# Standard imports: import json import os import subprocess from typing import List import warnings # External imports: import pandas as pd from cannlytics.compounds import pesticides from cannlytics.data.coas.coas import standardize_results from cannlytics.utils.utils import snake_case, kebab_case, camel_to_snake import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter from cannlytics.data.ccrs import CCRS_DATASETS, get_datafiles from cannlytics.data.cache import Bogart def read_ccrs_data( datafile, dtype: dict, usecols: List[str], parse_dates: List[str], on_bad_lines: str = 'skip', sep: str = '\t', encoding: str = 'utf-16', engine: str = 'python', rename = None, ) -> pd.DataFrame: """Load supplement data from a specified data file.""" df = pd.read_csv( datafile, sep=sep, encoding=encoding, engine=engine, parse_dates=parse_dates, dtype=dtype, usecols=usecols, on_bad_lines=on_bad_lines ) if rename: df = df.rename(columns=rename) return df def convert_timestamps(obj): """ Recursively convert Timestamp and NaTType objects in a dictionary to strings. """ if isinstance(obj, dict): for key, value in obj.items(): if isinstance(value, pd.Timestamp): obj[key] = value.isoformat() elif isinstance(value, pd._libs.tslibs.nattype.NaTType): obj[key] = None elif isinstance(value, dict): convert_timestamps(value) elif isinstance(value, list): obj[key] = [convert_timestamps(item) if isinstance(item, (pd.Timestamp, pd._libs.tslibs.nattype.NaTType)) else item for item in value] return obj # Read lab results. data_dir = 'D://data/washington/stats/lab_results' datafile = os.path.join(data_dir, 'wa-lab-results-aggregate.xlsx') results = pd.read_excel(datafile) # Initialize the cache. inventory_cache = Bogart('D://data/.cache/results-wa-inventory.jsonl') products_cache = Bogart('D://data/.cache/results-wa-products.jsonl') strains_cache = Bogart('D://data/.cache/results-wa-strains.jsonl') # Isolate the subsample or results. results['inventory_id'] = results['inventory_id'].astype(str) inventory_ids = list(results['inventory_id'].unique()) print('Number of inventory items:', len(inventory_ids)) matches = {} # Iterate over all releases to augment inventory, product, and strain data. base = 'D://data/washington/' releases = [ # 'CCRS PRR (8-4-23)', # Contains all prior releases. 'CCRS PRR (9-5-23)', 'CCRS PRR (10-2-23)', 'CCRS PRR (11-2-23)', 'CCRS PRR (12-2-23)', 'CCRS PRR (1-2-24)', 'CCRS PRR (2-2-24)', 'CCRS PRR (3-27-24)', 'CCRS PRR (4-2-24)', 'CCRS PRR (5-2-24)', 'CCRS PRR (6-2-24)', 'CCRS PRR (7-2-24)', ] for release in releases: data_dir = os.path.join(base, release, release) print('Augmenting data:', data_dir) # Find matching inventory items. inventory_files = get_datafiles(data_dir, 'Inventory_') inventory_fields = CCRS_DATASETS['inventory']['fields'] inventory_date_fields = CCRS_DATASETS['inventory']['date_fields'] item_cols = list(inventory_fields.keys()) + inventory_date_fields item_types = {k: inventory_fields[k] for k in inventory_fields if k not in inventory_date_fields} item_types['IsDeleted'] = 'string' inventory_renames = { 'CreatedBy': 'inventory_created_by', 'UpdatedBy': 'inventory_updated_by', 'CreatedDate': 'inventory_created_at', 'updatedDate': 'inventory_updated_at', 'UpdatedDate': 'inventory_updated_at', 'Name': 'inventory_name', } for i, datafile in enumerate(inventory_files): if len(matches) == len(results): print('Matched all inventory items') break print('Augmenting inventory:', datafile) items = read_ccrs_data( datafile, usecols=item_cols, dtype=item_types, parse_dates=inventory_date_fields, rename=inventory_renames, ) for inventory_id in inventory_ids: if inventory_cache.get(inventory_id): matches[inventory_id] = inventory_cache.get(inventory_id) continue # if inventory_id in matches: # continue item = items.loc[items['InventoryId'] == inventory_id] if len(item) > 0: item = item.iloc[0] item_dict = item.to_dict() item_dict = convert_timestamps(item_dict) matches[inventory_id] = item_dict print('Matched inventory:', inventory_id) inventory_cache.set(inventory_id, item_dict) print('Matched inventory items:', len(matches)) # Match product data. product_matches = {} product_files = get_datafiles(data_dir, 'Product_') product_fields = CCRS_DATASETS['products']['fields'] product_date_fields = CCRS_DATASETS['products']['date_fields'] product_cols = list(product_fields.keys()) + product_date_fields product_types = {k: product_fields[k] for k in product_fields if k not in product_date_fields} product_types['IsDeleted'] = 'string' product_types['UnitWeightGrams'] = 'string' product_types['CreatedDate'] = 'string' product_types['UpdatedDate'] = 'string' product_renames = { 'CreatedDate': 'product_created_at', 'updatedDate': 'product_updated_at', 'UpdatedDate': 'product_updated_at', 'ExternalIdentifier': 'product_external_id', 'LicenseeId': 'producer_licensee_id', 'Name': 'product_name', 'Description': 'product_description', } for i, datafile in enumerate(product_files): if len(product_matches) == len(results): print('Matched all products') break print('Augmenting products:', datafile) products = read_ccrs_data( datafile, usecols=product_cols, dtype=product_types, parse_dates=product_date_fields, rename=product_renames, ) for inventory_id, values in matches.items(): if products_cache.get(inventory_id): obs = matches[inventory_id] product = products_cache.get(inventory_id) matches[inventory_id] = {**obs, **product} product_matches[inventory_id] = product continue # if inventory_id in product_matches: # continue product = products.loc[products['ProductId'] == values['ProductId']] if len(product) > 0: product = product.iloc[0] obs = matches[inventory_id] product_dict = product.to_dict() product_dict = convert_timestamps(product_dict) matches[inventory_id] = {**obs, **product_dict} print('Matched product:', inventory_id) product_matches[inventory_id] = product_dict products_cache.set(inventory_id, product_dict) # Match strain data. strain_matches = {} strain_files = get_datafiles(data_dir, 'Strains_') strain_fields = CCRS_DATASETS['strains']['fields'] strain_date_fields = CCRS_DATASETS['strains']['date_fields'] strain_cols = list(strain_fields.keys()) + strain_date_fields strain_types = {k: strain_fields[k] for k in strain_fields if k not in strain_date_fields} strain_types['IsDeleted'] = 'string' strain_renames = { 'Name': 'strain_name', 'CreatedDate': 'strain_created_at', } for i, datafile in enumerate(strain_files): if len(strain_matches) == len(results): print('Matched all strains') break print('Augmenting strains:', datafile) strains = read_ccrs_data( datafile, usecols=strain_cols, dtype=strain_types, parse_dates=strain_date_fields, rename=strain_renames, ) # TODO: Fix misaligned strain data. # missing = (strains['strain_name'] == False) | (strains['strain_name'] == 'False') # strains.loc[missing, 'strain_name'] = strains.loc[strains, 'StrainType'] for inventory_id, values in matches.items(): # if inventory_id in strain_matches: # continue if strains_cache.get(inventory_id): strain_matches[inventory_id] = strains_cache.get(inventory_id) continue strain = strains.loc[strains['StrainId'] == values['StrainId']] if len(strain) > 0: strain = strain.iloc[0] obs = matches[inventory_id] strain_dict = strain.to_dict() strain_dict = convert_timestamps(strain_dict) matches[inventory_id] = {**obs, **strain_dict} print('Matched strain:', inventory_id) strain_matches[inventory_id] = strain_dict strains_cache.set(inventory_id, strain_dict) # Optional: Merge area data? # area_files = get_datafiles(data_dir, 'Areas_') # Break if all of the subsample is matched. if len(matches) == len(results): print('Matched all results') break # FIXME: Merge inventory, product, and strain data with the results using the cache. # Merge the inventory data with the subsample. matches_df = pd.DataFrame.from_dict(matches, orient='index') matches_df.index.name = 'inventory_id' matches_df.reset_index(inplace=True, drop=True) matches_df.columns = [camel_to_snake(col) for col in matches_df.columns] results = results.merge( matches_df, on='inventory_id', how='left', suffixes=['', '_dup'] ) results.drop(columns=[x for x in results.columns if '_dup' in x], inplace=True) # TODO: Further process the results.