--- language: - en license: - other multilinguality: - monolingual size_categories: - 1k<10K task_categories: - text-classification task_ids: - sentiment-classification pretty_name: TweetTopicSingle --- # Dataset Card for "cardiff_nlp/tweet_topic_single" ## Dataset Description - **Paper:** [https://arxiv.org/abs/2209.09824](https://arxiv.org/abs/2209.09824) - **Dataset:** Tweet Topic Dataset - **Domain:** Twitter - **Number of Class:** 6 ### Dataset Summary Topic classification dataset on Twitter with single label per tweet. See [cardiffnlp/tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi) for multiple labels version of Tweet Topic. ## Dataset Structure ### Data Instances An example of `train` looks as follows. ```python { "text": "Game day for {{USERNAME}} U18\u2019s against {{USERNAME}} U18\u2019s. Even though it\u2019s a \u2018home\u2019 game for the people that have settled in Mid Wales it\u2019s still a 4 hour round trip for us up to Colwyn Bay. Still enjoy it though!", "date": "2019-09-08", "label": 4, "id": "1170606779568463874", "label_name": "sports_&_gaming" } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_single/raw/main/dataset/label.single.json). ```python { "arts_&_culture": 0, "business_&_entrepreneurs": 1, "pop_culture": 2, "daily_life": 3, "sports_&_gaming": 4, "science_&_technology": 5 } ``` ### Data Splits | split | number of texts | description | |:----------------------------|-----:|:-----| | `test` | 1693 | alias of `temporal_2021_test` | | `train` | 2858 | alias of `temporal_2020_train` | | `validation` | 352 | alias of `temporal_2020_validation` | | `temporal_2020_test` | 376 | test set in 2020 period of temporal split | | `temporal_2021_test` | 1693 | test set in 2021 period of temporal split | | `temporal_2020_train` | 2858 | training set in 2020 period of temporal split | | `temporal_2021_train` | 1516 | training set in 2021 period of temporal split | | `temporal_2020_validation` | 352 | validation set in 2020 period of temporal split | | `temporal_2021_validation` | 189 | validation set in 2021 period of temporal split | | `random_train` | 2830 | training set of random split (mix of 2020 and 2021) | | `random_validation` | 354 | validation set of random split (mix of 2020 and 2021) | | `coling2022_random_test` | 3399 | test set of random split used in COLING 2022 Tweet Topic paper | | `coling2022_random_train` | 3598 | training set of random split used in COLING 2022 Tweet Topic paper | | `coling2022_temporal_test` | 3399 | test set of temporal split used in COLING 2022 Tweet Topic paper | | `coling2022_temporal_train` | 3598 | training set of temporal split used in COLING 2022 Tweet Topic paper| For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`). For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`). **IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (the coling2022 split does not have validation set). ### Citation Information ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```