""" Cannabis Licenses Copyright (c) 2022 Cannlytics Authors: Keegan Skeate Candace O'Sullivan-Sutherland Created: 9/29/2022 Updated: 10/8/2022 License: """ # Standard imports. import json # External imports. import datasets import pandas as pd # Constants. _SCRIPT = 'cannabis_licenses.py' _VERSION = '1.0.0' _HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_licenses' _LICENSE = "https://opendatacommons.org/licenses/by/4-0/" _DESCRIPTION = """\ Cannabis Licenses (https://cannlytics.com/data/licenses) is a dataset of curated cannabis license data. The dataset consists of 18 sub-datasets for each state with permitted adult-use cannabis, as well as a sub-dataset that includes all licenses. """ _CITATION = """\ @inproceedings{cannlytics2022cannabis_licenses, author = {Skeate, Keegan and O'Sullivan-Sutherland, Candace}, title = {Cannabis Licenses}, booktitle = {Cannabis Data Science}, month = {October}, year = {2022}, address = {United States of America}, publisher = {Cannlytics} } """ # Dataset fields. FIELDS = datasets.Features({ 'id': datasets.Value(dtype='string'), 'license_number': datasets.Value(dtype='string'), 'license_status': datasets.Value(dtype='string'), 'license_status_date': datasets.Value(dtype='string'), 'license_term': datasets.Value(dtype='string'), 'license_type': datasets.Value(dtype='string'), 'license_designation': datasets.Value(dtype='string'), 'issue_date': datasets.Value(dtype='string'), 'expiration_date': datasets.Value(dtype='string'), 'licensing_authority_id': datasets.Value(dtype='string'), 'licensing_authority': datasets.Value(dtype='string'), 'business_legal_name': datasets.Value(dtype='string'), 'business_dba_name': datasets.Value(dtype='string'), 'business_image_url': datasets.Value(dtype='string'), 'business_owner_name': datasets.Value(dtype='string'), 'business_structure': datasets.Value(dtype='string'), 'business_website': datasets.Value(dtype='string'), 'activity': datasets.Value(dtype='string'), 'premise_street_address': datasets.Value(dtype='string'), 'premise_city': datasets.Value(dtype='string'), 'premise_state': datasets.Value(dtype='string'), 'premise_county': datasets.Value(dtype='string'), 'premise_zip_code': datasets.Value(dtype='string'), 'business_email': datasets.Value(dtype='string'), 'business_phone': datasets.Value(dtype='string'), 'parcel_number': datasets.Value(dtype='string'), 'premise_latitude': datasets.Value(dtype='float'), 'premise_longitude': datasets.Value(dtype='float'), 'data_refreshed_date': datasets.Value(dtype='string'), }) # DEV: Read subsets from local source. # with open('subsets.json', 'r') as f: # SUBSETS = json.loads(f.read()) # PRODUCTION: Read subsets from the official source. import urllib.request with urllib.request.urlopen('https://huggingface.co/datasets/cannlytics/cannabis_licenses/raw/main/subsets.json') as url: SUBSETS = json.load(url) class CannabisLicensesConfig(datasets.BuilderConfig): """BuilderConfig for Cannabis Licenses.""" def __init__(self, name, **kwargs): """BuilderConfig for Cannabis Licenses. Args: name (str): Configuration name that determines setup. **kwargs: Keyword arguments forwarded to super. """ description = _DESCRIPTION description += f'This configuration is for the `{name}` subset.' super().__init__(name=name, description=description, **kwargs) class CannabisLicenses(datasets.GeneratorBasedBuilder): """The Cannabis Licenses dataset.""" VERSION = datasets.Version(_VERSION) BUILDER_CONFIG_CLASS = CannabisLicensesConfig BUILDER_CONFIGS = [CannabisLicensesConfig(s) for s in SUBSETS.keys()] DEFAULT_CONFIG_NAME = 'ca' def _info(self): """Returns the dataset metadata.""" return datasets.DatasetInfo( features=FIELDS, supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, description=_DESCRIPTION, license=_LICENSE, version=_VERSION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" config_name = self.config.name data_url = SUBSETS[config_name]['data_url'] urls = {config_name: data_url} downloaded_files = dl_manager.download_and_extract(urls) filepath = downloaded_files[config_name] params = {'filepath': filepath} return [datasets.SplitGenerator(name='data', gen_kwargs=params)] def _generate_examples(self, filepath): """Returns the examples in raw text form.""" with open(filepath) as f: df = pd.read_csv(filepath) for index, row in df.iterrows(): obs = row.to_dict() yield index, obs # === Test === if __name__ == '__main__': from datasets import load_dataset # Define all of the dataset subsets. subsets = list(SUBSETS.keys()) # Load each dataset subset. for subset in subsets: dataset = load_dataset(_SCRIPT, subset) data = dataset['data'] assert len(data) > 0 print('Read %i %s data points.' % (len(data), subset))