""" For examples: >>> python visualize_2d.py \ --seq_dir synbody_v1_0/20230113/Downtown/LS_0114_004551_088_CAM002 \ --body_model {path_to_body_model} \ --save_path vis/LS_0114_004551_088_CAM002.mp4 """ from pathlib import Path import cv2 import numpy as np import pyrender import smplx import torch import tqdm import trimesh from pyrender.viewer import DirectionalLight, Node # some constants num_betas = 10 num_pca_comps = 45 flat_hand_mean = False w = 1280 h = 720 fx = fy = max(w, h) / 2 def load_data(seq_dir): seq_dir = Path(seq_dir) # load images frame_paths = sorted(seq_dir.glob('rgb/*.jpeg')) images = [cv2.imread(str(p)) for p in frame_paths] # load parameters person_paths = sorted(seq_dir.glob('smplx/*.npz')) persons = {} for p in person_paths: person_id = p.stem person = dict(np.load(p, allow_pickle=True)) for annot in person.keys(): if isinstance(person[annot], np.ndarray) and person[annot].ndim == 0: person[annot] = person[annot].item() persons[person_id] = person return images, persons def compute_camera_pose(camera_pose): # Convert OpenCV cam pose to OpenGL cam pose # x,-y,-z -> x,y,z R_convention = np.array([[1.0, 0.0, 0.0, 0.0], [0.0, -1.0, 0.0, 0.0], [0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) camera_pose = R_convention @ camera_pose return camera_pose def create_raymond_lights(): # set directional light at axis origin, with -z direction align with +z direction of camera/world frame matrix = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) return [Node(light=DirectionalLight(color=np.ones(3), intensity=2.0), matrix=matrix)] def draw_overlay(img, camera, camera_pose, meshes): scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3)) for i, mesh in enumerate(meshes): scene.add(mesh, f'mesh_{i}') # Defination of cam_pose: transformation from cam coord to world coord scene.add(camera, pose=camera_pose) light_nodes = create_raymond_lights() for node in light_nodes: scene.add_node(node) r = pyrender.OffscreenRenderer(viewport_width=w, viewport_height=h, point_size=1) color, _ = r.render(scene, flags=pyrender.RenderFlags.RGBA) color = color.astype(np.float32) / 255.0 valid_mask = color > 0 img = img / 255 output_img = color * valid_mask + (1 - valid_mask) * img img = (output_img * 255).astype(np.uint8) return img def draw_bboxes(img, bboxes): for person_id, bbox in bboxes.items(): x, y, w, h = bbox x, y, w, h = int(x), int(y), int(w), int(h) img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2) img = cv2.putText(img, person_id, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) return img def visualize_2d(seq_dir, body_model_path, save_path): # Set device device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Initialize body model body_model = smplx.create( body_model_path, model_type='smplx', flat_hand_mean=flat_hand_mean, use_face_contour=True, use_pca=True, num_betas=num_betas, num_pca_comps=num_pca_comps, ).to(device) # Initialize components for rendering camera = pyrender.camera.IntrinsicsCamera(fx=fx, fy=fy, cx=w / 2, cy=h / 2) camera_pose = compute_camera_pose(np.eye(4)) # visualize in camera coord material = pyrender.MetallicRoughnessMaterial( metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=(1.0, 1.0, 0.9, 1.0) ) # Load data images, persons = load_data(seq_dir) # Draw overlay save_images = [] for frame_idx, image in enumerate(tqdm.tqdm(images)): # Prepare meshes to visualize meshes = [] for person in persons.values(): person = person['smplx'] model_output = body_model( global_orient=torch.tensor(person['global_orient'][[frame_idx]], device=device), body_pose=torch.tensor(person['body_pose'][[frame_idx]], device=device), transl=torch.tensor(person['transl'][[frame_idx]], device=device), betas=torch.tensor(person['betas'][[frame_idx]], device=device), left_hand_pose=torch.tensor(person['left_hand_pose'][[frame_idx]], device=device), right_hand_pose=torch.tensor(person['right_hand_pose'][[frame_idx]], device=device), return_verts=True, ) vertices = model_output.vertices.detach().cpu().numpy().squeeze() faces = body_model.faces out_mesh = trimesh.Trimesh(vertices, faces, process=False) mesh = pyrender.Mesh.from_trimesh(out_mesh, material=material) meshes.append(mesh) image = draw_overlay(image, camera, camera_pose, meshes) # Visualize bounding boxes # bboxes = {person_id: person['keypoints2d'][frame_idx] for person_id, person in persons.items()} # image = draw_bboxes(image, bboxes) save_images.append(image) # Save visualization video Path(save_path).parent.mkdir(parents=True, exist_ok=True) fourcc = cv2.VideoWriter_fourcc(*'mp4v') video = cv2.VideoWriter(save_path, fourcc, fps=15, frameSize=(w, h)) for image in save_images: video.write(image) video.release() print(f'Visualization video saved at {save_path}') if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--seq_dir', type=str, required=True, help='directory containing the sequence data.') parser.add_argument( '--body_model_path', type=str, required=True, help='directory in which SMPL body models are stored.' ) parser.add_argument('--save_path', type=str, required=True, help='path to save the visualization video.') args = parser.parse_args() visualize_2d(args.seq_dir, args.body_model_path, args.save_path)