import bs4, re, bz2, shutil from urllib.request import urlretrieve import pandas as pd # Download and unpack file filename = "dewikiquote-latest-pages-articles.xml.bz2" urlretrieve("https://dumps.wikimedia.org/dewikiquote/latest/" + filename, filename) with bz2.BZ2File(filename) as fr, open(filename[:-4],"wb") as fw: shutil.copyfileobj(fr,fw) # Open file and parse it with open("dewikiquote-latest-pages-articles.xml") as fp: soup = bs4.BeautifulSoup(fp, "xml") pages = soup.mediawiki.findAll('page') # Return all quotes on a single page def get_quotes(text: str) -> [str]: res = [] # usually a quote is in ONE line for line in text.split("\n"): # remove leading and trailing whitespaces stripped = line.strip() # Usually at the bottom, quotes are not from the current author so stop here if "zitate mit bezug auf" in stripped.lower(): return res match = re.search("\*\s*(\"[^\"]+\")", stripped) if match: quote = match.group(1) cleaned = re.sub(r'\[\[[^\[]+\]\]', lambda x: x.group()[2:].split("|")[-1][:-2], quote) cleaned = re.sub(r'{{[^{}\|]+\|([^{}]+)}}', lambda x: x.group(1), cleaned) cleaned = re.sub(r'<[^<>]+>', "",cleaned) cleaned = cleaned.replace("//", "") # removes // cleaned = re.sub(' +', ' ', cleaned) # remove whitespaces if "http" not in cleaned and len(cleaned) > 5: res.append(cleaned) return res # Get categorie to which a page belongs to def get_categories(text: str) -> str: return re.findall(r"\[\[Kategorie:([^\]|]+)[^]]*\]\]", text) # def get_movie_quotes(text: str): # match = re.search(r"== Zitate ==(.*)== Dialoge ==", text, flags=re.DOTALL) # if match: # segment = match.group(1) # match = re.findall(r"=== ([^=]+) === ([^])", segment) # return [] # Extract quotes and authors data = [] omitted = set() for page in pages: author = page.title.text raw_text = page.find("text").text categories = get_categories(raw_text) if "Person" in categories: quotes = get_quotes(raw_text) for quote in quotes: data.append((author, quote)) # elif "== Filminfo" in raw_text: # fiction = get_movie_quotes(raw_text) # break else: omitted.add(author) # Save results to csv df = pd.DataFrame(data, columns=["author", "quote"]).drop_duplicates() df.to_csv("train.csv")