xevu. We observed an individual is zuph.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq and zuph causes xevu. We observed an individual is not zuph.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq and zuph causes xevu. We observed an individual is not zuph.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense0,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq and zuph causes xevu. We observed an individual is not zuph.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq and zuph causes xevu. We observed an individual is zuph.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense0,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq and zuph causes xevu. We observed an individual is zuph.",yes,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,nonsense0,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +38695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Rixq has a direct effect on xevu. Zuph has a direct effect on xevu. We know that rixq and zuph causes xevu. We observed an individual is zuph.",no,"Let V2 = zuph; X = rixq; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense0,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38698,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38700,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes not kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes not kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38702,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes not kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes swoq, and we know that swoq causes not kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes not swoq, and we know that swoq causes not kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38706,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes not swoq, and we know that swoq causes not kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes not swoq, and we know that swoq causes not kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes not swoq, and we know that swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. We know that kwox causes not swoq, and we know that swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38714,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes kwox. swoq or kwox causes kwoz. We observed an individual is not swoq.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes kwox. swoq or kwox causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes kwox. swoq or kwox causes kwoz. We observed an individual is swoq.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes kwox. swoq or kwox causes kwoz. We observed an individual is swoq.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes not kwox. swoq and kwox causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes not kwox. swoq and kwox causes kwoz. We observed an individual is not swoq.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38722,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes not kwox. swoq and kwox causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38723,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes not kwox. swoq and kwox causes kwoz. We observed an individual is not swoq.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes not kwox. swoq and kwox causes kwoz. We observed an individual is swoq.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes kwox. swoq and kwox causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes kwox. swoq and kwox causes kwoz. We observed an individual is swoq.",yes,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on kwox and kwoz. Kwox has a direct effect on kwoz. We know that swoq causes not kwox. swoq or kwox causes kwoz. We observed an individual is swoq.",no,"Let V1 = swoq; X = kwox; Y = kwoz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox and swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox and swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox and swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38748,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes swoq. kwox or swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes swoq. kwox or swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox or swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox or swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38754,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox or swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes not swoq. kwox or swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38757,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes swoq. kwox and swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes swoq. kwox and swoq causes kwoz.",yes,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. We know that kwox causes swoq. kwox and swoq causes kwoz.",no,"Let X = kwox; V2 = swoq; Y = kwoz. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes swoq. muvy and swoq causes kwoz. We observed an individual is not muvy.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy or swoq causes kwoz. We observed an individual is not muvy.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38771,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy or swoq causes kwoz. We observed an individual is not muvy.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy or swoq causes kwoz. We observed an individual is muvy.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy or swoq causes kwoz. We observed an individual is muvy.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +38776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes swoq. muvy or swoq causes kwoz. We observed an individual is not muvy.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes swoq. muvy or swoq causes kwoz. We observed an individual is muvy.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes swoq. muvy or swoq causes kwoz. We observed an individual is muvy.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38785,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy and swoq causes kwoz. We observed an individual is not muvy.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy and swoq causes kwoz. We observed an individual is not muvy.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy and swoq causes kwoz. We observed an individual is muvy.",no,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Kwox has a direct effect on swoq. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that muvy causes kwox. kwox causes not swoq. muvy and swoq causes kwoz. We observed an individual is muvy.",yes,"Let V1 = muvy; X = kwox; V3 = swoq; Y = kwoz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy and kwox causes kwoz. We observed an individual is not swoq and an individual is muvy.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +38810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy or swoq causes kwox. muvy and kwox causes kwoz. We observed an individual is not swoq and an individual is not muvy.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38823,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy or swoq causes kwox. muvy and kwox causes kwoz. We observed an individual is swoq and an individual is muvy.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +38826,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy or swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is not swoq and an individual is not muvy.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy or swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is not swoq and an individual is muvy.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +38833,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy or swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is swoq and an individual is not muvy.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense1,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +38841,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is not swoq and an individual is not muvy.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense1,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +38842,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is not swoq and an individual is not muvy.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +38845,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is not swoq and an individual is muvy.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense1,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +38847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is not swoq and an individual is muvy.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +38849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is swoq and an individual is not muvy.",yes,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense1,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +38855,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Muvy has a direct effect on kwox and kwoz. Swoq has a direct effect on kwox. Kwox has a direct effect on kwoz. Muvy is unobserved. We know that muvy and swoq causes kwox. muvy or kwox causes kwoz. We observed an individual is swoq and an individual is muvy.",no,"Let V2 = swoq; V1 = muvy; X = kwox; Y = kwoz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,nonsense1,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +38856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is not muvy.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38857,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is not muvy.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38859,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is not muvy.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is muvy.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38863,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is muvy.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38866,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox or muvy causes swoq. kwox and muvy and swoq causes kwoz. We observed an individual is not muvy.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox or muvy causes swoq. kwox and muvy and swoq causes kwoz. We observed an individual is muvy.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +38873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox and muvy and swoq causes kwoz. We observed an individual is not muvy.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox and muvy causes swoq. kwox and muvy and swoq causes kwoz. We observed an individual is muvy.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38882,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox or muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is not muvy.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox or muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is not muvy.",no,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +0",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38886,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on swoq and kwoz. Muvy has a direct effect on swoq and kwoz. Swoq has a direct effect on kwoz. Muvy is unobserved. We know that kwox or muvy causes swoq. kwox or muvy or swoq causes kwoz. We observed an individual is muvy.",yes,"Let V2 = muvy; X = kwox; V3 = swoq; Y = kwoz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and not muvy. swoq or muvy causes kwoz.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and not muvy. swoq or muvy causes kwoz.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and not muvy. swoq or muvy causes kwoz.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and muvy. swoq and muvy causes kwoz.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38893,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and muvy. swoq and muvy causes kwoz.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and muvy. swoq and muvy causes kwoz.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and not muvy. swoq and muvy causes kwoz.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38897,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and not muvy. swoq and muvy causes kwoz.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38898,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and not muvy. swoq and muvy causes kwoz.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | +38900,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and muvy. swoq or muvy causes kwoz.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | +38901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and muvy. swoq or muvy causes kwoz.",yes,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | +38903,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on muvy and swoq. Swoq has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that kwox causes swoq and muvy. swoq or muvy causes kwoz.",no,"Let X = kwox; V3 = muvy; V2 = swoq; Y = kwoz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | +38905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox or muvy causes kwoz. We observed an individual is not swoq.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38908,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox or muvy causes kwoz. We observed an individual is swoq.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38911,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox or muvy causes kwoz. We observed an individual is swoq.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox and muvy causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox and muvy causes kwoz. We observed an individual is not swoq.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox and muvy causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes kwox and muvy. kwox and muvy causes kwoz. We observed an individual is swoq.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes not kwox and muvy. kwox and muvy causes kwoz. We observed an individual is swoq.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes not kwox and muvy. kwox and muvy causes kwoz. We observed an individual is swoq.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38928,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes not kwox and muvy. kwox or muvy causes kwoz. We observed an individual is not swoq.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +38931,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes not kwox and muvy. kwox or muvy causes kwoz. We observed an individual is not swoq.",no,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Swoq has a direct effect on muvy and kwox. Kwox has a direct effect on kwoz. Muvy has a direct effect on kwoz. We know that swoq causes not kwox and muvy. kwox or muvy causes kwoz. We observed an individual is swoq.",yes,"Let V1 = swoq; V3 = muvy; X = kwox; Y = kwoz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is not swoq.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +38937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is not swoq.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +38938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is not swoq.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38939,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is not swoq.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is swoq.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is swoq.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense1,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +38942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is swoq.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox or swoq causes kwoz. We observed an individual is swoq.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +38946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox and swoq causes kwoz. We observed an individual is not swoq.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +38947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox and swoq causes kwoz. We observed an individual is not swoq.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +38948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox and swoq causes kwoz. We observed an individual is swoq.",no,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense1,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +38950,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kwox has a direct effect on kwoz. Swoq has a direct effect on kwoz. We know that kwox and swoq causes kwoz. We observed an individual is swoq.",yes,"Let V2 = swoq; X = kwox; Y = kwoz. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,nonsense1,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +38953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +38954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +38955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +38956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes tijv, and we know that tijv causes not gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +38957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes tijv, and we know that tijv causes not gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +38960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes tijv, and we know that tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +38961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes tijv, and we know that tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +38962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes tijv, and we know that tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +38964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes not gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +38965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes not gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +38966,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes not gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +38967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. We know that xevo causes not tijv, and we know that tijv causes not gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +38971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv and xevo causes gyzp. We observed an individual is not tijv.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv and xevo causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +38973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv and xevo causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes xevo. tijv and xevo causes gyzp. We observed an individual is not tijv.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes xevo. tijv and xevo causes gyzp. We observed an individual is not tijv.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38981,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes xevo. tijv and xevo causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes xevo. tijv and xevo causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +38985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv or xevo causes gyzp. We observed an individual is not tijv.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +38986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv or xevo causes gyzp. We observed an individual is not tijv.",yes,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +38987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv or xevo causes gyzp. We observed an individual is not tijv.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +38989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes not xevo. tijv or xevo causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +38999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on xevo and gyzp. Xevo has a direct effect on gyzp. We know that tijv causes xevo. tijv or xevo causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; X = xevo; Y = gyzp. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39000,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo and tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +39001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo and tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +39002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo and tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +39003,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo and tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39004,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes not tijv. xevo and tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +39005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes not tijv. xevo and tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +39007,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes not tijv. xevo and tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39008,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo or tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +39009,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo or tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +39011,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes tijv. xevo or tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39014,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes not tijv. xevo or tijv causes gyzp.",yes,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +39015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. We know that xevo causes not tijv. xevo or tijv causes gyzp.",no,"Let X = xevo; V2 = tijv; Y = gyzp. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw and tijv causes gyzp. We observed an individual is not tijw.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw and tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39022,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw and tijv causes gyzp. We observed an individual is tijw.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39023,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw and tijv causes gyzp. We observed an individual is tijw.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39024,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw or tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +1",frontdoor,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw or tijv causes gyzp. We observed an individual is not tijw.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw or tijv causes gyzp. We observed an individual is not tijw.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes not tijv. tijw or tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes tijv. tijw and tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39041,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes tijv. tijw or tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39043,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes tijv. tijw or tijv causes gyzp. We observed an individual is not tijw.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Xevo has a direct effect on tijv. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that tijw causes xevo. xevo causes tijv. tijw or tijv causes gyzp. We observed an individual is tijw.",no,"Let V1 = tijw; X = xevo; V3 = tijv; Y = gyzp. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39050,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw or xevo causes gyzp. We observed an individual is not tijv and an individual is not tijw.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense2,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +39056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw or xevo causes gyzp. We observed an individual is tijv and an individual is not tijw.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense2,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +39059,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw or xevo causes gyzp. We observed an individual is tijv and an individual is not tijw.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,nonsense2,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=0" +39065,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw and tijv causes xevo. tijw or xevo causes gyzp. We observed an individual is not tijv and an individual is not tijw.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense2,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +39068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw and tijv causes xevo. tijw or xevo causes gyzp. We observed an individual is not tijv and an individual is tijw.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,nonsense2,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +39072,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw and tijv causes xevo. tijw or xevo causes gyzp. We observed an individual is tijv and an individual is not tijw.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense2,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +39080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw and tijv causes xevo. tijw and xevo causes gyzp. We observed an individual is not tijv and an individual is not tijw.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense2,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +39095,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw and tijv causes xevo. tijw and xevo causes gyzp. We observed an individual is tijv and an individual is tijw.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense2,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +39099,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw and xevo causes gyzp. We observed an individual is not tijv and an individual is not tijw.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,nonsense2,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +39105,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw and xevo causes gyzp. We observed an individual is tijv and an individual is not tijw.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,nonsense2,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +39107,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw and xevo causes gyzp. We observed an individual is tijv and an individual is not tijw.",yes,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,nonsense2,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=0" +39111,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijw has a direct effect on xevo and gyzp. Tijv has a direct effect on xevo. Xevo has a direct effect on gyzp. Tijw is unobserved. We know that tijw or tijv causes xevo. tijw and xevo causes gyzp. We observed an individual is tijv and an individual is tijw.",no,"Let V2 = tijv; V1 = tijw; X = xevo; Y = gyzp. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense2,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +39112,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo and tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is not tijw.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo and tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +1",arrowhead,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39115,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo and tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is not tijw.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo and tijw causes tijv. xevo and tijw and tijv causes gyzp. We observed an individual is not tijw.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +0",arrowhead,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39125,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo and tijw causes tijv. xevo and tijw and tijv causes gyzp. We observed an individual is tijw.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39127,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo and tijw causes tijv. xevo and tijw and tijv causes gyzp. We observed an individual is tijw.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo or tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39130,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo or tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39132,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo or tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is tijw.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39133,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo or tijw causes tijv. xevo or tijw or tijv causes gyzp. We observed an individual is tijw.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +0",arrowhead,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39136,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo or tijw causes tijv. xevo and tijw and tijv causes gyzp. We observed an individual is not tijw.",no,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijv and gyzp. Tijw has a direct effect on tijv and gyzp. Tijv has a direct effect on gyzp. Tijw is unobserved. We know that xevo or tijw causes tijv. xevo and tijw and tijv causes gyzp. We observed an individual is not tijw.",yes,"Let V2 = tijw; X = xevo; V3 = tijv; Y = gyzp. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +1",arrowhead,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv or tijw causes gyzp.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +39145,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv or tijw causes gyzp.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +39146,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv or tijw causes gyzp.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +39148,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv and tijw causes gyzp.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +39149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv and tijw causes gyzp.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +39150,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv and tijw causes gyzp.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +39151,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and not tijw. tijv and tijw causes gyzp.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and tijw. tijv or tijw causes gyzp.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | +39155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and tijw. tijv or tijw causes gyzp.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and tijw. tijv and tijw causes gyzp.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | +39158,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and tijw. tijv and tijw causes gyzp.",yes,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | +39159,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on tijw and tijv. Tijv has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that xevo causes tijv and tijw. tijv and tijw causes gyzp.",no,"Let X = xevo; V3 = tijw; V2 = tijv; Y = gyzp. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | +39163,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo or tijw causes gyzp. We observed an individual is not tijv.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39164,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +0",diamondcut,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39165,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39167,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +0",diamondcut,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes xevo and tijw. xevo or tijw causes gyzp. We observed an individual is tijv.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo and tijw causes gyzp. We observed an individual is not tijv.",no,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo and tijw causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Tijv has a direct effect on tijw and xevo. Xevo has a direct effect on gyzp. Tijw has a direct effect on gyzp. We know that tijv causes not xevo and tijw. xevo and tijw causes gyzp. We observed an individual is tijv.",yes,"Let V1 = tijv; V3 = tijw; X = xevo; Y = gyzp. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is not tijv.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39193,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is not tijv.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39194,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is not tijv.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39195,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is not tijv.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39196,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is tijv.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39197,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is tijv.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense2,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39198,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo or tijv causes gyzp. We observed an individual is tijv.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39200,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo and tijv causes gyzp. We observed an individual is not tijv.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense2,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo and tijv causes gyzp. We observed an individual is not tijv.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39203,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo and tijv causes gyzp. We observed an individual is not tijv.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39206,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo and tijv causes gyzp. We observed an individual is tijv.",yes,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xevo has a direct effect on gyzp. Tijv has a direct effect on gyzp. We know that xevo and tijv causes gyzp. We observed an individual is tijv.",no,"Let V2 = tijv; X = xevo; Y = gyzp. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense2,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes gwet, and we know that gwet causes not xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes gwet, and we know that gwet causes not xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39212,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes gwet, and we know that gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes gwet, and we know that gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39214,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes gwet, and we know that gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes gwet, and we know that gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39216,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes not gwet, and we know that gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes not gwet, and we know that gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39218,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes not gwet, and we know that gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes not gwet, and we know that gwet causes not xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes not gwet, and we know that gwet causes not xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. We know that yomx causes not gwet, and we know that gwet causes not xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes not yomx. gwet and yomx causes xevu. We observed an individual is not gwet.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes not yomx. gwet and yomx causes xevu. We observed an individual is gwet.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes not yomx. gwet and yomx causes xevu. We observed an individual is gwet.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39230,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes not yomx. gwet and yomx causes xevu. We observed an individual is gwet.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes not yomx. gwet or yomx causes xevu. We observed an individual is gwet.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet and yomx causes xevu. We observed an individual is not gwet.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet and yomx causes xevu. We observed an individual is not gwet.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet and yomx causes xevu. We observed an individual is gwet.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet and yomx causes xevu. We observed an individual is gwet.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39248,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet or yomx causes xevu. We observed an individual is not gwet.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet or yomx causes xevu. We observed an individual is not gwet.",yes,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on yomx and xevu. Yomx has a direct effect on xevu. We know that gwet causes yomx. gwet or yomx causes xevu. We observed an individual is gwet.",no,"Let V1 = gwet; X = yomx; Y = xevu. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39256,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes not gwet. yomx and gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes not gwet. yomx and gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39259,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes not gwet. yomx and gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes not gwet. yomx or gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes not gwet. yomx or gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39263,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes not gwet. yomx or gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39264,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes gwet. yomx and gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes gwet. yomx and gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes gwet. yomx and gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes gwet. yomx and gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes gwet. yomx or gwet causes xevu.",no,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39269,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. We know that yomx causes gwet. yomx or gwet causes xevu.",yes,"Let X = yomx; V2 = gwet; Y = xevu. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39273,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi or gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39275,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi or gwet causes xevu. We observed an individual is not cwoi.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi and gwet causes xevu. We observed an individual is not cwoi.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi and gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi and gwet causes xevu. We observed an individual is cwoi.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi and gwet causes xevu. We observed an individual is cwoi.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39287,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes gwet. cwoi and gwet causes xevu. We observed an individual is cwoi.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes not gwet. cwoi and gwet causes xevu. We observed an individual is not cwoi.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes not gwet. cwoi and gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes not gwet. cwoi and gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39296,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes not gwet. cwoi or gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +1",frontdoor,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Yomx has a direct effect on gwet. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that cwoi causes yomx. yomx causes not gwet. cwoi or gwet causes xevu. We observed an individual is not cwoi.",no,"Let V1 = cwoi; X = yomx; V3 = gwet; Y = xevu. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39309,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi and gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is not gwet and an individual is cwoi.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +39312,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi and gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is gwet and an individual is not cwoi.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +39318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi and gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is gwet and an individual is cwoi.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense3,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +39323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi and gwet causes yomx. cwoi or yomx causes xevu. We observed an individual is not gwet and an individual is not cwoi.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,nonsense3,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +39336,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is not gwet and an individual is not cwoi.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +39342,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is not gwet and an individual is cwoi.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense3,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +39343,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is not gwet and an individual is cwoi.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense3,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +39345,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi and yomx causes xevu. We observed an individual is gwet and an individual is not cwoi.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +39352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi or yomx causes xevu. We observed an individual is not gwet and an individual is not cwoi.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +39353,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi or yomx causes xevu. We observed an individual is not gwet and an individual is not cwoi.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +39365,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi or yomx causes xevu. We observed an individual is gwet and an individual is cwoi.",no,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense3,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +39366,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Cwoi has a direct effect on yomx and xevu. Gwet has a direct effect on yomx. Yomx has a direct effect on xevu. Cwoi is unobserved. We know that cwoi or gwet causes yomx. cwoi or yomx causes xevu. We observed an individual is gwet and an individual is cwoi.",yes,"Let V2 = gwet; V1 = cwoi; X = yomx; Y = xevu. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +1",IV,nonsense3,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +39369,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx and cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39370,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx and cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is not cwoi.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +0",arrowhead,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39372,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx and cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is cwoi.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39374,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx and cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is cwoi.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39381,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx or cwoi causes gwet. yomx or cwoi or gwet causes xevu. We observed an individual is cwoi.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +0",arrowhead,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39382,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx or cwoi causes gwet. yomx or cwoi or gwet causes xevu. We observed an individual is cwoi.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39386,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx or cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is not cwoi.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39387,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx or cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is not cwoi.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +1",arrowhead,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39389,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx or cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is cwoi.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39390,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx or cwoi causes gwet. yomx and cwoi and gwet causes xevu. We observed an individual is cwoi.",yes,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39392,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx and cwoi causes gwet. yomx or cwoi or gwet causes xevu. We observed an individual is not cwoi.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39397,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on gwet and xevu. Cwoi has a direct effect on gwet and xevu. Gwet has a direct effect on xevu. Cwoi is unobserved. We know that yomx and cwoi causes gwet. yomx or cwoi or gwet causes xevu. We observed an individual is cwoi.",no,"Let V2 = cwoi; X = yomx; V3 = gwet; Y = xevu. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39400,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet or cwoi causes xevu.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39401,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet or cwoi causes xevu.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39402,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet or cwoi causes xevu.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet or cwoi causes xevu.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39405,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and cwoi. gwet and cwoi causes xevu.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39407,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and cwoi. gwet and cwoi causes xevu.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and cwoi. gwet or cwoi causes xevu.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | +39410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and cwoi. gwet or cwoi causes xevu.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +1",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and cwoi. gwet or cwoi causes xevu.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39412,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet and cwoi causes xevu.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | +39414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet and cwoi causes xevu.",no,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | +39415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on cwoi and gwet. Gwet has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that yomx causes gwet and not cwoi. gwet and cwoi causes xevu.",yes,"Let X = yomx; V3 = cwoi; V2 = gwet; Y = xevu. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | +39418,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx and cwoi causes xevu. We observed an individual is not gwet.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx and cwoi causes xevu. We observed an individual is not gwet.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39422,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx and cwoi causes xevu. We observed an individual is gwet.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39427,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes not yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is not gwet.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes not yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is gwet.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes not yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is gwet.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is not gwet.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +0",diamondcut,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is not gwet.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is gwet.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes yomx and cwoi. yomx or cwoi causes xevu. We observed an individual is gwet.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39441,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes not yomx and cwoi. yomx and cwoi causes xevu. We observed an individual is not gwet.",yes,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gwet has a direct effect on cwoi and yomx. Yomx has a direct effect on xevu. Cwoi has a direct effect on xevu. We know that gwet causes not yomx and cwoi. yomx and cwoi causes xevu. We observed an individual is not gwet.",no,"Let V1 = gwet; V3 = cwoi; X = yomx; Y = xevu. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx and gwet causes xevu. We observed an individual is not gwet.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39450,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx and gwet causes xevu. We observed an individual is not gwet.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx and gwet causes xevu. We observed an individual is not gwet.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx and gwet causes xevu. We observed an individual is gwet.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39455,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx and gwet causes xevu. We observed an individual is gwet.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39456,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is not gwet.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense3,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39457,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is not gwet.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39458,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is not gwet.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39459,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is not gwet.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39461,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is gwet.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense3,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39462,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is gwet.",yes,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39463,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yomx has a direct effect on xevu. Gwet has a direct effect on xevu. We know that yomx or gwet causes xevu. We observed an individual is gwet.",no,"Let V2 = gwet; X = yomx; Y = xevu. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense3,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39466,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes not hwax, and we know that hwax causes not lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes not hwax, and we know that hwax causes not lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39468,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes hwax, and we know that hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes hwax, and we know that hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes hwax, and we know that hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes hwax, and we know that hwax causes not lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes hwax, and we know that hwax causes not lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes hwax, and we know that hwax causes not lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes not hwax, and we know that hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes not hwax, and we know that hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes not hwax, and we know that hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. We know that jyka causes not hwax, and we know that hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39485,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes not jyka. hwax or jyka causes lirg. We observed an individual is hwax.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39486,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes not jyka. hwax or jyka causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes not jyka. hwax or jyka causes lirg. We observed an individual is hwax.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39489,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes jyka. hwax and jyka causes lirg. We observed an individual is not hwax.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39490,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes jyka. hwax and jyka causes lirg. We observed an individual is not hwax.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes not jyka. hwax and jyka causes lirg. We observed an individual is not hwax.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes not jyka. hwax and jyka causes lirg. We observed an individual is not hwax.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes not jyka. hwax and jyka causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes jyka. hwax or jyka causes lirg. We observed an individual is not hwax.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39508,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes jyka. hwax or jyka causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes jyka. hwax or jyka causes lirg. We observed an individual is hwax.",no,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39510,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on jyka and lirg. Jyka has a direct effect on lirg. We know that hwax causes jyka. hwax or jyka causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; X = jyka; Y = lirg. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39512,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka or hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka or hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka or hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39517,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes not hwax. jyka and hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39518,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes not hwax. jyka and hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39519,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes not hwax. jyka and hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka and hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39521,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka and hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39522,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka and hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes hwax. jyka and hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39526,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes not hwax. jyka or hwax causes lirg.",yes,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39527,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. We know that jyka causes not hwax. jyka or hwax causes lirg.",no,"Let X = jyka; V2 = hwax; Y = lirg. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39531,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes hwax. gyzp and hwax causes lirg. We observed an individual is not gyzp.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes hwax. gyzp and hwax causes lirg. We observed an individual is gyzp.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes hwax. gyzp and hwax causes lirg. We observed an individual is gyzp.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes hwax. gyzp or hwax causes lirg. We observed an individual is gyzp.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39543,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes hwax. gyzp or hwax causes lirg. We observed an individual is gyzp.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39546,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp and hwax causes lirg. We observed an individual is not gyzp.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp and hwax causes lirg. We observed an individual is not gyzp.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp and hwax causes lirg. We observed an individual is gyzp.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp and hwax causes lirg. We observed an individual is gyzp.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39553,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp or hwax causes lirg. We observed an individual is not gyzp.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39554,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp or hwax causes lirg. We observed an individual is not gyzp.",no,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Jyka has a direct effect on hwax. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that gyzp causes jyka. jyka causes not hwax. gyzp or hwax causes lirg. We observed an individual is not gyzp.",yes,"Let V1 = gyzp; X = jyka; V3 = hwax; Y = lirg. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp or hwax causes jyka. gyzp and jyka causes lirg. We observed an individual is not hwax and an individual is not gyzp.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +39564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp or hwax causes jyka. gyzp and jyka causes lirg. We observed an individual is not hwax and an individual is gyzp.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense4,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +39566,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp or hwax causes jyka. gyzp and jyka causes lirg. We observed an individual is not hwax and an individual is gyzp.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +39586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp and jyka causes lirg. We observed an individual is hwax and an individual is not gyzp.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +39589,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp and jyka causes lirg. We observed an individual is hwax and an individual is gyzp.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,nonsense4,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +39590,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp and jyka causes lirg. We observed an individual is hwax and an individual is gyzp.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +39594,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp or jyka causes lirg. We observed an individual is not hwax and an individual is not gyzp.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +39599,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp or jyka causes lirg. We observed an individual is not hwax and an individual is gyzp.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +39601,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp or jyka causes lirg. We observed an individual is hwax and an individual is not gyzp.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense4,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +39606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp and hwax causes jyka. gyzp or jyka causes lirg. We observed an individual is hwax and an individual is gyzp.",yes,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +1",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +39611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp or hwax causes jyka. gyzp or jyka causes lirg. We observed an individual is not hwax and an individual is not gyzp.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,nonsense4,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +39616,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Gyzp has a direct effect on jyka and lirg. Hwax has a direct effect on jyka. Jyka has a direct effect on lirg. Gyzp is unobserved. We know that gyzp or hwax causes jyka. gyzp or jyka causes lirg. We observed an individual is hwax and an individual is not gyzp.",no,"Let V2 = hwax; V1 = gyzp; X = jyka; Y = lirg. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense4,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +39625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka and gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is not gyzp.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39626,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka and gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is not gyzp.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +0",arrowhead,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39628,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka and gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is gyzp.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39629,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka and gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is gyzp.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39631,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka and gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is gyzp.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39632,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka or gyzp or hwax causes lirg. We observed an individual is not gyzp.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39634,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka or gyzp or hwax causes lirg. We observed an individual is not gyzp.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39636,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka or gyzp or hwax causes lirg. We observed an individual is gyzp.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39640,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is not gyzp.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39641,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is not gyzp.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is not gyzp.",no,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39645,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on hwax and lirg. Gyzp has a direct effect on hwax and lirg. Hwax has a direct effect on lirg. Gyzp is unobserved. We know that jyka or gyzp causes hwax. jyka and gyzp and hwax causes lirg. We observed an individual is gyzp.",yes,"Let V2 = gyzp; X = jyka; V3 = hwax; Y = lirg. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax and gyzp causes lirg.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39657,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax and gyzp causes lirg.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39658,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax and gyzp causes lirg.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39659,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax and gyzp causes lirg.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39661,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and gyzp. hwax or gyzp causes lirg.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39663,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and gyzp. hwax or gyzp causes lirg.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax or gyzp causes lirg.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | +39665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax or gyzp causes lirg.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39666,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax or gyzp causes lirg.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | +39667,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and not gyzp. hwax or gyzp causes lirg.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and gyzp. hwax and gyzp causes lirg.",yes,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | +39671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on gyzp and hwax. Hwax has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that jyka causes hwax and gyzp. hwax and gyzp causes lirg.",no,"Let X = jyka; V3 = gyzp; V2 = hwax; Y = lirg. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | +39673,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes not jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is not hwax.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39678,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes not jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39679,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes not jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka or gyzp causes lirg. We observed an individual is not hwax.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +0",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka or gyzp causes lirg. We observed an individual is not hwax.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39686,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka or gyzp causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39688,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is not hwax.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is not hwax.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39692,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 1 +0",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes jyka and gyzp. jyka and gyzp causes lirg. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39696,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes not jyka and gyzp. jyka or gyzp causes lirg. We observed an individual is not hwax.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on gyzp and jyka. Jyka has a direct effect on lirg. Gyzp has a direct effect on lirg. We know that hwax causes not jyka and gyzp. jyka or gyzp causes lirg. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = gyzp; X = jyka; Y = lirg. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39704,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka and hwax causes lirg. We observed an individual is not hwax.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39705,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka and hwax causes lirg. We observed an individual is not hwax.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka and hwax causes lirg. We observed an individual is not hwax.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka and hwax causes lirg. We observed an individual is hwax.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka and hwax causes lirg. We observed an individual is hwax.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39712,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is not hwax.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39713,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is not hwax.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39715,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is not hwax.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is hwax.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense4,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is hwax.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense4,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39718,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is hwax.",yes,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense4,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39719,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on lirg. Hwax has a direct effect on lirg. We know that jyka or hwax causes lirg. We observed an individual is hwax.",no,"Let V2 = hwax; X = jyka; Y = lirg. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense4,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39720,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes not yupt, and we know that yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39721,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes not yupt, and we know that yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39724,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes not yupt, and we know that yupt causes not kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39725,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes not yupt, and we know that yupt causes not kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes not yupt, and we know that yupt causes not kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes not yupt, and we know that yupt causes not kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39728,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes yupt, and we know that yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes yupt, and we know that yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39730,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes yupt, and we know that yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes yupt, and we know that yupt causes not kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes yupt, and we know that yupt causes not kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. We know that jyka causes yupt, and we know that yupt causes not kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt or jyka causes kwox. We observed an individual is not yupt.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt or jyka causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt or jyka causes kwox. We observed an individual is yupt.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes jyka. yupt and jyka causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes jyka. yupt and jyka causes kwox. We observed an individual is not yupt.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes jyka. yupt and jyka causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39758,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes jyka. yupt or jyka causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39760,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt and jyka causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt and jyka causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39764,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt and jyka causes kwox. We observed an individual is yupt.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39765,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt and jyka causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39767,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on jyka and kwox. Jyka has a direct effect on kwox. We know that yupt causes not jyka. yupt and jyka causes kwox. We observed an individual is yupt.",no,"Let V1 = yupt; X = jyka; Y = kwox. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes not yupt. jyka or yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39769,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes not yupt. jyka or yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39770,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes not yupt. jyka or yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes not yupt. jyka and yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes not yupt. jyka and yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39775,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes not yupt. jyka and yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes yupt. jyka or yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes yupt. jyka or yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes yupt. jyka or yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39780,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes yupt. jyka and yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39781,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes yupt. jyka and yupt causes kwox.",yes,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39783,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. We know that jyka causes yupt. jyka and yupt causes kwox.",no,"Let X = jyka; V2 = yupt; Y = kwox. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39787,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes yupt. qwiu and yupt causes kwox. We observed an individual is not qwiu.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes yupt. qwiu and yupt causes kwox. We observed an individual is qwiu.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39789,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes yupt. qwiu and yupt causes kwox. We observed an individual is qwiu.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39800,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes yupt. qwiu or yupt causes kwox. We observed an individual is not qwiu.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes yupt. qwiu or yupt causes kwox. We observed an individual is not qwiu.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes yupt. qwiu or yupt causes kwox. We observed an individual is not qwiu.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39809,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes not yupt. qwiu and yupt causes kwox. We observed an individual is not qwiu.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39810,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes not yupt. qwiu and yupt causes kwox. We observed an individual is not qwiu.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes not yupt. qwiu and yupt causes kwox. We observed an individual is not qwiu.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes not yupt. qwiu and yupt causes kwox. We observed an individual is qwiu.",yes,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39813,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes not yupt. qwiu and yupt causes kwox. We observed an individual is qwiu.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39814,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Jyka has a direct effect on yupt. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that qwiu causes jyka. jyka causes not yupt. qwiu and yupt causes kwox. We observed an individual is qwiu.",no,"Let V1 = qwiu; X = jyka; V3 = yupt; Y = kwox. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +39817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu and jyka causes kwox. We observed an individual is not yupt and an individual is not qwiu.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,nonsense5,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +39818,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu and jyka causes kwox. We observed an individual is not yupt and an individual is not qwiu.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +39830,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu and jyka causes kwox. We observed an individual is yupt and an individual is qwiu.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +39838,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu or yupt causes jyka. qwiu and jyka causes kwox. We observed an individual is not yupt and an individual is qwiu.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +39844,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu or yupt causes jyka. qwiu and jyka causes kwox. We observed an individual is yupt and an individual is qwiu.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense5,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +39847,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu or yupt causes jyka. qwiu and jyka causes kwox. We observed an individual is yupt and an individual is qwiu.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +39849,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu or yupt causes jyka. qwiu or jyka causes kwox. We observed an individual is not yupt and an individual is not qwiu.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense5,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +39867,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu or jyka causes kwox. We observed an individual is not yupt and an individual is not qwiu.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +39869,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu or jyka causes kwox. We observed an individual is not yupt and an individual is qwiu.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense5,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +39870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu or jyka causes kwox. We observed an individual is not yupt and an individual is qwiu.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +1",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +39871,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu or jyka causes kwox. We observed an individual is not yupt and an individual is qwiu.",no,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,nonsense5,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +39873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Qwiu has a direct effect on jyka and kwox. Yupt has a direct effect on jyka. Jyka has a direct effect on kwox. Qwiu is unobserved. We know that qwiu and yupt causes jyka. qwiu or jyka causes kwox. We observed an individual is yupt and an individual is not qwiu.",yes,"Let V2 = yupt; V1 = qwiu; X = jyka; Y = kwox. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense5,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +39880,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka and qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is not qwiu.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39881,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka and qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is not qwiu.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39883,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka and qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is not qwiu.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39889,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka or qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is not qwiu.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39891,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka or qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is not qwiu.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +0",arrowhead,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39892,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka or qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is qwiu.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39895,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka or qwiu causes yupt. jyka or qwiu or yupt causes kwox. We observed an individual is qwiu.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +0",arrowhead,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39896,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka or qwiu causes yupt. jyka and qwiu and yupt causes kwox. We observed an individual is not qwiu.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka or qwiu causes yupt. jyka and qwiu and yupt causes kwox. We observed an individual is qwiu.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka and qwiu causes yupt. jyka and qwiu and yupt causes kwox. We observed an individual is not qwiu.",no,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39909,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka and qwiu causes yupt. jyka and qwiu and yupt causes kwox. We observed an individual is qwiu.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on yupt and kwox. Qwiu has a direct effect on yupt and kwox. Yupt has a direct effect on kwox. Qwiu is unobserved. We know that jyka and qwiu causes yupt. jyka and qwiu and yupt causes kwox. We observed an individual is qwiu.",yes,"Let V2 = qwiu; X = jyka; V3 = yupt; Y = kwox. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +39913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt or qwiu causes kwox.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39914,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt or qwiu causes kwox.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt or qwiu causes kwox.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39917,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and qwiu. yupt and qwiu causes kwox.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39918,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and qwiu. yupt and qwiu causes kwox.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and qwiu. yupt and qwiu causes kwox.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39920,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and qwiu. yupt or qwiu causes kwox.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and qwiu. yupt or qwiu causes kwox.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39924,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt and qwiu causes kwox.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | +39925,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt and qwiu causes kwox.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | +39926,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt and qwiu causes kwox.",no,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | +39927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on qwiu and yupt. Yupt has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that jyka causes yupt and not qwiu. yupt and qwiu causes kwox.",yes,"Let X = jyka; V3 = qwiu; V2 = yupt; Y = kwox. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | +39929,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka or qwiu causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 0 or 1 +0",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka or qwiu causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39935,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka or qwiu causes kwox. We observed an individual is yupt.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +39936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes jyka and qwiu. jyka and qwiu causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes jyka and qwiu. jyka and qwiu causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +39944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka and qwiu causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +0",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +39945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka and qwiu causes kwox. We observed an individual is not yupt.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39946,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka and qwiu causes kwox. We observed an individual is not yupt.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39948,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes not jyka and qwiu. jyka and qwiu causes kwox. We observed an individual is yupt.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39953,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes jyka and qwiu. jyka or qwiu causes kwox. We observed an individual is not yupt.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +1",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +39955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes jyka and qwiu. jyka or qwiu causes kwox. We observed an individual is not yupt.",no,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +39956,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on qwiu and jyka. Jyka has a direct effect on kwox. Qwiu has a direct effect on kwox. We know that yupt causes jyka and qwiu. jyka or qwiu causes kwox. We observed an individual is yupt.",yes,"Let V1 = yupt; V3 = qwiu; X = jyka; Y = kwox. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +39960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is not yupt.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39961,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is not yupt.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is not yupt.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,nonsense5,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +39963,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is not yupt.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39964,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is yupt.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39965,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is yupt.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka or yupt causes kwox. We observed an individual is yupt.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +39968,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka and yupt causes kwox. We observed an individual is not yupt.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +39969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka and yupt causes kwox. We observed an individual is not yupt.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +39971,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka and yupt causes kwox. We observed an individual is not yupt.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense5,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +39972,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka and yupt causes kwox. We observed an individual is yupt.",no,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +39973,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on kwox. Yupt has a direct effect on kwox. We know that jyka and yupt causes kwox. We observed an individual is yupt.",yes,"Let V2 = yupt; X = jyka; Y = kwox. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,nonsense5,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +39977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes not muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +39978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes not muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +39979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes not muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +39980,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes not zupj, and we know that zupj causes not muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +39982,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes not zupj, and we know that zupj causes not muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +39983,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes not zupj, and we know that zupj causes not muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +39984,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes not zupj, and we know that zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +39987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes not zupj, and we know that zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +39988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +39989,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +39990,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +39991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. We know that yupt causes zupj, and we know that zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +39994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes not yupt. zupj or yupt causes muvq. We observed an individual is not zupj.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +39997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes not yupt. zupj or yupt causes muvq. We observed an individual is zupj.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40001,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes not yupt. zupj and yupt causes muvq. We observed an individual is not zupj.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40002,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes not yupt. zupj and yupt causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40005,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes not yupt. zupj and yupt causes muvq. We observed an individual is zupj.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40010,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj and yupt causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40015,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj and yupt causes muvq. We observed an individual is zupj.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40016,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj or yupt causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40017,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj or yupt causes muvq. We observed an individual is not zupj.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40018,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj or yupt causes muvq. We observed an individual is not zupj.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40019,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj or yupt causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40020,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on yupt and muvq. Yupt has a direct effect on muvq. We know that zupj causes yupt. zupj or yupt causes muvq. We observed an individual is zupj.",yes,"Let V1 = zupj; X = yupt; Y = muvq. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40025,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt or zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40026,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt or zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +40027,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt or zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +40028,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes not zupj. yupt and zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40029,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes not zupj. yupt and zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40032,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes not zupj. yupt or zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40033,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes not zupj. yupt or zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40035,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes not zupj. yupt or zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +40036,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt and zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40037,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt and zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40038,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt and zupj causes muvq.",yes,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +40039,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. We know that yupt causes zupj. yupt and zupj causes muvq.",no,"Let X = yupt; V2 = zupj; Y = muvq. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +40040,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes zupj. xyfo and zupj causes muvq. We observed an individual is not xyfo.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40046,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes zupj. xyfo and zupj causes muvq. We observed an individual is xyfo.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40047,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes zupj. xyfo and zupj causes muvq. We observed an individual is xyfo.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40049,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes not zupj. xyfo and zupj causes muvq. We observed an individual is not xyfo.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40051,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes not zupj. xyfo and zupj causes muvq. We observed an individual is not xyfo.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40053,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes not zupj. xyfo and zupj causes muvq. We observed an individual is xyfo.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40056,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes not zupj. xyfo or zupj causes muvq. We observed an individual is not xyfo.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +1",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40060,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes not zupj. xyfo or zupj causes muvq. We observed an individual is xyfo.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 1 +1",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40063,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes not zupj. xyfo or zupj causes muvq. We observed an individual is xyfo.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 0 +0",frontdoor,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40064,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes zupj. xyfo or zupj causes muvq. We observed an individual is not xyfo.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40067,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes zupj. xyfo or zupj causes muvq. We observed an individual is not xyfo.",no,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40068,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Yupt has a direct effect on zupj. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that xyfo causes yupt. yupt causes zupj. xyfo or zupj causes muvq. We observed an individual is xyfo.",yes,"Let V1 = xyfo; X = yupt; V3 = zupj; Y = muvq. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40074,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo or yupt causes muvq. We observed an individual is not zupj and an individual is not xyfo.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense6,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +40080,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo or yupt causes muvq. We observed an individual is zupj and an individual is not xyfo.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +40084,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo or yupt causes muvq. We observed an individual is zupj and an individual is xyfo.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +40097,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo and zupj causes yupt. xyfo or yupt causes muvq. We observed an individual is zupj and an individual is not xyfo.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +40101,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo and zupj causes yupt. xyfo or yupt causes muvq. We observed an individual is zupj and an individual is xyfo.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +40103,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo and zupj causes yupt. xyfo or yupt causes muvq. We observed an individual is zupj and an individual is xyfo.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 1 +0",IV,nonsense6,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=1" +40114,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo and zupj causes yupt. xyfo and yupt causes muvq. We observed an individual is zupj and an individual is not xyfo.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense6,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +40117,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo and zupj causes yupt. xyfo and yupt causes muvq. We observed an individual is zupj and an individual is xyfo.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +40121,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo and yupt causes muvq. We observed an individual is not zupj and an individual is not xyfo.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +40122,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo and yupt causes muvq. We observed an individual is not zupj and an individual is not xyfo.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense6,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +40124,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo and yupt causes muvq. We observed an individual is not zupj and an individual is xyfo.",no,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +40129,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Xyfo has a direct effect on yupt and muvq. Zupj has a direct effect on yupt. Yupt has a direct effect on muvq. Xyfo is unobserved. We know that xyfo or zupj causes yupt. xyfo and yupt causes muvq. We observed an individual is zupj and an individual is not xyfo.",yes,"Let V2 = zupj; V1 = xyfo; X = yupt; Y = muvq. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,nonsense6,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +40137,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is not xyfo.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40139,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is not xyfo.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +1",arrowhead,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40140,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is xyfo.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40142,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is xyfo.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40144,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt or xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is not xyfo.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40147,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt or xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is not xyfo.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +1",arrowhead,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40149,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt or xyfo causes zupj. yupt and xyfo and zupj causes muvq. We observed an individual is xyfo.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40152,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt or xyfo or zupj causes muvq. We observed an individual is not xyfo.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40155,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt or xyfo or zupj causes muvq. We observed an individual is not xyfo.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40157,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt and xyfo causes zupj. yupt or xyfo or zupj causes muvq. We observed an individual is xyfo.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 0 +0",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40160,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt or xyfo causes zupj. yupt or xyfo or zupj causes muvq. We observed an individual is not xyfo.",no,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40166,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on zupj and muvq. Xyfo has a direct effect on zupj and muvq. Zupj has a direct effect on muvq. Xyfo is unobserved. We know that yupt or xyfo causes zupj. yupt or xyfo or zupj causes muvq. We observed an individual is xyfo.",yes,"Let V2 = xyfo; X = yupt; V3 = zupj; Y = muvq. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40168,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj and xyfo causes muvq.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40169,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj and xyfo causes muvq.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40171,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj and xyfo causes muvq.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +40172,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and not xyfo. zupj or xyfo causes muvq.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40174,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and not xyfo. zupj or xyfo causes muvq.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +40175,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and not xyfo. zupj or xyfo causes muvq.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +40176,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and not xyfo. zupj and xyfo causes muvq.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40177,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and not xyfo. zupj and xyfo causes muvq.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40180,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj or xyfo causes muvq.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | +40181,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj or xyfo causes muvq.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | +40182,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj or xyfo causes muvq.",yes,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +1",diamond,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | +40183,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on xyfo and zupj. Zupj has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that yupt causes zupj and xyfo. zupj or xyfo causes muvq.",no,"Let X = yupt; V3 = xyfo; V2 = zupj; Y = muvq. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | +40187,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is not zupj.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40189,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is zupj.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40190,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is zupj.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40191,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is zupj.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40192,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes yupt and xyfo. yupt or xyfo causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +0",diamondcut,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40199,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes yupt and xyfo. yupt or xyfo causes muvq. We observed an individual is zupj.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40202,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes not yupt and xyfo. yupt or xyfo causes muvq. We observed an individual is not zupj.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40207,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes not yupt and xyfo. yupt or xyfo causes muvq. We observed an individual is zupj.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40208,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes not yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +0",diamondcut,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40211,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes not yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is not zupj.",no,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40213,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes not yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is zupj.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40215,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zupj has a direct effect on xyfo and yupt. Yupt has a direct effect on muvq. Xyfo has a direct effect on muvq. We know that zupj causes not yupt and xyfo. yupt and xyfo causes muvq. We observed an individual is zupj.",yes,"Let V1 = zupj; V3 = xyfo; X = yupt; Y = muvq. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40217,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt or zupj causes muvq. We observed an individual is not zupj.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40220,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt or zupj causes muvq. We observed an individual is zupj.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40221,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt or zupj causes muvq. We observed an individual is zupj.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40222,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt or zupj causes muvq. We observed an individual is zupj.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40223,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt or zupj causes muvq. We observed an individual is zupj.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40224,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is not zupj.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40225,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is not zupj.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40226,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is not zupj.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense6,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40227,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is not zupj.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40228,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is zupj.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40229,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is zupj.",yes,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,nonsense6,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40231,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Yupt has a direct effect on muvq. Zupj has a direct effect on muvq. We know that yupt and zupj causes muvq. We observed an individual is zupj.",no,"Let V2 = zupj; X = yupt; Y = muvq. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense6,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40233,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes wibl, and we know that wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40235,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes wibl, and we know that wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40236,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40237,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40239,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40240,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes wibl, and we know that wibl causes not uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40241,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes wibl, and we know that wibl causes not uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40242,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes wibl, and we know that wibl causes not uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40244,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes not uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40245,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes not uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40246,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes not uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40247,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. We know that zuph causes not wibl, and we know that wibl causes not uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40249,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes not zuph. wibl or zuph causes uvzi. We observed an individual is not wibl.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40253,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes not zuph. wibl or zuph causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40257,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes zuph. wibl or zuph causes uvzi. We observed an individual is not wibl.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40261,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes zuph. wibl or zuph causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +0",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40262,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes zuph. wibl or zuph causes uvzi. We observed an individual is wibl.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +1",confounding,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40265,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes not zuph. wibl and zuph causes uvzi. We observed an individual is not wibl.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +1",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40266,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes not zuph. wibl and zuph causes uvzi. We observed an individual is not wibl.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40267,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes not zuph. wibl and zuph causes uvzi. We observed an individual is not wibl.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40268,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes not zuph. wibl and zuph causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40276,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes zuph. wibl and zuph causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40277,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes zuph. wibl and zuph causes uvzi. We observed an individual is wibl.",yes,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40279,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on zuph and uvzi. Zuph has a direct effect on uvzi. We know that wibl causes zuph. wibl and zuph causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; X = zuph; Y = uvzi. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +0",confounding,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40280,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes not wibl. zuph or wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40281,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes not wibl. zuph or wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40282,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes not wibl. zuph or wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40284,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes not wibl. zuph and wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40285,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes not wibl. zuph and wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40286,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes not wibl. zuph and wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40288,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes wibl. zuph or wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40289,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes wibl. zuph or wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40290,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes wibl. zuph or wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40291,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes wibl. zuph or wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40292,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes wibl. zuph and wibl causes uvzi.",no,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40293,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. We know that zuph causes wibl. zuph and wibl causes uvzi.",yes,"Let X = zuph; V2 = wibl; Y = uvzi. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40297,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes wibl. vubr and wibl causes uvzi. We observed an individual is not vubr.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40298,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes wibl. vubr and wibl causes uvzi. We observed an individual is not vubr.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40304,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes wibl. vubr or wibl causes uvzi. We observed an individual is not vubr.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40307,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes wibl. vubr or wibl causes uvzi. We observed an individual is not vubr.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40310,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes wibl. vubr or wibl causes uvzi. We observed an individual is vubr.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 1 +1",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40311,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes wibl. vubr or wibl causes uvzi. We observed an individual is vubr.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40316,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes not wibl. vubr or wibl causes uvzi. We observed an individual is vubr.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 1 +1",frontdoor,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40318,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes not wibl. vubr or wibl causes uvzi. We observed an individual is vubr.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40319,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes not wibl. vubr or wibl causes uvzi. We observed an individual is vubr.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 0 +0",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40322,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes not wibl. vubr and wibl causes uvzi. We observed an individual is not vubr.",no,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40323,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes not wibl. vubr and wibl causes uvzi. We observed an individual is not vubr.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40324,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Zuph has a direct effect on wibl. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that vubr causes zuph. zuph causes not wibl. vubr and wibl causes uvzi. We observed an individual is vubr.",yes,"Let V1 = vubr; X = zuph; V3 = wibl; Y = uvzi. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +1",frontdoor,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40338,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr or wibl causes zuph. vubr or zuph causes uvzi. We observed an individual is wibl and an individual is not vubr.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense7,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +40344,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is not wibl and an individual is not vubr.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +40347,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is not wibl and an individual is not vubr.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,nonsense7,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +40349,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is not wibl and an individual is vubr.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +40351,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is not wibl and an individual is vubr.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense7,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +40352,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is wibl and an individual is not vubr.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +40357,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is wibl and an individual is vubr.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +1",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +40358,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is wibl and an individual is vubr.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense7,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +40368,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr and wibl causes zuph. vubr or zuph causes uvzi. We observed an individual is wibl and an individual is not vubr.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +40378,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr or wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is not wibl and an individual is not vubr.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense7,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +40385,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr or wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is wibl and an individual is not vubr.",yes,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +1",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +40388,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Vubr has a direct effect on zuph and uvzi. Wibl has a direct effect on zuph. Zuph has a direct effect on uvzi. Vubr is unobserved. We know that vubr or wibl causes zuph. vubr and zuph causes uvzi. We observed an individual is wibl and an individual is vubr.",no,"Let V2 = wibl; V1 = vubr; X = zuph; Y = uvzi. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense7,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +40394,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph and vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is not vubr.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +0",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40395,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph and vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is not vubr.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +1",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40396,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph and vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is vubr.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +0",arrowhead,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40403,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph or vubr or wibl causes uvzi. We observed an individual is not vubr.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +0",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40404,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph or vubr or wibl causes uvzi. We observed an individual is vubr.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40409,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is not vubr.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40410,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is not vubr.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40411,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is not vubr.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +1",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40413,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is vubr.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 1 +1",arrowhead,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40414,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is vubr.",yes,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40415,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph or vubr causes wibl. zuph and vubr and wibl causes uvzi. We observed an individual is vubr.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40419,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on wibl and uvzi. Vubr has a direct effect on wibl and uvzi. Wibl has a direct effect on uvzi. Vubr is unobserved. We know that zuph and vubr causes wibl. zuph or vubr or wibl causes uvzi. We observed an individual is not vubr.",no,"Let V2 = vubr; X = zuph; V3 = wibl; Y = uvzi. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40424,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and not vubr. wibl and vubr causes uvzi.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40425,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and not vubr. wibl and vubr causes uvzi.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40428,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl and vubr causes uvzi.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40429,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl and vubr causes uvzi.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | +40430,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl and vubr causes uvzi.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40431,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl and vubr causes uvzi.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +0",diamond,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40432,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and not vubr. wibl or vubr causes uvzi.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40434,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and not vubr. wibl or vubr causes uvzi.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40435,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and not vubr. wibl or vubr causes uvzi.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40436,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl or vubr causes uvzi.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +0",diamond,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | +40438,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl or vubr causes uvzi.",yes,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +1",diamond,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | +40439,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on vubr and wibl. Wibl has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that zuph causes wibl and vubr. wibl or vubr causes uvzi.",no,"Let X = zuph; V3 = vubr; V2 = wibl; Y = uvzi. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | +40443,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes not zuph and vubr. zuph or vubr causes uvzi. We observed an individual is not wibl.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40446,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes not zuph and vubr. zuph or vubr causes uvzi. We observed an individual is wibl.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40447,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes not zuph and vubr. zuph or vubr causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40449,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes not zuph and vubr. zuph and vubr causes uvzi. We observed an individual is not wibl.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40451,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes not zuph and vubr. zuph and vubr causes uvzi. We observed an individual is not wibl.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40454,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes not zuph and vubr. zuph and vubr causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40460,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes zuph and vubr. zuph or vubr causes uvzi. We observed an individual is wibl.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40464,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes zuph and vubr. zuph and vubr causes uvzi. We observed an individual is not wibl.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +0",diamondcut,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40467,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes zuph and vubr. zuph and vubr causes uvzi. We observed an individual is not wibl.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40469,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes zuph and vubr. zuph and vubr causes uvzi. We observed an individual is wibl.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40470,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes zuph and vubr. zuph and vubr causes uvzi. We observed an individual is wibl.",yes,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40471,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Wibl has a direct effect on vubr and zuph. Zuph has a direct effect on uvzi. Vubr has a direct effect on uvzi. We know that wibl causes zuph and vubr. zuph and vubr causes uvzi. We observed an individual is wibl.",no,"Let V1 = wibl; V3 = vubr; X = zuph; Y = uvzi. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40472,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is not wibl.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40473,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is not wibl.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40474,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is not wibl.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40475,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is not wibl.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40476,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is wibl.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40477,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is wibl.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40478,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is wibl.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,nonsense7,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40479,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph and wibl causes uvzi. We observed an individual is wibl.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40480,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph or wibl causes uvzi. We observed an individual is not wibl.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +0",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40481,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph or wibl causes uvzi. We observed an individual is not wibl.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40484,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph or wibl causes uvzi. We observed an individual is wibl.",yes,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense7,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40487,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on uvzi. Wibl has a direct effect on uvzi. We know that zuph or wibl causes uvzi. We observed an individual is wibl.",no,"Let V2 = wibl; X = zuph; Y = uvzi. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense7,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40488,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes hwax, and we know that hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +0",chain,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40491,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes hwax, and we know that hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40492,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes hwax, and we know that hwax causes not rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40493,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes hwax, and we know that hwax causes not rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40494,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes hwax, and we know that hwax causes not rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40495,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes hwax, and we know that hwax causes not rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40496,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes not hwax, and we know that hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40497,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes not hwax, and we know that hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40498,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes not hwax, and we know that hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40499,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes not hwax, and we know that hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40501,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes not hwax, and we know that hwax causes not rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40502,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. We know that pexu causes not hwax, and we know that hwax causes not rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40504,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes not pexu. hwax and pexu causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40506,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes not pexu. hwax and pexu causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40509,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes not pexu. hwax and pexu causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40513,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes pexu. hwax or pexu causes rukz. We observed an individual is not hwax.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +1",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40514,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes pexu. hwax or pexu causes rukz. We observed an individual is not hwax.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40515,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes pexu. hwax or pexu causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40520,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes not pexu. hwax or pexu causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40523,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes not pexu. hwax or pexu causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +0",confounding,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40524,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes not pexu. hwax or pexu causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40532,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes pexu. hwax and pexu causes rukz. We observed an individual is hwax.",no,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40533,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes pexu. hwax and pexu causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40534,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on pexu and rukz. Pexu has a direct effect on rukz. We know that hwax causes pexu. hwax and pexu causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; X = pexu; Y = rukz. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40536,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes hwax. pexu or hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +0",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40537,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes hwax. pexu or hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40540,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu or hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +1",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40541,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu or hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40542,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu or hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +1",mediation,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40544,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes hwax. pexu and hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40545,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes hwax. pexu and hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40547,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes hwax. pexu and hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40548,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu and hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40549,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu and hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40550,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu and hwax causes rukz.",no,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +0",mediation,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40551,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. We know that pexu causes not hwax. pexu and hwax causes rukz.",yes,"Let X = pexu; V2 = hwax; Y = rukz. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40555,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes not hwax. kraz and hwax causes rukz. We observed an individual is not kraz.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 0 +1",frontdoor,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40557,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes not hwax. kraz and hwax causes rukz. We observed an individual is kraz.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40558,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes not hwax. kraz and hwax causes rukz. We observed an individual is kraz.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40559,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes not hwax. kraz and hwax causes rukz. We observed an individual is kraz.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40560,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes hwax. kraz and hwax causes rukz. We observed an individual is not kraz.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 0 +0",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40562,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes hwax. kraz and hwax causes rukz. We observed an individual is not kraz.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +0",frontdoor,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40564,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes hwax. kraz and hwax causes rukz. We observed an individual is kraz.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40565,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes hwax. kraz and hwax causes rukz. We observed an individual is kraz.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +1",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40569,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes not hwax. kraz or hwax causes rukz. We observed an individual is not kraz.",no,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40574,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes not hwax. kraz or hwax causes rukz. We observed an individual is kraz.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40577,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes hwax. kraz or hwax causes rukz. We observed an individual is not kraz.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40580,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Pexu has a direct effect on hwax. Hwax has a direct effect on rukz. Kraz is unobserved. We know that kraz causes pexu. pexu causes hwax. kraz or hwax causes rukz. We observed an individual is kraz.",yes,"Let V1 = kraz; X = pexu; V3 = hwax; Y = rukz. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40586,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz and hwax causes pexu. kraz or pexu causes rukz. We observed an individual is not hwax and an individual is not kraz.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +40587,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz and hwax causes pexu. kraz or pexu causes rukz. We observed an individual is not hwax and an individual is not kraz.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 1 = 0 or 1 +0",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=0" +40592,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz and hwax causes pexu. kraz or pexu causes rukz. We observed an individual is hwax and an individual is not kraz.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense8,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=0" +40606,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz and pexu causes rukz. We observed an individual is not hwax and an individual is kraz.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +40607,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz and pexu causes rukz. We observed an individual is not hwax and an individual is kraz.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +0",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 0 | V2=0, V1=1" +40611,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz and pexu causes rukz. We observed an individual is hwax and an individual is not kraz.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 1 +1",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 0 | V2=1, V1=0" +40614,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz and pexu causes rukz. We observed an individual is hwax and an individual is kraz.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +40618,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz or pexu causes rukz. We observed an individual is not hwax and an individual is not kraz.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +40621,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz or pexu causes rukz. We observed an individual is not hwax and an individual is kraz.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense8,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=1" +40625,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz or hwax causes pexu. kraz or pexu causes rukz. We observed an individual is hwax and an individual is not kraz.",yes,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense8,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=0" +40642,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz and hwax causes pexu. kraz and pexu causes rukz. We observed an individual is hwax and an individual is not kraz.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=0 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 1 +0",IV,nonsense8,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=0" +40644,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Kraz has a direct effect on pexu and rukz. Hwax has a direct effect on pexu. Pexu has a direct effect on rukz. Kraz is unobserved. We know that kraz and hwax causes pexu. kraz and pexu causes rukz. We observed an individual is hwax and an individual is kraz.",no,"Let V2 = hwax; V1 = kraz; X = pexu; Y = rukz. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 and V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense8,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +40648,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu or kraz causes hwax. pexu or kraz or hwax causes rukz. We observed an individual is not kraz.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40650,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu or kraz causes hwax. pexu or kraz or hwax causes rukz. We observed an individual is not kraz.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 1 +1",arrowhead,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40652,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu or kraz causes hwax. pexu or kraz or hwax causes rukz. We observed an individual is kraz.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40654,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu or kraz causes hwax. pexu or kraz or hwax causes rukz. We observed an individual is kraz.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40656,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu or kraz causes hwax. pexu and kraz and hwax causes rukz. We observed an individual is not kraz.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40662,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu or kraz causes hwax. pexu and kraz and hwax causes rukz. We observed an individual is kraz.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +1",arrowhead,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40664,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu and kraz causes hwax. pexu and kraz and hwax causes rukz. We observed an individual is not kraz.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40665,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu and kraz causes hwax. pexu and kraz and hwax causes rukz. We observed an individual is not kraz.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40669,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu and kraz causes hwax. pexu and kraz and hwax causes rukz. We observed an individual is kraz.",yes,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 1 and 0 +1",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40671,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu and kraz causes hwax. pexu and kraz and hwax causes rukz. We observed an individual is kraz.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40672,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu and kraz causes hwax. pexu or kraz or hwax causes rukz. We observed an individual is not kraz.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40675,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on hwax and rukz. Kraz has a direct effect on hwax and rukz. Hwax has a direct effect on rukz. Kraz is unobserved. We know that pexu and kraz causes hwax. pexu or kraz or hwax causes rukz. We observed an individual is not kraz.",no,"Let V2 = kraz; X = pexu; V3 = hwax; Y = rukz. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 0 or 0 +0",arrowhead,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40680,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax and kraz causes rukz.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40681,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax and kraz causes rukz.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40682,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax and kraz causes rukz.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40683,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax and kraz causes rukz.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40684,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and kraz. hwax and kraz causes rukz.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | +40685,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and kraz. hwax and kraz causes rukz.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40689,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and kraz. hwax or kraz causes rukz.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40690,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and kraz. hwax or kraz causes rukz.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +1",diamond,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40691,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and kraz. hwax or kraz causes rukz.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40693,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax or kraz causes rukz.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | +40694,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax or kraz causes rukz.",yes,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +1",diamond,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | +40695,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on kraz and hwax. Hwax has a direct effect on rukz. Kraz has a direct effect on rukz. We know that pexu causes hwax and not kraz. hwax or kraz causes rukz.",no,"Let X = pexu; V3 = kraz; V2 = hwax; Y = rukz. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | +40697,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu and kraz causes rukz. We observed an individual is not hwax.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 1 +1",diamondcut,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40699,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu and kraz causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40701,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu and kraz causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40703,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu and kraz causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40707,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu or kraz causes rukz. We observed an individual is not hwax.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40708,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu or kraz causes rukz. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 0 = 0 or 0 +0",diamondcut,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40710,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu or kraz causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40711,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes not pexu and kraz. pexu or kraz causes rukz. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40716,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes pexu and kraz. pexu or kraz causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +1",diamondcut,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40717,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes pexu and kraz. pexu or kraz causes rukz. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 0 or 1 +0",diamondcut,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40726,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes pexu and kraz. pexu and kraz causes rukz. We observed an individual is hwax.",yes,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40727,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Hwax has a direct effect on kraz and pexu. Pexu has a direct effect on rukz. Kraz has a direct effect on rukz. We know that hwax causes pexu and kraz. pexu and kraz causes rukz. We observed an individual is hwax.",no,"Let V1 = hwax; V3 = kraz; X = pexu; Y = rukz. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40729,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu or hwax causes rukz. We observed an individual is not hwax.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40731,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu or hwax causes rukz. We observed an individual is not hwax.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40732,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu or hwax causes rukz. We observed an individual is hwax.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40733,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu or hwax causes rukz. We observed an individual is hwax.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +0",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40734,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu or hwax causes rukz. We observed an individual is hwax.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +1",fork,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40736,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is not hwax.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40737,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is not hwax.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +1",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40738,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is not hwax.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense8,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40739,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is not hwax.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40740,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is hwax.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40741,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is hwax.",yes,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,nonsense8,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40743,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Pexu has a direct effect on rukz. Hwax has a direct effect on rukz. We know that pexu and hwax causes rukz. We observed an individual is hwax.",no,"Let V2 = hwax; X = pexu; Y = rukz. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense8,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40744,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes not jyka, and we know that jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +1",chain,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40745,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes not jyka, and we know that jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [1] = 1 +0",chain,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40746,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes not jyka, and we know that jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +0",chain,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | +40747,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes not jyka, and we know that jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = V2 +Y = [0] = 0 +1",chain,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40749,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes jyka, and we know that jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [0] = 0 +1",chain,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40750,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes jyka, and we know that jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +1",chain,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | +40751,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes jyka, and we know that jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = V2 +Y = [1] = 1 +0",chain,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40752,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes jyka, and we know that jyka causes not glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +1",chain,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40753,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes jyka, and we know that jyka causes not glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40755,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes jyka, and we know that jyka causes not glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = not V2 +Y = [0] = not 1 +1",chain,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40756,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes not jyka, and we know that jyka causes not glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [0] = not 1 +0",chain,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40759,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. We know that zuph causes not jyka, and we know that jyka causes not glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = not V2 +Y = [1] = not 0 +0",chain,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40762,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes not zuph. jyka or zuph causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 or X +Y = 1 = 0 or 1 +1",confounding,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40764,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes not zuph. jyka or zuph causes glimx. We observed an individual is jyka.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = not V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40768,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka and zuph causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40772,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka and zuph causes glimx. We observed an individual is jyka.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +0",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40773,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka and zuph causes glimx. We observed an individual is jyka.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 0 = 1 and 0 +1",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40774,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka and zuph causes glimx. We observed an individual is jyka.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 and X +Y = 1 = 1 and 1 +1",confounding,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=1 +40776,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes not zuph. jyka and zuph causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 0 +0",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40778,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes not zuph. jyka and zuph causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +0",confounding,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40779,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes not zuph. jyka and zuph causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = not V1 +Y = V1 and X +Y = 0 = 0 and 1 +1",confounding,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40784,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka or zuph causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +Y = V1 or X +Y = 0 = 0 or 0 +0",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40788,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka or zuph causes glimx. We observed an individual is jyka.",yes,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 0 +1",confounding,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40791,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zuph and glimx. Zuph has a direct effect on glimx. We know that jyka causes zuph. jyka or zuph causes glimx. We observed an individual is jyka.",no,"Let V1 = jyka; X = zuph; Y = glimx. +V1->X,V1->Y,X->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +Y = V1 or X +Y = 1 = 1 or 1 +0",confounding,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40793,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph or jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 0 = 0 or 0 +1",mediation,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40794,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph or jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +1",mediation,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | +40795,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph or jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X or V2 +Y = 1 = 1 or 1 +0",mediation,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40796,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph and jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +0",mediation,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40797,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph and jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 0 = 0 and 0 +1",mediation,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40798,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph and jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +1",mediation,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | +40799,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes jyka. zuph and jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +Y = X and V2 +Y = 1 = 1 and 1 +0",mediation,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40801,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes not jyka. zuph or jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 0 or 1 +0",mediation,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40803,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes not jyka. zuph or jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X or V2 +Y = 1 = 1 or 0 +0",mediation,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40804,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes not jyka. zuph and jyka causes glimx.",no,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +0",mediation,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40805,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes not jyka. zuph and jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 0 and 1 +1",mediation,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40807,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. We know that zuph causes not jyka. zuph and jyka causes glimx.",yes,"Let X = zuph; V2 = jyka; Y = glimx. +X->V2,X->Y,V2->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = not X +Y = X and V2 +Y = 0 = 1 and 0 +1",mediation,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40811,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes not jyka. zory or jyka causes glimx. We observed an individual is not zory.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40812,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes not jyka. zory or jyka causes glimx. We observed an individual is zory.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 or V3 +Y = 1 = 1 or 1 +1",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40817,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes not jyka. zory and jyka causes glimx. We observed an individual is not zory.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40821,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes not jyka. zory and jyka causes glimx. We observed an individual is zory.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = V1 and V3 +Y = 1 = 1 and 1 +0",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40824,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory or jyka causes glimx. We observed an individual is not zory.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +0",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40825,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory or jyka causes glimx. We observed an individual is not zory.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 0 = 0 or 0 +1",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40827,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory or jyka causes glimx. We observed an individual is not zory.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 0 or 1 +0",frontdoor,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40828,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory or jyka causes glimx. We observed an individual is zory.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +1",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40829,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory or jyka causes glimx. We observed an individual is zory.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 0 +0",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40831,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory or jyka causes glimx. We observed an individual is zory.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 or V3 +Y = 1 = 1 or 1 +0",frontdoor,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40835,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory and jyka causes glimx. We observed an individual is not zory.",yes,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 0 and 1 +1",frontdoor,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40836,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Zuph has a direct effect on jyka. Jyka has a direct effect on glimx. Zory is unobserved. We know that zory causes zuph. zuph causes jyka. zory and jyka causes glimx. We observed an individual is zory.",no,"Let V1 = zory; X = zuph; V3 = jyka; Y = glimx. +V1->X,X->V3,V1->Y,V3->Y +Y_{X=0} = 1 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = V1 and V3 +Y = 0 = 1 and 0 +0",frontdoor,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=1 +40840,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory and jyka causes zuph. zory and zuph causes glimx. We observed an individual is not jyka and an individual is not zory.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +40856,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory and zuph causes glimx. We observed an individual is not jyka and an individual is not zory.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 and X +Y = 0 = 0 and 0 +0",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +40860,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory and zuph causes glimx. We observed an individual is not jyka and an individual is zory.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +40862,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory and zuph causes glimx. We observed an individual is not jyka and an individual is zory.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense9,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +40868,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory and zuph causes glimx. We observed an individual is jyka and an individual is zory.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 0 = 1 and 0 +0",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 1 | V2=1, V1=1" +40870,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory and zuph causes glimx. We observed an individual is jyka and an individual is zory.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 and X +Y = 1 = 1 and 1 +1",IV,nonsense9,3,det-counterfactual,"Y_{X=1} = 1 | V2=1, V1=1" +40873,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory and jyka causes zuph. zory or zuph causes glimx. We observed an individual is not jyka and an individual is not zory.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 and V2 +Y = V1 or X +Y = 0 = 0 or 0 +1",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 0 | V2=0, V1=0" +40876,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory and jyka causes zuph. zory or zuph causes glimx. We observed an individual is not jyka and an individual is zory.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 and V2 +Y = V1 or X +Y = 1 = 1 or 0 +1",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=1" +40888,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory or zuph causes glimx. We observed an individual is not jyka and an individual is not zory.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 0 = 0 or 0 +0",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 1 | V2=0, V1=0" +40890,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory or zuph causes glimx. We observed an individual is not jyka and an individual is not zory.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=0 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 0 +X = V1 or V2 +Y = V1 or X +Y = 1 = 0 or 1 +1",IV,nonsense9,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=0" +40894,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory or zuph causes glimx. We observed an individual is not jyka and an individual is zory.",yes,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=1} = 1 | V2=0, V1=1 +Solve for Y, given the evidence and the action +V2 = 0 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 1 +1",IV,nonsense9,3,det-counterfactual,"Y_{X=1} = 1 | V2=0, V1=1" +40901,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zory has a direct effect on zuph and glimx. Jyka has a direct effect on zuph. Zuph has a direct effect on glimx. Zory is unobserved. We know that zory or jyka causes zuph. zory or zuph causes glimx. We observed an individual is jyka and an individual is zory.",no,"Let V2 = jyka; V1 = zory; X = zuph; Y = glimx. +V1->X,V2->X,V1->Y,X->Y +Y_{X=0} = 0 | V2=1, V1=1 +Solve for Y, given the evidence and the action +V2 = 1 +V1 = 1 +X = V1 or V2 +Y = V1 or X +Y = 1 = 1 or 0 +0",IV,nonsense9,3,det-counterfactual,"Y_{X=0} = 0 | V2=1, V1=1" +40904,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph or zory or jyka causes glimx. We observed an individual is not zory.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +0",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40905,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph or zory or jyka causes glimx. We observed an individual is not zory.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X or V2 or V3 +Y = 0 = 0 or 0 or 0 +1",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40910,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph or zory or jyka causes glimx. We observed an individual is zory.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X or V2 or V3 +Y = 1 = 1 or 1 or 1 +1",arrowhead,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40912,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is not zory.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +0",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40913,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is not zory.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40915,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is not zory.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X and V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 0 +1",arrowhead,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40919,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph and zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is zory.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X and V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40921,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph or zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is not zory.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 0 and 0 and 0 +1",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40922,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph or zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is not zory.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +V3 = X or V2 +Y = X and V2 and V3 +Y = 0 = 1 and 0 and 1 +0",arrowhead,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40927,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph or zory causes jyka. zuph and zory and jyka causes glimx. We observed an individual is zory.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X and V2 and V3 +Y = 1 = 1 and 1 and 1 +0",arrowhead,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40932,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph or zory causes jyka. zuph or zory or jyka causes glimx. We observed an individual is zory.",yes,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +1",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40933,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on jyka and glimx. Zory has a direct effect on jyka and glimx. Jyka has a direct effect on glimx. Zory is unobserved. We know that zuph or zory causes jyka. zuph or zory or jyka causes glimx. We observed an individual is zory.",no,"Let V2 = zory; X = zuph; V3 = jyka; Y = glimx. +X->V3,V2->V3,X->Y,V2->Y,V3->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +V3 = X or V2 +Y = X or V2 or V3 +Y = 1 = 0 or 1 or 1 +0",arrowhead,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40936,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and zory. jyka and zory causes glimx.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +0",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40937,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and zory. jyka and zory causes glimx.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [0] = 0 and 0 +1",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40938,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and zory. jyka and zory causes glimx.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 and V3 +Y = [1] = 1 and 1 +1",diamond,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | +40940,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka and zory causes glimx.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +0",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40941,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka and zory causes glimx.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 0 and 1 +1",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40942,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka and zory causes glimx.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +0",diamond,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | +40943,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka and zory causes glimx.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 and V3 +Y = [0] = 1 and 0 +1",diamond,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40944,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka or zory causes glimx.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 1 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +1",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | +40945,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka or zory causes glimx.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 0 or 1 +0",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40947,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and not zory. jyka or zory causes glimx.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = not V2 +Y = V2 or V3 +Y = [1] = 1 or 0 +0",diamond,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40949,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and zory. jyka or zory causes glimx.",yes,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=0} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [0] = 0 or 0 +1",diamond,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | +40951,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on zory and jyka. Jyka has a direct effect on glimx. Zory has a direct effect on glimx. We know that zuph causes jyka and zory. jyka or zory causes glimx.",no,"Let X = zuph; V3 = zory; V2 = jyka; Y = glimx. +X->V3,X->V2,V2->Y,V3->Y +Y_{X=1} = 0 | +Solve for Y, given the evidence and the action +V2 = X +V3 = V2 +Y = V2 or V3 +Y = [1] = 1 or 1 +0",diamond,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | +40954,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes not zuph and zory. zuph and zory causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +1",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40955,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes not zuph and zory. zuph and zory causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X and V3 +Y = 1 = 1 and 1 +0",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40957,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes not zuph and zory. zuph and zory causes glimx. We observed an individual is jyka.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=1 +40960,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes zuph and zory. zuph or zory causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 0 = 0 or 0 +0",diamondcut,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V1=0 +40962,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes zuph and zory. zuph or zory causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 0 +1",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40967,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes zuph and zory. zuph or zory causes glimx. We observed an individual is jyka.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = X +Y = X or V3 +Y = 1 = 1 or 1 +0",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40969,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes not zuph and zory. zuph or zory causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 0 or 1 +0",diamondcut,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40970,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes not zuph and zory. zuph or zory causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 1 +1",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40975,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes not zuph and zory. zuph or zory causes glimx. We observed an individual is jyka.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=1 +Solve for Y, given the evidence and the action +V1 = 1 +X = V1 +V3 = not X +Y = X or V3 +Y = 1 = 1 or 0 +0",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=1 +40977,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes zuph and zory. zuph and zory causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=0} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 0 and 0 +1",diamondcut,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V1=0 +40978,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes zuph and zory. zuph and zory causes glimx. We observed an individual is not jyka.",no,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 1 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +0",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V1=0 +40979,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Jyka has a direct effect on zory and zuph. Zuph has a direct effect on glimx. Zory has a direct effect on glimx. We know that jyka causes zuph and zory. zuph and zory causes glimx. We observed an individual is not jyka.",yes,"Let V1 = jyka; V3 = zory; X = zuph; Y = glimx. +V1->V3,V1->X,X->Y,V3->Y +Y_{X=1} = 0 | V1=0 +Solve for Y, given the evidence and the action +V1 = 0 +X = V1 +V3 = X +Y = X and V3 +Y = 0 = 1 and 0 +1",diamondcut,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V1=0 +40985,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph or jyka causes glimx. We observed an individual is not jyka.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=0} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 0 = 0 or 0 +1",fork,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V2=0 +40986,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph or jyka causes glimx. We observed an individual is not jyka.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +1",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40987,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph or jyka causes glimx. We observed an individual is not jyka.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X or V2 +Y = 1 = 1 or 0 +0",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40988,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph or jyka causes glimx. We observed an individual is jyka.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 0 or 1 +1",fork,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40991,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph or jyka causes glimx. We observed an individual is jyka.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X or V2 +Y = 1 = 1 or 1 +0",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=1 +40992,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is not jyka.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=0} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 0 and 0 +0",fork,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V2=0 +40994,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is not jyka.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 1 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +0",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V2=0 +40995,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is not jyka.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 0 | V2=0 +Solve for Y, given the evidence and the action +V2 = 0 +Y = X and V2 +Y = 0 = 1 and 0 +1",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=0 +40996,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is jyka.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=0} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +0",fork,nonsense9,3,det-counterfactual,Y_{X=0} = 1 | V2=1 +40997,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is jyka.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=0} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 0 = 0 and 1 +1",fork,nonsense9,3,det-counterfactual,Y_{X=0} = 0 | V2=1 +40998,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is jyka.",yes,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 1 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +1",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 1 | V2=1 +40999,"Imagine a self-contained, hypothetical world with only the following conditions, and without any unmentioned factors or causal relationships: Zuph has a direct effect on glimx. Jyka has a direct effect on glimx. We know that zuph and jyka causes glimx. We observed an individual is jyka.",no,"Let V2 = jyka; X = zuph; Y = glimx. +X->Y,V2->Y +Y_{X=1} = 0 | V2=1 +Solve for Y, given the evidence and the action +V2 = 1 +Y = X and V2 +Y = 1 = 1 and 1 +0",fork,nonsense9,3,det-counterfactual,Y_{X=1} = 0 | V2=1