""" Get Results Nevada Copyright (c) 2024 Cannlytics Authors: Keegan Skeate Created: 5/25/2024 Updated: 5/30/2024 License: CC-BY 4.0 Description: Curate Nevada lab result data obtained through public records requests. Data Sources: - Public records request """ # Standard imports: from glob import glob import os # External imports: from cannlytics.utils import snake_case from cannlytics.utils.constants import ANALYTES import pandas as pd # Define standard columns. columns = { 'Id': 'sample_id', 'PackagedByFacilityName': 'producer', 'PackagedByFacilityLicenseNumber': 'producer_license_number', 'LabFacilityName': 'lab', 'LabFacilityLicenseNumber': 'lab_license_number', 'Label': 'label', 'PackageType': 'package_type', 'Quantity': 'quantity', 'UnitOfMeasureId': 'units_id', 'UnitOfMeasureName': 'unit_of_measure_name', 'UnitOfMeasureAbbreviation': 'unit_of_measure_abbreviation', 'ProductName': 'product_name', 'ProductCategoryName': 'product_type', 'InitialLabTestingState': 'initial_lab_testing_state', 'LabTestingState': 'lab_testing_state', 'LabTestingStateName': 'lab_testing_state_name', 'LabTestingStateDate': 'date_tested', 'IsTestingSample': 'is_testing_sample', 'IsProcessValidationTestingSample': 'is_process_validation_testing_sample', 'ProductRequiresRemediation': 'product_requires_remediation', 'ContainsRemediatedProduct': 'contains_remediated_product', 'RemediationDate': 'remediation_date', 'RemediationRecordedDateTime': 'remediation_recorded_datetime', 'PackagedDate': 'date_packaged', 'LabTestDetailId': 'lab_test_detail_id', 'TestPerformedDate': 'test_performed_date', 'LabTestResultDocumentFileId': 'lab_test_result_document_file_id', 'OverallPassed': 'overall_passed', 'TestTypeName': 'test_type', 'TestPassed': 'test_passed', 'TestResultLevel': 'test_result', 'TestComment': 'test_comment', 'ArchivedDate': 'archived_date', 'FinishedDate': 'date_finished', 'IsOnHold': 'is_on_hold' } # Define the data types for each column. dtype_spec = { 'Id': str, 'PackagedByFacilityName': str, 'PackagedByFacilityLicenseNumber': str, 'LabFacilityName': str, 'LabFacilityLicenseNumber': str, 'Label': str, 'PackageType': str, 'Quantity': float, 'UnitOfMeasureId': str, 'UnitOfMeasureName': str, 'UnitOfMeasureAbbreviation': str, 'ProductName': str, 'ProductCategoryName': str, 'InitialLabTestingState': str, 'LabTestingState': str, 'LabTestingStateName': str, 'LabTestingStateDate': str, 'IsTestingSample': bool, 'IsProcessValidationTestingSample': bool, 'ProductRequiresRemediation': bool, 'ContainsRemediatedProduct': bool, 'RemediationDate': str, 'RemediationRecordedDateTime': str, 'PackagedDate': str, 'LabTestDetailId': str, 'TestPerformedDate': str, 'LabTestResultDocumentFileId': str, 'OverallPassed': bool, 'TestTypeName': str, 'TestPassed': bool, 'TestResultLevel': str, 'TestComment': str, 'ArchivedDate': str, 'FinishedDate': str, 'IsOnHold': bool } def read_and_standardize_csv(file_path, columns, dtype_spec): """Read a CSV file and standardize the column names.""" try: df = pd.read_csv(file_path, dtype=dtype_spec, low_memory=False) df.rename(columns=columns, inplace=True) return df except Exception as e: print(f"Error reading {file_path}: {e}") return pd.DataFrame() def collect_data(data_dir, columns, dtype_spec): """Collect data from a directory of CSV files.""" results = [] for root, _, files in os.walk(data_dir): for file in files: if 'no data' in file.lower(): continue if file.endswith('.csv'): print('Reading:', file) file_path = os.path.join(root, file) df = read_and_standardize_csv(file_path, columns, dtype_spec) if not df.empty: results.append(df) return pd.concat(results, ignore_index=True) def standardize_analyte_names(df, analyte_mapping): """Standardize analyte names.""" df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns] return df def augment_calculations( df, cannabinoids=None, terpenes=None, delta_9_thc='delta_9_thc', thca='thca', cbd='cbd', cbda='cbda', ): """Augment the DataFrame with additional calculated fields.""" # Calculate total cannabinoids. if cannabinoids is not None: df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2) # Calculate total terpenes. if terpenes is not None: df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2) # Calculate the total THC to total CBD ratio. df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2) df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2) df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2) # Calculate the total cannabinoids to total terpenes ratio. if cannabinoids is not None and terpenes is not None: df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2) # Return the augmented data. return df def combine_redundant_columns(df, product_types=None, verbose=False): """Combine redundant columns and extract units and product types.""" combined_results = {} for col in df.columns: matched = False if product_types is not None: for product_type in product_types: if product_type in col and '(' not in col: base_name = col.split(product_type)[0].strip() if base_name not in combined_results: combined_results[base_name] = df[col] if verbose: print('New column:', base_name) else: combined_results[base_name] = combined_results[base_name].fillna(df[col]) if verbose: print('Combined column:', base_name) matched = True if matched: continue if '(' in col and ')' in col: base_name = col.split('(')[0].strip() if base_name not in combined_results: combined_results[base_name] = df[col] if verbose: print('New column:', base_name) else: combined_results[base_name] = combined_results[base_name].fillna(df[col]) if verbose: print('Combined column:', base_name) elif col not in combined_results: if verbose: print('New column:', col) combined_results[col] = df[col] return pd.DataFrame(combined_results) def combine_similar_columns(df, similar_columns): """Combine similar columns with different spellings or capitalization.""" for target_col, col_variants in similar_columns.items(): if target_col not in df.columns: df[target_col] = pd.NA for col in col_variants: if col in df.columns: df[target_col] = df[target_col].combine_first(df[col]) df.drop(columns=[col], inplace=True) return df def augment_metadata(results, data, sample_columns, boolean_columns,): """Reattach missing columns from `data` to `results`.""" for col in sample_columns: if col not in results.columns: results[col] = results['label'].map(data.drop_duplicates('label').set_index('label')[col]) for col in boolean_columns: if col not in results.columns: results[col] = results['label'].map(data.groupby('label')[col].transform(lambda x: any(x) if x.name in ['overall_passed', 'test_passed'] else all(x))) return results def get_results_nv( data_dir: str, output_dir: str, licenses_dir: str, labs_dir: str, ) -> pd.DataFrame: """Get results for Oregon.""" # === Read the results === # Collect Nevada lab results data = collect_data(data_dir, columns, dtype_spec) # === Standardize the results === # Pivot the data to get results for each package label results = data.pivot_table( index=['label', 'producer', 'lab', 'product_name', 'product_type', 'date_tested', 'date_packaged', 'date_finished'], columns='test_type', values='test_result', aggfunc='first' ).reset_index() print('Number of Nevada test samples:', len(results)) # Combine redundant columns product_types = [ 'Infused Edible', 'Infused Non-Edible', 'Non-Solvent Concentrate', 'R&D Testing', 'Raw Plant Material', 'Solvent Based Concentrate', 'Sub-Contract', 'Whole Wet Plant', ] results = combine_redundant_columns(results, product_types=product_types) print('Combined redundant columns.') # Combine similar columns. similar_columns = { 'beta_pinene': ['Beta Pinene', 'Beta-Pinene'], 'caryophyllene_oxide': ['Carophyllene Oxide', 'Caryophyllene Oxide'], 'delta_8_thc': ['Delta 8 THC', 'Delta-8 THC'], 'delta_9_thc': ['Delta 9 THC', 'Delta-9 THC'], 'thca': ['THCA', 'THCa'], 'total_yeast_and_mold': ['Total Yeast and Mold', 'Yeast and Mold'] } results = combine_similar_columns(results, similar_columns) print('Combined similar columns.') # Standardize the analyte names results = standardize_analyte_names(results, ANALYTES) print('Standardized analyte names.') # Drop nuisance columns. drop = [''] results = results.drop(columns=drop, errors='ignore') # Ensure all numeric columns are numeric. non_numeric = [ 'label', 'producer', 'lab', 'product_name', 'product_type', 'date_tested', 'date_packaged', 'date_finished' ] numeric_cols = results.columns.difference(non_numeric) for col in numeric_cols: results[col] = pd.to_numeric(results[col], errors='coerce') print('Converted columns to numeric.') # Augment metadata. sample_columns = [ 'sample_id', 'package_type', 'quantity', 'units_id', 'unit_of_measure_name', 'unit_of_measure_abbreviation', 'lab_testing_state', 'lab_testing_state_name', 'remediation_date', 'remediation_recorded_datetime', 'lab_test_detail_id', 'test_performed_date', 'lab_test_result_document_file_id', 'archived_date', 'lab_license_number', 'producer_license_number' ] boolean_columns = [ 'contains_remediated_product', 'product_requires_remediation', 'is_on_hold', 'is_process_validation_testing_sample', 'is_testing_sample', 'overall_passed', 'test_passed' ] results = augment_metadata(results, data, sample_columns, boolean_columns) print('Augmented metadata.') # Augment additional calculated metrics. cannabinoids = ['cbd', 'cbda', 'cbn', 'delta_8_thc', 'delta_9_thc', 'thca'] terpenes = [ 'alpha_bisabolol', 'alpha_humulene', 'alpha_pinene', 'alpha_terpinene', 'terpinolene', 'beta_pinene', 'beta_caryophyllene', 'beta_myrcene', 'd_limonene', 'linalool', 'caryophyllene_oxide', 'other_terpenes' ] results = augment_calculations(results, cannabinoids, terpenes) print('Augmented fields.') # Convert dates to datetime and ensure they are timezone unaware. date_columns = [ 'date_tested', 'test_performed_date', 'date_packaged', 'date_finished', 'remediation_date', 'archived_date' ] for col in date_columns: if col in results.columns: results[col] = pd.to_datetime(results[col], errors='coerce').dt.tz_localize(None) # === Augment licensee data. === # Read NV lab license data. lab_columns = { 'CEID': 'lab_id', 'premise_county': 'lab_county', 'premise_state': 'lab_state', } lab_licenses = pd.read_csv(labs_dir, low_memory=False) lab_licenses['license_number'] = lab_licenses['license_number'].astype(str) lab_licenses.set_index('license_number', inplace=True) lab_licenses.rename(columns=lab_columns, inplace=True) # Read NV licenses. license_columns = { 'CEID': 'producer_id', 'license_type': 'producer_license_type', 'premise_county': 'producer_county', 'premise_state': 'producer_state', 'business_legal_name': 'producer_legal_name', } license_files = sorted( glob(os.path.join(licenses_dir, '*licenses*.csv')), key=os.path.getmtime, reverse=True ) all_licenses = pd.concat( (pd.read_csv(file, low_memory=False) for file in license_files), ignore_index=True ) all_licenses['license_number'] = all_licenses['license_number'].astype(str) all_licenses = all_licenses.drop_duplicates(subset='license_number', keep='first') all_licenses.set_index('license_number', inplace=True) all_licenses.rename(columns=license_columns, inplace=True) # Augment lab license data. labs = list(results['lab_license_number'].unique()) for lab in labs: if lab in lab_licenses.index: license_data = lab_licenses.loc[lab] for key in lab_columns.values(): if key in lab_licenses.columns: # FIXME: Does this need to be changed? results[key] = results['lab_license_number'].map(lab_licenses[key]) # results[key] = results['lab_license_number'].map(license_data[key]) # Augment producer license data. producers = list(results['producer_license_number'].unique()) for producer in producers: if producer in all_licenses.index: license_data = all_licenses.loc[producer] for key in license_columns.values(): if key in all_licenses.columns: # FIXME: Does this need to be changed? results[key] = results['producer_license_number'].map(all_licenses[key]) # results[key] = results['lab_license_number'].map(license_data[key]) # === Save the results. === # Sort the columns. non_numeric_cols = non_numeric + sample_columns + boolean_columns + date_columns non_numeric_cols += list(lab_columns.values()) + list(license_columns.values()) numeric_cols = [col for col in results.columns if col not in non_numeric_cols] numeric_cols_sorted = sorted(numeric_cols) results = results[non_numeric_cols + numeric_cols_sorted] # # Save the results with copyright and sources sheets. # stats_dir = 'D://data/nevada/results/datasets' # date = datetime.now().strftime('%Y-%m-%d') # if not os.path.exists(stats_dir): os.makedirs(stats_dir) # outfile = f'{stats_dir}/nv-results-{date}.xlsx' # save_with_copyright( # results, # outfile, # dataset_name='Nevada Cannabis Lab Results', # author='Keegan Skeate', # publisher='Cannlytics', # sources=['Nevada Cannabis Compliance Board'], # source_urls=['https://ccb.nv.gov/'], # ) # print('Saved Nevada lab results:', outfile) # Save the results. outfile = os.path.join(output_dir, 'nv-results-latest.xlsx') outfile_csv = os.path.join(output_dir, 'nv-results-latest.csv') outfile_json = os.path.join(output_dir, 'nv-results-latest.jsonl') results.to_excel(outfile, index=False) results.to_csv(outfile_csv, index=False) # FIXME: This causes an ValueError # ValueError: DataFrame columns must be unique for orient='records'. # results.to_json(outfile_json, orient='records', lines=True) print('Saved Excel:', outfile) print('Saved CSV:', outfile_csv) # print('Saved JSON:', outfile_json) # Return the results. return results # === Test === # [✓] Tested: 2024-07-10 by Keegan Skeate if __name__ == '__main__': # Define where the data lives. data_dir = 'D://data/public-records/Nevada-001' licenses_dir = r"C:\Users\keega\Documents\cannlytics\cannlytics\datasets\cannabis_licenses\data\nv" labs_dir = r"C:\Users\keega\Documents\cannlytics\cannlytics\datasets\cannabis_licenses\data\nv\labs-nv-2023-12-17T11-41-34.csv" output_dir = 'D://data/nevada/results/datasets' # Curate results. get_results_nv( data_dir=data_dir, output_dir=output_dir, licenses_dir=licenses_dir, labs_dir=labs_dir, )