from collections import defaultdict from dataclasses import dataclass from enum import Enum import logging from pathlib import Path from types import SimpleNamespace from typing import Dict, Iterable, List, Tuple import bioc import datasets logger = logging.getLogger(__name__) BigBioValues = SimpleNamespace(NULL="") @dataclass class BigBioConfig(datasets.BuilderConfig): """BuilderConfig for BigBio.""" name: str = None version: datasets.Version = None description: str = None schema: str = None subset_id: str = None class Tasks(Enum): NAMED_ENTITY_RECOGNITION = "NER" NAMED_ENTITY_DISAMBIGUATION = "NED" EVENT_EXTRACTION = "EE" RELATION_EXTRACTION = "RE" COREFERENCE_RESOLUTION = "COREF" QUESTION_ANSWERING = "QA" TEXTUAL_ENTAILMENT = "TE" SEMANTIC_SIMILARITY = "STS" TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" PARAPHRASING = "PARA" TRANSLATION = "TRANSL" SUMMARIZATION = "SUM" TEXT_CLASSIFICATION = "TXTCLASS" entailment_features = datasets.Features( { "id": datasets.Value("string"), "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.Value("string"), } ) pairs_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text_1": datasets.Value("string"), "text_2": datasets.Value("string"), "label": datasets.Value("string"), } ) qa_features = datasets.Features( { "id": datasets.Value("string"), "question_id": datasets.Value("string"), "document_id": datasets.Value("string"), "question": datasets.Value("string"), "type": datasets.Value("string"), "choices": [datasets.Value("string")], "context": datasets.Value("string"), "answer": datasets.Sequence(datasets.Value("string")), } ) text_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text": datasets.Value("string"), "labels": [datasets.Value("string")], } ) text2text_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text_1": datasets.Value("string"), "text_2": datasets.Value("string"), "text_1_name": datasets.Value("string"), "text_2_name": datasets.Value("string"), } ) kb_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "passages": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), "text": datasets.Sequence(datasets.Value("string")), "offsets": datasets.Sequence([datasets.Value("int32")]), } ], "entities": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), "text": datasets.Sequence(datasets.Value("string")), "offsets": datasets.Sequence([datasets.Value("int32")]), "normalized": [ { "db_name": datasets.Value("string"), "db_id": datasets.Value("string"), } ], } ], "events": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), # refers to the text_bound_annotation of the trigger "trigger": { "text": datasets.Sequence(datasets.Value("string")), "offsets": datasets.Sequence([datasets.Value("int32")]), }, "arguments": [ { "role": datasets.Value("string"), "ref_id": datasets.Value("string"), } ], } ], "coreferences": [ { "id": datasets.Value("string"), "entity_ids": datasets.Sequence(datasets.Value("string")), } ], "relations": [ { "id": datasets.Value("string"), "type": datasets.Value("string"), "arg1_id": datasets.Value("string"), "arg2_id": datasets.Value("string"), "normalized": [ { "db_name": datasets.Value("string"), "db_id": datasets.Value("string"), } ], } ], } ) def get_texts_and_offsets_from_bioc_ann(ann: bioc.BioCAnnotation) -> Tuple: offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations] text = ann.text if len(offsets) > 1: i = 0 texts = [] for start, end in offsets: chunk_len = end - start texts.append(text[i : chunk_len + i]) i += chunk_len while i < len(text) and text[i] == " ": i += 1 else: texts = [text] return offsets, texts def remove_prefix(a: str, prefix: str) -> str: if a.startswith(prefix): a = a[len(prefix) :] return a def parse_brat_file( txt_file: Path, annotation_file_suffixes: List[str] = None, parse_notes: bool = False, ) -> Dict: """ Parse a brat file into the schema defined below. `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt' Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files, e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'. Will include annotator notes, when `parse_notes == True`. brat_features = datasets.Features( { "id": datasets.Value("string"), "document_id": datasets.Value("string"), "text": datasets.Value("string"), "text_bound_annotations": [ # T line in brat, e.g. type or event trigger { "offsets": datasets.Sequence([datasets.Value("int32")]), "text": datasets.Sequence(datasets.Value("string")), "type": datasets.Value("string"), "id": datasets.Value("string"), } ], "events": [ # E line in brat { "trigger": datasets.Value( "string" ), # refers to the text_bound_annotation of the trigger, "id": datasets.Value("string"), "type": datasets.Value("string"), "arguments": datasets.Sequence( { "role": datasets.Value("string"), "ref_id": datasets.Value("string"), } ), } ], "relations": [ # R line in brat { "id": datasets.Value("string"), "head": { "ref_id": datasets.Value("string"), "role": datasets.Value("string"), }, "tail": { "ref_id": datasets.Value("string"), "role": datasets.Value("string"), }, "type": datasets.Value("string"), } ], "equivalences": [ # Equiv line in brat { "id": datasets.Value("string"), "ref_ids": datasets.Sequence(datasets.Value("string")), } ], "attributes": [ # M or A lines in brat { "id": datasets.Value("string"), "type": datasets.Value("string"), "ref_id": datasets.Value("string"), "value": datasets.Value("string"), } ], "normalizations": [ # N lines in brat { "id": datasets.Value("string"), "type": datasets.Value("string"), "ref_id": datasets.Value("string"), "resource_name": datasets.Value( "string" ), # Name of the resource, e.g. "Wikipedia" "cuid": datasets.Value( "string" ), # ID in the resource, e.g. 534366 "text": datasets.Value( "string" ), # Human readable description/name of the entity, e.g. "Barack Obama" } ], ### OPTIONAL: Only included when `parse_notes == True` "notes": [ # # lines in brat { "id": datasets.Value("string"), "type": datasets.Value("string"), "ref_id": datasets.Value("string"), "text": datasets.Value("string"), } ], }, ) """ example = {} example["document_id"] = txt_file.with_suffix("").name with txt_file.open() as f: example["text"] = f.read() # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes # for event extraction if annotation_file_suffixes is None: annotation_file_suffixes = [".a1", ".a2", ".ann"] if len(annotation_file_suffixes) == 0: raise AssertionError( "At least one suffix for the to-be-read annotation files should be given!" ) ann_lines = [] for suffix in annotation_file_suffixes: annotation_file = txt_file.with_suffix(suffix) if annotation_file.exists(): with annotation_file.open() as f: ann_lines.extend(f.readlines()) example["text_bound_annotations"] = [] example["events"] = [] example["relations"] = [] example["equivalences"] = [] example["attributes"] = [] example["normalizations"] = [] if parse_notes: example["notes"] = [] for line in ann_lines: line = line.strip() if not line: continue if line.startswith("T"): # Text bound ann = {} fields = line.split("\t") ann["id"] = fields[0] ann["type"] = fields[1].split()[0] ann["offsets"] = [] span_str = remove_prefix(fields[1], (ann["type"] + " ")) text = fields[2] for span in span_str.split(";"): start, end = span.split() ann["offsets"].append([int(start), int(end)]) # Heuristically split text of discontiguous entities into chunks ann["text"] = [] if len(ann["offsets"]) > 1: i = 0 for start, end in ann["offsets"]: chunk_len = end - start ann["text"].append(text[i : chunk_len + i]) i += chunk_len while i < len(text) and text[i] == " ": i += 1 else: ann["text"] = [text] example["text_bound_annotations"].append(ann) elif line.startswith("E"): ann = {} fields = line.split("\t") ann["id"] = fields[0] ann["type"], ann["trigger"] = fields[1].split()[0].split(":") ann["arguments"] = [] for role_ref_id in fields[1].split()[1:]: argument = { "role": (role_ref_id.split(":"))[0], "ref_id": (role_ref_id.split(":"))[1], } ann["arguments"].append(argument) example["events"].append(ann) elif line.startswith("R"): ann = {} fields = line.split("\t") ann["id"] = fields[0] ann["type"] = fields[1].split()[0] ann["head"] = { "role": fields[1].split()[1].split(":")[0], "ref_id": fields[1].split()[1].split(":")[1], } ann["tail"] = { "role": fields[1].split()[2].split(":")[0], "ref_id": fields[1].split()[2].split(":")[1], } example["relations"].append(ann) # '*' seems to be the legacy way to mark equivalences, # but I couldn't find any info on the current way # this might have to be adapted dependent on the brat version # of the annotation elif line.startswith("*"): ann = {} fields = line.split("\t") ann["id"] = fields[0] ann["ref_ids"] = fields[1].split()[1:] example["equivalences"].append(ann) elif line.startswith("A") or line.startswith("M"): ann = {} fields = line.split("\t") ann["id"] = fields[0] info = fields[1].split() ann["type"] = info[0] ann["ref_id"] = info[1] if len(info) > 2: ann["value"] = info[2] else: ann["value"] = "" example["attributes"].append(ann) elif line.startswith("N"): ann = {} fields = line.split("\t") ann["id"] = fields[0] ann["text"] = fields[2] info = fields[1].split() ann["type"] = info[0] ann["ref_id"] = info[1] ann["resource_name"] = info[2].split(":")[0] ann["cuid"] = info[2].split(":")[1] example["normalizations"].append(ann) elif parse_notes and line.startswith("#"): ann = {} fields = line.split("\t") ann["id"] = fields[0] ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL info = fields[1].split() ann["type"] = info[0] ann["ref_id"] = info[1] example["notes"].append(ann) return example def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict: """ Transform a brat parse (conforming to the standard brat schema) obtained with `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py) :param brat_parse: """ unified_example = {} # Prefix all ids with document id to ensure global uniqueness, # because brat ids are only unique within their document id_prefix = brat_parse["document_id"] + "_" # identical unified_example["document_id"] = brat_parse["document_id"] unified_example["passages"] = [ { "id": id_prefix + "_text", "type": "abstract", "text": [brat_parse["text"]], "offsets": [[0, len(brat_parse["text"])]], } ] # get normalizations ref_id_to_normalizations = defaultdict(list) for normalization in brat_parse["normalizations"]: ref_id_to_normalizations[normalization["ref_id"]].append( { "db_name": normalization["resource_name"], "db_id": normalization["cuid"], } ) # separate entities and event triggers unified_example["events"] = [] non_event_ann = brat_parse["text_bound_annotations"].copy() for event in brat_parse["events"]: event = event.copy() event["id"] = id_prefix + event["id"] trigger = next( tr for tr in brat_parse["text_bound_annotations"] if tr["id"] == event["trigger"] ) if trigger in non_event_ann: non_event_ann.remove(trigger) event["trigger"] = { "text": trigger["text"].copy(), "offsets": trigger["offsets"].copy(), } for argument in event["arguments"]: argument["ref_id"] = id_prefix + argument["ref_id"] unified_example["events"].append(event) unified_example["entities"] = [] anno_ids = [ref_id["id"] for ref_id in non_event_ann] for ann in non_event_ann: entity_ann = ann.copy() entity_ann["id"] = id_prefix + entity_ann["id"] entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]] unified_example["entities"].append(entity_ann) # massage relations unified_example["relations"] = [] skipped_relations = set() for ann in brat_parse["relations"]: if ( ann["head"]["ref_id"] not in anno_ids or ann["tail"]["ref_id"] not in anno_ids ): skipped_relations.add(ann["id"]) continue unified_example["relations"].append( { "arg1_id": id_prefix + ann["head"]["ref_id"], "arg2_id": id_prefix + ann["tail"]["ref_id"], "id": id_prefix + ann["id"], "type": ann["type"], "normalized": [], } ) if len(skipped_relations) > 0: example_id = brat_parse["document_id"] logger.info( f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities." f" Skip (for now): " f"{list(skipped_relations)}" ) # get coreferences unified_example["coreferences"] = [] for i, ann in enumerate(brat_parse["equivalences"], start=1): is_entity_cluster = True for ref_id in ann["ref_ids"]: if not ref_id.startswith("T"): # not textbound -> no entity is_entity_cluster = False elif ref_id not in anno_ids: # event trigger -> no entity is_entity_cluster = False if is_entity_cluster: entity_ids = [id_prefix + i for i in ann["ref_ids"]] unified_example["coreferences"].append( {"id": id_prefix + str(i), "entity_ids": entity_ids} ) return unified_example