from pathlib import Path from typing import List import datasets import pandas as pd from .bigbiohub import text_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _SOURCE_VIEW_NAME = "source" _UNIFIED_VIEW_NAME = "bigbio" _LANGUAGES = ["English"] _PUBMED = True _LOCAL = False _CITATION = """\ @article{Bravo2015, doi = {10.1186/s12859-015-0472-9}, url = {https://doi.org/10.1186/s12859-015-0472-9}, year = {2015}, month = feb, publisher = {Springer Science and Business Media {LLC}}, volume = {16}, number = {1}, author = {{\`{A}}lex Bravo and Janet Pi{\~{n}}ero and N{\'{u}}ria Queralt-Rosinach and Michael Rautschka and Laura I Furlong}, title = {Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research}, journal = {{BMC} Bioinformatics} } """ _DESCRIPTION = """\ A corpus identifying associations between genes and diseases by a semi-automatic annotation procedure based on the Genetic Association Database """ _DATASETNAME = "gad" _DISPLAYNAME = "GAD" _HOMEPAGE = "https://github.com/dmis-lab/biobert" # This data source is used by the BLURB benchmark _LICENSE = "CC_BY_4p0" _SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" class GAD(datasets.GeneratorBasedBuilder): """GAD is a weakly labeled dataset for Entity Relations (REL) task which is treated as a sentence classification task.""" BUILDER_CONFIGS = [ # 10-fold source schema BigBioConfig( name=f"gad_fold{i}_source", version=datasets.Version(_SOURCE_VERSION), description="GAD source schema", schema="source", subset_id=f"gad_fold{i}", ) for i in range(10) ] + [ # 10-fold bigbio schema BigBioConfig( name=f"gad_fold{i}_bigbio_text", version=datasets.Version(_BIGBIO_VERSION), description="GAD BigBio schema", schema="bigbio_text", subset_id=f"gad_fold{i}", ) for i in range(10) ] # BLURB Benchmark config https://microsoft.github.io/BLURB/ BUILDER_CONFIGS.append( BigBioConfig( name=f"gad_blurb_bigbio_text", version=datasets.Version(_BIGBIO_VERSION), description=f"GAD BLURB benchmark in simplified BigBio schema", schema="bigbio_text", subset_id=f"gad_blurb", ) ) DEFAULT_CONFIG_NAME = "gad_fold0_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "index": datasets.Value("string"), "sentence": datasets.Value("string"), "label": datasets.Value("int32"), } ) elif self.config.schema == "bigbio_text": features = text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: data_dir = Path(dl_manager.download_and_extract("data/REdata.zip")) if "blurb" in self.config.name: data_files = { "train": data_dir / "GAD" / "blurb" / "train.tsv", "validation": data_dir / "GAD" / "blurb" / "dev.tsv", "test": data_dir / "GAD" / "blurb" / "test.tsv", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["validation"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}, ), ] else: fold_id = int(self.config.subset_id.split("_fold")[1][0]) + 1 data_files = { "train": data_dir / "GAD" / str(fold_id) / "train.tsv", "test": data_dir / "GAD" / str(fold_id) / "test.tsv", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}, ), ] def _generate_examples(self, filepath: Path): # train files in non-blurb splits don't have headers for some reason if "train.tsv" in str(filepath) and "blurb" not in self.config.name: df = pd.read_csv(filepath, sep="\t", header=None).reset_index() else: df = pd.read_csv(filepath, sep="\t") df.columns = ["id", "sentence", "label"] if self.config.schema == "source": for id, row in enumerate(df.itertuples()): ex = { "index": row.id, "sentence": row.sentence, "label": int(row.label), } yield id, ex elif self.config.schema == "bigbio_text": for id, row in enumerate(df.itertuples()): ex = { "id": id, "document_id": row.id, "text": row.sentence, "labels": [str(row.label)], } yield id, ex else: raise ValueError(f"Invalid config: {self.config.name}")