""" Get Florida cannabis lab results | Kaycha Labs Copyright (c) 2023-2024 Cannlytics Authors: Keegan Skeate Created: 5/18/2023 Updated: 5/22/2024 License: Description: Archive Florida cannabis lab result data for Kaycha Labs. Data Sources: - [Florida Labs](https://knowthefactsmmj.com/cmtl/) - [Florida Licenses](https://knowthefactsmmj.com/mmtc/) - [Kaycha Labs](https://yourcoa.com) """ # Standard imports: from datetime import datetime import os import tempfile from time import sleep from typing import Optional # External imports: from bs4 import BeautifulSoup from cannlytics.data.cache import Bogart from cannlytics.data.coas.coas import CoADoc from cannlytics.data.coas.algorithms.kaycha import parse_kaycha_coa from cannlytics.utils.utils import ( download_file_with_selenium, remove_duplicate_files, ) from cannlytics.utils.constants import DEFAULT_HEADERS import pandas as pd import requests # Get a list of Florida companies. # Note: It may be best to retrieve this list dynamically. # TODO: Try to find COAs for the remaining companies. E.g. # - Plant 13 Florida, Inc. # - House of Platinum Cannabis # - Cookies Florida, Inc. FLORIDA_LICENSES = { 'MMTC-2015-0002': { 'business_dba_name': 'Ayr Cannabis Dispensary', 'business_legal_name': 'Liberty Health Sciences, FL', 'slug': 'Liberty+Health+Sciences%2C+FL', }, 'MMTC-2017-0011': { 'business_dba_name': 'Cannabist', 'slug': 'Cannabist', }, 'MMTC-2019-0018': { 'business_dba_name': 'Cookies Florida, Inc.', 'slug': '', }, 'MMTC-2015-0001': { 'business_dba_name': 'Curaleaf', 'slug': 'CURALEAF+FLORIDA+LLC', }, 'MMTC-2015-0003': { 'business_dba_name': 'Fluent ', 'slug': 'Fluent', }, 'MMTC-2019-0019': { 'business_dba_name': 'Gold Leaf', 'slug': 'Gold+Leaf', }, 'MMTC-2019-0021': { 'business_dba_name': 'Green Dragon', 'slug': 'Green+Dragon', }, 'MMTC-2016-0007': { 'business_dba_name': 'GrowHealthy', 'slug': 'GrowHealthy', }, 'MMTC-2017-0013': { 'business_dba_name': 'GTI (Rise Dispensaries)', 'slug': 'GTI', }, 'MMTC-2018-0014': { 'business_dba_name': 'House of Platinum Cannabis', 'slug': '', }, 'MMTC-2019-0016': { 'business_dba_name': 'Insa - Cannabis for Real Life', 'slug': 'Insa', }, 'MMTC-2019-0015': { 'business_dba_name': 'Jungle Boys', 'slug': 'Jungle+Boys', }, 'MMTC-2017-0010': { 'business_dba_name': 'MüV', 'slug': 'Altmed+Florida', }, 'MMTC-2016-0006': { 'business_dba_name': 'Planet 13 Florida, Inc.', 'slug': '', }, 'MMTC-2019-0022': { 'business_dba_name': 'Revolution Florida', 'slug': 'Revolution', }, 'MMTC-2019-0017': { 'business_dba_name': 'Sanctuary Cannabis', 'slug': 'Sanctuary', }, 'MMTC-2017-0012': { 'business_dba_name': 'Sunburn', 'slug': '', }, 'MMTC-2017-0008': { 'business_dba_name': 'Sunnyside*', 'slug': 'Sunnyside', }, 'MMTC-2015-0004': { 'business_dba_name': 'Surterra Wellness', 'slug': 'Surterra+Wellness', }, 'MMTC-2019-0020': { 'business_dba_name': 'The Flowery', 'slug': 'The+Flowery', }, 'MMTC-2015-0005': { 'business_dba_name': 'Trulieve', 'slug': 'Trulieve', }, 'MMTC-2017-0009': { 'business_dba_name': 'VidaCann', 'slug': 'VidaCann', }, } # Define the minimum file size for a PDF. MIN_FILE_SIZE = 21 * 1024 def download_coas_kaycha( data_dir: str, slug: str, pdf_dir: Optional[str] = None, dba: Optional[str] = None, producer_license_number: Optional[str] = None, overwrite: Optional[bool] = False, base: Optional[str] = 'https://yourcoa.com', columns: Optional[list] = None, pause: Optional[float] = 0.33, cache: Optional[Bogart] = None, ): """Download Kaycha Labs COAs uploaded to the public web.""" # Initialize COA URL collection. if columns is None: columns = ['lab_id', 'batch_number', 'product_name'] # Create an output directory. datasets_dir = os.path.join(data_dir, 'datasets') if not os.path.exists(datasets_dir): os.makedirs(datasets_dir) # Initialize the cache. if cache is None: cache = Bogart() # Request each page until the maximum is reached. page = 0 observations = [] iterate = True while iterate: # Get the first/next page of COAs. page += 1 url = f'{base}/company/company?t={slug}&page={page}' response = requests.get(url, headers=DEFAULT_HEADERS) if response.status_code != 200: print(f'Request failed with status {response.status_code}') # Get the download URLs. soup = BeautifulSoup(response.content, 'html.parser') links = soup.find_all('a') links = [x['href'] for x in links if 'coa-download' in x['href']] links = list(set(links)) links = [base + x for x in links] # Get the details from the page. divs = soup.find_all(class_='pdf_box') print('Found %i samples on page %i.' % (len(divs), page)) for n, div in enumerate(divs): observation = {} spans = div.find_all('span')[:len(columns)] values = [x.text for x in spans] for k, value in enumerate(values): observation[columns[k]] = value try: observation['download_url'] = links[n] except: continue if dba is not None: observation['business_dba_name'] = dba if producer_license_number is not None: observation['producer_license_number'] = producer_license_number observations.append(observation) # See if the next button is disabled to know when to stop iterating. next_element = soup.find(class_='next') if not next_element: iterate = False elif next_element and 'disabled' in next_element.get('class', []): iterate = False # Otherwise pause to respect the server. sleep(pause) # Save the observed lab result URLs. date = datetime.now().isoformat()[:19].replace(':', '-') df = pd.DataFrame(observations) df.to_excel(f'{datasets_dir}/fl-lab-result-urls-{slug}-{date}.xlsx', index=False) print('Saved %i lab result URLs for %s' % (len(df), slug)) # Create a directory for COA PDFs. if pdf_dir is None: pdf_dir = os.path.join(data_dir, 'pdfs') if not os.path.exists(pdf_dir): os.makedirs(pdf_dir) # Create a directory for each licensees COAs. license_pdf_dir = os.path.join(pdf_dir, producer_license_number) if not os.path.exists(license_pdf_dir): os.makedirs(license_pdf_dir) # Download the PDFs. # Checks if the file size is small and retires with Selenium if needed. print('License directory:', license_pdf_dir) for _, row in df.iterrows(): sleep(pause) download_url = row['download_url'] if not download_url.startswith('http'): download_url = base + download_url sample_id = download_url.split('/')[-1].split('?')[0].split('&')[0] outfile = os.path.join(license_pdf_dir, f'{sample_id}.pdf') url_hash = cache.hash_url(download_url) if (os.path.exists(outfile) or cache.get(url_hash)) and not overwrite: print('Cached:', download_url) # DEV: Ween off of os.path.exists and then remove the following line. cache.set(url_hash, {'type': 'download', 'url': download_url, 'file': outfile}) continue cache.set(url_hash, {'type': 'download', 'url': download_url, 'file': outfile}) try: coa_url = f'{base}/coa/download?sample={sample_id}' response = requests.get(coa_url, headers=DEFAULT_HEADERS) if response.status_code == 200: if len(response.content) < MIN_FILE_SIZE: print('File size is small, retrying with Selenium:', download_url) response = requests.get(download_url, allow_redirects=True) if response.status_code == 200: redirected_url = response.url download_file_with_selenium( redirected_url, download_dir=license_pdf_dir, ) print('Downloaded with Selenium:', redirected_url) cache.set(url_hash, {'type': 'download', 'url': download_url, 'redirect_url': redirected_url}) else: with open(outfile, 'wb') as pdf: pdf.write(response.content) print('Downloaded:', outfile) cache.set(url_hash, {'type': 'download', 'url': download_url, 'coa_url': coa_url, 'file': outfile}) else: print('Failed to download, retrying with Selenium:', coa_url) response = requests.get(download_url, allow_redirects=True) if response.status_code == 200: redirected_url = response.url download_file_with_selenium( redirected_url, download_dir=license_pdf_dir, ) print('Downloaded with Selenium:', redirected_url) cache.set(url_hash, {'type': 'download', 'url': download_url, 'redirect_url': redirected_url}) except: coa_url = f'{base}/coa/coa-view?sample={sample_id}' response = requests.get(coa_url, allow_redirects=True) if response.status_code == 200: redirected_url = response.url download_file_with_selenium( redirected_url, download_dir=license_pdf_dir, ) print('Downloaded with Selenium:', redirected_url) cache.set(url_hash, {'type': 'download', 'url': download_url, 'coa_url': coa_url, 'redirect_url': redirected_url}) else: print('Final fail to download with Selenium:', coa_url) # Optional: Keep track of failed to download URLs. # Optional: Try another way to download. # Return the COA URLs. return df def get_results_kaycha( data_dir: str, licenses=None, pause: Optional[float] = 0.33, verbose: Optional[bool] = False, cache_path: Optional[str] = None, **kwargs ): """Get lab results published by Kaycha Labs on the public web.""" # Initialize the cache. cache = Bogart(cache_path) # Download COAs for each licensee. coa_urls = [] if licenses is None: licenses = FLORIDA_LICENSES # TODO: Make this an argument. # items = reversed(licenses.items()) items = licenses.items() for producer_license_number, licensee in items: print('Getting COAs for %s' % licensee['business_dba_name']) urls = download_coas_kaycha( data_dir, slug=licensee['slug'], dba=licensee['business_dba_name'], producer_license_number=producer_license_number, pause=pause, cache=cache, ) coa_urls.append(urls) # Remove duplicate COAs. try: datasets_dir = os.path.join(data_dir, 'datasets') pdf_dir = os.path.join(datasets_dir, 'pdfs') license_pdf_dir = os.path.join(pdf_dir, producer_license_number) remove_duplicate_files(license_pdf_dir, verbose=verbose) except: print('Failed to remove duplicate files.') # Save and return all of the COA URLs. date = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') data = pd.concat(coa_urls) datasets_dir = os.path.join(data_dir, 'datasets') data.to_excel(f'{datasets_dir}/fl-lab-result-urls-{date}.xlsx', index=False) print('Saved %i lab result URLs for Kaycha Labs.' % len(data)) return data def parse_results_kaycha( data_dir: str, pdf_dir: str, temp_path: Optional[str] = None, reverse: Optional[bool] = True, sort: Optional[bool] = False, completed: Optional[list] = None, cache_path: Optional[str] = None, ): """Parse lab results from Kaycha Labs COAs.""" parser = CoADoc() cache = Bogart(cache_path) if temp_path is None: temp_path = tempfile.mkdtemp() date = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') folders = os.listdir(pdf_dir) folders = [x for x in folders if x.startswith('MMTC')] if sort: folders = sorted(folders) if reverse: folders = reversed(folders) if completed is None: completed = [] all_results = [] for folder in folders: if folder in completed: continue # Identify all of the PDFs for a licensee. outfile = os.path.join(data_dir, 'datasets', f'fl-results-{folder}-{date}.xlsx') license_pdf_dir = os.path.join(pdf_dir, folder) pdf_files = os.listdir(license_pdf_dir) if reverse: pdf_files = reversed(pdf_files) # Parse the COA PDFs for each licensee. print('Parsing %i COAs:' % len(pdf_files), folder) all_data = [] for pdf_file in pdf_files: if not pdf_file.endswith('.pdf'): continue # Use cached data if available. pdf_file_path = os.path.join(license_pdf_dir, pdf_file) pdf_hash = cache.hash_file(pdf_file_path) if cache.get(pdf_hash): print('Cached parse:', pdf_file_path) all_data.append(cache.get(pdf_hash)) continue # Parse the PDF. try: doc = os.path.join(license_pdf_dir, pdf_file) coa_data = parse_kaycha_coa( parser, doc, verbose=True, temp_path=temp_path, ) if coa_data.get('producer_license_number') is None: coa_data['producer_license_number'] = folder all_data.append(coa_data) print('Parsed:', doc) except: print('Error:', doc) continue # Cache the data. cache.set(pdf_hash, coa_data) # Save the data for each licensee. all_results.extend(all_data) try: parser.save(all_data, outfile) print('Saved COA data:', outfile) except: print('Failed to save COA data.') # Return all of the parsed data. return all_results # === Test === # [✓] Tested: 2024-05-22 by Keegan Skeate if __name__ == '__main__': # [✓] TEST: Get Kaycha COAs. kaycha_coas = get_results_kaycha( data_dir='D://data/florida/results', pause=7.77, verbose=True, cache_path='D://data/.cache/results-kaycha.jsonl', ) # [✓] TEST: Parse Kaycha COAs. # Note: This is a super, super long process. Uncomment completed # license numbers to parse COA PDFs for all other licenses. # parse_results_kaycha( # data_dir='D://data/florida/results', # pdf_dir='D://data/florida/results/pdfs', # cache_path='D://data/.cache/results-fl-kaycha.jsonl', # reverse=False, # sort=True, # completed=[ # # 'MMTC-2015-0001', # Longest # # "MMTC-2015-0002", # # "MMTC-2015-0004", # "MMTC-2015-0005", # "MMTC-2016-0006", # "MMTC-2015-0003", # 'MMTC-2017-0009', # 'MMTC-2016-0007', # 'MMTC-2017-0008', # 'MMTC-2017-0009', # 'MMTC-2017-0010', # 'MMTC-2017-0011', # 'MMTC-2017-0012', # 'MMTC-2017-0013', # 'MMTC-2018-0014', # 'MMTC-2019-0015', # 'MMTC-2019-0016', # 'MMTC-2019-0017', # 'MMTC-2019-0018', # 'MMTC-2019-0019', # 'MMTC-2019-0020', # 'MMTC-2019-0021', # 'MMTC-2019-0022', # ] # )