""" Cannabis Licenses | Get New Jersey Licenses Copyright (c) 2022 Cannlytics Authors: Keegan Skeate Candace O'Sullivan-Sutherland Created: 9/29/2022 Updated: 8/17/2023 License: Description: Collect New Jersey cannabis license data. Data Source: - New Jersey Cannabis Regulatory Commission URL: """ # Standard imports. from datetime import datetime import os from typing import Optional # External imports. import pandas as pd import requests # Specify where your data lives. DATA_DIR = '../data/nj' # Specify state-specific constants. STATE = 'NJ' NEW_JERSEY = { 'licensing_authority_id': 'NJCRC', 'licensing_authority': 'New Jersey Cannabis Regulatory Commission', 'retailers': { 'columns': { 'name': 'business_dba_name', 'address': 'premise_street_address', 'town': 'premise_city', 'state': 'premise_state', 'zip_code': 'premise_zip_code', 'county': 'premise_county', 'phone_number': 'business_phone', 'type': 'license_type', } } } def get_licenses_nj( data_dir: Optional[str] = None, **kwargs, ): """Get New Jersey cannabis license data.""" # Get retailer data. url = 'https://data.nj.gov/resource/nv37-s2zn.json' response = requests.get(url) data = pd.DataFrame(response.json()) # Parse the website. data['business_website'] = data['website'].apply(lambda x: x['url']) # Parse the GIS coordinates. data['premise_longitude'] = data['dispensary_location'].apply( lambda x: x['coordinates'][0] ) data['premise_latitude'] = data['dispensary_location'].apply( lambda x: x['coordinates'][1] ) # Standardize the data. timestamp = datetime.now().isoformat() drop_cols = ['dispensary_location', 'location', 'website'] data.drop(columns=drop_cols, inplace=True) data.rename(columns=NEW_JERSEY['retailers']['columns'], inplace=True) data['business_legal_name'] = data['business_dba_name'] data['licensing_authority_id'] = NEW_JERSEY['licensing_authority_id'] data['licensing_authority'] = NEW_JERSEY['licensing_authority'] data['license_designation'] = 'Adult-Use' data['premise_state'] = STATE data['license_status_date'] = None data['license_term'] = None data['issue_date'] = None data['expiration_date'] = None data['business_owner_name'] = None data['business_structure'] = None data['business_email'] = None data['activity'] = None data['parcel_number'] = None data['business_image_url'] = None data['id'] = None data['license_number'] = None data['license_status'] = None data['data_refreshed_date'] = timestamp # Convert certain columns from upper case title case. cols = ['premise_city', 'premise_county', 'premise_street_address'] for col in cols: data[col] = data[col].apply(lambda x: x.title().strip()) # Save and return the data. if data_dir is not None: if not os.path.exists(data_dir): os.makedirs(data_dir) date = timestamp[:10] data.to_csv(f'{data_dir}/licenses-{STATE.lower()}-{date}.csv', index=False) data.to_csv(f'{data_dir}/licenses-{STATE.lower()}-latest.csv', index=False) return data # === Test === # [✓] Tested: 2023-08-13 by Keegan Skeate if __name__ == '__main__': # Support command line usage. import argparse try: arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--d', '--data_dir', dest='data_dir', type=str) args = arg_parser.parse_args() except SystemExit: args = {'d': DATA_DIR} # Get licenses, saving them to the specified directory. data_dir = args.get('d', args.get('data_dir')) data = get_licenses_nj(data_dir)