Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,379 Bytes
42e6fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d963723
 
42e6fa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d963723
42e6fa5
 
 
 
 
 
 
 
 
 
 
d963723
42e6fa5
 
 
 
 
 
 
 
 
 
d963723
42e6fa5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Descriptions of genetic variations and their effect are widely spread across the biomedical literature. However,
finding all mentions of a specific variation, or all mentions of variations in a specific gene, is difficult to
achieve due to the many ways such variations are described. Here, we describe SETH, a tool for the recognition of
variations from text and their subsequent normalization to dbSNP or UniProt. SETH achieves high precision and recall
on several evaluation corpora of PubMed abstracts. It is freely available and encompasses stand-alone scripts for
isolated application and evaluation as well as a thorough documentation for integration into other applications.
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema """

from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@Article{SETH2016,
    Title       = {SETH detects and normalizes genetic variants in text.},
    Author      = {Thomas, Philippe and Rockt{"{a}}schel, Tim and Hakenberg, J{"{o}}rg and Lichtblau, Yvonne and Leser, Ulf},
    Journal     = {Bioinformatics},
    Year        = {2016},
    Month       = {Jun},
    Doi         = {10.1093/bioinformatics/btw234},
    Language    = {eng},
    Medline-pst = {aheadofprint},
    Pmid        = {27256315},
    Url         = {http://dx.doi.org/10.1093/bioinformatics/btw234
}
"""

_DATASETNAME = "seth_corpus"
_DISPLAYNAME = "SETH Corpus"

_DESCRIPTION = (
    """SNP named entity recognition corpus consisting of 630 PubMed citations."""
)

_HOMEPAGE = "https://github.com/rockt/SETH"

_LICENSE = 'Apache License 2.0'
_URLS = {
    "source": "https://github.com/rockt/SETH/archive/refs/heads/master.zip",
    "bigbio_kb": "https://github.com/rockt/SETH/archive/refs/heads/master.zip",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class SethCorpusDataset(datasets.GeneratorBasedBuilder):
    """SNP named entity recognition corpus consisting of 630 PubMed citations."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="seth_corpus_source",
            version=SOURCE_VERSION,
            description="SETH corpus source schema",
            schema="source",
            subset_id="seth_corpus",
        ),
        BigBioConfig(
            name="seth_corpus_bigbio_kb",
            version=BIGBIO_VERSION,
            description="SETH corpus BigBio schema",
            schema="bigbio_kb",
            subset_id="seth_corpus",
        ),
    ]

    DEFAULT_CONFIG_NAME = "seth_corpus_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                        {
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "type": datasets.Value("string"),
                            "id": datasets.Value("string"),
                        }
                    ],
                    "events": [  # E line in brat
                        {
                            "trigger": datasets.Value("string"),
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "arguments": datasets.Sequence(
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ),
                        }
                    ],
                    "relations": [  # R line in brat
                        {
                            "id": datasets.Value("string"),
                            "head": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "tail": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "type": datasets.Value("string"),
                        }
                    ],
                    "equivalences": [  # Equiv line in brat
                        {
                            "id": datasets.Value("string"),
                            "ref_ids": datasets.Sequence(datasets.Value("string")),
                        }
                    ],
                    "attributes": [  # M or A lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        }
                    ],
                    "normalizations": [  # N lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "resource_name": datasets.Value("string"),
                            "cuid": datasets.Value("string"),
                            "text": datasets.Value("string"),
                        }
                    ],
                },
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[self.config.schema]
        data_dir = Path(dl_manager.download_and_extract(urls))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir / "SETH-master" / "resources" / "SETH-corpus",
                    "corpus_file": "corpus.txt",
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(
        self, filepath: Path, corpus_file: str, split: str
    ) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            with open(filepath / corpus_file, encoding="utf-8") as f:
                contents = f.readlines()
            for guid, content in enumerate(contents):
                file_name, text = content.split("\t")
                example = parse_brat_file(
                    filepath / "annotations" / f"{file_name}.ann"
                )
                example["id"] = str(guid)
                example["text"] = text
                yield guid, example

        elif self.config.schema == "bigbio_kb":
            with open(filepath / corpus_file, encoding="utf-8") as f:
                contents = f.readlines()
            for guid, content in enumerate(contents):
                file_name, text = content.split("\t")
                example = parse_brat_file(
                    filepath / "annotations" / f"{file_name}.ann"
                )

                # this example contains event lines
                # but events have not arguments
                # this is most likely an error on the annotation side
                if example["document_id"] == "11058905":
                    example["events"] = []

                example["text"] = text
                example = brat_parse_to_bigbio_kb(example)
                example["id"] = str(guid)
                yield guid, example
        else:
            raise ValueError(f"Invalid config: {self.config.name}")