""" Get Results Oregon Copyright (c) 2024 Cannlytics Authors: Keegan Skeate Created: 5/25/2024 Updated: 5/30/2024 License: CC-BY 4.0 Description: Curate Oregon lab result data obtained through public records requests. Data Sources: - Public records request by Jamie Toth. """ # Standard imports: from datetime import datetime import os # External imports: from cannlytics.data import save_with_copyright from cannlytics.utils import snake_case from cannlytics.utils.constants import ANALYTES import pandas as pd # Define standard columns. columns = { 'LabId': 'lab_id', 'SampleCreatedByLicenseId': 'producer_id', 'SampleId': 'sample_id', 'MonthOfTest': 'month', 'YearOfTest': 'year', 'ProductType': 'product_type', 'TestName': 'test_name', 'Result': 'result', 'PassFail': 'status', } # Define the data types for each column. dtype_spec = { 'LabId': str, 'SampleCreatedByLicenseId': str, 'SampleId': str, 'MonthOfTest': str, 'YearOfTest': str, 'ProductType': str, 'TestName': str, 'Result': float, 'PassFail': str, } def read_and_standardize_csv(file_path, columns, dtype_spec): """Read a CSV file and standardize the column names.""" try: df = pd.read_csv(file_path, dtype=dtype_spec, low_memory=False) df.rename(columns=columns, inplace=True) return df except Exception as e: print(f"Error reading {file_path}: {e}") return pd.DataFrame() def collect_data(datafile, columns, dtype_spec): """Collect data from the specified CSV file.""" df = read_and_standardize_csv(datafile, columns, dtype_spec) df['month'] = df['year'].astype(str) + '-' + df['month'].astype(str) df['date_tested'] = pd.to_datetime(df['month'], format='%Y-%m', errors='coerce') return df def pivot_data(data): """Pivot the data to get results for each sample.""" results = data.pivot_table( index=['sample_id', 'producer_id', 'lab_id', 'product_type', 'date_tested'], columns='test_name', values='result', aggfunc='first' ).reset_index() results['month'] = results['date_tested'].dt.to_period('M') results['year'] = results['date_tested'].dt.year return results def augment_calculations( df, cannabinoids=None, terpenes=None, delta_9_thc='delta_9_thc', thca='thca', cbd='cbd', cbda='cbda', ): """Augment the DataFrame with additional calculated fields.""" # Calculate total cannabinoids. if cannabinoids is not None: df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2) # Calculate total terpenes. if terpenes is not None: df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2) # Calculate the total THC to total CBD ratio. df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2) df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2) df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2) # Calculate the total cannabinoids to total terpenes ratio. if cannabinoids is not None and terpenes is not None: df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2) # Return the augmented data. return df def standardize_analyte_names(df, analyte_mapping): """Standardize analyte names.""" df.columns = [col.split('(')[0].strip() for col in df.columns] df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns] return df def combine_similar_columns(df, similar_columns): """Combine similar columns with different spellings or capitalization.""" for target_col, col_variants in similar_columns.items(): if target_col not in df.columns: df[target_col] = pd.NA for col in col_variants: if col in df.columns: df[target_col] = df[target_col].combine_first(df[col]) df.drop(columns=[col], inplace=True) return df def convert_mg_g_to_percentage(df): """Convert mg/g values to percentage for specified columns.""" mg_g_columns = [col for col in df.columns if '(mg/g)' in col] for col in mg_g_columns: df[col] = df[col] / 10 df.rename(columns={col: col.replace('(mg/g)', '').strip()}, inplace=True) return df def get_results_or(data_dir: str, output_dir: str) -> pd.DataFrame: """Get results for Oregon.""" # Read Oregon lab results. data = collect_data(data_dir, columns, dtype_spec) print('Number of Oregon tests:', len(data)) # Pivot the data to get results for each sample. results = pivot_data(data) print('Number of Oregon test samples:', len(results)) # Divide any value in a column with mg/g by 10 to get a percentage. results = convert_mg_g_to_percentage(results) print('Converted mg/g values to percentages.') # Combine similar columns. similar_columns = { 'cbd': ['CBD (%RSD)', 'CBD (RPD)', 'Total CBD (mg/g; cannot fail)'], 'delta_8_thc': ['Delta 8 THC', 'Delta-8 THC', 'Delta-8 THC (%RSD)', 'Delta-8 THC (RPD)', 'Delta-8 THC (mg/g)'], 'delta_9_thc': ['Delta 9 THC', 'Delta-9 THC', 'THC (%RSD)', 'THC (RPD)', 'Delta-9 THC (mg/g)'], 'moisture_content': ['Moisture Content (%)', 'R&D Test: Moisture Content', 'Subcontracted Test - Moisture Content'], 'mycotoxins': ['Mycotoxins (pass/fail)', 'R&D Test: Mycotoxins', 'Subcontracted Test - Mycotoxins'], } results = combine_similar_columns(results, similar_columns) print('Combined similar columns.') # Standardize the analyte names results = standardize_analyte_names(results, ANALYTES) print('Standardized analyte names.') # Drop nuisance columns. drop = [ 'heavy_metals', 'pesticides', 'potency', 'randd_test', 'randd_test_heavy_metals', 'randd_test_microbiological_contaminants', 'randd_test_moisture_content', 'randd_test_mycotoxins', 'randd_test_pesticides', 'randd_test_potency', 'randd_test_solvents', 'randd_test_water_activity', 'solvents', 'tentatively_identified_compounds', 'microbiological_contaminants', ] results = results.drop(columns=drop, errors='ignore') # Ensure all numeric columns are numeric. non_numeric = [ 'sample_id', 'producer_id', 'lab_id', 'product_type', 'date_tested', 'month', 'year', ] numeric_cols = results.columns.difference(non_numeric) for col in numeric_cols: results[col] = pd.to_numeric(results[col], errors='coerce') print('Converted columns to numeric.') # Augment additional calculated metrics. cannabinoids = ['delta_8_thc', 'delta_9_thc', 'thca', 'cbd'] results['total_cbd'] = results['cbd'] results['total_cannabinoids'] = round(results[cannabinoids].sum(), 2) results['thc_cbd_ratio'] = round(results['total_thc'] / results['total_cbd'], 2) print('Augmented fields.') # Sort the columns. numeric_cols = results.columns.difference(non_numeric) numeric_cols_sorted = sorted(numeric_cols) results = results[non_numeric + numeric_cols_sorted] # # Save the results with copyright and sources sheets. # date = datetime.now().strftime('%Y-%m-%d') # if not os.path.exists(output_dir): os.makedirs(output_dir) # outfile = f'{output_dir}/or-results-{date}.xlsx' # save_with_copyright( # results, # outfile, # dataset_name='Oregon Cannabis Lab Results', # author='Jamie Toth (data acquisition), Keegan Skeate (curation)', # publisher='Cannlytics', # sources=['Oregon Liquor and Cannabis Commission', 'Jamie Toth'], # source_urls=['https://www.oregon.gov/olcc/marijuana/pages/default.aspx', 'https://jamietoth.com'], # ) # print('Saved Oregon lab results:', outfile) # Save the results. outfile = os.path.join(output_dir, 'or-results-latest.xlsx') outfile_csv = os.path.join(output_dir, 'or-results-latest.csv') outfile_json = os.path.join(output_dir, 'or-results-latest.jsonl') results.to_excel(outfile, index=False) results.to_csv(outfile_csv, index=False) # FIXME: This causes an OverflowError # results.to_json(outfile_json, orient='records', lines=True) print('Saved Excel:', outfile) print('Saved CSV:', outfile_csv) # print('Saved JSON:', outfile_json) # Return the results. return results # === Test === # [✓] Tested: 2024-07-10 by Keegan Skeate if __name__ == '__main__': # Define where the data lives. data_dir = "D:\data\public-records\Oregon\Oregon\Oregon data 5-7-24 (rich)\Anonymized Test Data Feb 2021 to April 2024.csv" output_dir = 'D://data/oregon/results/datasets' # Curate results. get_results_or(data_dir=data_dir, output_dir=output_dir)