""" Get Results | Maryland Copyright (c) 2023-2024 Cannlytics Authors: Keegan Skeate Created: 9/26/2023 Updated: 7/10/2024 License: CC-BY 4.0 Description: Collect all public Maryland lab result data. Data Sources: - Public records request from the Maryland Medical Cannabis Commission (MMCC). """ # Standard imports: import os # External imports: from cannlytics.utils import snake_case, camel_to_snake from cannlytics.utils.constants import ANALYTES import pandas as pd def combine_redundant_columns(df, product_types=None, verbose=False): """Combine redundant columns and extract units and product types.""" combined_results = {} for col in df.columns: matched = False if product_types is not None: for product_type in product_types: if product_type in col and '(' not in col: base_name = col.split(product_type)[0].strip() if base_name not in combined_results: combined_results[base_name] = df[col] if verbose: print('New column:', base_name) else: combined_results[base_name] = combined_results[base_name].fillna(df[col]) if verbose: print('Combined column:', base_name) matched = True if matched: continue if '(' in col and ')' in col: base_name = col.split('(')[0].strip() if base_name not in combined_results: combined_results[base_name] = df[col] if verbose: print('New column:', base_name) else: combined_results[base_name] = combined_results[base_name].fillna(df[col]) if verbose: print('Combined column:', base_name) elif col not in combined_results: if verbose: print('New column:', col) combined_results[col] = df[col] return pd.DataFrame(combined_results) def standardize_analyte_names(df, analyte_mapping): """Standardize analyte names.""" df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns] return df def get_results_md(data_dir: str, output_dir: str) -> pd.DataFrame: """Get results for Maryland.""" # Get the data files. datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir)] # Read all of the data. all_data = [] for datafile in datafiles: # Read the segment of data. df = pd.read_csv(datafile) # Pivot the dataframe. results = df.pivot_table( index=[ 'TestPerformedDate', 'PackageId', 'StrainName', 'TestingFacilityId', 'ProductCategoryName', ], columns='TestTypeName', values='TestResultLevel', aggfunc='first' ).reset_index() results = pd.DataFrame(results) # Determine the "status" based on the "TestPassed" column. status = df.groupby('PackageId')['TestPassed'].apply(lambda x: 'Fail' if False in x.values else 'Pass') results = results.merge(status, left_on='PackageId', right_index=True) # Combine redundant columns product_types = [ 'Infused Edible', 'Infused Non-Edible', 'Non-Solvent Concentrate', 'R&D Testing', 'Raw Plant Material', 'Solvent Based Concentrate', 'Sub-Contract', 'Whole Wet Plant', ] results = combine_redundant_columns(results, product_types=product_types) # Standardize the analyte names results = standardize_analyte_names(results, ANALYTES) columns = { 'testpassed': 'status', 'testperformeddate': 'date_tested', 'packageid': 'package_id', 'strainname': 'strain_name', 'testingfacilityid': 'lab_id', 'productcategoryname': 'product_type' } results = results.rename(columns=columns) # Drop duplicates. results = results.drop_duplicates(subset=['package_id']) # Record the data. all_data.extend(results.to_dict(orient='records')) print('Read %i MD lab results from %s.' % (len(results), datafile)) # Aggregate all lab results. all_results = pd.DataFrame(all_data) print('Aggregated %i MD lab results.' % len(all_results)) # Save the results. outfile = os.path.join(output_dir, 'md-results-latest.xlsx') outfile_csv = os.path.join(output_dir, 'md-results-latest.csv') outfile_json = os.path.join(output_dir, 'md-results-latest.jsonl') all_results.to_excel(outfile, index=False) all_results.to_csv(outfile_csv, index=False) all_results.to_json(outfile_json, orient='records', lines=True) print('Saved Excel:', outfile) print('Saved CSV:', outfile_csv) print('Saved JSON:', outfile_json) # Return the results. return all_results # === Tests === # [✓] Tested: 2024-07-10 by Keegan Skeate if __name__ == '__main__': # Define where the data lives. data_dir = r'D:\data\public-records\Maryland\md-prr-2024-01-02\md-prr-2024-01-02' output_dir = 'D://data/maryland' # Curate results. get_results_md(data_dir=data_dir, output_dir=output_dir)