--- language: en license: unknown task_categories: - image-classification paperswithcode_id: firerisk pretty_name: FireRisk tags: - remote-sensing - earth-observation - geospatial - aerial-imagery - land-cover-classification dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': high '1': low '2': moderate '3': non-burnable '4': very_high '5': very_low '6': water splits: - name: train num_bytes: 11575141474.625 num_examples: 70331 download_size: 11575727336 dataset_size: 11575141474.625 configs: - config_name: default data_files: - split: train path: data/train-* --- # FireRisk ![FireRisk](./thumbnail.jpg) The FireRisk dataset is a dataset for remote sensing fire risk classification. - **Paper:** https://arxiv.org/abs/2303.07035 - **Homepage:** https://github.com/CharmonyShen/FireRisk ## Description - **Total Number of Images**: 91872 - **Bands**: 3 (RGB) - **Image Size**: 320x320 - **101,878 tree annotations** - **Image Resolution**: 1m - **Land Cover Classes**: 7 - **Classes**: high, low, moderate, non-burnable, very_high, very_low, water - **Source**: NAIP Aerial ## Usage To use this dataset, simply use `datasets.load_dataset("blanchon/FireRisk")`. ```python from datasets import load_dataset FireRisk = load_dataset("blanchon/FireRisk") ``` ## Citation If you use the EuroSAT dataset in your research, please consider citing the following publication: ```bibtex @article{shen2023firerisk, title = {FireRisk: A Remote Sensing Dataset for Fire Risk Assessment with Benchmarks Using Supervised and Self-supervised Learning}, author = {Shuchang Shen and Sachith Seneviratne and Xinye Wanyan and Michael Kirley}, year = {2023}, journal = {arXiv preprint arXiv: 2303.07035} } ```