""" Cannabis Licenses | Get Montana Licenses Copyright (c) 2022 Cannlytics Authors: Keegan Skeate Candace O'Sullivan-Sutherland Created: 9/27/2022 Updated: 8/17/2023 License: Description: Collect Montana cannabis license data. Data Source: - Montana Department of Revenue | Cannabis Control Division URL: """ # Standard imports. from datetime import datetime import os from typing import Optional # External imports. from cannlytics.data.gis import search_for_address from cannlytics.utils.constants import DEFAULT_HEADERS from dotenv import dotenv_values import pandas as pd import pdfplumber import requests # Specify where your data lives. DATA_DIR = '../data/mt' ENV_FILE = '../../../.env' # Specify state-specific constants. STATE = 'MT' MONTANA = { 'licensing_authority_id': 'MTCCD', 'licensing_authority': 'Montana Cannabis Control Division', 'licenses': { 'columns': [ { 'key': 'premise_city', 'name': 'City', 'area': [0, 0.25, 0.2, 0.95], }, { 'key': 'business_legal_name', 'name': 'Location Name', 'area': [0.2, 0.25, 0.6, 0.95], }, { 'key': 'license_designation', 'name': 'Sales Type', 'area': [0.6, 0.25, 0.75, 0.95], }, { 'key': 'business_phone', 'name': 'Phone Number', 'area': [0.75, 0.25, 1, 0.95], }, ] }, 'retailers': { 'url': 'https://mtrevenue.gov/wp-content/uploads/dlm_uploads/2023/08/Dispensary-8-2023.pdf', 'columns': ['city', 'dba', 'license_type', 'phone'] }, # FIXME: Add other license types. # https://mtrevenue.gov/cannabis/#CannabisLicenses 'processors': {'url': 'https://mtrevenue.gov/?mdocs-file=60250'}, 'cultivators': {'url': 'https://mtrevenue.gov/?mdocs-file=60252'}, 'labs': {'url': 'https://mtrevenue.gov/?mdocs-file=60248'}, 'transporters': {'url': 'https://mtrevenue.gov/?mdocs-file=72489'}, } def get_licenses_mt( data_dir: Optional[str] = None, env_file: Optional[str] = '.env', ): """Get Montana cannabis license data.""" # Create directories if necessary. pdf_dir = f'{data_dir}/pdfs' if not os.path.exists(data_dir): os.makedirs(data_dir) if not os.path.exists(pdf_dir): os.makedirs(pdf_dir) # Download the retailers PDF. timestamp = datetime.now().isoformat()[:19].replace(':', '-') outfile = f'{pdf_dir}/mt-retailers-{timestamp}.pdf' response = requests.get(MONTANA['retailers']['url'], headers=DEFAULT_HEADERS) with open(outfile, 'wb') as pdf: pdf.write(response.content) # Read the PDF. doc = pdfplumber.open(outfile) # Get the table rows. rows = [] front_page = doc.pages[0] width, height = front_page.width, front_page.height x0, y0, x1, y1 = tuple([0, 0.25, 1, 0.95]) page_area = (x0 * width, y0 * height, x1 * width, y1 * height) for page in doc.pages: crop = page.within_bbox(page_area) text = crop.extract_text() lines = text.split('\n') for line in lines: rows.append(line) # Get cities from the first column, used to identify the city for each line. cities = [] city_area = MONTANA['licenses']['columns'][0]['area'] x0, y0, x1, y1 = tuple(city_area) column_area = (x0 * width, y0 * height, x1 * width, y1 * height) for page in doc.pages: crop = page.within_bbox(column_area) text = crop.extract_text() lines = text.split('\n') for line in lines: cities.append(line) # Find all of the unique cities. cities = list(set(cities)) cities = [x for x in cities if x != 'City'] # Get all of the license data. data = [] rows = [x for x in rows if not x.startswith('City')] for row in rows: # Get all of the license observation data. obs = {} text = str(row) # Identify the city and remove the city from the name (only once b/c of DBAs!). for city in cities: if city in row: obs['premise_city'] = city.title() text = text.replace(city, '', 1).strip() break # Identify the license designation. if 'Adult Use' in row: parts = text.split('Adult Use') obs['license_designation'] = 'Adult Use' else: parts = text.split('Medical Only') obs['license_designation'] = 'Medical Only' # Skip rows with double-row text. if len(row) == 1: continue # Record the name. obs['business_legal_name'] = name = parts[0] # Record the phone number. if '(' in text: obs['business_phone'] = parts[-1].strip() # Record the observation. data.append(obs) # Aggregate the data. retailers = pd.DataFrame(data) retailers = retailers.loc[~retailers['premise_city'].isna()] # Convert certain columns from upper case title case. cols = ['business_legal_name', 'premise_city'] for col in cols: retailers[col] = retailers[col].apply( lambda x: x.title().replace('Llc', 'LLC').replace("'S", "'s").strip() ) # Standardize the data. retailers['id'] = retailers.index retailers['license_number'] = None # FIXME: It would be awesome to find these! retailers['licensing_authority_id'] = MONTANA['licensing_authority_id'] retailers['licensing_authority'] = MONTANA['licensing_authority'] retailers['premise_state'] = STATE retailers['license_status'] = 'Active' retailers['license_status_date'] = None retailers['license_type'] = 'Commercial - Retailer' retailers['license_term'] = None retailers['issue_date'] = None retailers['expiration_date'] = None retailers['business_owner_name'] = None retailers['business_structure'] = None retailers['activity'] = None retailers['parcel_number'] = None retailers['business_email'] = None retailers['business_image_url'] = None # Separate any `business_dba_name` from `business_legal_name`. retailers['business_dba_name'] = retailers['business_legal_name'] criterion = retailers['business_legal_name'].str.contains('Dba') retailers.loc[criterion, 'business_dba_name'] = retailers.loc[criterion] \ ['business_legal_name'].apply(lambda x: x.split('Dba')[-1].strip()) retailers.loc[criterion, 'business_legal_name'] = retailers.loc[criterion] \ ['business_legal_name'].apply(lambda x: x.split('Dba')[0].strip()) # Search for address for each retail license. # Only search for a query once, then re-use the response. # Note: There is probably a much, much more efficient way to do this!!! config = dotenv_values(env_file) api_key = config['GOOGLE_MAPS_API_KEY'] cols = ['business_dba_name', 'premise_city', 'premise_state'] retailers['query'] = retailers[cols].apply( lambda row: ', '.join(row.values.astype(str)), axis=1, ) queries = {} fields = [ 'formatted_address', 'geometry/location/lat', 'geometry/location/lng', 'website', ] retailers = retailers.reset_index(drop=True) retailers = retailers.assign( premise_street_address=None, premise_county=None, premise_zip_code=None, premise_latitude=None, premise_longitude=None, business_website=None, ) for index, row in retailers.iterrows(): query = row['query'] gis_data = queries.get(query) if gis_data is None: try: gis_data = search_for_address(query, api_key=api_key, fields=fields) except: gis_data = {} queries[query] = gis_data retailers.iat[index, retailers.columns.get_loc('premise_street_address')] = gis_data.get('street') retailers.iat[index, retailers.columns.get_loc('premise_county')] = gis_data.get('county') retailers.iat[index, retailers.columns.get_loc('premise_zip_code')] = gis_data.get('zipcode') retailers.iat[index, retailers.columns.get_loc('premise_latitude')] = gis_data.get('latitude') retailers.iat[index, retailers.columns.get_loc('premise_longitude')] = gis_data.get('longitude') retailers.iat[index, retailers.columns.get_loc('business_website')] = gis_data.get('website') # Clean-up after getting GIS data. retailers.drop(columns=['query'], inplace=True) # Get the refreshed date. timestamp = datetime.now().isoformat() retailers['data_refreshed_date'] = timestamp # Save the data. if data_dir is not None: if not os.path.exists(data_dir): os.makedirs(data_dir) date = timestamp[:10] retailers.to_csv(f'{data_dir}/retailers-{STATE.lower()}-{date}.csv', index=False) retailers.to_csv(f'{data_dir}/licenses-{STATE.lower()}-{date}.csv', index=False) retailers.to_csv(f'{data_dir}/licenses-{STATE.lower()}-latest.csv', index=False) # Return the data. return retailers # === Test === # [✓] Tested: 2023-08-13 by Keegan Skeate if __name__ == '__main__': # Support command line usage. import argparse try: arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--d', dest='data_dir', type=str) arg_parser.add_argument('--data_dir', dest='data_dir', type=str) arg_parser.add_argument('--env', dest='env_file', type=str) args = arg_parser.parse_args() except SystemExit: args = {'d': DATA_DIR, 'env_file': ENV_FILE} # Get licenses, saving them to the specified directory. data_dir = args.get('d', args.get('data_dir')) env_file = args.get('env_file') data = get_licenses_mt(data_dir, env_file=env_file)