""" Get Cannabis Results | Hawaii Copyright (c) 2024 Cannlytics Authors: Keegan Skeate Created: 7/10/2024 Updated: 7/10/2024 License: CC-BY 4.0 Data Source: - Public records request """ # Standard imports: import json import os # External imports: from cannlytics.data.coas.coas import CoADoc from cannlytics.data.coas import standardize_results from cannlytics.data.coas.parsing import find_unique_analytes from cannlytics.utils.utils import convert_to_numeric, snake_case import pandas as pd def extract_samples(datafile, verbose=True): """Extract samples from CSV layout.""" # Read the datafile, line by line. if verbose: print('Processing:', datafile) with open(datafile, 'r') as file: lines = file.readlines() # Define rows to skip. skip_rows = [ '"', "Date", "Report:", "LicenseNum:", "Start:", "End:", "Status:", "Report Timestamp" ] # Extract the data for each sample. parser = CoADoc() samples = [] obs = None analyses, results = [], [] for i, line in enumerate(lines): # Skip nuisance rows. skip = False for skip_row in skip_rows: if line.startswith(skip_row): skip = True break if skip: continue # Get all values. values = line.replace('\n', '').split(',') # Skip blank rows. if all([x == '' for x in values]): continue # Identify samples as rows that start with a date. try: date = pd.to_datetime(values[0]) except: date = None if date and values[0] != '': # Record results for any existing observation. if obs is not None: obs['analyses'] = json.dumps(analyses) obs['results'] = json.dumps(results) samples.append(obs) analyses, results = [], [] # Get the details for each sample. try: ids = values[4] batch_number = ids.split('(')[0].split(':')[-1].strip() sample_id = ids.split(':')[-1].replace(')', '').strip() obs = { 'date_tested': date.isoformat(), 'product_type': values[1], 'strain_name': values[2], 'product_name': values[3], 'batch_number': batch_number, 'sample_id': sample_id, 'status': values[-3], 'producer': values[-2], 'producer_license_number': values[-1], } # Handle long product names. except: try: row = lines[i + 1].replace('\n', '').split(',') ids = row[1] except: row = lines[i + 1].replace('\n', '').split(',') + lines[i + 2].replace('\n', '').split(',') ids = row[-4] batch_number = ids.split('(')[0].split(':')[-1].strip() sample_id = ids.split(':')[-1].replace(')', '').strip() obs = { 'date_tested': date.isoformat(), 'product_type': values[1], 'strain_name': values[2], 'product_name': ' '.join([values[3], row[0]]), 'batch_number': batch_number, 'sample_id': sample_id, 'status': row[-3], 'producer': row[-2], 'producer_license_number': row[-1], } continue # Get the cannabinoid results. if values[0] == 'Potency Analysis Test': analyses.append('cannabinoids') n_analytes = 5 for n in range(1, n_analytes + 1): row = lines[i + n].replace('\n', '').split(',') name = row[0] key = parser.analytes.get(snake_case(name), snake_case(name)) if name == 'Total': obs['total_cannabinoids'] = convert_to_numeric(row[1].replace('%', '')) continue results.append({ 'analysis': 'cannabinoids', 'key': key, 'name': name, 'value': convert_to_numeric(row[1].replace('%', '')), 'status': row[2], }) continue # Get the foreign matter results. if values[0] == 'Foreign Matter Inspection Test': analyses.append('foreign_matter') row = lines[i + 1].replace('\n', '').split(',') results.append({ 'analysis': 'foreign_matter', 'key': 'foreign_matter', 'name': 'Foreign Matter', 'value': convert_to_numeric(row[1].replace('%', '')), 'status': row[2], }) continue # Get the microbe results. if values[0] == 'Microbiological Screening Test': analyses.append('microbes') n_analytes = 6 for n in range(1, n_analytes + 1): row = lines[i + n].replace('\n', '').split(',') name = row[0] key = parser.analytes.get(snake_case(name), snake_case(name)) if name == '': continue results.append({ 'analysis': 'microbes', 'key': key, 'name': name, 'value': convert_to_numeric(row[1].split(' ')[0]), 'units': row[1].split(' ')[-1], 'status': row[2], }) continue # Get the mycotoxin results. if values[0] == 'Mycotoxin Screening Test': analyses.append('mycotoxins') row = lines[i + 1].replace('\n', '').split(',') name = row[0] key = parser.analytes.get(snake_case(name), snake_case(name)) results.append({ 'analysis': 'mycotoxins', 'key': key, 'name': name, 'value': convert_to_numeric(row[1].split(' ')[0]), 'status': row[2], }) continue # Get the moisture content result. if values[0] == 'Moisture Content Test': analyses.append('moisture_content') row = lines[i + 1].replace('\n', '').split(',') value = convert_to_numeric(row[1].replace('%', '')) obs['moisture_content'] = value continue # Get the residual solvent results. # See: https://health.hawaii.gov/medicalcannabis/files/2022/05/Chapter-11-850-Hawaii-Administrative-Interim-Rules-Effective-April-29-2022.pdf if values[0] == 'Residual Solvent Test': analyses.append('residual_solvents') solvents = [ 'Benzene', 'Butane', 'Ethanol', 'Heptane', 'Hexane', 'Pentane', 'Toluene', 'Total xylenes' ] for n in range(1, len(solvents) + 1): row = lines[i + n].replace('\n', '').split(',') name = solvents[n - 1] key = parser.analytes.get(snake_case(name), snake_case(name)) results.append({ 'analysis': 'residual_solvents', 'key': key, 'name': name, 'value': convert_to_numeric(row[1].split(' ')[0]), 'units': row[1].split(' ')[-1], 'status': row[2], }) continue # Record the last sample's results. obs['analyses'] = json.dumps(analyses) obs['results'] = json.dumps(results) samples.append(obs) # Return the samples. return pd.DataFrame(samples) # === Tests === # [✓] Tested: 2024-07-10 by Keegan Skeate if __name__ == '__main__': # Define where the data lives. data_dir = 'D://data/hawaii/public-records' datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if x.endswith('.csv')] # Process each CSV file. data = [extract_samples(file) for file in datafiles] # Aggregate all samples. results = pd.concat(data, ignore_index=True) print('Number of results:', len(results)) # Standardize the results. analytes = find_unique_analytes(results) analytes = sorted(list(analytes)) results = standardize_results(results, analytes) # Standardize time. results['date'] = pd.to_datetime(results['date_tested'], format='mixed') results['week'] = results['date'].dt.to_period('W').astype(str) results['month'] = results['date'].dt.to_period('M').astype(str) results = results.sort_values('date') # Save the results. outfile = 'D://data/hawaii/hi-results-latest.xlsx' outfile_csv = 'D://data/hawaii/hi-results-latest.csv' outfile_json = 'D://data/hawaii/hi-results-latest.jsonl' results.to_excel(outfile, index=False) results.to_csv(outfile_csv, index=False) results.to_json(outfile_json, orient='records', lines=True) print('Saved Excel:', outfile) print('Saved CSV:', outfile_csv) print('Saved JSON:', outfile_json) # Print out the features. features = {x: 'string' for x in results.columns} print('Number of features:', len(features)) print('Features:', features)