Datasets:
Tasks:
Conversational
Sub-tasks:
dialogue-generation
Languages:
English
Multilinguality:
monolingual
Size Categories:
1K<n<10K
Language Creators:
crowdsourced
Annotations Creators:
crowdsourced
Source Datasets:
original
ArXiv:
License:
"""TODO(blended_skill_talk): Add a description here.""" | |
import json | |
import datasets | |
# TODO(blended_skill_talk): BibTeX citation | |
_CITATION = """\ | |
@misc{smith2020evaluating, | |
title={Can You Put it All Together: Evaluating Conversational Agents' Ability to Blend Skills}, | |
author={Eric Michael Smith and Mary Williamson and Kurt Shuster and Jason Weston and Y-Lan Boureau}, | |
year={2020}, | |
eprint={2004.08449}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
# TODO(blended_skill_talk): | |
_DESCRIPTION = """\ | |
A dataset of 7k conversations explicitly designed to exhibit multiple conversation modes: displaying personality, having empathy, and demonstrating knowledge. | |
""" | |
_URL = "http://parl.ai/downloads/blended_skill_talk/blended_skill_talk.tar.gz" | |
_TASK = ["convai2", "empathetic_dialogues", "wizard_of_wikipedia"] | |
class BlendedSkillTalk(datasets.GeneratorBasedBuilder): | |
"""TODO(blended_skill_talk): Short description of my dataset.""" | |
# TODO(blended_skill_talk): Set up version. | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
# TODO(blended_skill_talk): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"personas": datasets.features.Sequence(datasets.Value("string")), | |
"additional_context": datasets.Value("string"), | |
"previous_utterance": datasets.features.Sequence(datasets.Value("string")), | |
"context": datasets.Value("string"), | |
"free_messages": datasets.features.Sequence(datasets.Value("string")), | |
"guided_messages": datasets.features.Sequence(datasets.Value("string")), | |
"suggestions": datasets.features.Sequence({task: datasets.Value("string") for task in _TASK}), | |
"guided_chosen_suggestions": datasets.features.Sequence(datasets.Value("string")), | |
"label_candidates": datasets.features.Sequence( | |
datasets.features.Sequence(datasets.Value("string")) | |
), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://parl.ai/projects/bst/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(blended_skill_talk): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
archive = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": "train.json", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": "valid.json", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": "test.json", | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, files): | |
"""Yields examples.""" | |
# TODO(blended_skill_talk): Yields (key, example) tuples from the dataset | |
for path, f in files: | |
if path == filepath: | |
data = json.load(f) | |
for id_, row in enumerate(data): | |
personas = [row["personas"][1][0], row["personas"][1][1]] | |
dialogs = [dialog[1] for dialog in row["dialog"]] | |
free_messages = [] | |
guided_messages = [] | |
for i in range(len(dialogs) // 2): | |
free_messages.append(dialogs[2 * i]) | |
guided_messages.append(dialogs[2 * i + 1]) | |
context = row["context_dataset"] | |
add_context = row["additional_context"] if context == "wizard_of_wikipedia" else "" | |
previous_utterance = [row["free_turker_utterance"], row["guided_turker_utterance"]] | |
suggestions = row["suggestions"] | |
convai_suggestions = [] | |
empathetic_suggestions = [] | |
wow_suggestions = [] | |
for i in range(len(suggestions) // 2): | |
convai_suggestions.append(suggestions[2 * i + 1]["convai2"]) | |
empathetic_suggestions.append(suggestions[2 * i + 1]["empathetic_dialogues"]) | |
wow_suggestions.append(suggestions[2 * i + 1]["wizard_of_wikipedia"]) | |
chosen_suggestions = row["chosen_suggestions"] | |
guided_chosen_suggestions = [] | |
for i in range(len(chosen_suggestions) // 2): | |
guided_chosen_suggestions.append(chosen_suggestions[2 * i + 1]) | |
label_candidates = row["label_candidates"] if "label_candidates" in row else [] | |
yield id_, { | |
"personas": personas, | |
"additional_context": add_context, | |
"previous_utterance": previous_utterance, | |
"context": context, | |
"free_messages": free_messages, | |
"guided_messages": guided_messages, | |
"suggestions": { | |
"convai2": convai_suggestions, | |
"empathetic_dialogues": empathetic_suggestions, | |
"wizard_of_wikipedia": wow_suggestions, | |
}, | |
"guided_chosen_suggestions": guided_chosen_suggestions, | |
"label_candidates": label_candidates, | |
} | |
break | |