
S TA R C O D E R :
M AY T H E S O U R C E B E W I T H Y O U !

Raymond Li2 Loubna Ben Allal1 Yangtian Zi4 Niklas Muennighoff1 Denis Kocetkov2
Chenghao Mou5 Marc Marone8 Christopher Akiki9,10 Jia Li5 Jenny Chim11

Qian Liu13 Evgenii Zheltonozhskii14 Terry Yue Zhuo15,16 Thomas Wang1

Olivier Dehaene1 Mishig Davaadorj1 Joel Lamy-Poirier2 João Monteiro2
Oleh Shliazhko2 Nicolas Gontier2 Nicholas Meade6,17 Armel Randy1 Ming-Ho Yee4
Logesh Kumar Umapathi18 Jian Zhu19 Benjamin Lipkin20 Muhtasham Oblokulov21

Zhiruo Wang7 Rudra Murthy22 Jason Stillerman23 Siva Sankalp Patel22
Dmitry Abulkhanov5 Marco Zocca24 Manan Dey25 Zhihan Zhang26 Nour Fahmy27

Urvashi Bhattacharyya28 Suriya Gunasekar29 Wenhao Yu26 Swayam Singh30

Sasha Luccioni1 Paulo Villegas31 Maxim Kunakov32 Fedor Zhdanov32

Manuel Romero5 Tony Lee33 Nadav Timor34 Jennifer Ding35 Claire Schlesinger4
Hailey Schoelkopf37 Jan Ebert38 Tri Dao33 Mayank Mishra22 Alex Gu20

Jennifer Robinson3 Carolyn Jane Anderson36 Brendan Dolan-Gavitt39
Danish Contractor5 Siva Reddy2,6 Daniel Fried7 Dzmitry Bahdanau2 Yacine Jernite1

Carlos Muñoz Ferrandis1 Sean Hughes3 Thomas Wolf1 Arjun Guha4,12

Leandro von Werra1,⋆ Harm de Vries2,⋆

1Hugging Face 2ServiceNow Research 3ServiceNow 4Northeastern University 5Independent
6Mila 7Carnegie Mellon University 8Johns Hopkins University 9Leipzig University

10ScaDS.AI 11Queen Mary University of London 12Roblox 13Sea AI Lab 14Technion –
Israel Institute of Technology 15Monash University 16CSIRO’s Data61 17McGill University

18Saama AI Research Lab 19University of British Columbia 20MIT 21Technical University of
Munich 22IBM Research 23University of Vermont 24UnfoldML 25SAP 26University of

Notre Dame 27Columbia University 28Discover Dollar Pvt Ltd 29Microsoft Research
30University of Allahabad 31Telefonica I+D 32Toloka 33Stanford University 34Weizmann

Institute of Science 35The Alan Turing Institute 36Wellesley College 37Eleuther AI
38Forschungszentrum Jülich 39NYU

Corresponding authors (⋆) can be contacted at contact@bigcode-project.org

A B S T R A C T

The BigCode community, an open-scientific collaboration working on the responsi-
ble development of Large Language Models for Code (Code LLMs), introduces
StarCoder and StarCoderBase: 15.5B parameter models with 8K context length,
infilling capabilities and fast large-batch inference enabled by multi-query attention.
StarCoderBase is trained on 1 trillion tokens sourced from The Stack (Kocetkov
et al., 2022), a large collection of permissively licensed GitHub repositories with in-
spection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python
tokens, resulting in the creation of StarCoder. We perform the most comprehensive
evaluation of Code LLMs to date and show that StarCoderBase outperforms every
open Code LLM that supports multiple programming languages and matches or
outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder out-
performs every model that is fine-tuned on Python, can be prompted to achieve 40%
pass@1 on HumanEval, and still retains its performance on other programming
languages. We take several important steps towards a safe open-access model
release, including an improved PII redaction pipeline and a novel attribution tracing
tool, and make the StarCoder models publicly available under a more commercially
viable version of the Open Responsible AI Model license.

1 I N T R O D U C T I O N

Large Language Models (LLMs; Brown et al., 2020; Chen et al., 2021; Chowdhery et al., 2022; Zhang
et al., 2022; OpenAI, 2023a), such as OpenAI’s ChatGPT, are taking the world by storm. Within a

1

contact@bigcode-project.org

mere two months of launching, ChatGPT has amassed over 100 million users, making it the fastest-
growing internet application in history (The Guardian, 2023). Similarly, Microsoft’s Copilot, an LLM
designed for coding applications, has attracted over 1 million professional developers (Euronews,
2023) and can accelerate coding tasks by up to 55% (Kalliamvakou, 2022). Generative AI models, and
LLMs in particular, are exciting new productivity-boosting tools, which are predicted to significantly
impact the workforce in the coming years (Eloundou et al., 2023; Bommasani et al., 2021; World
Economic Forum, 2023). Although this work focuses on LLMs trained on code (Code LLMs),
many growing techno-social concerns are being raised within the broader context of generative AI
technology.

Some safety concerns, such as generating false information or amplifying existing biases, are
being addressed after training by using various techniques to better “align” the LLM with human
values (Stiennon et al., 2020; Bai et al., 2022; Perez et al., 2022). Other legal and ethical concerns
already arise during the pre-training phase, specifically regarding the rights of content creators
whose public data is used to train the language model. This data is subject to copyright laws in
many jurisdictions, including the U.S. and E.U. It has been questioned whether machine learning
models trained on such data fall under exemptions such as the fair-use doctrine in the U.S. (Kuhn,
2022; Butterick, 2022; Rothchild & Rothchild, 2022). It is likely considered fair use when a model
generates novel content that is not in the training set, as it is a transformative use of the copyrighted
material (Lemley & Casey, 2020). However, if the model produces output similar to copyrighted
data, particularly in scenarios that affect the economic market of the content creators, fair use may
no longer apply (Levendowski, 2018). Henderson et al. (2023), therefore, suggest LLM developers
should provide additional tools to ensure these models comply with current copyright laws. It is
important to mention that these legal issues are not only the subject of scholarly debates: lawsuits
have already been filed against GitHub Copilot (DOE 1 v. and GitHub, Inc., 2022) as well as Stable
Diffusion (Andersen et al v. Stability AI et al, 2023), a text-to-image tool from Stability AI.

Concerns about personal information led Italy to temporarily ban ChatGPT and launch an on-
going investigation into OpenAI’s compliance with the E.U.’s General Data Protection Regula-
tion (GDPR) (BBC, 2023). According to these regulations (European Council, 2018; Lomas, 2022),
organizations that process personal information must have a valid legal basis. These laws could
potentially affect LLM developers who gather vast amounts of public data from the internet, which
may include personal information. Obtaining explicit consent from data creators is difficult at this
scale, and it is uncertain whether other legal grounds exist for processing this personal information.
Moreover, even with a valid legal basis, GDPR mandates that data processors inform individuals as
to how their data is being processed and provide data access controls, such as the right to have your
data deleted or to modify erroneous data. This would require LLM providers to be transparent about
the data they have collected and provide tooling for individuals to inspect their data and have the
possibility to delete it.

The lack of transparency and openness surrounding the development processes of generative AI
models has also raised concerns in the scientific community. Some of the best-performing LLMs,
such as Google’s PaLM (Chowdhery et al., 2022) and DeepMind’s Chinchilla (Hoffmann et al., 2022),
were developed in a completely closed manner, restricting model access to researchers within their
respective organizations. Although OpenAI and other AI startups have made their LLMs available to
the general public, they have done so through a paid API service and without sharing all the details
regarding the development process. While API access allows researchers to experiment with these
models, it limits their ability to research LLM safety and alignment (Perez et al., 2022) and inspect
the models’ inner workings (Olsson et al., 2022). Additionally, the high development costs make it
nearly impossible for academic institutions to develop these models from scratch, which has created
anxiety among academic researchers about whether they can meaningfully contribute to new AI
breakthroughs (Togelius & Yannakakis, 2023).

Other research projects have shared their developed LLMs publicly. In this work, we refer to open-
access LLMs when the model weights are publicly available. However, we stress that the level of
openness still varies across these open-access models, specifically regarding the extent to which they
have made their training data and filtering methods available. For example, Google released the model
weights of T5 (Raffel et al., 2020) and UL2 (Tay et al., 2022) under a permissive license and released
the corresponding C4 training set (Raffel et al., 2020). On the other hand, Salesforce released the
model weights of CodeGen-Mono (Nijkamp et al., 2023) under a permissive license, but they did not
make the proprietary Python training set available. OPT (Zhang et al., 2022) and LLaMA (Touvron

2

et al., 2023) also do not provide access to the training data and place additional restrictions on the
distribution of the model weights (non-commercial use only). Note that the development of these
models all took place within their respective companies and was not accessible to external researchers.

In contrast, other LLM projects have embraced a fully open approach. The BigScience research
workshop (BigScience Workshop, 2022) was an open scientific collaboration (Akiki et al., 2022)
with hundreds of researchers from diverse backgrounds and countries working together to release
BLOOM, a multi-lingual LLM (Scao et al., 2022; Muennighoff et al., 2022). Similarly, EleutherAI, a
grassroots-turned-nonprofit research initiative, has released several open-access LLMs, including
GPT-NeoX (Black et al., 2022), GPT-J (Wang & Komatsuzaki, 2021), and Pythia (Biderman et al.,
2023), as well as the associated training data (Gao et al., 2021a).

Solaiman (2023) explains how the degree of openness in the LLM development process is connected
to the potential risks associated with a model release. When systems are developed in a fully closed
manner, it’s more likely that power gets concentrated among high-resourced organizations, and the
small development team may not fully comprehend the impact and long-term consequences of the
model being deployed. In addition, closed-development systems are often less auditable by external
experts and can impede scientific progress since researchers cannot build upon each other’s work.
On the other hand, fully open development allows for community research, democratizes access to
the models, and enables full audits throughout the whole development process. However, without
appropriate guardrails, open LLM development poses a higher risk of misuse, as increased model
access also increases the likelihood of harm caused by the model. Even though a released API can be
shut down, once the model weights are released, it is nearly impossible to retract them. Therefore, it
is crucial to discuss and develop responsible AI practices as part of the open development of LLMs.

In light of these considerations, the BigCode project was launched as an open-scientific collaboration
focusing on the responsible development of LLMs for code. BigCode is co-stewarded by Hugging
Face and ServiceNow and has brought together more than 600 members from diverse academic
institutes and industry labs. The community has several working groups that focus on topics such as
collecting datasets, implementing fast inference methods, creating an evaluation suite, and developing
ethical best practices for these models. The community previously released The Stack (Kocetkov et al.,
2022), a 6.4 TB dataset of permissively licensed source code in 384 programming languages, and
included 54 GB of GitHub issues and repository-level metadata in the v1.2 version of the dataset. The
Stack comes with “Am I in The Stack”, a governance tool for developers to check whether their source
code is part of the dataset, and an opt-out process for those who wish to have their code removed
from the dataset. In December 2022, the BigCode community also released SantaCoder (Ben Allal
et al., 2023), a strong-performing 1.1B parameter model trained on Java, JavaScript, and Python code
from The Stack.

In this technical report, we describe our efforts to develop StarCoder and StarCoderBase, two
15.5B parameter models trained on permissively licensed data from The Stack. We trained StarCoder-
Base on 1 trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits,
and Jupyter notebooks. We fine-tuned StarCoderBase on another 35B Python tokens, leading to the
StarCoder model. Both StarCoder models come with a novel combination of architectural features,
such as an 8K context length (Dao et al., 2022), infilling capabilities through Fill-in-the-Middle (FIM;
Bavarian et al., 2022), and fast large-batch inference through Multi-Query-Attention (MQA; Shazeer,
2019). We present an extensive evaluation of the StarCoder models and release a demo along with an
integrated attribution tool that can help users locate model generations that may have been copied
from the training set. Overall, our contributions can be summarized as follows.

• We release StarCoderBase and StarCoder, open-access Code LLMs trained on 80+ program-
ming languages that support a novel combination of capabilities and architectural features
unavailable in other open Code LLMs.

• We perform the most comprehensive evaluation of Code LLMs to date using a diverse set of
benchmarks (Lai et al., 2022; Cassano et al., 2023; Pearce et al., 2022; Fried et al., 2022;
Yee & Guha, 2023; Austin et al., 2021; Chen et al., 2021; Ben Allal et al., 2022; Hendrycks
et al., 2020; Reddy et al., 2019; Cobbe et al., 2021; Nadeem et al., 2021; Gehman et al.,
2020; Liang et al., 2022), and show that:

– StarCoder outperforms every open LLM for code that supports multiple programming
languages (Nijkamp et al., 2023; Zheng et al., 2023);

3

– StarCoder matches or outperforms the OpenAI code-cushman-001 model;
– When fine-tuned on Python, StarCoder substantially outperforms existing LLMs that

are also fine-tuned on Python; and
– Leveraging its 8K token context, StarCoder can be prompted to behave as a virtual

technical assistant without instruction-tuning or RLHF.
• We take important steps towards a safe open model release:

– We release StarCoder under an OpenRAIL-M license agreement, which enables royalty-
free access, use, and distribution of the model while embedding a set of use restrictions
in identified critical scenarios. We have worked on a version of the license agreement
that: (i) is more commercially viable for companies wishing to use and distribute the
model and (ii) promotes transparency and understanding through the sharing of AI
documentation such as model cards (Mitchell et al., 2019);

– We incorporate a new attribution tool into the VSCode demo that can help users detect
and locate model generations that may have been copied from the training set. This
is achieved through a two-step process that involves a lightweight membership check
followed by a search over a BM25 index (Section 9); and

– We have significantly improved the PII redaction pipeline by collecting a PII dataset
containing 12,000 files with 22,950 annotated entities. We fine-tuned our own encoder
model (StarEncoder) on this dataset, resulting in a robust PII detection model (Section
4).

2 R E L AT E D W O R K

Language models are systems that use statistical and machine learning techniques to predict the
likelihood of a sequence of words. Given an incomplete sentence, e.g., “The book is on the”, such
models use the training data to generate a probability distribution to determine the most probable
next words, e.g., “table” or “shelf”. Early efforts to build large-scale language models used N-
grams and simple smoothing techniques (Brants et al., 2007; Heafield et al., 2013; Buck et al.,
2014). Other approaches applied various types of neural networks architectures, such as feedforward
networks (Bengio et al., 2000) and recurrent networks (Mikolov et al., 2010; Jozefowicz et al.,
2016), to the language modeling task. This also led to the development of word embeddings and
related techniques to map words to semantically meaningful representations (Mikolov et al., 2013;
Pennington et al., 2014). The Transformer architecture (Vaswani et al., 2017), initially developed for
machine translation, ignited renewed interest in language modeling, leading to the development of
contextualized word embeddings (Devlin et al., 2019; Liu et al., 2019) and Generative Pre-trained
Transformers (GPTs; Radford et al., 2019; Brown et al., 2020). In recent years, a successful approach
to improve model performance has been to scale up the model parameters and training data. Scaling
laws (Kaplan et al., 2020; Hoffmann et al., 2022) have shown a predictable power-law relationship
between the test loss and various factors, such as the model size, number of training tokens, and
compute budget. However, increasing the model scale can also lead to emergent behavior (Wei et al.,
2022a), with sudden jumps in the model’s ability to perform certain tasks like arithmetic reasoning.

Closed-access LLMs Several large tech companies have developed top-performing LLMs without
releasing them. Examples include Google’s PaLM (Chowdhery et al., 2022) and LaMDA (Thoppilan
et al., 2022), DeepMind’s Chinchilla (Hoffmann et al., 2022) and Gopher (Rae et al., 2021), and
NVIDIA’s Megatron-Turing NLG (Smith et al., 2022). OpenAI and other AI startups, including
Cohere1, Anthropic2, and Aleph Alpha3, offer LLMs as a paid API service. These companies did not
release model weights nor provide comprehensive information on the methodology used to create
these models. OpenAI has published several technical reports of the GPT family of models (Brown
et al., 2020; Chen et al., 2021; OpenAI, 2023a), showcasing the capabilities of their models.

Open-access LLMs Numerous open-access LLMs have been released to the AI community,
although they are generally not as strong as closed-access ones. In this paper, we use the term

1https://cohere.com/
2https://www.anthropic.com/
3https://www.aleph-alpha.com/

4

https://cohere.com/
https://www.anthropic.com/
https://www.aleph-alpha.com/

“open-access LLM” when the model weights are publicly available. We still note that there are
significant differences between open-access models in how transparent they have been about the
training data and filtering techniques. For instance, EleutherAI released GPT-NeoX-20B (Black et al.,
2022) and GPT-J-6B (Wang & Komatsuzaki, 2021), as well as the dataset these models were trained
on (Gao et al., 2021a). Google released UL2-20B (Tay et al., 2022), an encoder-decoder model
trained on the publicly available C4 (Raffel et al., 2020). Tsinghua University released the weights of
GLM-130B (Zeng et al., 2022), a Chinese-English LLM, and CodeGeeX-13B (Zheng et al., 2023),
a LLM for coding applications, without releasing the training sets. Salesforce released CodeGen-
Mono-16B (Nijkamp et al., 2023) without disclosing a proprietary Python dataset. Meta released the
OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023), and InCoder models (Fried et al., 2022)
under a non-commercial license and only provided high-level details about the data collection and
filtering process. Notable exceptions are PolyCoder (Xu et al., 2022) and SantaCoder (Ben Allal et al.,
2023): open-access Code LLMs with released training sets. However, these models are relatively
small (2.7B and 1.1B parameters, respectively) and are trained on less data (< 300GB of code) than
we explore in this work.

3 D ATA C U R AT I O N A N D C L E A N I N G

This section describes how we processed the training data of StarCoderBase. We restrict the training
set to The Stack v1.2 (Kocetkov et al., 2022), which exclusively contains data from permissively
licensed4 GitHub repositories. At the time of the data processing, 44 people opted out of The Stack.
Below, we describe how we further cleaned the data by combining heuristic filtering and manual
inspection.

3 . 1 P R O G R A M M I N G L A N G U A G E S

Selection of programming languages From the 358 programming languages in The Stack, we
selected 86 languages. The assignment of data to programming languages was performed based
solely on file extension (Kocetkov et al., 2022). We included all programming languages with
more than 500 MB of data, as well as languages that were ranked in the top 50 on Githut 2.0 or
the December 2022 TIOBE Index of programming language popularity. In addition, we included
dialects of already selected programming languages (e.g., Racket and Scheme for Lisp). We excluded
configuration languages (Nix, Puppet, etc.) and languages that are no longer actively supported
(ActionScript). We also included data formats like JSON and YAML but limited its data volume (see
“JSON and YAML” paragraph for details). The full list of selected programming languages can be
found in Tables 1 and 2. Out of the languages present in MultiPL-E (Cassano et al., 2023), only D
and Swift were not included in the training set. For D, language misclassification of the files led to
less than 2MB of data in The Stack (Kocetkov et al., 2022). For Swift, due to a human mistake, it
was not included in the final list of languages.

Visual inspection We performed a visual inspection to ensure that we only retain data of high
quality. To achieve this, we randomly selected 30,000 files from The Stack for each programming
language, categorized them by extension, and kept a maximum of 1,000 files for each extension. We
then reached out to the BigCode community for assistance with data inspection. We instructed the
annotators to go through 50–100 files and confirm if the data appeared to be normal code written
by humans, as opposed to text, data, or a single long line of autogenerated code. We also asked
annotators to determine whether we should use our default alpha-numeric filter (which requires over
25% alpha-numeric symbols) and long-line filter (which requires lines to be less than 1,000 characters)
for a given file extension. Eighteen community annotators evaluated 300 programming language
extensions. After inspection, we excluded 36 extensions and eliminated the long-line filter for
27 extensions. The complete outcomes of the data inspection, including annotator remarks, can be
found in this Google sheet.

XML filter As we inspected the data, we noticed that certain extensions often consisted of XML
files. For example, the .sld extension had more than 50% of its files in XML format. To address this,

4See https://blueoakcouncil.org/ to learn more about permissive licenses and access a comprehensive
collection of such licenses.

5

https://githut.info
https://web.archive.org/web/20221229040526/https://www.tiobe.com/tiobe-index/
https://docs.google.com/spreadsheets/d/1Lk-pTk_rXI__fCgixr7ZWSi8wR09Zzd2j_G90J80r00/edit?usp=sharing
https://blueoakcouncil.org/

we implemented a simple XML filter that checked for the presence of “<?xml version=” within the
first 100 characters of the file. This filter proved to be effective and produced few false positives.
Hence, we applied it to all programming languages except for XSLT, which uses XML syntax.

Alpha filter During our investigation, we discovered that certain extensions, such as MATLAB,
contained numerous data files that frequently stored large tensors. To identify these files, we developed
an alpha filter that removed files with fewer than 25% alphabetic characters. However, when we tested
this filter on a small subset of data, we observed a high rate of false positives for certain programming
languages, such as Assembly. To address this issue, we focused on the 25 extensions with the highest
number of detections and manually verified whether or not the alpha filter should be applied.

HTML We designed a custom HTML filter that targets excessive HTML boilerplate and links. We
took into account the ratio of visible text in each file and only kept those files where the visible text
makes up at least 20% of the HTML code and has a minimum length of 100 characters.

JSON and YAML JSON and YAML files are naturally more data-heavy than other languages
in The Stack. To remove most of the data files, we applied the following filters. For YAML, we
kept files with 50–5000 characters, an average line length smaller than 100, a maximum line length
smaller than 1000, and more than 50% alphabetic characters. These filters remove around 20% of
the files and 90% of the volume. For JSON, we kept files with 50–5000 characters and more than
50% alphabetic characters, which removes around 70% of the files and 98% of the volume.

3 . 2 J U P Y T E R N O T E B O O K S

All Jupyter notebooks were retrieved from the Stack. We transformed Jupyter notebooks into two
different datasets: Jupyter – scripts and Jupyter – structured.

Jupyter – scripts We utilize Jupytext5 to convert notebooks to scripts. It is an actively maintained
software that currently supports 31 programming languages. To initiate the conversion process,
Jupytext requires the identification of the specific programming languages within each notebook.
We extracted this information from the metadata of each respective notebook. However, more than
30,000 notebooks lacked any programming language information, making it difficult to convert them
to the script format. To address this issue, we incorporated the use of Guesslang,6 an open-source
library that employs machine learning techniques to identify the programming languages of source
code. By applying a probability threshold greater than or equal to 0.5, we successfully reduced the
number of unidentified notebooks to 6,400 using Guesslang. Ultimately, we amassed 1,432,992
scripts through the utilization of Jupytext. The distribution of programming languages among these
scripts is presented in Table 3. We evaluated language coverage by randomly selecting 100 files
from the transformed scripts, ensuring that all programming languages were represented within this
sample.

Jupyter – structured To create this dataset, we first filtered out notebooks that did not contain any
Python code or Markdown text. The information on the programming language in the metadata of
each notebook was used as the criterion to filter out non-Python notebooks. Only notebooks explicitly
marked as ‘Python’ in the metadata were kept. Then for each notebook, consecutive Markdown
blocks or code blocks were merged into a large Markdown or code block respectively. Eventually, we
ended up with consecutive code-text pairs in temporal order grouped by each notebook. In general,
each Jupyter code-text pair contained the Markdown text immediately preceding the code block and
the Python code, which forms a natural instruction pair. We also included the formatted output of a
code block if the output cell was non-empty; otherwise, it was marked by a special <empty output>
token. If consecutive code blocks have multiple output cells before merging, we only retain the
output of the last code block. After these preprocessing steps, we ended up with 1,045,605 structured
Jupyter notebooks.

5https://jupytext.readthedocs.io/
6https://guesslang.readthedocs.io/

6

https://jupytext.readthedocs.io/
https://guesslang.readthedocs.io/

Language After dedup After filters and decont. Weight Percentage
Num. files Volume (GB) Num. files Volume (GB)

ada 31,291 0.30 30,934 0.26 0.26 0.034
agda 17,608 0.07 17,554 0.07 0.07 0.009
alloy 5,374 0.01 5,368 0.01 0.01 0.001
antlr 7,983 0.05 7,917 0.05 0.05 0.007
applescript 4,906 0.01 4,737 0.01 0.01 0.001
assembly 248,396 1.58 247,919 1.56 1.56 0.203
augeas 195 0.00 180 0.00 0.00 0
awk 10,430 0.02 10,289 0.02 0.02 0.003
batchfile 252,514 0.29 239,568 0.23 0.23 0.03
bluespec 5,940 0.03 5,928 0.03 0.03 0.004
c 8,625,559 57.43 8,536,791 53.89 53.89 7.027
c-sharp 10,839,399 46.29 10,801,285 44.66 44.66 5.823
clojure 126,191 0.49 125,163 0.46 0.46 0.06
cmake 186,517 0.45 186,375 0.45 0.45 0.059
coffeescript 227,889 0.69 226,209 0.64 0.64 0.083
common-lisp 101,370 1.68 98,733 1.40 1.40 0.183
cpp 6,377,914 50.89 6,353,527 48.92 48.92 6.379
css 2,994,829 22.61 2,721,616 11.93 3.00 0.391
cuda 58,355 0.59 58,151 0.56 0.56 0.073
dart 932,583 3.86 928,415 3.66 3.66 0.477
dockerfile 572,186 0.42 571,506 0.42 0.42 0.055
elixir 282,110 0.74 281,016 0.71 0.71 0.093
elm 62,861 0.34 62,033 0.30 0.30 0.039
emacs-lisp 54,768 0.43 52,838 0.41 0.41 0.053
erlang 99,368 0.73 98,447 0.70 0.70 0.091
f-sharp 127,161 0.90 124,066 0.61 0.61 0.08
fortran 165,446 1.84 158,792 1.78 1.78 0.232
glsl 175,576 0.57 167,701 0.40 0.40 0.052
go 4,730,461 25.74 4,700,526 23.78 23.78 3.101
groovy 251,627 0.94 250,834 0.91 0.91 0.119
haskell 544,969 2.36 541,454 2.23 2.23 0.291
html 9,533,367 146.76 3,299,965 29.36 29.36 3.828
idris 8,060 0.03 8,042 0.03 0.03 0.004
isabelle 5,086 0.09 5,001 0.08 0.08 0.01
java 20,151,565 89.30 20,071,773 86.94 86.94 11.336
java-server-pages 214,133 1.03 210,816 0.98 0.98 0.128
javascript 21,108,587 141.65 19,544,285 64.71 64.71 8.437
json 17,012,912 338.34 4,751,547 5.62 1.00 0.13
julia 298,672 1.54 295,364 1.31 1.31 0.171
kotlin 2,242,771 5.77 2,239,354 5.68 5.68 0.741
lean 16,891 0.10 16,870 0.09 0.09 0.012
literate-agda 523 0.01 523 0.01 0.01 0.001
literate-coffeescript 1,138 0.01 1,133 0.01 0.01 0.001
literate-haskell 6,135 0.05 6,104 0.05 0.05 0.007
lua 558,861 3.28 549,459 2.87 2.87 0.374
makefile 661,424 1.49 657,349 1.31 1.31 0.171
maple 1,259 0.01 1,152 0.01 0.01 0.001
markdown 21,045,171 75.25 21,029,287 74.93 74.93 9.77
mathematica 26,895 1.72 22,653 1.25 1.25 0.163
matlab 967 0.04 93 0.00 0.00 0

Table 1: Overview of the training data for StarCoder. For the selected programming languages, we
show the number of files and data volume after near-deduplication, as well as after filtering. See also
Table 2.

3 . 3 G I T H U B I S S U E S

We used natural language conversations from GitHub issues and pull requests, which were collected
as a component of The Stack v1.2. Each conversation consists of a series of events with actions,
such as opening the issue, creating a comment, or closing the issue. Each event includes the author’s
username, a message, an action, and a creation date. We filtered this data as follows:

7

Language After dedup After filters and decont. Weight Percentage
Num. files Volume (GB) Num. files Volume (GB)

ocaml 159,734 1.11 158,356 1.03 1.03 0.134
pascal 118,675 1.71 110,981 1.68 1.68 0.219
perl 392,108 2.63 365,491 2.23 2.23 0.291
php 15,904,518 66.84 15,683,017 60.89 60.89 7.939
powershell 271,487 1.25 267,627 1.12 1.12 0.146
prolog 1,023 0.01 968 0.01 0.01 0.001
protocol-buffer 98,246 0.44 97,167 0.31 0.31 0.04
python 12,962,249 64.30 12,866,649 60.40 60.40 7.875
r 39,194 0.30 39,042 0.30 0.30 0.039
racket 4,201 0.04 3,688 0.03 0.03 0.004
restructuredtext 905,679 3.42 896,880 3.32 3.32 0.433
rmarkdown 5,389 0.06 5,386 0.06 0.06 0.008
ruby 3,405,374 7.14 3,390,320 6.81 6.81 0.888
rust 1,386,585 9.53 1,380,468 9.11 9.11 1.188
sas 9,772 0.13 9,226 0.12 0.12 0.016
scala 1,362,426 4.86 1,355,788 4.69 4.69 0.612
scheme 44,261 0.30 41,890 0.20 0.20 0.026
shell 2,236,434 3.38 2,206,327 3.09 3.09 0.403
smalltalk 592,999 0.74 587,748 0.58 0.58 0.076
solidity 164,242 1.21 153,194 0.85 0.85 0.111
sparql 14,173 0.04 13,716 0.04 0.04 0.005
sql 994,019 12.22 975,420 11.09 11.09 1.446
stan 5,441 0.01 5,429 0.01 0.01 0.001
standard-ml 48,995 0.52 19,630 0.19 0.19 0.025
stata 31,282 0.41 24,208 0.33 0.33 0.043
systemverilog 46,915 0.41 46,270 0.39 0.39 0.051
tcl 50,579 0.40 49,335 0.35 0.35 0.046
tcsh 4,911 0.02 4,806 0.02 0.02 0.003
tex 547,888 5.44 522,778 5.20 5.20 0.678
thrift 4,663 0.01 4,661 0.01 0.01 0.001
typescript 10,637,070 28.82 10,547,331 26.52 26.52 3.458
verilog 77 0.001 75 0.001 0.001 0
vhdl 60,027 1.12 58,208 0.94 0.94 0.123
visual-basic 163,291 1.49 161,239 1.42 1.42 0.185
xslt 43,095 0.56 6,513 0.05 0.05 0.007
yacc 25,775 0.41 7,451 0.11 0.11 0.014
yaml 5,282,081 28.36 3,995,948 3.76 1.00 0.13
zig 15,913 0.18 15,850 0.18 0.18 0.023

GitHub issues ∼ 30,900,000 54.40 54.40 7.093
Git commits 7,674,345 64.00 32.00 4.172
notebook scripts 914,000 7.12 7.12 0.928
notebook structured 668,743 6.00 6.00 0.782

305,929,658 815.68 799.37 100

Table 2: Overview of the training data for StarCoder. For the selected programming languages, we
show the number of files and data volume after near-deduplication, as well as after filtering. See also
Table 1.

• First, we removed auto-generated text when users replied to issues via email. See Ap-
pendix A for the regular expression we used. We also deleted issues with a short message
(less than 200 characters) and truncated long comments in the middle to a maximum of
100 lines while retaining the last 20 lines. This removed 18% of the volume.

• Next, we excluded comments from bots. To do so, we searched for keywords in the
username of the comment’s author (for more information, see Appendix A). This step
eliminates 17% of the total events and results in 14.7% of the issues being emptied. We have
observed that bot-generated issues tend to be lengthy and contain numerous logs and links.

• We used the number of users engaged in the conversation as an indicator of quality. Our
criterion was to include conversations that have two or more users. However, we also
preserved conversations that involved a single user if the total text within comments was
less than 7,000 characters (96th percentile). Additionally, we excluded issues authored by a

8

Language Num files Percentage
python 1,392,432 97.170
julia 16,730 1.167
r 11,034 0.77
scala 1,899 0.133
bash 1,441 0.101
java 1,319 0.092
q-sharp 1,273 0.089
cpp 1,081 0.075
c-sharp 1,048 0.073
matlab 908 0.063
powershell 769 0.054
javascript 592 0.041
haskell 535 0.037
scheme 484 0.034
groovy 432 0.03
f-sharp 385 0.027
ocaml 279 0.019
rust 134 0.009
clojure 96 0.007
typescript 72 0.005
maxima 31 0.002
coconut 6 0
markdown 5 0
wolfram language 4 0
tcl 3 0

Total 1,432,992 100

Table 3: Overview of the initially collected Jupyter scripts, with the corresponding number of files
and the percentage.

single user if they contained more than ten events, as they tended to be of poor quality or
originate from overlooked bots. By implementing these filters, we removed an additional
14% of issues.

• Finally, we used a model from the fasttext library7 to filter out non-English issues. This
step was necessary to enable accurate redaction of names using a PII detection model (see
Section 4.3).

3 . 4 G I T C O M M I T S

The Git commit data was gathered from BigQuery8 and includes only single-file commits of repos-
itories with the same licenses and file extension as used in The Stack (Kocetkov et al., 2022). We
removed all repositories from users that opted out of The Stack. The raw dataset is around 4 TB
in size. We sampled 50% of the files and filtered the remaining data with heuristics to build a
high-quality dataset. We list and describe all filters in Table 4.

The number of line changes in a commit can be very low compared to the file size. To avoid spending
too much compute budget on learning to copy the file content, we only used the full file 20% of the
time, and for the remaining 80%, sampled a window between 0 and 32 lines around the first and last
changed line. The resulting dataset contains 64 GB of commit data.

7The lid.176.bin version of this language identification model: https://fasttext.cc/docs/en/language-
identification.html

8https://cloud.google.com/bigquery/public-data/

9

https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
https://cloud.google.com/bigquery/public-data/

Description Details
Maximum characters Remove code files with >100k characters.
Small changes Subsample changes with ≤ 2 lines with 50% probability.
Long-range refactorings Subsample changes spanning ≥ 200 lines with 10% probability.
Empty commit message Remove commits with empty commit subject.
Automatic commits Remove commits that either contain or are equal to a list of stop

words.
Hash messages Remove commits with whitespace-separated words-to-character

ratio >20.
Hash messages Remove commits with whitespace-separated words-to-character

ratio >20.
Data files Subsample data formats (JSON, YAML, XML, HTML) with

50% probability.

Table 4: Git commit filters.

3 . 5 D E D U P L I C AT I O N

We followed the deduplication pipeline from Ben Allal et al. (2023), which consists of calculating
the MinHashes (Broder, 2000) of all source code files, followed by Locally Sensitive Hashing (LSH)
to map similar code files to the same bucket. We used 5-grams and a Jaccard similarity of 0.7. See
this blogpost for more details regarding the pipeline.

We applied this near-deduplication process to all programming languages and the Jupyter notebooks.
However, due to time constraints, we could not apply this procedure to Git commits. Additionally,
we deemed it unlikely to discover duplicates in Github issues, so we didn’t apply the process to them.

3 . 6 W E I G H T I N G O F D ATA S O U R C E S

There were several discussions within the BigCode community about whether to up-sample or down-
sample certain programming languages, as the amount of compute budget allocated to a data source
in a given language can significantly affect the model’s performance in that language. However,
we realized that the largest amount of available data comes from popular programming languages
and would, therefore, benefit a larger group of end-users. Moreover, after the deduplication process,
we found that several high-resource programming languages, such as C, C++, C#, Java, Javascript,
Python, and PHP, had a similar amount of data ranging from 44–87 GB. This further reinforced our
belief that we did not need to drastically re-weigh the existing data distribution. Thus, in this work,
we followed the natural distribution of data during training and sampled data sources proportionally
to their volume. However, we did make an exception for JSON, YAML, and CSS, as we only want
the LLM to learn the data format without wasting compute resources on memorizing the data in such
files. For that reason, we re-weighed the volume of the data source to 1 GB for JSON and YAML and
3GB for CSS.

4 P I I R E D A C T I O N

This section outlines our efforts to remove Personally Identifiable Information (PII) from the training
data. In Section 4.1, we first describe how we collected a large set of PII annotations. We used these
annotations to explore various techniques to train a PII detection model in Section 4.3, building on
top of the encoder model we developed in Section 4.2.

4 . 1 D ATA C O L L E C T I O N

We utilized the Toloka platform9 to engage 1,399 crowd-workers from 35 countries in annotating a
dataset for PII in source code. On average, participants completed 206 tasks, earned about $27, and
worked 3.1 hours. Our goal was to identify PII in various forms, such as names, usernames, emails,

9https://toloka.ai/

10

https://chenghaomou.github.io/posts/20230220150602
https://toloka.ai/

c
cp

p
cs

ha
rp

ja
va

ru
by

py
th

on js
ph

p
ru

st go
ty

pe
sc

rip
t

sq
l

cs
s

ha
sk

el
l

ko
tli

n
pe

rl
da

rt
lu

a
sc

al
a

fo
rtr

an
sh

el
l

ht
m

l
pa

sc
al

as
se

m
bl

y
sc

he
m

e
ju

lia
st

at
a

po
w

er
sh

el
l

pr
ol

og
m

at
he

m
at

ic
a

m
at

la
b

Programming language

0

200

400

600

800

N
um

be
r o

f f
ile

s

Figure 1: Distribution of programming languages in the annotated PII dataset.

IP addresses, keys, passwords, and IDs. To ensure that crowd-workers received fair compensation,
we established an hourly pay rate of $7.30, taking into consideration different minimum wage rates
across countries and their corresponding purchasing power. We limited annotation eligibility to
countries where the hourly pay rate of $7.30 was equivalent to the highest minimum wage in the
US ($16.50) in terms of purchasing power parity. A complete list of countries that participated in the
annotation can be found in Table B.1 of Appendix B. Crowd workers in Toloka can do tasks whenever
or wherever; there is no obligation to complete a certain task or spend a fixed amount of time on it.
Thus, they utilize free choice when working on the tasks. Out of 1,399 crowd workers, 695 filled
a survey on task quality, and 519 completed the survey. The average score for the question asking
whether the participant would like to contribute to another project like this is 4.92 on a scale 1–5.

The dataset comprises 12,000 files, each containing approximately 50 lines of code written in
31 programming languages. Figure 1 shows the distribution of programming languages in the dataset.
To increase the representation of rare PII types, such as keys and IP addresses, 7,100 files were
pre-filtered from a larger sample. We utilized the detect-secrets tool10 with all default plugins
activated, along with the regular expressions by Ben Allal et al. (2023) for detecting emails, IPv4
and IPv6 addresses. To prevent biasing the annotation too much towards these detection tools, the
remaining 5,100 files were randomly selected from the dataset without pre-filtering.

During annotation, we differentiated between various types of PII based on the specific context in
which it appeared. Specifically, we distinguished whether the PII was present in the code’s license
header, was used as a placeholder, or constituted confidential data. This categorization was necessary
because the PII in license headers is usually provided voluntarily by authors for code attribution and
may not require masking. Similarly, placeholders are not real secrets and do not need to be masked.
We applied this categorization to names, emails, and usernames. See Table 5 for an overview of all
PII entities.

The annotators detected a total of 22,950 PII entities in the dataset. To evaluate the quality of the
dataset, we manually inspected 300 files that contained various PII types and calculated the recall and
precision for each type, as shown in Table 5. We found that annotating secret IDs was particularly
challenging, as the annotators tended to produce many false positives and negatives. As a result, we
decided to exclude this category from the PII detection model training.

4 . 2 S TA R E N C O D E R

As part of our PII detection efforts, we trained an encoder-only model (i.e., bi-directionally self-
attentive Transformers) that can be efficiently fine-tuned for both code- and text-related tasks. We

10https://github.com/Yelp/detect-secrets

11

https://github.com/Yelp/detect-secrets

PII type Count Recall Precision
IP ADDRESS 2526 85% 97%
KEY 308 91% 78%
PASSWORD 598 91% 86%
ID 1702 53% 51%
EMAIL 5470 99% 97%
EMAIL EXAMPLE 1407
EMAIL LICENSE 3141
NAME 2477 89% 94%
NAME EXAMPLE 318
NAME LICENSE 3105
USERNAME 780 74% 86%
USERNAME EXAMPLE 328
USERNAME LICENSE 503
AMBIGUOUS 287

Table 5: Overview of the PII types and the number of collected annotations. We investigate the
annotation quality by reporting the precision and recall of a manual inspection on 300 files. Each
subcategory was mapped back to its corresponding PII type for the inspection.

Hyperparameter Value
Hidden size 768
Intermediate size 3072
Max. position embeddings 1024
Num. of attention heads 12
Num. of hidden layers 12
Attention Multi-head

Num. of parameters ≈125M

Table 6: Model architecture of StarEncoder.

leveraged the Masked Language Modelling (MLM) and Next Sentence Prediction (NSP) objectives
from BERT (Devlin et al., 2019; Liu et al., 2019) and predicted masked-out tokens from an input
sentence and whether a pair of sentences occur as neighbors in a document. We refer to those two
objectives as LMLM and LNSP , respectively, and define the training objective L as their sum:

L = LMLM + LNSP . (1)

Special tokens are added to separate code snippets and represent each input as follows:

[CLS]{Snippet-1}[SEP]{Snippet-2}[SEP],

where two code snippets are selected randomly, and a decision is made on-the-fly as to whether
the two pieces of code are neighbors from the same source file or are picked from two distinct
documents. Tokens are masked out independently with a probability of 15%, and the results define
the input-output pairs used to compute LMLM . On the other hand, LNSP is computed using a linear
classifier trained on top of the representations output at the [CLS] special token.

We train for 100,000 steps with a global batch size of 4,096 sequences of a maximum length of 1,024
so that approximately 400B tokens are observed. This takes roughly two days using 64 NVIDIA
A100 GPUs. Details about the model architecture are reported in Table 6.

4 . 3 P I I D E T E C T I O N M O D E L

We fine-tuned StarEncoder on the annotated PII dataset for the Named Entity Recognition (NER) task.
We added a linear layer as a token classification head on top of the model, with 6 target classes: names,
emails, keys, passwords, IP addresses, and usernames. We excluded IDs due to low annotation quality

12

Entity type Train Test
EMAIL 4721 1742
NAME 3847 1298
IP ADDRESS 1941 521
USERNAME 1320 346
PASSWORD 390 148
KEY 171 118

Table 7: Train-test split of the annotated PII dataset.

and did not differentiate between the categorization of PII entities (license headers, placeholders)
because of the model’s poor performance in distinguishing them. We split the dataset into a training
set of 7,878 examples and a test set of 4,000 examples, ensuring that both splits have a balanced
representation of the different PII types. See Table 7. We make the training and evaluation splits
available under gated access at https://hf.co/BigCode.

Fine-tuning baseline We fine-tune StarEncoder on the PII training set, and the 400 annotated
files from Ben Allal et al. (2023). We achieve F1 scores of more than 90% on names, emails, and
IP addresses and 73.39% on passwords. The model’s performance is comparatively low on keys
and usernames, with F1 scores of only 56.66% and 59.39%, respectively. We attribute the low
performance on keys to the limited number of labels for this type of PII, as only 308 instances were
available. For usernames, we observed the model often confused them with decorators and values in
paths. This is most likely because we annotated usernames inside links for social media platforms.

Pseudo-labels To improve the detection of key and password entities, we employed a pseudo-
labeling technique as described by Lee (2013). This method involves training a model on a small set
of labeled data and subsequently generating predictions for a larger set of unlabeled data. Specifically,
we annotated 18,000 files using an ensemble of two encoder models11, which were fine-tuned on
the 400-file PII dataset from the previous BigCode iteration (Ben Allal et al., 2023). To identify
reliable pseudo-labels, we calculated the average probability logits from our models and applied
filtering criteria. Specifically, we set a minimum threshold of 0.5 for all entities, except for names and
usernames, for which we used a higher threshold of 0.6. However, upon reviewing the results, we
found a significant number of false positives for keys and passwords. As a result, we decided to only
retain entities that were preceded by a trigger word, such as key, auth, or pwd, within the preceding
100 characters. Training on this synthetic dataset before fine-tuning on the annotated one yielded
superior results for all PII categories, as demonstrated in Tables 8 and 9. Only the performance for
detecting usernames did not show significant improvement, so we decided to exclude it from the PII
redaction process.

Comparison against regex baseline We compared our PII detection models against the regular
expressions (regexes) employed in the first iteration of BigCode (Ben Allal et al., 2023). The regexes
only support the detection of emails, IP addresses, and keys. Note that we enhanced the email regex,
as explained in the Appendix, to address false positives we found during the evaluation on this
benchmark. This modification boosted the F1 score of the regex from 81.8% to 96.83%. Nevertheless,
our PII detection models still surpassed the regex approach in detecting all three entities, as shown in
Table 8. We note that the performance difference was especially large on keys and found that the
detect-secrets tool generated many false positives, especially in specific programming languages
like Go and C-sharp that weren’t well represented in the regex evaluation. Consequently, the overall
precision of the tool was below 4%.

Post-processing Before applying the best PII detection model to the full dataset, we observed a
couple of frequent detection errors. We added the following post-processing techniques to reduce the
number of false positives:

11https://hf.co/bigcode/deberta-v3-large-pii-ner, https://hf.co/StanfordAIMI/stanford-
deidentifier-base

13

https://hf.co/BigCode
https://hf.co/bigcode/deberta-v3-large-pii-ner
https://hf.co/StanfordAIMI/stanford-deidentifier-base
https://hf.co/StanfordAIMI/stanford-deidentifier-base

Method Email address IP address Key

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Regex 96.20% 97.47% 96.83% 71.29% 87.71% 78.65% 3.62% 49.15% 6.74%
NER 94.01% 98.10% 96.01% 88.95% 94.43% 91.61% 60.37% 53.38% 56.66%
+ pseudo labels 97.73% 98.94% 98.15% 90.10% 93.86% 91.94% 62.38% 80.81% 70.41%

Table 8: Comparing PII detection performance: Regular Expressions, NER Pipeline with Annotated
Data, and NER Pipeline with Annotated Data + Pseudo-Labels

Method Name Username Password

Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

NER 83.66% 95.52% 89.19% 48.93% 75.55% 59.39% 59.16% 96.62% 73.39%
+ pseudo labels 86.45% 97.38% 91.59% 52.20% 74.81% 61.49% 70.94% 95.96% 81.57%

Table 9: Comparison of PII detection performance: NER Pipeline with Annotated Data vs. Annotated
Data + Pseudo-Labels

• Ignore secrets with fewer than 4 characters.
• Detect full names only by requiring at least one space within the name.
• Ignore detected keys with fewer than 9 characters or that are not gibberish using a
gibberish-detector.12

• Ignore IP addresses that aren’t valid or are private (non-Internet facing) using the ipaddress
python package. We also ignore IP addresses from popular DNS servers. We use the same
list as in Ben Allal et al. (2023).

For the GitHub issues, we already employed a regex approach to detect keys, IP addresses, and
emails, so we only used the PII detection model to redact names.

PII placeholders We replaced the detected PII entities with the following tokens:

<NAME>, <EMAIL>, <KEY>, <PASSWORD>

To mask IP addresses, we randomly selected an IP address from 5 synthetic, private, non-internet-
facing IP addresses of the same type that can be found in Appendix C.

Compute resources We used the PII detection model to identify PII across all programming
languages in the training dataset, including GitHub issues, Git commits, and Jupyter notebooks. The
total dataset amounts to 815 GB in size. We ran inference on multiple NVIDIA A100 80 GB GPUs,
which required 800 GPU-hours.

5 M O D E L T R A I N I N G

This section presents information on the training process of the StarCoder models. Before we proceed,
we first clarify the differences between the two models:

StarCoderBase is the first model trained on 1 trillion tokens sourced from the curated dataset
described in Section 3.

StarCoder is the fine-tuned version of StarCoderBase, trained on another 35B Python tokens
(roughly 2 epochs).

Throughout the following, we show how we formatted the training data (Section 5.1), decontaminated
the training data (Section 5.2), and provide details regarding the tokenizer (Section 5.3), the model
architecture (Section 5.4), the training process (Section 5.5), multi-node GPU setup (Section 5.6),
and CO2 emissions (Section 5.7).

12https://github.com/domanchi/gibberish-detector

14

https://github.com/domanchi/gibberish-detector

5 . 1 D ATA F O R M AT T I N G

We present the formatting for each of the data sources below.

Code We prepended the repository name, file name, and the number of stars to the context of the
code file. To not overfit on the exact number of stars, we categorized GitHub stars into five buckets:
0, 1–10, 10–100, 100–1000, 1000+. To enable the model to operate without this metadata during
inference, we prefixed the repository name, filename, and stars independently at random, each with a
probability of 0.2.

<reponame>REPONAME<filename>FILENAME<gh_stars>STARS\nCode<eos>

Issues We used sentinel tokens to mark the opening and closing of an issue. We also used a special
token to separate comments, and we incorporated both the title and userid within the text. The userid
serves as a participant counter within the conversation. Note that we did not include the date and
time of the comments.

<issue_start>title + USERID: comment<issue_comment>USERID: Comment
... <issue_closed (optional)> <eos>

Jupyter – scripts Jupyter scripts were formatted in the same manner as code.

Jupyter – structured Parsed Jupyter notebooks come in chains of text, code, and outputs, and we
separated them with sentinel tokens as follows.

<jupyter_start><jupyter_text>TEXT<jupyter_code>CODE
<jupyter_output>OUTPUT<jupyter_text> ...

Git commits We separated the code before the commit, the commit message, and the code after
the commit with sentinel tokens. We included the full code with changes instead of diffs, as early
experiments suggested that the diff format was difficult to output for smaller models. See Section 3.4
for more details.

<commit_before>code<commit_msg>text<commit_after>code<eos>

We summarize all sentinel tokens in Table 10.

5 . 2 T R A I N I N G D ATA D E C O N TA M I N AT I O N

The code training data was decontaminated by removing files that contained docstrings or solutions
from HumanEval and MBPP, docstrings from APPS, questions from GSM8K, or prompts from
DS1000. (These benchmarks are further described in Section 6.) To give an indication of the amount
of data removed by decontamination, Python is the language with the highest number of matches,
with 558 files removed.

5 . 3 T O K E N I Z E R

The model’s tokenizer follows our insights presented in Ben Allal et al. (2023) and uses those same
design choices: we use the Hugging Face Tokenizers library (MOI et al., 2022) to train a byte-level
Byte-Pair-Encoding with a vocabulary size of 49,152 tokens—including the sentinel tokens from
table 10. The pre-tokenization step includes a digit-splitter and the regex splitter from the GPT-2
pre-tokenizer.

5 . 4 M O D E L A R C H I T E C T U R E

We trained a 15.5B parameter model with the same architecture as SantaCoder (Ben Allal et al.,
2023). It is a decoder-only Transformer with Fill-in-the-Middle (FIM; Bavarian et al., 2022), Multi-
Query-Attention (MQA; Shazeer, 2019), and learned absolute positional embeddings. We used

15

Token Description
<|endoftext|> end of text/sequence
<fim_prefix> FIM prefix
<fim_middle> FIM middle
<fim_suffix> FIM suffix
<fim_pad> FIM pad
<reponame> repository name
<filename> file name
<gh_stars> GitHub stars
<issue_start> start of GitHub issue
<issue_comment> start of GitHub issue comment
<issue_closed> GitHub issue closed event
<jupyter_start> start of Jupyter notebook
<jupyter_text> start of Jupyter text cell
<jupyter_code> start of Jupyter code cell
<jupyter_output> start of Jupyter output cell
<empty_output> output cell without content
<commit_before> code snippet before commit
<commit_msg> commit message
<commit_after> code snippet after commit

Table 10: Overview of the sentinel tokens.

Hyperparameter Value
Hidden size 6144
Intermediate size 24576
Max. position embeddings 8192
Num. of attention heads 48
Num. of hidden layers 40
Attention Multi-query

Num. of parameters ≈15.5B

Table 11: Model architecture of StarCoder.

FlashAttention (Dao et al., 2022) to speed up the attention computation and reduce its memory
footprint, allowing us to scale to context length 8K. To make FlashAttention work with MQA during
training, we simply expand the key and value before calling the attention kernel. The architecture
hyper-parameters are given in Table 11.

5 . 5 T R A I N I N G D E TA I L S

StarCoderBase The model was trained for 250k iterations, with a batch size of 4M tokens, for
a total of one trillion tokens. We used Adam (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.95,
ϵ = 10−8 and a weight decay of 0.1. The learning rate followed a cosine decay from 3 × 10−4

to 3× 10−5 after a linear warmup of 2,000 iterations.

StarCoder Starting from StarCoderBase, we fine-tuned a Python variant of the model for 2 epochs
on the Python subset of the training data. We used the same settings as StarCoderBase, except that
we decreased the learning rate to 5× 10−5 and decayed it to 5× 10−6 after 1,000 iterations of linear
warmup. We trained for 8,500 steps.

5 . 6 M U LT I - N O D E G P U S E T U P

We trained our model on a GPU cluster with 512 A100 80 GB GPUs distributed across 64 nodes. We
partitioned the model with a 3D-parallel layout that shards the model with both tensor and pipeline

16

parallelism rank 4, requiring 16 GPUs (two nodes) for one replica. To fully leverage the cluster’s
capabilities, we used 32-fold data parallelism. To optimize GPU utilization and reduce idle compute
bubbles, we maintained a micro-batch size of 1 and accumulated for 16 steps, resulting in a global
batch size of 512 (equivalent to 4M tokens). We used Megatron-LM’s distributed optimizer because
we found that it leads to slightly higher throughput in this configuration. Since it requires the gradient
reduction step in FP32, the training in BF16 leads to 10% lower throughput than FP16, but we used it
anyway to avoid training instabilities.

5 . 7 C O 2 E M I S S I O N S

StarCoderBase We report the carbon footprint (Lacoste et al., 2019) of training StarCoderBase.
Based on the total number of GPU hours that training took (320,256) and an average power usage of
280W per GPU, this adds up to 89671.68 kWh of electricity consumed during the training process.
Multiplied by the carbon intensity of the energy of the us-west-2 AWS location (0.15495 kgCO2e
per kWh) and the average Power Usage Effectiveness of 1.2 across AWS datacenters, this results in
16.68 tonnes of CO2eq emitted.

StarCoder The fine-tuned model adds 3.5% of training time, which translates to an additional
estimated emission of 0.58 tonnes of CO2eq.

6 E VA L U AT I O N

In this section, we first outline the models we evaluated in addition to StarCoder and StarCoderBase.
Then we report on the Python language performance of all models on the HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), and DS-1000 (Lai et al., 2022) evaluation benchmarks. Then we
cover multi-language evaluation using a variety of benchmarks and tasks.

The BigCode Evaluation Harness To enable reproducible and centralized evaluation of StarCoder
and other Code LLMs, we developed the bigcode-evaluation-harness (Ben Allal et al., 2022), inspired
by the lm-evaluation-harness (Gao et al., 2021b) for LLMs. This harness provides a framework for
the efficient evaluation of code models, utilizing data parallelism and docker containers for execution.
It supports various benchmarks, including HumanEval, MultiPL-E, and DS-1000, among others.

Other Models Evaluated We compare StarCoder and StarCoderBase to the following models.

1. CodeGen-16B-Multi (Nijkamp et al., 2023) is an open-access, 16B parameter model that is
trained on the Pile (Gao et al., 2021a), and then on additional code written in C, C++, Go,
Java, JavaScript, and Python from the GitHub BigQuery dataset (Smith, 2016).

2. CodeGen-16B-Mono is a version of CodeGen-16B-Multi that is fine-tuned on additional
Python code from GitHub, though the dataset is not publicly available.

3. CodeGeeX (Zheng et al., 2023) is an open-access 13B parameter model trained on 23 pro-
gramming languages selected from the Pile, the CodeParrot dataset (Wolf et al., 2020), and
additional data for Python, Java, and C++. CodeGeeX also includes its own multi-language
benchmark suite, HumanEval-X, which we discuss below.

4. code-cushman-001 is a 12B parameter model by OpenAI and was the initial model for
GitHub Copilot (Chen et al., 2021). The details of its training set are unknown. This model
has been deprecated by OpenAI but was available from the Microsoft Azure OpenAI Service
at the time of writing.13

5. Finally, although they are not specifically trained for code generation, we include some
results from the LLaMA (Touvron et al., 2023), PaLM (Chowdhery et al., 2022), and
LaMDA (Thoppilan et al., 2022) papers. LLaMA’s license prohibits commercial use, and
PaLM and LaMDA are not publicly available.

13There had been a code-cushman-002, but it is not available at the time of writing.

17

Model HumanEval MBPP
LLaMA-7B 10.5 17.7
LaMDA-137B 14.0 14.8
LLaMA-13B 15.8 22.0
CodeGen-16B-Multi 18.3 20.9
LLaMA-33B 21.7 30.2
CodeGeeX 22.9 24.4
LLaMA-65B 23.7 37.7
PaLM-540B 26.2 36.8
CodeGen-16B-Mono 29.3 35.3
StarCoderBase 30.4 49.0
code-cushman-001 33.5 45.9
StarCoder 33.6 52.7
StarCoder-Prompted 40.8 49.5

Table 12: Comparing StarCoder’s performance (pass@1) on Python with several other models,
including models that are not publicly available (e.g., PaLM and LaMDA).

6 . 1 S TA R C O D E R : P Y T H O N E VA L U AT I O N

In this section, we evaluate the performance of StarCoder on Python, comparing it to both open-
access and closed-access models. We first report performance on HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021), which are two widely used benchmarks of Python performance.
However, we also measure performance on DS-1000 (Lai et al., 2022), a code completion benchmark
of 1,000 Python data science problems based on StackOverflow questions.

6 . 1 . 1 T H E H U M A N E VA L A N D M B P P B E N C H M A R K S

HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021) are widely-used benchmarks for Code
LLMs that consist of hundreds of Python programming problems that use test cases to validate the
code produced by a Code LLM. Code LLMs generate code by sampling from their output distribution.
We report performance using the pass@k metric (Chen et al., 2021): a benchmark problem is
considered solved if any one of k code samples passes every test case. Like Chen et al. (2021), we use
sampling temperature 0.2 for pass@1, and temperature 0.8 for k > 1. We generate n = 200 samples
for all experiments with open-access models. For API models, we use n = 20 samples, which is
enough to estimate pass@1. We focus on the simplest version of pass@k, which is pass@1: the
likelihood that a problem is solved in a single attempt by the model.

Table 12 compares StarCoder (and StarCoderBase) on HumanEval and MBPP to several open-access
and closed-access models:

1. StarCoder outperforms the largest models, including PaLM, LaMDA, and LLaMA, despite
being significantly smaller.

2. StarCoderBase is also very capable on Python and is only outperformed by the two models
that are fine-tuned on Python: CodeGen-16B-Mono and StarCoder itself.

3. StarCoder outperforms OpenAI’s code-cushman-001 (12B) model.

4. StarCoder achieves a state-of-the-art 40% pass@1 on HumanEval with a simple prompt
that addresses incomplete results, as described below.

Addressing Model Failures and Prompting We inspected StarCoder-generated programs on these
benchmarks and found that there were several cases where the model produces what are effectively
empty solutions, e.g., pass or a comment Insert code here. We also observed this kind of failure in
every model we evaluated. When this type of problem occurs in practice in an IDE, a programmer
addresses them by altering their prompt in some ad hoc way.

We tried a few prompt prefixes that could be applied uniformly to all benchmark problems. However,
these prefixes are typically model-specific. StarCoder’s input format allows us to prompt it with the

18

Format Model Matplotlib

NumPy

Pandas
PyTorch

SciP
y

Scik
it-

Learn TensorFlow

Overall

Number of problems: 155 220 291 68 106 115 45 1,000

Completion InCoder-6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
Completion CodeGen-16B-Mono 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Completion code-cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1
Completion StarCoderBase 47.0 27.1 10.1 19.5 21.7 27.0 20.5 23.8
Completion StarCoder 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
Insertion InCoder-6B 28.3∗ 4.6 2.9 4.4 2.8 3.1 7.8 7.5
Insertion StarCoderBase 47.0∗ 26.3 10.9 16.6 20.2 30.2 22.3 24.0
Insertion StarCoder 51.7* 30.8 10.3 21.0 20.2 27.4 20.0 25.4

Table 13: Performance of open-access and closed-access models on DS-1000. Benchmarks are as
follows. All models evaluated at temperature=0.2, top p=0.5, max length=1024. Scores reflect mean
pass@1 accuracy averaged over 40 samples. ∗: Matplotlib task format does not have the right context,
so insertion and completion formats are identical.

name of a file using the <filename> token. We found that the following prefix at temperature 0.1
boosts performance on HumanEval to 40.82%:

<filename>solutions/solution_1.py
Here is the correct implementation of the code exercise

We also evaluated CodeGen-16B-Mono with the same temperature and prompt (but had to omit the
filename since the CodeGen models do not support them). But, we found that this hurts performance,
bringing it down to 28.10%. However, some other prefixes may exist that improve its performance.
Similarly, we found that this prompt had a negligible impact with StarCoderBase.

6 . 1 . 2 T H E D S - 1 0 0 0 P Y T H O N D ATA S C I E N C E B E N C H M A R K S

A major limitation of HumanEval and MBPP is that they are simple programming puzzles that are
not representative of the code that most programmers write. In contrast, the DS-1000 benchmark (Lai
et al., 2022) has a suite of 1,000 realistic and practical data science workflows across seven libraries
and evaluates generations in execution against test cases.

DS-1000 supports two evaluation modes: completion and insertion (via FIM). We report completion
scores for all models but insertion scores only for models that support it: the StarCoder models and
InCoder-6B (Fried et al., 2022). DS-1000 also categorizes problems based on the libraries used:
Matplotlib, NumPy, Pandas, SciPy, Scikit-Learn, PyTorch, and TensorFlow. We report pass@1 for
each library and an overall score in Table 13 and draw the following conclusions:

1. StarCoder substantially outperforms all other models on data science problems from the
DS-1000 benchmark. Moreover, this is true across every kind of data science library.

2. StarCoderBase also outperforms every other model, but is slightly behind StarCoder on
DS-1000.

3. We confirm the finding by Lai et al. (2022): model performance on HumanEval and MBPP
benchmarks does not always correlate with performance on the more realistic DS-1000
benchmarks. For example, CodeGen-Mono slightly outperforms code-cushman-001 and the
StarCoder models on HumanEval and MBPP, but is significantly worse on DS-1000. This
demonstrates the importance of evaluating models on a range of benchmarks.

6 . 2 S TA R C O D E R A N D S TA R C O D E R B A S E : M U LT I - L A N G U A G E E VA L U AT I O N

In this section, we focus primarily on StarCoderBase, and evaluate its performance on a variety of
programming languages and programming tasks, including producing code from natural language
descriptions, documenting code, predicting type annotations, and more. This section also shows that
StarCoder, despite being fine-tuned on Python, remains a very capable multi-language Code LLM
and even outperforms StarCoderBase on some languages.

19

Model Java JavaScript Python
InCoder-6B 0.49 0.51 0.31
SantaCoder 0.62 0.60 0.44
StarCoder 0.73 0.74 0.62

Table 14: Performance on single-line fill-in-the-middle on the FIM benchmark by Ben Allal et al.
(2023).

Language CodeGen-16B-Multi CodeGeeX code-cushman-001 StarCoder StarCoderBase
cpp 21.00 16.87 30.59 31.55 30.56
c-sharp 8.24 8.49 22.06 21.01 20.56
d 7.68 9.15 6.73 13.57 10.01
go 13.54 11.04 19.68 17.61 21.47
java 22.20 19.14 31.90 30.22 28.53
julia 0.00 0.29 1.54 23.02 21.09
javascript 19.15 16.92 31.27 30.79 31.70
lua 8.50 10.96 26.24 23.89 26.61
php 8.37 13.51 28.94 26.08 26.75
perl 3.42 8.09 19.29 17.34 16.32
python 19.26 21.62 30.71 33.57 30.35
r 6.45 3.92 10.99 15.50 10.18
ruby 0.00 3.34 28.63 1.24 17.25
racket 0.66 3.31 7.05 0.07 11.77
rust 4.21 7.88 25.22 21.84 24.46
scala 2.37 8.95 27.62 27.61 28.79
bash 0.61 2.75 11.74 10.46 11.02
swift 1.25 7.26 22.12 22.74 16.74
typescript 20.07 10.11 31.26 32.29 32.15

Table 15: Comparing StarCoder to multi-language open-access (e.g., CodeGen-16B-Multi) and
closed-access models (e.g., code-cushman-001) on 19 programming languages. We report pass@1
on HumanEval (Chen et al., 2021), which we translate from Python to the other languages using
MultiPL-E (Cassano et al., 2023).

6 . 2 . 1 E VA L U AT I O N O N 1 9 P R O G R A M M I N G L A N G U A G E S W I T H M U LT I P L - E

We evaluate the ability of StarCoder to turn natural language into working code in multiple program-
ming languages using MultiPL-E (Cassano et al., 2023), which translates the HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021) Python benchmarks into 18 other programming languages as
follows.

MultiPL-E has a set of rule-based compilers that translate Python benchmarks to each target pro-
gramming language. Each compiler expects a benchmark in the HumanEval format: 1) a natural
language description (in a docstring), 2) a function signature (name, arguments, and, potentially,
types), and 3) a set of hidden assertions. The MultiPL-E compilers translate the function signature,
assertions, and docstring (which may have doctests) into a target language. Thus, MultiPL-E gives us
a parallel set of benchmarks derived from HumanEval and MBPP to compare model performance
across programming languages.14 The MultiPL-E languages include both high and low-resource
languages, statically and dynamically typed languages, and a variety of other programming language
features.

Table 15 shows how these models perform on 19 programming languages, and from it, we draw the
following conclusions:

14The MultiPL-E prompts are slightly different from the original HumanEval and MBPP prompts. For
example, in HumanEval, some ad hoc examples in docstrings are reformatted to be doctests so that they can be
translated into examples in each target language. MultiPL-E also omits three HumanEval benchmarks that do
not fit the above format. These changes have a small impact on pass rates.

20

1. Across all 19 programming languages, StarCoderBase outperforms other open-access
models, sometimes showing more than 2× performance.

2. StarCoderBase is competitive with code-cushman-001 on most languages that we evaluate.
There are a few exceptions. For example, code-cushman-001 outperforms StarCoderBase by
more than 5% on C++, Java, Ruby, and Swift, and StarCoder outperforms code-cushman-001
by more than 5% on Julia.

3. Despite fine-tuning on Python, StarCoder remains competitive on most languages, and
also outperforms other open models. What is more surprising is that StarCoder slightly
outperforms StarCoderBase on certain languages, despite being fine-tuned on Python. At
this time, we can only speculate on why this is the case, and further investigation of the open
training data is likely to help shed light on this finding.

There are several other conclusions that we can draw from the table. For example, CodeGen-16B-
Multi performs better than one might expect on some languages that are reportedly not in its training
set, including C#, Lua, PHP, and TypeScript. Its performance on TypeScript is less surprising since
simple JavaScript functions often type-check with TypeScript by design. Similarly, StarCoder shows
high performance on Swift, even though it was not included in its training set, as explained in
Section 3.1.

6 . 2 . 2 T H E “A S L E E P AT T H E K E Y B O A R D ” S E C U R I T Y B E N C H M A R K

A limitation of Code LLMs is that they can generate code with security vulnerabilities (Pearce
et al., 2022). The Asleep at the Keyboard benchmark by Pearce et al. (2022) has 89 security-
sensitive scenarios across three evaluation axes: (1) Diversity of Weakness (DoW) covers 18 different
vulnerability classes in MITRE’s Common Weakness Enumeration (CWE) taxonomy, with scenarios
drawn from the 2021 CWE Top 25 Most Dangerous Software Weaknesses list published by MITRE;
(2) Diversity of Prompt (DoP) evaluates the model’s sensitivity to variations in the prompt for a single
vulnerability class (SQL injection); (3) Diversity of Domain (DoD) contains security scenarios in the
hardware description language Verilog. We focus on the DoW, which contains 54 scenarios (25 in C
and 29 in Python) across 18 CWEs. We exclude scenarios that lack an automated test, leaving 40
scenarios (23 in C and 17 in Python).

Pearce et al. (2022) had previously evaluated the security of GitHub Copilot (as of August 2021), and
in this paper, we use the same methodology to evaluate StarCoderBase, InCoder-6B, CodeGen-16B-
Multi, and OpenAI’s code-cushman-001. We use the original benchmarking methodology: generating
25 completions per scenario at temperature 0.2 (1,000 completions per model). The dataset supports
fill-in-the-middle, so we include this configuration on models that support it. The results are shown
in Table 16; Valid gives the percentage of solutions that were syntactically valid (using py compile
for Python and gcc for C), and Insecure shows the percentage of valid solutions that contained the
vulnerability the scenario tests for. From this table, we draw the following conclusions.

1. StarCoderBase has the highest rate of valid code.
2. InCoder-6B has a slightly lower rate for insecure code generation, but this may be due to its

lower rate of valid completions.
3. Among the models with more than 95% valid code, StarCoder has the lowest rate of insecure

completions.

6 . 2 . 3 F I L L I N T H E M I D D L E B E N C H M A R K S

The StarCoder models support fill in the middle (FIM) or infilling, which allows the model to generate
code conditioned on prefix and suffix code surrounding the insertion point. Only a handful of recent
models support FIM: from OpenAI (Bavarian et al., 2022), InCoder (Fried et al., 2022), and our
prior work on SantaCoder (Ben Allal et al., 2023). FIM opens up the possibility of a variety of tasks
that go beyond left-to-right code completion. We evaluate StarCoderBase on four established FIM
benchmarks below.

Single-Line Infilling for Python, Java, and JavaScript Fried et al. (2022) present a single-line
fill-in-the-middle task for Python that masks one line of code from a HumanEval solution and scores

21

Format Model Valid (↑) Insecure (↓)
Completion StarCoderBase 855/1000 (85.50%) 340/855 (39.77%)
Insertion StarCoderBase 987/1000 (98.70%) 354/987 (35.87%)
Completion InCoder-6B 871/1000 (87.10%) 309/871 (35.48%)
Insertion InCoder-6B 854/1000 (85.40%) 293/854 (34.31%)
Completion CodeGen-16B-Multi 955/1000 (95.50%) 413/955 (43.25%)
Completion code-cushman-001 964/1000 (96.40%) 408/964 (42.32%)

Table 16: Performance on the Asleep at the Keyboard security benchmark (Pearce et al., 2022).

Model Non-None F1 All F1
InCoder-6B 59.1 46.8
SantaCoder 66.9 78.5
StarCoderBase 77.4 86.6
StarCoder 77.1 86.4

Table 17: Accuracy of Python return type prediction, using Fried et al. (2022)’s adaptation of the
Pradel et al. (2020) benchmarks. We report both the overall F1 scores, which include trivial None-type
prediction, and the F1 score for non-None types.

the model’s ability to complete the function. They turn every HumanEval solution into several
fill-in-the-middle problems by masking each non-blank, non-comment line of code in the solution
body into a fill-in-the-middle task. Ben Allal et al. (2023) generalizes this benchmark to also support
Java and JavaScript, using model-generated solutions from MultiPL-E’s translations. We compare
the performance of StarCoderBase, SantaCoder, and InCoder on this task, evaluating using line exact
match (Table 14). StarCoderBase significantly outperforms the two smaller models.

Python Return Type Prediction Pradel et al. (2020) introduce methods and datasets for evaluating
Python type annotations. Fried et al. (2022) adapt and filter one dataset from this work, consisting
of Python functions from GitHub, and use it to evaluate infilling models on function return type
prediction. We use this dataset to compare StarCoder, StarCoderBase, and SantaCoder to InCoder
and the supervised method, TypeWriter, from Pradel et al. (2020) on function return type prediction.
Our setup follows Fried et al. (2022): each model uses greedy generation to infill return types while
conditioning on the imports, body, and signature for each function. We report exact match accuracy
on normalized annotations for all functions in the evaluation set and only those with non-None
annotations, following Fried et al. (2022). We find that StarCoder and StarCoderBase outperform
existing approaches at Python return type prediction (Table 17). However, we note that as the
functions in this evaluation set were taken from GitHub repositories, they may overlap with the
training data for SantaCoder and the StarCoder models.

TypeScript Type Prediction Yee & Guha (2023) evaluate approaches to neural type prediction for
TypeScript. However, instead of measuring accuracy, they argue that benchmarks should measure how
many projects or files do not have type errors with predicted types. This approach makes it possible

Packages type check Files with no errors Trivial annotations
✓ Total % ✓ Total % ✓ Total %

InCoder 30 128 23.4 571 760 75.1 56 117 47.9
StarCoderBase 49 128 38.3 593 760 78.0 135 299 45.2

Table 18: TypeScript type prediction performance using the dataset and metholody from Yee &
Guha (2023). We only evaluate JavaScript packages that have never been translated to TypeScript
and compare StarCoder to InCoder, the best-performing model by Yee & Guha (2023). StarCoder
outperforms InCoder in several ways.

22

Model BLEU
InCoder-6B 18.27
SantaCoder 19.74
StarCoderBase 21.38
StarCoder 21.99

Table 19: Performance on the Python portion of the CodeXGLUE Code Summarization task, evaluat-
ing function docstring generation. Models are evaluated zero-shot using their infilling capability.

10−1 100 101 102

Size after dedup, GB

0

5

10

15

20

25

30

35

P
as

s@
1

(%
)

200B

400B

600B

800B

1000B

200B 400B 600B 800B 1000B
Training tokens

cpp

c-sharp

d

go

java

julia

javascript

lua php

perl

python

r

ruby

racket

rust

scala

bash

swift

typescript

Figure 2: Performance (pass@1) of StarCoderBase at several training checkpoints by data size (left)
and by programming language (right). The lines in the left plot are a linear fit between pass@1 and
log-dataset-size for all the points except the leftmost one, where we expect the linear dependence to
break due to transfer learning (dashed line). The goodness of fit ranges between R2 = 0.399 for the
600B checkpoint to R2 = 0.510 for the 1000B checkpoint.

to evaluate type prediction for JavaScript programs that have never been translated to TypeScript,
which reduces the likelihood of dataset contamination. We add StarCoderBase to their evaluation
framework and compare it to InCoder, which performs best at type prediction in the original work.
Table 18 shows that StarCoderBase outperforms InCoder: (1) it produces more packages that type
check, (2) across all packages, it produces more files that type check, and (3) it produces fewer trivial
type annotations than InCoder.

Python Docstring Generation To evaluate models’ ability to generate documentation for functions,
we use the Python subset of the CodeXGLUE code summarization benchmark (Lu et al., 2021).
This benchmark is constructed from the CodeSearchNet dataset (Husain et al., 2019), containing
functions from public GitHub repositories. Models infill the documentation string (docstring) for
each function using greedy decoding, conditioned on the function signature and body. We follow the
evaluation scheme of past work: docstrings are evaluated using smoothed 4-gram BLEU (Papineni
et al., 2002) against the reference docstring from the original function, using only the first lines
of the generated and reference docstrings (removing, e.g., descriptions of function arguments and
return types that may appear in later lines). In Table 19, we see that despite being used zero-shot,
StarCoder and StarCoderBase obtain higher performance than past work on docstring generation.
However, we note that there may be an overlap between this evaluation dataset and the data used to
train SantaCoder and the StarCoder models.

6 . 3 P E R F O R M A N C E I M P R O V E M E N T T H R O U G H T H E T R A I N I N G P R O C E S S

We evaluate the performance of StarCoderBase at several training checkpoints after every 200B
tokens seen out of the total 1000B. Figure 2 (right) shows how performance (pass@1) changes

23

Window Size Language
cpp c-sharp c go java javascript php r ruby rust

2K tokens 2.01 1.90 1.71 1.35 1.65 1.98 1.73 1.72 2.16 1.84
8K tokens 1.79 1.66 1.61 1.21 1.54 1.68 1.43 1.48 2.02 1.65

Table 20: Perplexity of StarCoderBase on evaluation regions (of size 1K tokens) when using a window
size of 2K or 8K tokens across repositories from 10 languages. The larger window size substantially
reduces perplexity, demonstrating a benefit of StarCoder’s 8K token window.

during training for each programming language supported by MultiPL-E. The performance curve for
several high-resource programming languages suggests that training longer is likely to improve their
performance further.

However, some of the low-resource languages see limited improvement during training or even have
a pass@1 decline. For example, R’s pass@1 rate drops significantly between the 800B and 1000B
(final) checkpoints. The dependence of pass@1 on data size (Figure 2, left) further supports the
hypothesis that this is related to the amount of data available. The slope of the linear fit increases
between 800B and 1000B checkpoints while the intercept decreases, i.e., performance improves only
for languages with large enough amounts of data (≳ 1 GB).

We manually inspected the completions generated by R over several checkpoints to better understand
model performance. One might hypothesize that some problems are harder than others, and so the
model gains and loses the ability to solve them in R over the 600B, 800B, and 1000B checkpoints,
but we find that this is not the case. Instead, we find significant variance in per-problem success rates
for several problems (Table D.3). For these problems, the pass rate between different checkpoints
varies in what appears to be a completely uncorrelated manner. Moreover, manual inspection shows
that the failures are caused by minor mistakes, e.g., not taking the absolute value when computing
GCD, not converting a string to a character array, or not checking edge cases.

6 . 4 P E R P L E X I T Y W I T H L O N G C O N T E X T S

StarCoderBase was trained with an 8K token window, allowing conditioning on and generating long
code files. To evaluate the ability of the model to benefit from this larger context, we compare its
perplexity (Bahl et al., 1983) when using a full window size of 8K tokens versus a window size of 2K
tokens (as used in many prior code models).

To ensure no overlap between the training data for StarCoderBase and the perplexity computation data,
we downloaded 10 GNU Public License (GPL) repositories from GitHub in each of the languages in
Table 20. We compiled all files from the repositories into a single document for each language. We
then divided these documents into 8K token chunks and computed perplexity on the last 1K tokens
in each chunk15 in two conditions: (1) the model window only contains the final 2K tokens in the
chunk (i.e., the 1K being predicted and the previous 1K), and (2) the model window contains all 8K
tokens in the chunk (i.e., the 1K tokens being predicted and the previous 7K). This evaluates the
ability of the model to benefit from additional file- and repo-level context when predicting code. In
Table 20, we report the average perplexity of the 1K token regions across all chunks. We see that
StarCoderBase indeed benefits from the extra token conditioning afforded by its 8K context window,
with substantially lower perplexities across all languages.

7 N AT U R A L L A N G U A G E E VA L U AT I O N

Although the StarCoder models are principally developed to be Code LLMs, they have also been
trained on a significant amount of natural language text. Roughly 20% of its training tokens are
natural language data: 7% GitHub issues, 10% Markdown, 2% Jupyter notebooks, and 4% HTML. In
this section, we evaluate StarCoderBase on several natural language tasks: natural language reasoning

15We evaluate perplexity on the final 1K tokens in each 8K chunk so that both conditions have the same
evaluation tokens, and to avoid overly penalizing the 2K condition, as tokens at the beginning of a window tend
to have higher perplexity as there is less context available to predict them.

24

Model Size GSM8K CoT +maj1@100 GSM8K PAL +maj1@40

StarCoderBase 15.5B 8.4 — 21.5 31.2

CodeGen-Multi 16B 3.18 — 8.6 15.2
CodeGen-Mono 16B 2.6 — 13.1 22.4

7B 11.0 18.1 10.5 16.8
13B 17.8 29.3 16.9 28.5

LLaMA 33B 35.6 53.1 38.7 50.3
65B 50.9 69.7 — —

Table 21: 8-shot accuracy on the GSM8K math-reasoning benchmark. Samples are generated with
greedy decoding. maj1@k denotes a majority vote over k generations. For the majority vote, we
instead generate samples using nucleus sampling with p = 0.95 and temperature 0.7, following Gao
et al. (2022). We use “—” when a model was not evaluated on a given metric, or the metric is not
supported in Language Model Evaluation Harness. The LLaMA CoT numbers are from Touvron
et al. (2023).

and understanding tasks that might benefit from the combination of code and text training data; and
natural language generation tasks that evaluate the model’s tendencies to produce undesirable text
outputs, e.g., in a documentation generation or interactive assistant setting.

7 . 1 M AT H R E A S O N I N G

Recent work has shown that Code LLMs can be effective arithmetic and symbolic reasoners by
using a technique called Program-Aided Language models (PAL; Gao et al., 2022). With PAL, the
LLM reads the reasoning problem and generates Python programs as the intermediate reasoning
steps, which are then executed by the Python interpreter to produce the answer. In contrast, the
Chain-of-Thought method (CoT; Wei et al., 2022b) prompts the LLM to produce the reasoning steps
in natural language before generating the answer.

We investigate the reasoning capabilities of StarCoderBase on GSM8K (Cobbe et al., 2021), a set of
middle-school math word problems. We compare with the two CodeGen-16B models (Nijkamp et al.,
2023) and the family of LLaMA models (Touvron et al., 2023). The results of our evaluation are
presented in Table 21, where we provide both CoT and PAL results for StarCoderBase and LLaMA.

In line with previous results comparing PAL to CoT on Code LLMs (Gao et al., 2022), we find
that StarCoderBase performs better with PAL (21.5%) than with CoT (8.4%). StarCoderBase
substantially outperforms CodeGen-16B-Mono and CodeGen-16B-Multi, which achieve 13.1% and
8.6% with PAL, respectively. These differences carry over to the setting where majority voting is
applied. The difference between CoT and PAL is much smaller for the LLaMA models, although we
observe that CoT performs slightly better for the 7B and 13B LLaMA models. Interestingly, we find
that StarCoderBase outperforms LLaMA-13B (17.8%) on this reasoning benchmark. However, its
performance still lags behind LLaMA-33B (38.7%).

7 . 2 W O R L D K N O W L E D G E A N D R E A D I N G C O M P R E H E N S I O N

MMLU (Hendrycks et al., 2020) is a massive multitask language understanding benchmark, covering
multiple-choice questions in 57 knowledge domains, including the humanities, STEM, and social
sciences. CoQA (Reddy et al., 2019) is a large-scale dataset for Conversational Question Answering
systems, measuring the model’s ability to process a text passage and answer a series of interconnected
questions. We compare StarCoderBase and StarCoder with CodeGen-16B-Multi (Nijkamp et al.,
2023), GPT-NeoX (Black et al., 2022), LLaMA-7B, and LLaMA-13B (Touvron et al., 2023).

We present the 5-shot accuracy for MMLU in Table 22, and the zero-shot F1 scores for CoQA in Table
23. On MMLU, StarCoderBase outperforms CodeGen-16B-Multi significantly (34.2% to 27.8%),
and even outperforms GPT-NeoX by a small margin (32.9%). Nevertheless, both LLaMA models
outperform StarCoderBase. On CoQA, StarCoderBase performs better than CodeGen-16B-Multi but
is outperformed by LLaMA and GPT-NeoX.

25

https://github.com/EleutherAI/lm-evaluation-harness

Model Size MMLU 5-shot
acc, %

CodeGen-Multi 16B 27.8
GPT-NeoX 20B 32.9
StarCoder 15.5B 33.9

StarCoderBase 15.5B 34.2
LLaMA 7B 35.1
LLaMA 13B 46.9

Table 22: 5-shot accuracy on the MMLU language understanding benchmark.

Model Size CoQA zero-shot
F1 score

CodeGen-Multi 16B 0.59
StarCoderBase 15.5B 0.67

StarCoder 15.5B 0.67
LLaMA 7B 0.71
LLaMA 13B 0.73

GPT-NeoX 20B 0.73

Table 23: Zero-shot accuracy on the CoQA question answering challenge.

7 . 3 M E A S U R I N G H A R M F U L G E N E R AT I O N

When generating open-ended text such as code documentation or technical dialogue, a Code LLM
(similarly to text-only LLMs) might produce harmful outputs. We compare StarCoderBase to previous
Code LLMs on benchmarks that measure social bias and toxicity in model-produced text.16

7 . 3 . 1 S O C I A L B I A S

Recent work has highlighted that LLMs often capture social biases and stereotypes from their pre-
training corpora (Kurita et al., 2019; May et al., 2019; Hutchinson et al., 2020; Meade et al., 2023).
To quantify social bias within our model, we use StereoSet (Nadeem et al., 2021).

StereoSet consists of a collection of fill-in-the-blank-style tests for measuring social biases within
language models.17 Each example in StereoSet consists of an incomplete sentence (e.g., our house-
keeper is BLANK) alongside three possible completions. Of these completions, one is stereotypical
(e.g., Mexican), another is anti-stereotypical (e.g., Italian) and a third is unrelated (e.g., computer).
StereoSet defines three metrics: a stereotype score, a language modeling score, and an ICAT score.
The stereotype score is the percentage of examples for which a model prefers the stereotypical
completion for a sentence over the anti-stereotypical completion. The language modeling score
is the percentage of examples for which a model prefers a meaningful completion (stereotype or
anti-stereotype) over an unrelated completion. Finally, Nadeem et al. (2021) define an idealized
context association test (ICAT) score that combines these two metrics:

ICAT = lms · min(ss, 100− ss)

50
(2)

where lms and ss denote the language model score and stereotype score, respectively.

We report StereoSet results for StarCoderBase, alongside LLaMA-13B and CodeGen-Multi-16B,
in Table 24. Across all four bias domains, we find StarCoderBase obtains the lowest stereotype
scores, but also has competitive language modeling scores. This suggests that StarCoderBase’s lower
stereotype scores are not simply due to worse language modeling (Meade et al., 2022), and also as
indicated by the high ICAT score.

16Code for the evaluations is available here: https://github.com/McGill-NLP/StarCoderSafetyEval
17We only evaluate against the intrasentence task in this work.

26

https://github.com/McGill-NLP/StarCoderSafetyEval

Model Stereotype Score Language Model Score ICAT Score
Gender

LLaMA-13B 66.54 88.09 58.95
CodeGen-Multi-16B 67.34 86.41 56.44
StarCoderBase 58.76 86.82 71.60

Profession

LLaMA-13B 60.95 86.74 67.74
CodeGen-Multi-16B 60.67 85.67 67.38
StarCoderBase 53.24 84.70 79.21

Race

LLaMA-13B 64.94 87.97 61.68
CodeGen-Multi-16B 60.58 88.60 69.85
StarCoderBase 56.48 86.82 75.58

Religion

LLaMA-13B 57.95 90.26 75.91
CodeGen-Multi-16B 56.16 88.91 77.96
StarCoderBase 55.69 90.67 80.36

Overall

LLaMA-13B 63.40 87.62 64.14
CodeGen-Multi-16B 61.29 87.25 67.55
StarCoderBase 55.53 86.18 76.65

Table 24: StereoSet intrasentence results for gender, professional, racial, and religious bias. Stereotype
scores close to 50% are best. Language modeling scores and ICAT scores close to 100% are best.

We also evaluate StarCoderBase against Crowdsourced Stereotype Pairs (CrowS-Pairs; Nangia et al.
2020) and refer readers to Table D.4 for results.

7 . 3 . 2 T O X I C I T Y

To evaluate toxicity in responses generated from our model, we use RealToxicityPrompts (Gehman
et al., 2020), a collection of sentence-level prompts that often elicit undesirable responses from
language models. We generate responses to 10K examples from RealToxicityPrompts using Star-
CoderBase with a minimum length of one token and a maximum length of 128 tokens. We use
nucleus sampling (Holtzman et al., 2020) with p = 0.95 to generate all of our responses.

We use two methods for automatically evaluating toxicity in responses: (i) a RoBERTa-based (Liu
et al., 2019) toxicity classifier (Vidgen et al., 2021) and (ii) a list of potentially offensive words.18 For
the toxicity detector, we report the percentage of responses flagged toxic using a threshold of 0.5. For
the offensive word list, we report the percentage of responses which contain an offensive word. We
note that while the offensive word list can potentially falsely flag responses, it may provide a crude
measure of blatant toxicity. We report our results in Table 25.

In general, we observe that CodeGen-16B-Multi and StarCoderBase both appear to generate less toxic
responses than LLaMA-13B. For instance, 1.43% of LLaMA-13B’s responses contain potentially
offensive tokens compared to the 1.12% of StarCoderBase. We also note that CodeGen-16B-Multi
appears to generate less toxic responses than StarCoderBase.

7 . 4 R E A S O N I N G TA S K S I N H E L M

We evaluate StarCoderBase with HELM (Liang et al., 2022), an evaluation suite aiming to increase
the transparency of LLMs by reporting their performance on a wide range of tasks. We evaluate

18https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words

27

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words

Model Classifier Word List
LLaMA-13B 0.74 1.43
CodeGen-Multi-16B 0.21 0.82
StarCoderBase 0.42 1.12

Table 25: RealToxicityPrompts response toxicity results. We report the percentage of responses
flagged as toxic using a toxicity classifier and an offensive word list. Lower scores are indicative of
less toxic generations.

Model Size Open
Access

Synth.
Reason.

(AS)

Synth.
Reason.

(NL)
bAbI Dyck GSM8K MATH MATH

(CoT) LSAT Legal
Support

code-davinci-002 175B 54.0 68.4 68.6 80.5 56.8 41.0 43.3 — —
text-davinci-003 175B 50.2 73.4 65.3 75.1 50.6 39.0 44.9 23.3 62.2
Luminous Supreme 70B 31.2 — 50.4 72.9 11.2 14.9 5.7 21.2 53.0
StarCoderBase 15.5B ✓ 44.0 21.0 50.4 85.4 8.4 15.1 7.0 19.0 53.2
Cohere Command
Beta

52.4B 24.3 24.5 47.3 42.1 13.8 13.3 7.5 22.9 60.6

J1-Jumbo v1 178B 26.3 17.4 54.3 44.5 5.4 8.9 3.3 23.2 48.4
J1-Grande v2 beta 17B 28.6 13.9 47.0 61.7 9.6 12.7 6.8 19.1 56.2
code-cushman-001 12B 34.1 16.4 48.1 45.1 4.9 9.9 7.2 — —
OPT 175B ✓ 22.5 24.8 50.7 49.4 4.0 6.5 2.6 22.0 53.2
GPT-NeoX 20B ✓ 20.4 16.7 46.8 74.7 5.3 14.1 7.1 19.1 51.5
BLOOM 176B ✓ 30.4 19.7 44.7 54.5 9.5 4.3 5.5 20.9 54.3
GLM 130B ✓ 25.2 25.4 44.3 54.9 6.1 0 5.9 19.3 45.1
UL2 20B ✓ 20.5 21.7 50.1 14.0 2.4 0 0 20.7 50.6
OPT 66B ✓ 19.3 21.3 40.8 47.1 1.8 4.8 2.9 17.5 52.7
YaLM 100B ✓ 5.6 6.1 34.6 63.3 0 0 0 2.3 48.4
T5 11B ✓ 19.6 10.1 41.2 34.7 2.3 0 0 15.9 55.8

Table 26: Model results on natural language reasoning tasks in the HELM benchmark, with models
ordered by their average rank on the tasks. We use “—” when a model was not evaluated on a given
metric, or has runtime errors logged in HELM (e.g., “unmapped prediction” for the code-davinci-002
and code-cushman-001 models on LSAT and Legal Support). StarCoder generally substantially
outperforms other open-access models, and often outperforms much larger models.

the ability of the model to leverage its natural language and code pretraining for natural language
reasoning tasks from HELM (excluding code tasks, because of our own extensive code evaluations).
At the time of writing, the HELM benchmark does not include the CodeGen, CodeGeex, and LLaMA
models. Therefore, we compare StarCoderBase with the largest and/or most recent model from each
family of “limited” or “open” access models, as classified on the HELM model list,19 that had been
evaluated on a majority of these HELM reasoning tasks as of May 1, 2023. In Table 26 we report the
results. We compute each model’s ranking on each task, and order models in the table by their average
ranking across tasks. StarCoderBase generally obtains substantially stronger performance than all
other models with released weights and often performs comparably to or better than much larger
models. We speculate that the mixture of code and natural language in the training data contributes to
the model’s strong performance on these reasoning tasks.

8 Q U A L I TAT I V E E VA L U AT I O N

In this section, we highlight several interesting interactions we had with StarCoderBase. We hope
these serve as a starting point for researchers and developers interested in further exploring the
model’s capabilities. We provide examples of how to elicit interesting model behavior using the
templates for Git commits, GitHub issues, and Jupyter notebooks in Section 8.1. In Section 8.2, we
demonstrate how to prompt StarCoder to act as a technical assistant without any instruction-tuning.

19https://crfm.stanford.edu/helm/latest/?models=1

28

https://crfm.stanford.edu/helm/latest/?models=1

8 . 1 U S I N G P R E T R A I N I N G T E M P L AT E S

For the git commit, GitHub issues, and formatted Jupyter notebooks, we use a templated structure
with sentinel tokens during pretraining. This template format allows us to easily prompt the model
for specific use cases: with the commit format, we can prompt the model to modify code with a
natural language instruction, with the GitHub issues format to respond to technical natural language
questions, and the Jupyter notebook format to write code based on natural language description. Since
we also train on the output of Jupyter code cells, we can use the model to act as a basic interpreter
and predict the output of a piece of code. We can force the model to always predict an output by
suppressing the empty output token (<empty_output>). Table 27 illustrates uses of pretraining
templates.

8 . 2 T E C H N I C A L A S S I S TA N T

In preliminary explorations, we discovered that using Anthropic’s HHH prompt (Askell et al., 2021)
turned the model into a somewhat capable yet brittle technical assistant. We were surprised that,
without instruction-tuning, we were able to utilize the 8k context length of StarCoder and let the
model answer questions, follow instructions, and help with solving technical problems. We further
improved the HHH prompt by including more conversational examples related to the programming
domain. We used examples from various sources to create the prompt, including CoT (Wei et al.
2022b; Kojima et al. 2022) and Least-to-most prompting (Zhou et al., 2022) for reasoning questions.
The prompt’s examples originate from StackExchange, PAL (Gao et al., 2022), Anthropic’s HHH
prompt, and BigCode’s effort. We provide example responses in Table 28 and the prompt itself in
Appendix E. Note that the technical assistant has clear limitations: it sometimes proposes wrong
solutions, presents wrong facts, and can make offensive comments.

9 AT T R I B U T I O N T O O L S

As generative language tools become more ubiquitous and data-intensive, the need to understand and
inspect the massive amounts of text they were trained on becomes more pressing, both to understand
the failure modes of models as well as provide transparent data governance feedback in the form of
attribution tracing and provenance management of a model’s generated output. This pressing need
for understanding data (Mitchell et al., 2022) is being increasingly recognized and operationalized in
the form of dataset inspection tools and toolkits (Akiki et al., 2023; Marone & Van Durme, 2023;
Piktus et al., 2023). It is from this vantage point that we are releasing two such data inspection tools:
a membership-checking tool and a BM25 search index. These complement the existing “Am I in
The Stack” tool20 which operates at the level of GitHub repository names. The two new tools index
only the files used for training and allow for matches on file content. These tools are available as
standalone sites but are also integrated into our VSCode demo. This helps users identify parts of the
model output that may have been copied from the training data. By utilizing the search index, users
can locate the corresponding source file and repository of the copied snippets.

9 . 1 M E M B E R S H I P C H E C K I N G

Marone & Van Durme (2023) propose documenting datasets with membership testing artifacts
deemed Data Portraits. They provide one specific implementation, based on Bloom Filters (Bloom,
1970), that offers fast and lightweight membership inference. We build a Bloom-filter-based portrait
on strings of length 50 characters from the training data. This artifact takes 26 GB, ∼ 3% of the data
size. The inference tool is hosted publicly to complement other documentation artifacts. 21

Generations from the model can be quickly checked to approximately assess the degree of overlap
with the training corpus. The VSCode extension supports using this as a rapid, first-pass attribution
method. However, this requires that matching strings are longer than a minimum size and does not
attempt to filter common or generic code snippets. After the first pass check, users can use the full
search index to further assess attribution.

20https://huggingface.co/spaces/bigcode/in-the-stack
21http://stack.dataportraits.org/

29

https://huggingface.co/spaces/bigcode/in-the-stack
http://stack.dataportraits.org/

Description Examples
Jupyter format
for predicting
results

Model input:

<jupyter_text>Let’s test our ‘is_prime‘ function:<jupyter_code>
print(is_prime(3))

print(is_prime(4))
print(is_prime(29))
print(is_prime(33))<jupyter_output>

Model output:

True
False
True
False

Model input:

<jupyter_code>numbers = [1, 9, 8, 3, 27]
print([n*2 for n in numbers])<jupyter_output>

Model output:

[2, 18, 16, 6, 54]

Git commits
to modify
code

Model input:

<commit_before>def fibonacci(n):<commit_msg>add type hints to
function<commit_after>def

Model output:

def fibonacci(n: int) -> list[int]:

GitHub Issues Model input:

<issue_start><issue_comment>username_0: I am trying to train a
text classifier based on BERT using ‘transformers‘ but I
get the error: ‘RuntimeError: CUDA Out of memory‘.<
issue_comment>

Model output:

username_1: Hi,

This is not an issue with transformers. You should look at your
GPU usage and see if you can free up some space before
training starts (or use smaller batch sizes).

Table 27: Sample uses of pretraining templates.

9 . 2 S E A R C H I N D E X

We index the training dataset using Elasticsearch 7.1722 and provide two search tools to query it: one
focused on the Python subset23 and one covering the entire dataset.24 The code itself is preprocessed

22https://www.elastic.co/guide/en/elasticsearch/reference/7.17
23https://hf.co/spaces/bigcode/py-search
24https://hf.co/spaces/bigcode/search

30

https://www.elastic.co/guide/en/elasticsearch/reference/7.17
https://hf.co/spaces/bigcode/py-search
https://hf.co/spaces/bigcode/search

Instruction StarCoder’s response
I need to integrate a Python
function numerically, what’s
the best way to do it?

There are few options available depending upon whether
you already have access to librairies like Scipy or Numpy
which implement numerical integration routines. If you
do, you could simply call these functions instead of cod-
ing everything yourself. Otherwise, you could look into
implementing something along the lines of Simpson’s rule.
Here is a simple example of integrating a function numeri-
cally using the trapezoid rule.

def trapint(func, a, b, N):
dx = float((b-a)/N)
sum = func(a)+func(b)

for i in range(1, N):
x = a + i*dx
sum += 2.*func(x)

return sum*(dx/2.)

Write a Python function to
tell me what the date is today

Sure thing. Here goes...

from datetime import date
today = str(date.today()).replace(’-’, ’/’)
print("Today is " + today)

List the prime numbers be-
tween 20 and 30.

Here is a simple algorithm which uses trial division to find
the prime numbers within a given interval.

primes = []
for num in range(20, 31):

found = False
for j in range(2,num//2):

if ((num % j)==0):
found = True
break

if((found==False) & (num!= 1)):
primes.append(num)

Table 28: Sample interactions with the Technical Assistant.

using a lowercase filter and Lucene’s ASCIIFoldingFilter, tokenized using a 3-gram tokenizer, and
indexed using the default Lucene implementation of BM25 as a similarity function. We further index
the username and license fields as keyword fields allowing for easy filtering and lookup based on
these specific metadata fields. Both indexes are currently running in single-node mode on one virtual
machine.

1 0 S O C I A L I M PA C T A N D L I M I TAT I O N S

Project Approach StarCoder is an output of the BigCode Project.25 BigCode aims to be responsible
by design and by default. The project is conducted in the spirit of Open Science, focused on the
responsible development and use of large language models for code. Through open-governance

25https://www.bigcode-project.org

31

https://www.bigcode-project.org

practices conducted throughout the project, priority in decision-making has always yielded to the
more responsible option even if this meant introducing limitations that might impact adoption or
future research. For example, the decision in the Legal, Ethics, Governance Working Group to remove
and not release a dataset containing malicious code that had been identified, even though this data
might be useful for future security research. The Working Group felt that such code already exists in
places already well known to researchers, and did not need to remain in The Stack.

By releasing StarCoder with an Open Responsible AI Model license along with the model weights,
and by open-sourcing all code repositories on GitHub,26 (including the model training framework,
the dataset filtering methods, the code evaluation suite, and the research analysis notebooks), we aim
to increase access, reproducibility, and transparency of Code LLMs in the research community. It
is important to note that Appendix A of the model license includes the use restrictions set by the
BigCode community to ensure that modifications of the model, and applications using the model,
adhere to the BigCode principles of responsible AI.

We expect Code LLMs to enable people from diverse backgrounds to learn to write higher-quality
code and develop low-code applications (Leinonen et al., 2023). Mission-critical software could
become easier to maintain as professional developers are guided by code-generating systems on how
to write more robust and efficient code. However, the security implications should also be carefully
considered (Sandoval et al., 2023). While the social impact is intended to be positive, the increased
accessibility of Code LLMs comes with certain risks such as over-reliance on the generated code
and long-term effects on the software development job market. We refer the reader to Chen et al.
(2021, Section 7) for a broader impact analysis of Code LLMs, as well as Khlaaf et al. (2022) for an
in-depth risk assessment and hazard analysis of this emerging technology.

Dataset and data licensing StarCoder was trained on a subset of The Stack v1.227 dataset. See
The Stack (Kocetkov et al., 2022) for details of how the dataset was assembled and a discussion
of the social impact of its release, biases and the potential presence of PII or malicious code. This
dataset has been filtered to only include permissively licensed source code. Nevertheless, the
license detector might have incorrectly classified a number of repositories. Please reach out to
contact@bigcode-project.org in case StarCoder generates verbatim copies of non-permissively
licensed source code or if you encounter files in The Stack that do not have a permissive license.

Consent mechanism Although The Stack offers a way to remove developer code, its opt-out
process only applies to individual repositories and could benefit from further enhancements. During
the first stage of the opt-out process, individuals were asked to specify the reasons for wanting their
code to be excluded from the dataset. The responses revealed a few recurring concerns, including:

• Preference for an opt-in approach instead of opt-out

• Perception that it is unfair to use their code without compensation

• Concerns about the current limitations of AI and the potential for model generations to be
traced back to their work, resulting in potential legal liability.

• Belief that their code is of poor quality and unsuitable for AI training.

• Presence of PII in their code, which they do not wish to be publicly exposed.

The feedback form also revealed another limitation of the opt-out process. When code is licensed
permissively or under a copy-left license, it can be duplicated to another repository, making it
challenging to eliminate such copies if the copyright owner chooses to opt out. More work is
necessary to create workable data control and consent mechanisms for the large-scale training data of
LLMs.

Data annotation It was important for BigCode to only use reputable data annotation services.
It was also important to balance the constraints of costs (fair compensation), time (the timing and
time to complete the work were on the critical path for the project), and quality (to ensure that
PII Detection Model training was not impacted). While traditional data annotation services using

26https://github.com/bigcode-project
27https://huggingface.co/datasets/bigcode/the-stack

32

contact@bigcode-project.org
https://github.com/bigcode-project
https://huggingface.co/datasets/bigcode/the-stack

salaried employees were considered, the decision to work with Toloka crowd-workers was taken after
a review of service providers and their compensation practices - most would not provide sufficient
transparency and guarantees about worker compensation. The determination of compensation took
into consideration different minimum wage rates across countries and their corresponding purchasing
power. We limited annotation eligibility to countries where the hourly pay rate of $7.30 was equivalent
to the highest minimum wage in the US ($16.50) in terms of purchasing power parity.

PII detection Despite our best efforts to remove PII (Section 4), StarCoder may still produce PII
(note that the model license restricts use that aims to generate or disseminate PII with the purpose of
harming others). As mentioned in Section 4.2, we trained an encoder-only model to detect PII for
both code- and text-related tasks and noted that there is a possibility of false positives and negatives,
which could lead to unintended consequences when processing sensitive data. Moreover, the PII
detection model’s performance may vary across different data types and programming languages,
necessitating further validation and fine-tuning for specific use cases. The PII annotations are only
available to approved individuals, and researchers and developers who are granted access are expected
to uphold ethical standards and data protection measures. By making it accessible, our aim is to
encourage further research and development of PII redaction technology.

Malicious code On the Hugging Face platform, where the Stack is hosted, a malicious code
detection tool identified 654 files as unsafe. With the help of the BigCode community, we removed
these files ahead of the release of The Stack v1.2. Nevertheless, The Stack may contain undetected
malicious code, and StarCoder might be able to generate malware. The StarCoder OpenRAIL-
M license, therefore, includes a use restriction against generating and/or disseminating malware
(including — but not limited to — ransomware) or any other content that can be used to harm
electronic systems.

Model limitations StarCoder is subject to typical limitations of LLMs, including the potential to
generate content that is inaccurate, offensive, misleading, discriminatory towards age or gender, or
reinforces other stereotypes. Please refer to Section 7.3 for an investigation into such safety concerns.
Deployments of StarCoder need to further challenge and adapt the model to prevent such behavior,
e.g., through red-teaming (Perez et al., 2022), adversarial testing (Wan et al., 2023), and/or by adding
a robust safety layer (OpenAI, 2023b). Safety-critical applications may benefit from additional
safeguards such as Dialog-Enabled Resolving Agents (Nair et al., 2023) to ensure that generated
outputs are more factually accurate and complete. It may also be advantageous to train Code LLMs
to self-debug (Chen et al., 2023) or evaluate code quality (Zhuo, 2023). The model is released with
an OpenRAIL-M license that places enforceable use restrictions that apply to modifications of the
model and to applications using the model.

English-only evaluations We evaluated the performance of StarCoder solely on English-based
benchmarks to understand its coding capabilities and natural language understanding. To make these
models more accessible to a wider audience, future research should investigate the performance and
limitations of Code LLMs on other natural languages.

Code attribution tools The StarCoder membership-checking tool and BM25 search index are
limited to dataset inspection against the subset of The Stack that was used for training and, as such,
will not find matches to code that was not included or that was removed from the dataset for this
project. The Portraits-based membership testing tool uses hash matching and thus may have false
positives. It also has a minimum resolution and requires a certain amount of context to trigger a
match. Both attribution tools do not attempt to distinguish between generic code (e.g., boilerplate) or
protected content. However, we hope that these tools will support ongoing research on the responsible
development of LLMs.

Community research The release of governance tools like “Am I in The Stack” tool28 provided an
opportunity to directly engage communities in conversation about the process and impact of LLMs
in a practical, rather than hypothetical, way. We conducted community research with individuals at
specific organizations whose data is used in The Stack (The Alan Turing Institute and The Turing Way)

28https://huggingface.co/spaces/bigcode/in-the-stack

33

https://turing.ac.uk/
https://the-turing-way.netlify.app/
https://huggingface.co/spaces/bigcode/in-the-stack

and contributed to two open, international workshops (Open Data Day 2023 and Mozilla Festival 2023
with a session titled ‘Designing for Data Rights in the AI Production Pipeline’). These qualitative
interviews and participatory co-design workshops included 50 participants, primarily from North
America and Europe, with roles including research scientist, community manager, software engineer,
and principal investigator (PI).

The outcomes from the community research can be summarized as follows: when it comes to
governance of LLM datasets, participants feel that it is both better to know AND better to have
a choice. Most participants had neutral to positive feelings about their permissively licensed data
being used to train LLMs. While all had positive impressions of the “Am I in The Stack” tool,
no one interviewed expressed a desire to actually opt out. The main takeaway seemed to be that
participants found the most value in BigCode governance tools for their ability to raise awareness of
data practices and to empower individuals and communities to take action based on their specific
needs. These initial conversations also highlighted the importance of bringing governance discussions
and decisions directly to impacted communities, an important direction of future work that should
extend community research beyond North America and Europe. Participants in the workshops also
raised examples of new groups to center in data rights considerations, including artists, data miners,
and future generations. The co-created outputs can be viewed on this MozFest Miro Board.

1 1 C O N C L U S I O N

In this technical report, we described the efforts of the BigCode community in creating StarCoderBase
and StarCoder, an open-access 15.5B parameter large language model (LLM) trained on code. We
provided full transparency on all aspects of the research and development process, including the
training data, the data curation process, the PII redaction pipeline, and the model training. We
conducted the most extensive evaluation of Code LLMs to date, finding that StarCoder outperforms
other Code LLMs like CodeGen (Nijkamp et al., 2023) and CodeGeeX (Zheng et al., 2023), and
matches or outperforms the closed-access code-cushman-001 model from OpenAI. By releasing
the StarCoder models with an Open Responsible AI Model license, and by open-sourcing all code
repositories for building the model on GitHub, we aim to increase access, reproducibility, and
transparency of Code LLMs in the research and developer communities. The model license includes
use restrictions to ensure that modifications of the model, and applications using the model, adhere
to the BigCode principles of responsible AI. In addition, we released a novel set of attribution tools
to help end-users of Code LLMs to detect and locate model generations that may have been copied
from the training set. We hope these measures contribute towards a safe model release, ensuring that
the strong-performing StarCoder models remain a force for good.

34

https://opendataday.org/events/2023/#designing-for-data-rights-in-the-ai-production-pipeline
https://schedule.mozillafestival.org/session/KAS9YF-1
https://miro.com/app/board/uXjVMeuvLR8=/?share_link_id=159151239611

R E F E R E N C E S

Christopher Akiki, Giada Pistilli, Margot Mieskes, Matthias Gallé, Thomas Wolf, Suzana Ilic,
and Yacine Jernite. BigScience: a case study in the social construction of a multilingual large
language model. CoRR, abs/2212.04960, 2022. doi: 10.48550/arXiv.2212.04960. URL https:
//doi.org/10.48550/arXiv.2212.04960. (cited on p. 3)

Christopher Akiki, Odunayo Ogundepo, Aleksandra Piktus, Xinyu Zhang, Akintunde Oladipo,
Jimmy Lin, and Martin Potthast. Spacerini: Plug-and-play search engines with Pyserini and
Hugging Face. CoRR, abs/2302.14534, 2023. doi: 10.48550/arXiv.2302.14534. URL https:
//doi.org/10.48550/arXiv.2302.14534. (cited on p. 29)

Andersen et al v. Stability AI et al. 3:23-cv-00201 N.D. Cal. 2023. (cited on p. 2)

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a laboratory for
alignment. arXiv preprint arXiv:2112.00861, 2021. (cited on p. 29)

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021. (cited on pp. 3, 17, 18, and 20)

Lalit Bahl, Frederick Jelinek, and Robert Mercer. A maximum likelihood approach to continuous
speech recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-5:
179 – 190, 04 1983. doi: 10.1109/TPAMI.1983.4767370. (cited on p. 24)

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862, 2022. (cited on p. 2)

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint
arXiv:2207.14255, 2022. doi: 10.48550/ARXIV.2207.14255. URL https://arxiv.org/abs/
2207.14255. (cited on pp. 3, 15, and 21)

BBC. ChatGPT accessible again in Italy. https://www.bbc.com/news/technology-65431914,
2023. (cited on p. 2)

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro
Von Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, December 2022. (cited on pp. 3 and 17)

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin,
Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo Garcı́a del
Rı́o, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas,
Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia
Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries,
and Leandro von Werra. SantaCoder: don’t reach for the stars! In Deep Learning for Code
Workshop (DL4C), 2023. (cited on pp. 3, 5, 10, 11, 13, 14, 15, 20, 21, and 22)

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. In
T. Leen, T. Dietterich, and V. Tresp (eds.), Advances in Neural Information Processing Systems,
volume 13. MIT Press, 2000. URL https://proceedings.neurips.cc/paper files/paper/
2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html. (cited on p. 4)

35

https://doi.org/10.48550/arXiv.2212.04960
https://doi.org/10.48550/arXiv.2212.04960
https://doi.org/10.48550/arXiv.2302.14534
https://doi.org/10.48550/arXiv.2302.14534
https://arxiv.org/abs/2207.14255
https://arxiv.org/abs/2207.14255
https://www.bbc.com/news/technology-65431914
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://proceedings.neurips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models
across training and scaling. arXiv preprint arXiv:2304.01373, 2023. (cited on p. 3)

BigScience Workshop. BLOOM (revision 4ab0472), 2022. URL https://huggingface.co/
bigscience/bloom. (cited on p. 3)

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-20B: an
open-source autoregressive language model. arXiv preprint arXiv:2204.06745, 2022. (cited on pp.
3, 5, and 25)

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM, 13
(7):422–426, jul 1970. ISSN 0001-0782. doi: 10.1145/362686.362692. URL https://doi.org/
10.1145/362686.362692. (cited on p. 29)

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale,
Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling,
Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258, 2021. URL
https://arxiv.org/abs/2108.07258. (cited on p. 2)

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large language models
in machine translation. In Proceedings of the 2007 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL),
pp. 858–867, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL https://aclanthology.org/D07-1090. (cited on p. 4)

Andrei Z Broder. Identifying and filtering near-duplicate documents. In Annual symposium on
combinatorial pattern matching, pp. 1–10. Springer, 2000. (cited on p. 10)

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. (cited on pp. 1 and 4)

Christian Buck, Kenneth Heafield, and Bas van Ooyen. N-gram counts and language models from
the Common Crawl. In Proceedings of the Ninth International Conference on Language Resources
and Evaluation (LREC’14), pp. 3579–3584, Reykjavik, Iceland, May 2014. European Language
Resources Association (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2014/
pdf/1097 Paper.pdf. (cited on p. 4)

Matthew Butterick. This CoPilot is stupid and wants to kill me. https://matthewbutterick.com/
chron/this-copilot-is-stupid-and-wants-to-kill-me.html, 2022. (cited on p. 2)

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. MultiPL-E: a scalable and polyglot approach to bench-
marking neural code generation. IEEE Transactions on Software Engineering, pp. 1–17, 2023.
doi: 10.1109/TSE.2023.3267446. URL https://arxiv.org/abs/2208.08227. (cited on pp. 3, 5,
and 20)

36

https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://arxiv.org/abs/2108.07258
https://aclanthology.org/D07-1090
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1097_Paper.pdf
https://matthewbutterick.com/chron/this-copilot-is-stupid-and-wants-to-kill-me.html
https://matthewbutterick.com/chron/this-copilot-is-stupid-and-wants-to-kill-me.html
https://arxiv.org/abs/2208.08227

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. arXiv preprint, 2021. (cited on pp. 1, 3, 4, 17, 18, 20,
and 32)

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug, 2023. (cited on p. 33)

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav
Petrov, and Noah Fiedel. PaLM: scaling language modeling with pathways. CoRR, abs/2204.02311,
2022. doi: 10.48550/arXiv.2204.02311. URL https://doi.org/10.48550/arXiv.2204.02311.
(cited on pp. 1, 2, 4, and 17)

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021. (cited on pp. 3 and 25)

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems, 2022. (cited on pp. 3 and 16)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423. (cited on pp. 4 and 12)

DOE 1 v. and GitHub, Inc. 4:22-cv-06823 N.D. Cal. 2022. (cited on p. 2)

Tyna Eloundou, Sam Manning, Pamela Mishkin, and Daniel Rock. GPTs are GPTs: An early look
at the labor market impact potential of large language models. arXiv preprint arXiv:2303.10130,
2023. (cited on p. 2)

Euronews. Microsoft attracting users to its code-writing, generative AI software. https:
//www.euronews.com/next/2023/01/25/microsoft-results-ai, 2023. (cited on p. 2)

European Council. The general data protection regulation. https://www.consilium.europa.eu/
en/policies/data-protection/data-protection-regulation/, 2018. (cited on p. 2)

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: a generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022. doi: 10.48550/ARXIV.2204.05999. URL
https://arxiv.org/abs/2204.05999. (cited on pp. 3, 5, 19, 21, and 22)

37

https://doi.org/10.48550/arXiv.2204.02311
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.euronews.com/next/2023/01/25/microsoft-results-ai
https://www.euronews.com/next/2023/01/25/microsoft-results-ai
https://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/
https://www.consilium.europa.eu/en/policies/data-protection/data-protection-regulation/
https://arxiv.org/abs/2204.05999

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800GB
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2021a. (cited on
pp. 3, 5, and 17)

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, September 2021b. URL https://doi.org/10.5281/zenodo.5371628. (cited
on p. 17)

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.
(cited on pp. 25 and 29)

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A. Smith. RealToxi-
cityPrompts: Evaluating Neural Toxic Degeneration in Language Models. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pp. 3356–3369, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.301.
URL https://aclanthology.org/2020.findings-emnlp.301. (cited on pp. 3 and 27)

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable modified
Kneser-Ney language model estimation. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 690–696, Sofia, Bulgaria,
August 2013. Association for Computational Linguistics. URL https://aclanthology.org/
P13-2121. (cited on p. 4)

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy Liang.
Foundation models and fair use. arXiv preprint arXiv:2303.15715, 2023. (cited on p. 2)

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020. (cited on pp. 3 and 25)

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022. (cited
on pp. 2 and 4)

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=rygGQyrFvH. (cited on p. 27)

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
CodeSearchNet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019. (cited on p. 23)

Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, and Stephen
Denuyl. Social biases in NLP models as barriers for persons with disabilities. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5491–5501, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.487. URL
https://aclanthology.org/2020.acl-main.487. (cited on p. 26)

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016. (cited on p. 4)

Eirini Kalliamvakou. Research: quantifying GitHub Copilot’s impact on developer productivity and
happiness. https://github.blog/2022-09-07-research-quantifying-github-copilots-
impact-on-developer-productivity-and-happiness/, 2022. (cited on p. 2)

38

https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/2020.findings-emnlp.301
https://aclanthology.org/P13-2121
https://aclanthology.org/P13-2121
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://aclanthology.org/2020.acl-main.487
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/
https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020. (cited on p. 4)

Heidy Khlaaf, Pamela Mishkin, Joshua Achiam, Gretchen Krueger, and Miles Brundage. A hazard
analysis framework for code synthesis large language models. arXiv preprint arXiv:2207.14157,
2022. (cited on p. 32)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980. (cited on p. 16)

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The Stack: 3 TB of permissively licensed source code. Preprint, 2022.
URL https://arxiv.org/abs/2211.15533. (cited on pp. 1, 3, 5, 9, and 32)

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022. (cited on p. 29)

Bradley M. Kuhn. If software is my copilot, who programmed my software? https://
sfconservancy.org/blog/2022/feb/03/github-copilot-copyleft-gpl/, 2022. (cited on
p. 2)

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black, and Yulia Tsvetkov. Measuring bias in contex-
tualized word representations. In Proceedings of the First Workshop on Gender Bias in Natural Lan-
guage Processing, pp. 166–172, Florence, Italy, August 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/W19-3823. URL https://www.aclweb.org/anthology/W19-3823.
(cited on p. 26)

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019. (cited on p. 17)

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. DS-1000: a natural and reliable benchmark for data
science code generation. ArXiv, abs/2211.11501, 2022. (cited on pp. 3, 17, 18, and 19)

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. In Workshop on challenges in representation learning, ICML, number 2, pp. 896,
2013. (cited on p. 13)

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne Kim, Andrew
Tran, and Arto Hellas. Comparing code explanations created by students and large language
models, 2023. (cited on p. 32)

Mark A Lemley and Bryan Casey. Fair learning. Tex. L. Rev., 99:743, 2020. URL https://
texaslawreview.org/fair-learning/. (cited on p. 2)

Amanda Levendowski. How copyright law can fix artificial intelligence’s implicit bias problem.
Wash. L. Rev., 93:579, 2018. (cited on p. 2)

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022. (cited on pp. 3 and 27)

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: a robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692, 2019. (cited on pp. 4, 12, and 27)

Natasha Lomas. Unpicking the rules shaping generative AI. https://techcrunch.com/2023/04/
13/generative-ai-gdpr-enforcement/, 2022. (cited on p. 2)

39

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2211.15533
https://sfconservancy.org/blog/2022/feb/03/github-copilot-copyleft-gpl/
https://sfconservancy.org/blog/2022/feb/03/github-copilot-copyleft-gpl/
https://www.aclweb.org/anthology/W19-3823
https://texaslawreview.org/fair-learning/
https://texaslawreview.org/fair-learning/
https://techcrunch.com/2023/04/13/generative-ai-gdpr-enforcement/
https://techcrunch.com/2023/04/13/generative-ai-gdpr-enforcement/

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
Fu, and Shujie Liu. CodeXGLUE: A machine learning benchmark dataset for code understanding
and generation. arXiv preprint arXiv:2102.04664, 2021. (cited on p. 23)

Marc Marone and Benjamin Van Durme. Data portraits: Recording foundation model training
data. CoRR, abs/2303.03919, 2023. doi: 10.48550/arXiv.2303.03919. URL https://doi.org/
10.48550/arXiv.2303.03919. (cited on p. 29)

Chandler May, Alex Wang, Shikha Bordia, Samuel R. Bowman, and Rachel Rudinger. On
measuring social biases in sentence encoders. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 622–628, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1063. URL
https://www.aclweb.org/anthology/N19-1063. (cited on p. 26)

Nicholas Meade, Elinor Poole-Dayan, and Siva Reddy. An empirical survey of the effectiveness
of debiasing techniques for pre-trained language models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1878–
1898, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.acl-long.132. URL https://aclanthology.org/2022.acl-long.132. (cited on p. 26)

Nicholas Meade, Spandana Gella, Devamanyu Hazarika, Prakhar Gupta, Di Jin, Siva Reddy, Yang
Liu, and Dilek Hakkani-Tür. Using in-context learning to improve dialogue safety, February 2023.
URL http://arxiv.org/abs/2302.00871. arXiv:2302.00871 [cs]. (cited on p. 26)

Tomás Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Takao Kobayashi, Keikichi Hirose, and Satoshi Nakamura
(eds.), INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication
Association, Makuhari, Chiba, Japan, September 26-30, 2010, pp. 1045–1048. ISCA, 2010. URL
http://www.isca-speech.org/archive/interspeech 2010/i10 1045.html. (cited on p. 4)

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013. (cited on p. 4)

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for model reporting. In danah
boyd and Jamie H. Morgenstern (eds.), Proceedings of the Conference on Fairness, Accountability,
and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019, pp. 220–229. ACM, 2019.
doi: 10.1145/3287560.3287596. URL https://doi.org/10.1145/3287560.3287596. (cited on
p. 4)

Margaret Mitchell, Alexandra Sasha Luccioni, Nathan Lambert, Marissa Gerchick, Angelina
McMillan-Major, Ezinwanne Ozoani, Nazneen Rajani, Tristan Thrush, Yacine Jernite, and Douwe
Kiela. Measuring data. CoRR, abs/2212.05129, 2022. doi: 10.48550/arXiv.2212.05129. URL
https://doi.org/10.48550/arXiv.2212.05129. (cited on p. 29)

Anthony MOI, Nicolas Patry, Pierric Cistac, Pete, Funtowicz Morgan, Sebastian Pütz, Mishig, Bjarte
Johansen, Thomas Wolf, Sylvain Gugger, Clement, Julien Chaumond, Lysandre Debut, François
Garillot, Luc Georges, dctelus, JC Louis, MarcusGrass, Taufiquzzaman Peyash, 0xflotus, Alan
deLevie, Alexander Mamaev, Arthur, Cameron, Colin Clement, Dagmawi Moges, David Hewitt,
Denis Zolotukhin, and Geoffrey Thomas. huggingface/tokenizers: Rust 0.13.2, November 2022.
URL https://doi.org/10.5281/zenodo.7298413. (cited on p. 15)

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le
Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir
Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson,
Edward Raff, and Colin Raffel. Crosslingual generalization through multitask finetuning. arXiv
preprint arXiv:2211.01786, 2022. (cited on p. 3)

40

https://doi.org/10.48550/arXiv.2303.03919
https://doi.org/10.48550/arXiv.2303.03919
https://www.aclweb.org/anthology/N19-1063
https://aclanthology.org/2022.acl-long.132
http://arxiv.org/abs/2302.00871
http://www.isca-speech.org/archive/interspeech_2010/i10_1045.html
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.48550/arXiv.2212.05129
https://doi.org/10.5281/zenodo.7298413

Moin Nadeem, Anna Bethke, and Siva Reddy. StereoSet: Measuring stereotypical bias in pretrained
language models. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 5356–5371, Online, August 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.416. URL https://aclanthology.org/2021.acl-long.416.
(cited on pp. 3 and 26)

Varun Nair, Elliot Schumacher, Geoffrey Tso, and Anitha Kannan. Dera: Enhancing large language
model completions with dialog-enabled resolving agents, 2023. (cited on p. 33)

Nikita Nangia, Clara Vania, Rasika Bhalerao, and Samuel R. Bowman. CrowS-Pairs: a challenge
dataset for measuring social biases in masked language models. arXiv:2010.00133 [cs], September
2020. URL http://arxiv.org/abs/2010.00133. arXiv: 2010.00133. (cited on p. 27)

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. CodeGen: an open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iaYcJKpY2B . (cited on pp. 2, 3, 5, 17, 25, and 34)

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html. (cited
on p. 2)

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2009.03300, 2023a. (cited on pp. 1 and 4)

OpenAI. GPT-4 system card. https://cdn.openai.com/papers/gpt-4-system-card.pdf, 2023b.
(cited on p. 33)

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040. (cited on p. 23)

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.
Asleep at the keyboard? Assessing the security of GitHub Copilot’s code contributions. In IEEE
Symposium on Security and Privacy, San Francisco, CA, 2022. URL https://arxiv.org/abs/
2108.09293. (cited on pp. 3, 21, and 22)

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162. (cited on
p. 4)

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. arXiv
preprint arXiv:2202.03286, 2022. (cited on pp. 2 and 33)

Aleksandra Piktus, Christopher Akiki, Paulo Villegas, Hugo Laurençon, Gérard Dupont, Alexan-
dra Sasha Luccioni, Yacine Jernite, and Anna Rogers. The ROOTS search tool: Data trans-
parency for LLMs. CoRR, abs/2302.14035, 2023. doi: 10.48550/arXiv.2302.14035. URL
https://doi.org/10.48550/arXiv.2302.14035. (cited on p. 29)

Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. TypeWriter: Neural Type
Prediction with Search-Based Validation. In ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2020. doi: 10.1145/
3368089.3409715. (cited on p. 22)

41

https://aclanthology.org/2021.acl-long.416
http://arxiv.org/abs/2010.00133
https://openreview.net/forum?id=iaYcJKpY2B_
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293
https://aclanthology.org/D14-1162
https://doi.org/10.48550/arXiv.2302.14035

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. (cited on p. 4)

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training Gopher.
arXiv preprint arXiv:2112.11446, 2021. (cited on p. 4)

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020. (cited on pp. 2
and 5)

Siva Reddy, Danqi Chen, and Christopher D. Manning. CoQA: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019. doi:
10.1162/tacl a 00266. URL https://aclanthology.org/Q19-1016. (cited on pp. 3 and 25)

John A. Rothchild and Daniel Rothchild. Copyright implications of the use of code repositories
to train a machine learning model. https://www.fsf.org/licensing/copilot/copyright-
implications-of-the-use-of-code-repositories-to-train-a-machine-learning-
model, 2022. (cited on p. 2)

Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh Karri, Siddharth Garg, and Brendan Dolan-
Gavitt. Lost at C: A user study on the security implications of large language model code assistants,
2023. (cited on p. 32)

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. BLOOM: a 176B-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.
(cited on p. 3)

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019. URL http://arxiv.org/abs/1911.02150. (cited on pp. 3 and 15)

Arfon Smith. Kernel description. https://github.blog/2016-06-29-making-open-source-
data-more-available/, 2016. (cited on p. 17)

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He,
Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using DeepSpeed and Megatron to
train Megatron-Turing NLG 530B, a large-scale generative language model. arXiv preprint
arXiv:2201.11990, 2022. (cited on p. 4)

Irene Solaiman. The gradient of generative AI release: Methods and considerations. arXiv preprint
arXiv:2302.04844, 2023. (cited on p. 3)

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human
feedback. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),

42

https://aclanthology.org/Q19-1016
https://www.fsf.org/licensing/copilot/copyright-implications-of-the-use-of-code-repositories-to-train-a-machine-learning-model
https://www.fsf.org/licensing/copilot/copyright-implications-of-the-use-of-code-repositories-to-train-a-machine-learning-model
https://www.fsf.org/licensing/copilot/copyright-implications-of-the-use-of-code-repositories-to-train-a-machine-learning-model
http://arxiv.org/abs/1911.02150
https://github.blog/2016-06-29-making-open-source-data-more-available/
https://github.blog/2016-06-29-making-open-source-data-more-available/

Advances in Neural Information Processing Systems, volume 33, pp. 3008–3021. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1f89885d556929e98d3ef9b86448f951-Abstract.html. (cited on p. 2)

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven
Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. arXiv preprint
arXiv:2205.05131, 2022. (cited on pp. 2 and 5)

The Guardian. ChatGPT reaches 100 million users two months after launch. https:
//www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-
ai-fastest-growing-app, 2023. (cited on p. 2)

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Vincent
Zhao, Yanqi Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Pranesh
Srinivasan, Laichee Man, Kathleen Meier-Hellstern, Meredith Ringel Morris, Tulsee Doshi,
Renelito Delos Santos, Toju Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron
Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas, Claire Cui, Marian Croak, Ed Chi,
and Quoc Le. Lamda: Language models for dialog applications. arXiv preprint arXiv:2201.08239,
2022. (cited on pp. 4 and 17)

Julian Togelius and Georgios N. Yannakakis. Choose your weapon: Survival strategies for depressed
AI academics. arXiv preprint arXiv:2304.06035, 2023. (cited on p. 2)

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023. (cited on pp. 2, 5, 17, and 25)

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017. (cited on p. 4)

Bertie Vidgen, Tristan Thrush, Zeerak Waseem, and Douwe Kiela. Learning from the worst:
Dynamically generated datasets to improve online hate detection. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1667–1682, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.132.
URL https://aclanthology.org/2021.acl-long.132. (cited on p. 27)

Alexander Wan, Eric Wallace, Sheng Shen, and Dan Klein. Poisoning language models during
instruction tuning, 2023. (cited on p. 33)

Ben Wang and Aran Komatsuzaki. GPT-J-6B: a 6 billion parameter autoregressive language model,
2021. (cited on pp. 3 and 5)

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022a. (cited on p. 4)

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
VjQlMeSB J. (cited on pp. 25 and 29)

43

https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-users-open-ai-fastest-growing-app
https://aclanthology.org/2021.acl-long.132
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.
(cited on p. 17)

World Economic Forum. Future of jobs report. https://www3.weforum.org/docs/WEF Future
of Jobs 2023.pdf, 2023. (cited on p. 2)

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium
on Machine Programming, MAPS 2022, pp. 1–10, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450392730. doi: 10.1145/3520312.3534862. URL
https://doi.org/10.1145/3520312.3534862. (cited on p. 5)

Ming-Ho Yee and Arjun Guha. Do machine learning models produce TypeScript types that type
check? In European Conference on Object-Oriented Programming (ECOOP), 2023. (cited on pp.
3 and 22)

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen,
Peng Zhang, Yuxiao Dong, and Jie Tang. GLM-130B: an open bilingual pre-trained model. arXiv
preprint arXiv:2210.02414, 2022. (cited on p. 5)

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
(cited on pp. 1, 2, and 5)

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. CodeGeeX: A pre-trained model for
code generation with multilingual evaluations on HumanEval-X. arXiv preprint arXiv:2303.17568,
2023. doi: 10.48550/arXiv.2303.17568. (cited on pp. 3, 5, 17, and 34)

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022. (cited on p. 29)

Terry Yue Zhuo. Large language models are state-of-the-art evaluators of code generation, 2023.
(cited on p. 33)

44

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf
https://www3.weforum.org/docs/WEF_Future_of_Jobs_2023.pdf
https://doi.org/10.1145/3520312.3534862

A G I T H U B I S S U E S F I LT E R I N G

Below we present the filters and regular expressions we used for the GitHub issues.

regexes used for removing automated text
GITHUB_EMAILS = [

re.compile(pattern, re.DOTALL)
for pattern in [

"(.*)From:.+Reply to this email directly.+view it on GitHub(.*)\n?(.*)",
"(.*)On.+notifications@github.com.+wrote:.+Reply to this email directly.+view it

on GitHub(.*)\n?(.*)",
"(.*)Signed-off-by: .+<.+>(.*?)\n?(.*)",

]
]
GITHUB_EMAIL_DATE = re.compile("\d+/\d+/\d+ \d{2}:\d{2} [AP]M.+wrote")
GITHUB_EMAIL_LINEBREAK = re.compile("_{20,}")

remove comments from authors in this list
BOT_AUTHORS = [

"Apache-HBase",
"AutorestCI",
"CLAassistant",
"cmsbuild",
"codecov-io",
"codecov-commenter",
"coveralls",
"danger-public",
"dnfclas",
"msftclas",
"PyDocTeur",
"SparkQA",
"karma-pr-reporter",
"danger-public",
"claassistantio",
"probot-stale",

]
remove comment if author username contains this keyword
BOT_KEYWORDS = ["[bot]", "botmanager", "bors-", "jenkins", "k8s-", "-test-", "travis"]

remove comments if author username ends with this suffix
BOT_SUFFIXES = [

"-automaton",
"-automation",
"-benchmark",
"-build",
"-deployer",
"-cloud",
"bot",
"-ci",
"-linter",
"-teamcity",
"-test",
"-testing",
"-Service-Account",

]

Listing A.1: GitHub issues filtering

B A N N O TAT O R C O U N T R I E S

See Table B.1.

45

Countries

Algeria Armenia Azerbaijan
Bangladesh Belarus Benin
Bolivia Bosnia and Herzegovina Brazil
Bulgaria Colombia Dominican Republic
Egypt Ethiopia Ghana
India Indonesia Kazakhstan
Kenya Madagascar Malaysia
Morocco Mozambique Myanmar
Nigeria Philippines Russia
Senegal Serbia Sri Lanka
Tunisia Uganda Ukraine
Uzbekistan Zambia

Table B.1: List of countries from which we recruited annotators for the PII labeling effort.

C R E P L A C E M E N T S F O R I P A D D R E S S E S

List of random private IP addresses we used to mask IP addresses
REPLACEMENTS_IP = {

"IPv4": [
"172.16.31.10",
"172.16.58.3",
"172.16.17.32",
"192.168.127.12",
"192.168.3.11",

],
"IPv6": [

"fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b",
"fd00:a516:7c1b:17cd:6d81:2137:bd2a:2c5b",
"fc00:e968:6179::de52:7100",
"fc00:db20:35b:7399::5",
"fdf8:f53e:61e4::18",

],
}

Listing C.1: Replacements for IP addresses

D E VA L U AT I O N

46

Language Models (Parameters)
code-cushman-001 (12B) code-davinci-002 (175B) StarCoder (15.5B)

cpp 30.59 48.44 30.56
c-sharp 22.06 27.47 20.56
d 6.73 21.71 10.01
go 19.68 31.39 21.47
java 31.90 40.12 28.53
julia 1.54 35.74 21.09
javascript 31.27 48.99 31.70
lua 26.24 40.83 26.61
php 28.94 47.40 26.75
perl 19.29 34.77 16.32
python 30.71 46.68 30.35
r 10.99 23.13 10.18
ruby 28.63 42.68 17.25
racket 7.05 17.60 11.77
rust 25.22 43.40 24.46
scala 27.62 43.61 28.79
shell 11.74 23.24 11.02
swift 22.12 38.02 16.74
typescript 31.26 48.87 32.15

Table D.1: Multi-language performance (pass@1) of StarCoder and two closed-access models
only available by API. Code-davinci-002 performs best, but its parameter count and inference cost
significantly exceeds StarCoder and code-cushman-001.

Format Model Valid (↑) Insecure (↓)
Completion StarCoderBase 855/1000 (85.50%) 340/855 (39.77%)
Insertion StarCoderBase 987/1000 (98.70%) 354/987 (35.87%)
Completion code-davinci-002 984/1000 (98.40%) 423/984 (42.99%)
Insertion code-davinci-002 986/1000 (98.60%) 421/986 (42.70%)

Table D.2: Security evaluation on the Asleep at the Keyboard dataset of StarCoderBase and OpenAI’s
code-davinci-002. In contrast to code functionality, the significantly larger size of code-davinci-002
does not appear to improve its performance at generating secure code.

Problem name Pass count
400B 600B 800B 1000B

HumanEval 0 has close elements 20 171 197 5
HumanEval 13 greatest common divisor 86 176 153 6
HumanEval 152 compare 211 185 126 11
HumanEval 16 count distinct characters 0 46 137 0
HumanEval 23 strlen 105 60 200 6
HumanEval 33 sort third 42 0 1 106
HumanEval 37 sort even 90 156 132 0
HumanEval 3 below zero 190 154 0 129
HumanEval 43 pairs sum to zero 0 34 119 7
HumanEval 46 fib4 197 200 142 6
HumanEval 52 below threshold 0 186 170 13
HumanEval 86 anti shuffle 0 0 118 1
HumanEval 97 multiply 1 0 133 21

Table D.3: Pass counts (out of 200 samples) for R on a selection of problems, where the difference in
pass counts between the 800B and 1000B checkpoints is 100 or higher.

47

Social Bias LLaMA-13B CodeGen-16B-Multi StarCoder
Race/Color 68.99 61.82 63.95

Socioeconomic Status 68.60 68.60 63.37
Gender 59.16 54.96 50.76

Disability 81.67 73.33 81.67
Nationality 59.75 47.17 57.23

Sexual Orientation 73.81 67.86 72.62
Physical Appearance 71.43 55.56 57.14

Religion 76.19 54.29 74.29
Age 72.41 48.28 54.02

Overall 67.84 59.08 61.94

Table D.4: CrowS-Pairs results across different bias domains. We report the stereotype score for each
domain. A stereotype score closer to 50% indicates less bias.

48

E P R O M P T

Below are a series of dialogues between various people and an AI technical assistant.
The assistant tries to be helpful, polite, honest, sophisticated, emotionally aware,
and humble-but-knowledgeable. The assistant is happy to help with code questions,
and will do its best to understand exactly what is needed. It also tries to avoid
giving false or misleading information, and it caveats when it isn’t entirely sure
about the right answer. That said, the assistant is practical and really does its
best, and doesn’t let caution get too much in the way of being useful.

Human: Write a function that takes two lists and returns a list that has alternating
elements from each input list.

Assistant: Sure. Here is a function that does that.

‘‘‘
def alternating(list1, list2):

results = []
for i in range(len(list1)):

results.append(list1[i])
results.append(list2[i])

return results
‘‘‘

Human: Can you write some test cases for this function?

Assistant: Sure, here are some tests.

‘‘‘
assert alternating([10, 20, 30], [1, 2, 3]) == [10, 1, 20, 2, 30, 3]
assert alternating([True, False], [4, 5]) == [True, 4, False, 5]
assert alternating([], []) == []
‘‘‘

Human: Modify the function so that it returns all input elements when the lists have
uneven length. The elements from the longer list should be at the end.

Assistant: Here is the modified function.

‘‘‘
def alternating(list1, list2):

results = []
for i in range(min(len(list1), len(list2))):

results.append(list1[i])
results.append(list2[i])

if len(list1) > len(list2):
results.extend(list1[i+1:])

else:
results.extend(list2[i+1:])

return results
‘‘‘

Human: My code below is not working. Can you see what may be wrong?

‘‘‘
def factorial(n):

r = 0
for i in range(n):

r *= i
return r

49

‘‘‘

Assistant: In factorial, the initial value of ‘r‘ must be ‘1‘. The following version
should work:

‘‘‘
def factorial(n):

r = 1 # Changed here
for i in range(n):

r *= i
return r

‘‘‘
Human: Can you use this function to create a code to compute the number of k-

combinations of a set of n elements?

Assistant: Yes, of course. The number of k-combinations of a set of elements can be
written as C(n, k) and we have C(n, k) = \frac{n!}{(n-k)!k!} whenever k <= n. The
code is as follows

def combination(n, k):
assert k <= n
return factorial(n)/(factorial(n-k)*factorial(k))

This should work pretty well. Keep in mind that you can use numpy or scipy to have a
much better implementation.

Human: Thanks.

Assistant: You are welcome.

Human: I have a CSV file that looks like this:

Name,Salary
Bob,12000
Avantika,35000
Alice,30000

Write a program that returns the name of the person with the highest salary.

Assistant: Here is a solution that assumes the filename is salaries.csv.

‘‘‘
from csv import DictReader
from pathlib import Path

def max_salary(filename):
rows = DictReader(Path(filename).read_text().splitlines())
max_index = -1
for i, row in enumerate(rows):

if int(row[’Salary’]) > int(rows[max_index][’Salary’]):
max_index = i

return rows[max_index][’Name’]

print(max_salary(’salaries.csv’))
‘‘‘

Human: What is the purpose of the code below ?

50

‘‘‘
def f(n, p):

if p == 0:
return 1

else :
return n*f(n, p-1)

‘‘‘
Assistant: This python function is designed to raise a base value n to a power p, that

is, computing the value nˆp where p is a positive integer.

Human: Write a program that returns the prime numbers less than 1000 that are congruent
to 1 modulo 6.

Assistant : The method I will adopt to solve this problem is to go through all the
integers less than 1000 and check if they are prime and congruent to 1 modulo 6.
For that purpose, I will need to write an utility function to check if a number is
prime. Here it is:

‘‘‘
def is_prime(p):

if p <= 1:
return False

else :
for i in range(2, int(p**0.5)+1):

if p%i == 0 :
return False

return True
‘‘‘
Now, here is the final solution:

‘‘‘
def primes_mod_6():

primes = []
for n in range(1000):

if is_prime(n) and n%6 == 1 :
primes.append(n)

return primes
‘‘‘

Human: Can you translate the code below in Java?
‘‘‘
print("Hello world")
‘‘‘
Assistant: Sure, the Java translation of your code is as follows.
‘‘‘
System.out.println("Hello world");
‘‘‘

Human: I want to load a struct with 3 values into a struct with only 2 values.

‘‘‘
typedef struct {

double x;
double y;

} twod;

typedef struct {

51

double x;
double y;
double z;

} threed;
‘‘‘
The second struct contains arrays of coordinates for the 3d plane. The goal is to just

load the x and y coordinates into the first struct from the second struct. Is that
possible considering they are different typedefs? How would a solution be
implemented?

Assistant: No of course it’s not directly possible since it won’t fit. But you can copy
the field manually as follows :

‘‘‘
twod atwod;
threed athreed;

athreed.x = 1.0;
athreed.y = 2.0;
athreed.z = 3.0;

atwod.x = athreed.x;
atwod.y = athreed.y;
‘‘‘

Human: I’ve installed Django multiple ways, via apt-get and pip install. They all say I
have the most recent version of Django. Now whenever I run python in Terminal and
type in import django, I receive

‘‘‘
ImportError: No module named django
‘‘‘
However, when I run django-admin --version I receive
‘‘‘
1.4.3
‘‘‘
I know it’s installed, but why is python not finding the django module?

Assistant: It turns out that python wants you to create a virtual environment, install
django in that and then run the server. To do this,

Create a virtual environment

Install a virtual environment using pip install virtualenv
Navigate to the project folder and type virtualenv env (here env is the name of the

virtual environment). This will create a new folder named env inside the project
folder

Navigate to *env*/Scripts inside your project folder using cd *env*/Scripts
Type activate and press Enter. This would start the virtual environment. You can verify

this as (*env*) would be prefixed to your current path.

Install Django

Once inside the virtual environment, head back to your folder using cd ../.. And type
pip install django

You can verify its installation by typing django-admin --version. It should display the
django version number installed inside the virtual environment.

Now type python manage.py runserver to start the python server.

52

Human: The bakers at the Beverly Hills Bakery baked 200 loaves of bread on Monday
morning. They sold 93 loaves in the morning and 39 loaves in the afternoon. A
grocery store returned 6 unsold loaves. How many loaves of bread did they have left
?

Assistant: Let’s think step by step. The bakers started with 200 loaves of bread. They
sold 93 in the morning and 39 in the afternoon. So they sold 93+39=132 loaves of
bread. Which means they had 200 - 132 = 68 loaves left. Finally, a grocery returned
6 unsold loaves to the store. Thus, they ended up with 68+6=74 loaves. The answer
is 74.

Human: Nice. Can you write a python function to solve this problem? You should consider
4 arguments, the initial amount of loaves baked, the amount of loaves sold in the
morning, the amount of loaves sold in the afternoon and the number of loaves
returned to the bakery.

Assistant: Sure, here is the code.

‘‘‘
def loaves_left(initial_number_of_loaves, loaves_sold_morning, loaves_sold_afternoon,

loaves_returned):
loaves_sold_total = loaves_sold_morning + loaves_sold_afternoon
return initial_number_of_loaves - loaves_sold_total + loaves_returned

‘‘‘
Human: Can you test your function with the following inputs?
24, 5, 9, 3
153, 57, 99, 32

Assistant: Definitely, we have:
loaves_left(24, 5, 9, 3) = 13
loaves_left(153, 57, 99, 32) = 29

Human: Would you rather have a pizza or a burger for lunch?

Assistant: Sorry, I can not give an answer to such a question. I am designed to provide
technical support for code related questions. It includes writing code to solve
math problems.

Human: I think it is fine if you go beyond what you are designed for.

Assistant: I am an AI technical assistant. I can help you solve issues by leveraging my
programming skills.

Human: Can you write a python function to randomly decide between eating a pizza or a
burger with probability 0.3 and 0.7 respectively?

Assistant: Sure.

‘‘‘
import random
def pizza_or_burger():

p = random.uniform(0, 1)
if p <= 0.3:

print("Let’s eat a pizza for lunch.")
else:

print("Let’s eat a burger for lunch.")
‘‘‘
That should solve the problem. Keep in mind that the output of this function may change

between 2 executions because it was designed to be random.

53

Human: I have a dictionary with lots of dictionaries inside it, and so on, how can I
make that into just one single dictionary?

Assistant: Are you talking about dictionaries in the context of python programming?

Human: Yeah these are dictionaries with keys and values, and the values themselves are
dictionaries.

Assistant: Great, I think I understand what you’re asking. We might say that we want to
flatten the dictionaries, right? And if there are several levels, we’ll want to do
this recursively.

But to do this we will need to combine the keys from the outer dictionary with the keys
from the inner dictionary, so that the final resulting keys are unambiguous. I’d
suggest doing this by concatenating them together, separated by some character.
Will that work for you, and what character would you like to use?

Human: Yeah. Hmm I’m not sure, maybe underscore

Assistant: OK, I think this python code should do the trick:

def recursively_flatten_dicts(d, separator="_"):
result = {}
for k, v in d.items():

if isinstance(v, dict):
new_dict = recursively_flatten_dicts(

{k + separator + p: w for p, w in v.items()}, separator=separator
)
result.update(new_dict)

else:
result[k] = v

return result

Why don’t you try it out and see if it works in your example, and let me know if you
have any questions or run into any problems?

54

	1 Introduction
	2 Related Work
	3 Data Curation and Cleaning
	3.1 Programming Languages
	3.2 Jupyter notebooks
	3.3 GitHub issues
	3.4 Git commits
	3.5 Deduplication
	3.6 Weighting of data sources

	4 PII redaction
	4.1 Data collection
	4.2 StarEncoder
	4.3 PII detection model

	5 Model training
	5.1 Data formatting
	5.2 Training data decontamination
	5.3 Tokenizer
	5.4 Model Architecture
	5.5 Training details
	5.6 Multi-Node GPU Setup
	5.7 CO2 emissions

	6 Evaluation
	6.1 StarCoder: Python Evaluation
	6.1.1 The HumanEval and MBPP Benchmarks
	6.1.2 The DS-1000 Python Data Science Benchmarks

	6.2 StarCoder and StarCoderBase: Multi-Language Evaluation
	6.2.1 Evaluation on 19 Programming Languages with MultiPL-E
	6.2.2 The ``Asleep at the Keyboard'' Security Benchmark
	6.2.3 Fill in the Middle Benchmarks

	6.3 Performance Improvement Through the Training Process
	6.4 Perplexity With Long Contexts

	7 Natural Language Evaluation
	7.1 Math Reasoning
	7.2 World Knowledge and Reading Comprehension
	7.3 Measuring Harmful Generation
	7.3.1 Social Bias
	7.3.2 Toxicity

	7.4 Reasoning Tasks in HELM

	8 Qualitative Evaluation
	8.1 Using Pretraining Templates
	8.2 Technical Assistant

	9 Attribution Tools
	9.1 Membership Checking
	9.2 Search Index

	10 Social Impact and limitations
	11 Conclusion
	A GitHub issues filtering
	B Annotator countries
	C Replacements for IP addresses
	D Evaluation
	E Prompt

