''' wandb offline export WANDB_DISABLED='true' export RAY_RESULTS='ray_results' python lm_finetuning.py -m "roberta-large" -o "ckpt/2021/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" python lm_finetuning.py -m "roberta-large" -o "ckpt/2020/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" python lm_finetuning.py -m "roberta-base" -o "ckpt/2021/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" python lm_finetuning.py -m "roberta-base" -o "ckpt/2020/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2021/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2020/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2021/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2020/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2021/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021" python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2020/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021" ''' import argparse import json import logging import os import math import shutil import urllib.request import multiprocessing from os.path import join as pj import torch import numpy as np from huggingface_hub import create_repo from datasets import load_dataset, load_metric from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer from ray import tune from readme import get_readme logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') PARALLEL = bool(int(os.getenv("PARALLEL", 1))) RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results") LABEL2ID = { "arts_&_culture": 0, "business_&_entrepreneurs": 1, "celebrity_&_pop_culture": 2, "diaries_&_daily_life": 3, "family": 4, "fashion_&_style": 5, "film_tv_&_video": 6, "fitness_&_health": 7, "food_&_dining": 8, "gaming": 9, "learning_&_educational": 10, "music": 11, "news_&_social_concern": 12, "other_hobbies": 13, "relationships": 14, "science_&_technology": 15, "sports": 16, "travel_&_adventure": 17, "youth_&_student_life": 18 } ID2LABEL = {v: k for k, v in LABEL2ID.items()} def internet_connection(host='http://google.com'): try: urllib.request.urlopen(host) return True except: return False def sigmoid(x): return 1 / (1 + math.exp(-x)) def get_metrics(): metric_accuracy = load_metric("accuracy", "multilabel") metric_f1 = load_metric("f1", "multilabel") # metric_f1.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average='micro') # metric_accuracy.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]]) def compute_metric_search(eval_pred): logits, labels = eval_pred predictions = np.array([[int(sigmoid(j) > 0.5) for j in i] for i in logits]) return metric_f1.compute(predictions=predictions, references=labels, average='micro') def compute_metric_all(eval_pred): logits, labels = eval_pred predictions = np.array([[int(sigmoid(j) > 0.5) for j in i] for i in logits]) return { 'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'], 'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'], 'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy'] } return compute_metric_search, compute_metric_all def main(): parser = argparse.ArgumentParser(description='Fine-tuning language model.') parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str) parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str) parser.add_argument('--split-train', help='', required=True, type=str) parser.add_argument('--split-validation', help='', required=True, type=str) parser.add_argument('--split-test', help='', required=True, type=str) parser.add_argument('-l', '--seq-length', help='', default=128, type=int) parser.add_argument('--random-seed', help='', default=42, type=int) parser.add_argument('--eval-step', help='', default=50, type=int) parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str) parser.add_argument('-t', '--n-trials', default=10, type=int) parser.add_argument('--push-to-hub', action='store_true') parser.add_argument('--use-auth-token', action='store_true') parser.add_argument('--hf-organization', default=None, type=str) parser.add_argument('-a', '--model-alias', help='', default=None, type=str) parser.add_argument('--summary-file', default='metric_summary.json', type=str) parser.add_argument('--skip-train', action='store_true') parser.add_argument('--skip-eval', action='store_true') opt = parser.parse_args() assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}' # setup data dataset = load_dataset(opt.dataset) network = internet_connection() # setup model tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network) model = AutoModelForSequenceClassification.from_pretrained( opt.model, id2label=ID2LABEL, label2id=LABEL2ID, num_labels=len(dataset[opt.split_train]['label'][0]), local_files_only=not network, problem_type="multi_label_classification" ) tokenized_datasets = dataset.map( lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length), batched=True) # setup metrics compute_metric_search, compute_metric_all = get_metrics() if not opt.skip_train: # setup trainer trainer = Trainer( model=model, args=TrainingArguments( output_dir=opt.output_dir, evaluation_strategy="steps", eval_steps=opt.eval_step, seed=opt.random_seed ), train_dataset=tokenized_datasets[opt.split_train], eval_dataset=tokenized_datasets[opt.split_validation], compute_metrics=compute_metric_search, model_init=lambda x: AutoModelForSequenceClassification.from_pretrained( opt.model, return_dict=True, num_labels=len(dataset[opt.split_train]['label'][0]), id2label=ID2LABEL, label2id=LABEL2ID ) ) # parameter search if PARALLEL: best_run = trainer.hyperparameter_search( hp_space=lambda x: { "learning_rate": tune.loguniform(1e-6, 1e-4), "num_train_epochs": tune.choice(list(range(1, 6))), "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), }, local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials, resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()}, ) else: best_run = trainer.hyperparameter_search( hp_space=lambda x: { "learning_rate": tune.loguniform(1e-6, 1e-4), "num_train_epochs": tune.choice(list(range(1, 6))), "per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]), }, local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials ) # finetuning for n, v in best_run.hyperparameters.items(): setattr(trainer.args, n, v) trainer.train() trainer.save_model(pj(opt.output_dir, 'best_model')) best_model_path = pj(opt.output_dir, 'best_model') else: best_model_path = opt.output_dir # evaluation model = AutoModelForSequenceClassification.from_pretrained( best_model_path, num_labels=len(dataset[opt.split_train]['label'][0]), local_files_only=not network, problem_type="multi_label_classification", id2label=ID2LABEL, label2id=LABEL2ID ) trainer = Trainer( model=model, args=TrainingArguments( output_dir=opt.output_dir, evaluation_strategy="no", seed=opt.random_seed ), train_dataset=tokenized_datasets[opt.split_train], eval_dataset=tokenized_datasets[opt.split_test], compute_metrics=compute_metric_all, model_init=lambda x: AutoModelForSequenceClassification.from_pretrained( opt.model, return_dict=True, num_labels=len(dataset[opt.split_train]['label'][0]), local_files_only=not network, problem_type="multi_label_classification", id2label=ID2LABEL, label2id=LABEL2ID ) ) summary_file = pj(opt.output_dir, opt.summary_file) if not opt.skip_eval: result = {f'test/{k}': v for k, v in trainer.evaluate().items()} logging.info(json.dumps(result, indent=4)) with open(summary_file, 'w') as f: json.dump(result, f) if opt.push_to_hub: assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`' assert opt.model_alias is not None, f'specify hf organization `--model-alias`' url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True) # if not opt.skip_train: args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization} trainer.model.push_to_hub(opt.model_alias, **args) tokenizer.push_to_hub(opt.model_alias, **args) if os.path.exists(summary_file): shutil.copy2(summary_file, opt.model_alias) extra_desc = f"This model is fine-tuned on `{opt.split_train}` split and validated on `{opt.split_test}` split of tweet_topic." readme = get_readme( model_name=opt.model_alias, metric=f"{opt.model_alias}/{summary_file}", language_model=opt.model, extra_desc= extra_desc ) os.system( f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../") shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo if __name__ == '__main__': main()