cathv commited on
Commit
0ea816d
·
verified ·
1 Parent(s): 2995595

Delete test_neurips_2025.py

Browse files
Files changed (1) hide show
  1. test_neurips_2025.py +0 -224
test_neurips_2025.py DELETED
@@ -1,224 +0,0 @@
1
- import pandas as pd
2
- import datasets
3
- import numpy as np
4
- import ast
5
- from PIL import Image
6
-
7
- class NeuripsConfig(datasets.BuilderConfig):
8
-
9
- def __init__(self, **kwargs):
10
- super(NeuripsConfig, self).__init__(**kwargs)
11
-
12
- class NeuripsDataset(datasets.GeneratorBasedBuilder):
13
-
14
- BUILDER_CONFIGS = [
15
- NeuripsConfig(
16
- name="Kenya",
17
- version=datasets.Version("1.0.0"),
18
- description="Full dataset, combining both systematically and opportunistically sampled leaves"
19
- ),
20
- NeuripsConfig(
21
- name="South_Africa",
22
- version=datasets.Version("1.0.0"),
23
- description="Subset containing only systematically sampled leaves"
24
- ),
25
- NeuripsConfig(
26
- name="USA_Summer",
27
- version=datasets.Version("1.0.0"),
28
- description="Subset containing only opportunistically sampled leaves"
29
- ),
30
- NeuripsConfig(
31
- name="USA_Winter",
32
- version=datasets.Version("1.0.0"),
33
- description="Subset containing only opportunistically sampled leaves"
34
- ),
35
- NeuripsConfig(
36
- name="Species_ID",
37
- version=datasets.Version("1.0.0"),
38
- description="Subset containing the DataFrames allowing to link the target encounter rates to a list of species for each country"
39
- )
40
- ]
41
-
42
- DEFAULT_CONFIG_NAME = "Kenya"
43
-
44
- def _info(self):
45
- #state,state_code,split,num_complete_checklists,target,geometry
46
-
47
-
48
- if self.config.name == "Kenya":
49
- features = datasets.Features({
50
- "hotspot_id": datasets.Value("string"),
51
- "hotspot_name": datasets.Value("string"),
52
- "lon": datasets.Value("float32"),
53
- "lat": datasets.Value("float32"),
54
- "county": datasets.Value("string"),
55
- "county_code": datasets.Value("string"),
56
- "state": datasets.Value("string"),
57
- "state_code": datasets.Value("string"),
58
- 'sat_imagery_path': datasets.Value("string"),
59
- 'environmental_path': datasets.Value("string"),
60
- "split": datasets.Value("string"),
61
- "num_complete_checklists" : datasets.Value("int32"),
62
- "target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
63
- "geometry": datasets.Value("string")
64
-
65
- })
66
- elif self.config.name == "South_Africa":
67
- features = datasets.Features({
68
- "hotspot_id": datasets.Value("string"),
69
- "hotspot_name": datasets.Value("string"),
70
- "lon": datasets.Value("float32"),
71
- "lat": datasets.Value("float32"),
72
- "county": datasets.Value("string"),
73
- "county_code": datasets.Value("string"),
74
- "state": datasets.Value("string"),
75
- "state_code": datasets.Value("string"),
76
- 'sat_imagery_path': datasets.Value("string"),
77
- 'environmental_path': datasets.Value("string"),
78
- "split": datasets.Value("string"),
79
- "num_complete_checklists" : datasets.Value("int32"),
80
- "target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
81
- "geometry": datasets.Value("string")
82
- })
83
- elif self.config.name == "USA_Summer":
84
- features = datasets.Features({
85
- "hotspot_id": datasets.Value("string"),
86
- "hotspot_name": datasets.Value("string"),
87
- "lon": datasets.Value("float32"),
88
- "lat": datasets.Value("float32"),
89
- "county": datasets.Value("string"),
90
- "county_code": datasets.Value("string"),
91
- "state": datasets.Value("string"),
92
- "state_code": datasets.Value("string"),
93
- 'sat_imagery_path': datasets.Value("string"),
94
- 'environmental_path': datasets.Value("string"),
95
- "split": datasets.Value("string"),
96
- "num_complete_checklists" : datasets.Value("int32"),
97
- "target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
98
- "geometry": datasets.Value("string")
99
- })
100
- elif self.config.name == "USA_Winter":
101
- features = datasets.Features({
102
- "hotspot_id": datasets.Value("string"),
103
- "hotspot_name": datasets.Value("string"),
104
- "lon": datasets.Value("float32"),
105
- "lat": datasets.Value("float32"),
106
- "county": datasets.Value("string"),
107
- "county_code": datasets.Value("string"),
108
- "state": datasets.Value("string"),
109
- "state_code": datasets.Value("string"),
110
- 'sat_imagery_path': datasets.Value("string"),
111
- 'environmental_path': datasets.Value("string"),
112
- "split": datasets.Value("string"),
113
- "num_complete_checklists" : datasets.Value("int32"),
114
- "target": datasets.Sequence(feature=datasets.Value("float32"), length=1054),
115
- "geometry": datasets.Value("string")
116
- })
117
- elif self.config.name == "Species_ID":
118
- features = datasets.Features({
119
- "scientific_name": datasets.Value("string"),
120
- "ebird_code": datasets.Value("string"),
121
- "inat_preview": datasets.Image(),
122
- "target_value_index" : datasets.Value("int32"),
123
- })
124
- else:
125
- raise ValueError(f"Unsupported config: {self.config.name}")
126
-
127
- return datasets.DatasetInfo(
128
- description="The SITTELLE Benchmark Dataset",
129
- features=features,
130
- supervised_keys=None,
131
- homepage="https://huggingface.co/datasets/imageomics/invasive_plants_hawaii",
132
- license="MIT",
133
- )
134
-
135
- def _split_generators(self, dl_manager):
136
- if self.config.name == "Kenya":
137
- train_csv = "Kenya/train_split.csv"
138
- test_csv = "Kenya/test_split.csv"
139
- val_csv = "Kenya/valid_split.csv"
140
- return [
141
- datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
142
- datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
143
- datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
144
- ]
145
- elif self.config.name == "South_Africa":
146
- train_csv = "Kenya/train_split.csv"
147
- test_csv = "Kenya/test_split.csv"
148
- val_csv = "Kenya/valid_split.csv"
149
- return [
150
- datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
151
- datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
152
- datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
153
- ]
154
- elif self.config.name == "USA_Summer":
155
- train_csv = "Kenya/train_split.csv"
156
- test_csv = "Kenya/test_split.csv"
157
- val_csv = "Kenya/valid_split.csv"
158
- return [
159
- datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
160
- datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
161
- datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
162
- ]
163
- elif self.config.name == "USA_Winter":
164
- train_csv = "Kenya/train_split.csv"
165
- test_csv = "Kenya/test_split.csv"
166
- val_csv = "Kenya/valid_split.csv"
167
- return [
168
- datasets.SplitGenerator(name="train", gen_kwargs={"filepath": train_csv}),
169
- datasets.SplitGenerator(name="val", gen_kwargs={"filepath": test_csv}),
170
- datasets.SplitGenerator(name="test", gen_kwargs={"filepath": val_csv}),
171
- ]
172
- elif self.config.name == "Species_ID":
173
- kenya_csv = "Kenya/species_id_kenya.csv"
174
- southafrica_csv = "Kenya/species_id_kenya.csv"
175
- usasummer_csv = "Kenya/species_id_kenya.csv"
176
- usawinter_csv = "Kenya/species_id_kenya.csv"
177
- return [
178
- datasets.SplitGenerator(name="Kenya", gen_kwargs={"filepath": kenya_csv}),
179
- datasets.SplitGenerator(name="South_Africa", gen_kwargs={"filepath": southafrica_csv}),
180
- datasets.SplitGenerator(name="USA_Summer", gen_kwargs={"filepath": usasummer_csv}),
181
- datasets.SplitGenerator(name="USA_Winter", gen_kwargs={"filepath": usawinter_csv}),
182
- ]
183
- else:
184
- raise ValueError(f"Unknown config: {self.config.name}")
185
-
186
- def _generate_examples(self, filepath):
187
- if self.config.name in ["Kenya", "South_Africa", "USA_Summer", "USA_Winter"]:
188
- df_metadata = pd.read_csv(filepath)
189
- df_metadata["target"] = df_metadata["target"].apply(ast.literal_eval).apply(lambda x: list(map(float, x)))
190
- for idx in range(len(df_metadata)):
191
- row = df_metadata.iloc[idx]
192
- yield idx, {
193
- "hotspot_id": row['hotspot_id'],
194
- "hotspot_name": row['hotspot_name'],
195
- "lon": row['lon'],
196
- "lat": row['lat'],
197
- "county": row['county'],
198
- "county_code": row['county_code'],
199
- "state": row['state'],
200
- "state_code": row['state_code'],
201
- 'sat_imagery_path': row['sat_imagery_path'],
202
- 'environmental_path': row['environmental_path'],
203
- "split": row['split'],
204
- "num_complete_checklists" : row['num_complete_checklists'],
205
- "target": row['target'],
206
- "geometry": row['geometry']
207
- }
208
-
209
- if self.config.name == "Species_ID":
210
- print("Species ID!")
211
- df_metadata = pd.read_csv(filepath)
212
- for idx in range(len(df_metadata)):
213
- row = df_metadata.iloc[idx]
214
- if pd.isna(row['inat_preview']) or row['inat_preview'] == "":
215
- inat_val = None
216
- else:
217
- inat_val = {"url" : row['inat_preview']}
218
-
219
- yield idx, {
220
- "scientific_name": row['scientific_name'],
221
- "ebird_code": row['ebird_code'],
222
- "inat_preview": inat_val,
223
- "target_value_index" : row['target_value_index'],
224
- }